
Formalization of Habanero Phasers using CoqI

Tiago Cogumbreiro, Jun Shirako, Vivek Sarkar

Rice University, 6100 Main St, Houston, TX 77005, USA

Abstract

Phasers pose an interesting synchronization mechanism that generalizes many collective synchronization patterns
seen in parallel programming languages, including barriers, clocks, and point-to-point synchronization using latches
or semaphores. This work characterizes scheduling constraints on phaser operations, by relating the execution state of
two tasks that operate on the same phaser. We propose a formalization of Habanero phasers, May-Happen-In-Parallel,
and Happens-Before relations for phaser operations, and show that these relations conform with the semantics. Our
formalization and proofs are fully mechanized using the Coq proof assistant, and are available online.

Keywords: phasers, barriers, Coq, synchronization, formalization

1. Introduction

Phasers are an interesting synchronization mechanism that generalizes barriers with collective producer-consumer
synchronization. A phaser can encode the synchronization mechanism of latches, futures, join barriers, cyclic barriers,
as well as any collective synchronization pattern provided by CUDA, C], Java, MPI, and X10. Phasers [1] were first
introduced in the Habanero Extreme Scale research project at Rice University, as an extension to X10 clocks [2], and
implemented in Habanero-Java and Habanero-C. A restricted form of phasers was also introduced in the standard
java.util.concurrent.Phaser library starting with Java 7. The phaser synchronization mechanism is relevant at
the theoretical level because of its generality. Theoretical results that target phasers can easily translate across different
languages and parallel runtimes [3].

This paper introduces the first formalization of: (1) the Habanero phaser semantics, and (2) the Phase Ordering
relation proposed in [1], which is a relation used for causality analysis [4; 5]. The former is a crucial stepping stone for
formal developments focused in many-to-many synchronization. The latter gives us an interpretation of a phaser as a
logical clock. Causality analysis are fundamental in the verification of barrier synchronization errors [6], lock-based
deadlock prediction [7; 8], and race-detection [9; 10].

Crafa et al. propose a Coq formalization of a subset of the X10 and define a causality relation in [11], but only
consider fork-join synchronization, and omit dynamic barrier synchronization that we formalize. Feautrier uses an
informal definition of the causality relation over clock operations 1 to optimize X10 programs by reducing synchro-
nization [12]. Tomofumi et al. use a causality relation to check for data races in the polyhedral subset of clocked X10
programs [13]. Joshi et al. propose an informal causality relation for X10 clocks [14].

This paper establishes two main properties with respect to the phasers semantics we introduce. First, as required
by causality analysis, we show that the Phase Ordering relation we define is a causality relation [4]. Second, since
the Phase Ordering relation is defined on the state of a phaser P, we show that the Phase Ordering relation conforms
with the execution semantics of phasers; that is, if a state P reduces to Q after zero or more steps, then Q cannot
happen before P. Such technique of showing the correctness of a causality relation was first introduced in [15]. By

IPublished in Journal of Logical and Algebraic Methods in Programming, 14 March 2017. DOI:10.1016/j.jlamp.2017.02.006
Email addresses: cogumbreiro@rice.edu (Tiago Cogumbreiro), shirako@rice.edu (Jun Shirako), vsarkar@rice.edu (Vivek Sarkar)

1Phasers are an extension of clocks with registration modes.

http://dx.doi.org/10.1016/j.jlamp.2017.02.006

targeting phasers, our formalization unifies collective producer-consumer synchronization [6] and barriers with dy-
namic membership [14] in a single theoretical framework. Additionally, we formalize and establish the correctness of
our definitions with proofs verified by the Coq proof assistant, available online, as part of our HJ-Coq formalization
project.2

The main contributions of this paper are:

1. the first formalization semantics of Habanero phasers and the Phase Ordering relation;
2. showing that the Phase Ordering is a causality relation (Theorem 1) that conforms with the reduction relation

(Theorem 3);
3. the full Coq mechanization of the theory, along with examples.

This paper extends previous work [16] with the following two contributions:

§6 A discussion of our Coq formalization and decidability results for all definitions.

§7 A web-based interpreter for the theory in this paper, implemented with code translated from Coq.

In the next section, we overview the background of the three main topics covered in this paper: phasers, causality
relations, and phase ordering. Next, in Section 3, we formally describe the phaser operations and its semantics. In
Section 4, we introduce Phase Ordering, the MHP relation, and the HB relation. Next, in Section 5, we establish the
main results with regards to the semantics of phasers. Section 6 discusses the design of our Coq formalization and
establishes decidability results. Section 7 presents our executable semantics as a web application. We conclude in
Section 8 and discuss future directions.

2. Background

Habanero Phasers. The phaser synchronization mechanism lets tasks observe a collective event, called phase,
which is visible once every member of a group of tasks signals the phaser exactly once. We define signalers of the
phaser as the group of tasks able to signal a phaser. The same phaser can be used to observe multiple phases, which
are distinguishable by a natural number. A task can observe phase n once each signaler issues at least n signals. Phaser
synchronization also features dynamic membership, that is, the group of signalers can grow and shrink dynamically:
a signaler can add a member, which in turn inherits the signal count of the task adding it; a signaler can also revoke
its membership at any time.

As an example of phaser synchronization, let us consider a group of three tasks, uniquely identified by x1, x2, and
x3, and let this group of tasks be the signalers of phaser P. Also, lets examine a point in time, with respect to phaser P,
where task x1 signaled 3 times, task x2 signaled 4 times, and task x3 signaled 10 times. Tasks can use P to observe
any phase below or equal to phase 3, since the signalers collectively issued at least 3 signals. Conversely, at this point
in time, any phase above 3 is not observable, e.g., for phase 4 to be observed we are missing a signal from task x1.
Dynamic membership affects synchronization: if task x1 adds a task x4 as a signaler of phaser P, then for phase 4 to
be observable we are missing a signal from task x1 and a signal from task x4; and, if, subsequently, tasks x1 and x4
revoke their membership, then phase 4 is observable.

Figure 1 depicts scheduling constrains imposed by sequential execution and phaser synchronization, where three
tasks, x, y, and z, synchronize with the same phaser. In the context of this paper, scheduling constraints corresponds
to causality. We annotate each node with the operation it is executing. Node 6 represents the event before writing
to location l. Node 7 represents the event after writing to location l. Edge (7, 2) represents that for the execution of
the wait to happen, task x must observe the drop of task y. As for the happens-before-relation, since there is a path
from node 7 to node 3, then the write to location l by task y at node 7 must happens before the read from the same
location by task x at node 3. Event 12 and event 3 may happen in parallel, which means that task x and z read from the
same location concurrently. By using the happens-before relation, we can conclude the execution develops into three
stages: firstly, task y writes a value to location l; secondly, tasks x and z read from l and task z writes to m; thirdly,
task x reads from m.

2http://cogumbreiro.github.io/jlamp17/

2

http://cogumbreiro.github.io/jlamp17/

1 2

wait

wp=1
3

read l
4

wait
5

read m

wp=2

6 7

write l

sp=0
8

drop

9
sp=0

10

signal
11

wait

wp=1
12

read l
13

write m

sp=1
14

signal
Task z

Task y

Task x

Time

Figure 1: Event causality in a program with three tasks and one phaser.

Causality relations. How we represent the causality relation is paramount for its analysis. The field of distributed
systems includes a vast body of work on representing causality with logical clocks with the objective of reducing space
and time of causality-tracking. The idea behind formulating the causality-relation with logical clocks hinges on two
concepts. First, rather than recording the set of events produced, each task counts the events it produced. Second, each
task perceives the whole system by keeping track of the logical time of all tasks, this is also known as a time stamp of
the system. With logical clocks the problem of checking if an event (time stamp) happens before another amounts to
comparing counters (a point-wise operation on a vector) — which sits in contrast checking the reachability between
two nodes, like in Figure 1. There are various formulations of logical clocks, each tailored to the characteristics of the
concurrent system being modeled [17].

Let us revisit Figure 1 and direct our attention to phaser synchronization edges; notice how the nodes of these
edges are annotated with wait and signal phases and how the signal phase of the source node always precedes the
wait phase of the target node. For instance, consider edge (7, 2), node 7 has a signal-phase of 0, which is smaller than
wait-phase 1 of node 2. An important characteristic of Habanero phasers is that its semantics are defined according
to the wait-phase and the signal-phase of each participant; these are task-local properties available to the programmer.
At run-time, programs with Habanero phasers can use the task view of the phaser to reason about causality of phaser
events.

Phase Ordering. This paper formalizes Phase Ordering [1], that defines a time stamp as two counters: how many
times the task signaled a given phaser, and how many times the task waited on that phaser. The former is called the
signal-phase, or sp, and the latter is called the wait-phase, or wp. We can observe that in Figure 1 that whenever there
is a node such that the sp value is smaller than the wp value, then there is a path from the former node to the latter,
e.g., from node 7 to node 11.

3. Phaser semantics

Let us discuss the semantics of Habanero phasers by presenting Listing 1. This listing exhibits the causality
relation of Figure 1, so we annotate each line with the nodes of the causality relation and overlay the synchronization
edges. In the comments, we relate each API call with its respective phaser operation as defined in the formalization.
As we have seen, from analyzing Figure 1, our program develops into three stages. First, task y writes to location x.
Second, tasks x and z both read from location x, and task x writes to location y. Third, task z reads from location y.
The listing makes explicit that: task y creates a phaser object ph to synchronize the memory accesses, at Line 1; task y
spawns tasks x and task z, at Lines 2 and 8, respectively; and, task y registers both spawned tasks as members of
phaser ph upon spawning.

Membership. Tasks can be registered with a phaser by creating a phaser with newPhaser and by being spawned
with asyncPhased. In Line 1, task y is the only member of phaser ph. In Line 8, the members of the phaser are tasks x,
y, and z. A task can only manipulate a phaser if it is registered with that phaser. At any time a task can revoke its
membership by invoking phaser method drop, as in Line 15. This means that after dropping the phaser, task y cannot

3

Listing 1: HJ-Lib code listing three tasks that synchronize with a phaser.

1 ph = newPhaser ();

2 asyncPhased(ph.inMode(WAIT_ONLY), () -> { // b:reg a WO

3 ph.doWait (); 1 // a:wait

4 println(x); 2

5 ph.doWait (); 3 // a:wait

6 println(y); 4

7 }); // a:drop

8 asyncPhased(ph.inMode(SIG_WAIT), () -> { // b:reg c SW

9 ph.signal (); 9 // c:signal

10 ph.doWait (); 10 // c:wait

11 y = compute(x); 11 12

12 ph.signal (); 13 // c:signal

13 }); // c:drop

14 x = 1; 6

15 ph.drop(); 7 // c:drop

signal, wait, nor registered tasks on phaser ph. Before a phased task terminates, it implicitly drops from all phasers it
is registered with. For instance, in Lines 7 and 13, tasks x and z invoke ph.drop() internally.

Registration modes. A feature that distinguishes Habanero phasers from other barrier-like synchronization mecha-
nisms is that signaling and waiting is optional: declare which members do not influence synchronization, and which
members need not wait for other members. A task can choose to manipulate a phaser according to two abilities: (i)
the ability to observe phaser synchronization, i.e., waiter, and (ii) the ability to influence synchronization, i.e., sig-
naler. Each member is registered according to a mode r among: SIG_WAIT, or SW, for tasks that must signal and wait,
WAIT_ONLY, or WO, for tasks that wait but do not signal, and SIG_ONLY, or SO, for tasks that signal but do not wait. Func-
tion newPhaser() registers the calling task as SIG_WAIT mode, so that the task can then register with fewer capabilities.
When spawning phased tasks, the programmer can set the mode of phaser ph.inMode(r), such as in Lines 2 and 8.
When registering a task the mode cannot have more capabilities than the calling task. For instance, a task registered
with WAIT_ONLY cannot register a task in SIG_WAIT, nor on SIG_ONLY modes.

Waiting observes the signals from every signaler. Thus, tasks that wait and signal, mode SW, as in the example,
must signal before waiting at every phase to prevent waiting for a signal the task did not produce. This synchronization
pattern is known as a barrier. Members disregard wait-only (WO) tasks upon waiting; this subset of tasks cannot
influence synchronization, only observe it. Phasers can encode latches, future-promises, and fork-join synchronization
patterns using wait-only tasks. Finally, tasks that only signal, do not wait for others; this lets phasers encode producer-
consumer synchronization.

In summary, the HJ-lib API for phasers is:

Membership Function newPhaser() creates a new phaser. The calling task becomes the sole member of the phaser.
Function asyncPhased(ph_1,...,ph_n, l) spawns a task that is registered with phasers ph_1, . . . , ph_n; the new
task executes lambda expression l. Phaser method drop() revokes the membership of the issuing task.

Registration modes Upon registration the programmer can specify how a task operates the phaser, picking a mode
from: SIG_WAIT, SIG_ONLY, WAIT_ONLY. Mode SIG_WAIT can issue waits and signals. Mode SIG_ONLY only
signals (does not wait). Mode WAIT_ONLY only waits (does not signal). Upon registering a task with a phaser,
the task being registered cannot have more capabilities than the calling task.

Signal The non-blocking phaser method signal increments the signal phase of the calling task. Any member task
may thus independently advance up to an arbitrary phase.

Wait The phaser method doWait blocks the calling task until every signaler issued at least wp + 1 signals.

HJ Phaser formalization. We define the state of a phaser P to be a map from members T into viewsV, which holds
the signal count, the wait count, and registration mode of a member. Consider the usual operations on finite maps
(which we use to encode phasers) with the given notation: predicate P(x) = v ensures that the pair of key x and value v

4

P(x) = v Signaler v v.mode = SW =⇒ v.wp = v.sp

P
x:signal()
−−−−−−−−→ P[x 7→ v.sp := v.sp + 1]

P(x) = v Phase(P, v.wp + 1) Waiter v v.mode = SW =⇒ v.wp + 1 = v.sp

P
x:wait()
−−−−−−→ P[x 7→ v.wp := v.wp + 1]

y < P P(x) = v Waiter r =⇒ Waiter v Signaler r =⇒ Signaler v

P
x:reg(y,r)
−−−−−−−→P[y 7→ v.mode := r]

x ∈ P

P
x:drop()
−−−−−−→ P − x

Figure 2: Operational semantics of phaser operations

is a member of map P, predicate x ∈ P is short-hand for ∃v : P(x) = v, map P[x 7→ v] adds the pair x and v to map P
(replacing the assigned view if x ∈ P), and map P − x results from removing the pair associated with key x from map
P. In the mechanization, we use Coq’s standard library of finite maps Coq.FSets.FMaps.

A view v represents the task-local information that each member has over the phaser. The view consists of a triple:
the first value n is a natural number that counts the number of times the given task issued a signal on the target phaser
and can be accessed by v.sp; the second value m counts the number of waits and can be accessed by v.wp; the third
value r is the registration mode of the given task and is accessed by v.mode.

v ::= {sp := n, wp := m, mode := r}

The field update operation v. f := e yields a view that is the same as v except for field f that becomes e. For in-
stance, v.sp := 3 yields a view, say w, where w.wp = v.wp, w.sp = 3, and w.mode = v.mode. To inquire the signaling
and waiting abilities of a view we have the following predicates: Waiter r def

= r ∈ {WO, SW}, Signaler r def
= r ∈ {SO, SW}.

And let the short-hand notation Signaler v def
= Signaler v.mode and Waiter v def

= Waiter v.mode.
We define a small-step operational semantics for phaser operations in Figure 2. The reduction

x:o
−−→ is labeled by

the member x issuing the operation, and by an operation o defined below.

o ::= signal() | wait() | reg(x, r) | drop()

Remark 1. To model Java phasers and X10 clocks semantics refer to Figure 2 but limit the registration mode to
signal-wait mode, that is r ::= SW.

Operation signal() increments the signal phase. Only tasks registered as signalers can issue this operation. The
pre-conditions in signal, v.wp = v.sp, and in wait, v.wp + 1 = v.sp, enforce tasks registered in signal-wait mode to
interleave each signal with a wait.

Waiting is the crux of synchronization. A task x with view P(x) = v awaits the subsequent wait phase, that
is, v.wp + 1. Proposition Phase(P, n) holds once phase n can be observed; the definition ensures that all tasks that can
signal have issued at least n signals.

Phase(P, n) def
= ∀x : Signaler P(x) =⇒ P(x).sp ≥ n

Tasks register other tasks with with asyncPhased, which is captured by reg(x, r). For instance, in Line 1 of List-
ing 1, instruction asyncPhased(ph.inMode(SIG_WAIT),...) becomes reg(x2, SW) in this semantics if we are spawning
task x2. Habanero phasers limit task registration: only unregistered tasks can be added, thus y ∈ P, only registered

5

https://coq.inria.fr/library/Coq.FSets.FMaps.html

tasks x can add new members, P(x) = v, only waiters can register other waiters, hence Waiter r =⇒ Waiter v, and
only signalers can register other signalers, so Signaler r =⇒ Signaler v.

To establish the results in the next section, let us establish the invariant of well-formedness. Additionally, let P −→
Q be defined as there exist x and o such that P

x:o
−−→ Q.

Definition 1 (Well-formed view). Let a well-formed view be such that v.wp ≤ v.sp and if Waiter v then v.sp−v.wp ≤ 1.
LetVWF be the set of all well-formed views.

Lemma 1 (Reduction preserves well-formedness of views). Let P be such that if P(x) = v, then v ∈ VWF . If P −→ Q,
then Q is such that if Q(x) = v, then v ∈ VWF .

Henceforth, we only consider views that are inVWF .

4. Phase Ordering

This section formalizes Phase Ordering, originally introduced in [1], to reason about whether two tasks should
execute concurrently in terms of views V and states P. Specifically, Phaser Ordering is a Happens-Before relation:
if the number of signals issued by a task is smaller than the last phase observed by some other task, then the former
Happened Before the latter. For instance, let v1 be a view that task y has over the phaser in Figure 1 and v2 be a view
that task z has over the phaser in Figure 1, each from a distinct state of the same phaser ph, i.e., there exists two states P
and Q such that P(y) = v1 and Q(z) = v2. Now, let v1

def
= {sp:=0, wp:=0, mode:=SW} be the view of y when executing

write l and v2
def
= {sp := 1, wp := 1, mode := SW} be the view z when executing read l. The registration mode tells us

that view v2 must observe and wait for the signals of v1. View v1 tells us that y did not produce any signal and v2 tells
us that z observed phase 1 (a collective signal). Thus, since y signaled fewer times than the phase observed by z, we
can infer that v1 must have happened before v2. In order for view v2 to observe a signal, the task controlling view v1
must eventually signal to become v1.sp = 1.

Definition 2 (Happens-before (HB) relation). Let v1 ≺ v2 read as v1 must have happened before v2, defined as the
conjunction of:

Signaler v1 v1.sp < v2.wp Waiter v2

We say that P ≺ Q if there exist two tasks x, y such that P(x) ≺ Q(y).

Example 1. Suppose P
x:signal()
−−−−−−−−→ Q

x:wait()
−−−−−−→ R and that P(x).mode = SW. We have that P ≺ R.

Proof. First, we simplify our goal, since we know that from wait() R(x).wp = Q(x).wp + 1 and because signal()
does not alter the wait phase we have that Q(x).wp = P(x).wp. Hence, P(x).sp < R(x).wp ≡ P(x).sp < Q(x).wp + 1 ≡

P(x).sp < P(x).wp + 1. Now, by inverting reduction
x:signal()
−−−−−−−−→, we get two cases: either P(x).wp = P(x).sp and it

trivially holds, otherwise we get a contradiction.

Let us show that ≺ is a causality relation over views, a fundamental notion for many problems occurring in
distributed computing [18]. By causality relation we mean a strict partial order: (i) transitive: if v1 ≺ v2 and v2 ≺ v3,
then v1 ≺ v3; (ii) irreflexive: for all v, we have that v 6≺ v; (iii) asymmetric: if v1 ≺ v2, then v2 6≺ v1.

Lemma 2. (≺,V) is a causality relation.

Finally, we define the usual notion of May-Happen-in-Parallel (or concurrency relation) for views and for phasers.

Definition 3 (May-Happen-in-Parallel relation). Let v1 || v2 read as v1 happens in parallel with v2 and be defined as
v1 6≺ v2 and v2 6≺ v1. Similarly, let P1 || P2 be defined as P1 6≺ P2 and P2 6≺ P1.

6

5. Results

Similarly to what happened with showing the causality of ≺ over views, when establishing the causality of ≺ over
phasers we require an invariant that relates the various local views of a phaser. While in the context of views, we must
ensure that the wait phase does not overtake the signal phase, in the context of phasers we must ensure that its views
may happen in parallel with each other, i.e., there must be no scheduling constraints within a phaser.

Definition 4 (Well-ordered phaser). Let a well-ordered phaser be such that P||P. LetPWO be the set of all well-ordered
phasers.

Reduction cannot introduce unsolvable scheduling constraints within a phaser.

Lemma 3 (Reduction preserves phaser well-orderedness). If P ∈ PWO and P −→ Q, then Q ∈ PWO.

We are now ready to show that ≺ is a causality relation over phasers.

Theorem 1. (≺,PWO) is a causality relation.

The execution of an HJ program must respect the scheduling restriction imposed by Phase Ordering. In the point of
view of our formalization, the reduction relation captures the execution of a single phaser operation. Thus, Theorem 2
shows that the state after execution cannot happen before the state before execution, or, in other words, that the pre-
and post-states of a phaser operation respect Phase Ordering.

Theorem 2. If P ∈ PWO and P −→ Q we have that Q 6≺ P.

From P −→ Q we can also conclude P 6≺ Q. Thus, it follows that.

Lemma 4. If P ∈ PWO, P −→ Q, then P || Q.

Be aware, however, that MHP does not enjoy transitivity, otherwise HB would be an empty relation! Example 1
is an evidence of when P || Q and Q || R but ¬(P || R), as P ≺ R. This also tells us that for any two states P and Q if we
have P ≺ Q, then state Q is the result of at least two phaser operations.

The final theorem establishes that the execution of an HJ program respects the scheduling restriction imposed
by Phase Ordering. While Theorem 2 relates the pre- and post-states of executing a single operation, Theorem 3
generalizes this result to any possible execution trace, showing that Phase Ordering captures the execution order of
instructions in programs that use phasers. Let −→∗ be defined as the reflexive transitive closure of −→.

Theorem 3 (Absence of synchronization errors). P ∈ PWO, P −→∗ Q, then Q 6≺ P.

Our results can be summarized into three groups. The first group consists of Lemmas 1 and 3; this serves as a
steppingstone for our main results. The former lemma establishes an invariant on a relationship between wait and
signal phases (VWF), while the latter lemma establishes an invariant on a relationship between any two views picked
from a state (PWO). Since VWF and PWO are preserved by our semantics, any program that manipulates Habanero
phasers can assume Lemmas 1 and 3 to hold. The second group consists of Lemma 2 and Theorem 1 and lets us relate
views (and states) with the HB relation. The third group consists of Theorems 2 and 3 and it lets us conclude that the
execution of a program using Habanero phasers respects the scheduling restriction imposed by Phase Ordering (HB)
relation.

6. Coq Formalization

In this section, we introduce some details of our Coq formalization. We overview our definition of the operational
semantics and establish decidability results for all definitions in the paper. Decidable properties can be automatically
translated from Coq into JavaScript, which we use in our accompanying artifact.

7

6.1. Operational semantics

A phaser is defined as a finite map from task identifiers to task views; We use the finite map library (and properties)
available from Coq’s standard library Coq.FSets.FMaps.3 The code below defines the operational semantics, where
proposition Reduces ph (x, o) ph’ represents P

x:o
−−→ P′.

(* Auxiliary definitions: *)

Inductive op := SIGNAL | WAIT | DROP | REGISTER : registry −> op.
Record rule := {pre: tid −> phaser −> Prop; exec: tid −> phaser −> phaser}.
Definition select_rule o := (* ... *)

(* Operational semantics: *)

Inductive Reduces ph: (tid∗op) −> phaser −> Prop :=
| ph_reduces:
let r := select_rule o in

∀ x o, pre r x ph −> Reduces ph (x, o) (exec r x ph).

Using a more familiar notation, the above can be typeset as

r = select_rule(o) pre(r, x, P)

P
x:o
−−→ exec(r, x, P)

The reduction expects the rule r that is assigned to operation o, with expression select_rule o. Each rule r consists
of a pre-condition and a rewrite function. The reduction itself is then defined as usual: if the pre-condition pre r t ph

holds, then phaser ph reduces to expression exec r t ph.

Rule wait. The reduction rules of the semantics follow directly, each of which instantiates the type rule. Let us
discuss the rule for operation wait, that consists of pre-condition WaitPre and rewrite function wait.

Definition rule_wait := {| pre := WaitPre; exec := wait |}.

The pre-condition of the wait rule (see Figure 2) is the conjunction of

P(x) = v Phase(P, v.wp + 1) Waiter v v.mode = SW =⇒ v.wp + 1 = v.sp

which can be defined as predicate WaitPre t ph listed below, where predicate MapsTo t v ph corresponds to P(x) = v.

Inductive WaitPre (t:tid) (ph:phaser) : Prop :=
| wait_pre_def:
∀ v, MapsTo t v ph −> Phase ph (wp v + 1) −> Waiter v −> (mode v = SW −> wp v + 1 = sp v) −>
WaitPre t ph.

Finally, the rewrite function for wait, P[x 7→ v.wp := v.wp + 1], can be defined with the following code listing.

Definition wait (t:tid) (ph:phaser) : phaser :=
match find t ph with

| Some v⇒ add t {|sp:=sp v; wp:=1 + wp v; mode:=mode v |} ph
| None⇒ ph

end.

Expression find t ph is defined in the Coq’s standard library of finite maps. A property of this function is that
find t ph = Some v if, and only if, MapsTo t v ph holds. Thus, function wait increments the wait phase of task t

if MapsTo t v ph, otherwise task t is not registered and function wait leaves phaser ph unaltered. Thus, whenever
WaitPre t ph holds, then wait t ph increments the wait phase of task t in phaser ph.

3https://coq.inria.fr/library/Coq.FSets.FMaps.html

8

https://coq.inria.fr/library/Coq.FSets.FMaps.html
https://coq.inria.fr/library/Coq.FSets.FMaps.html

6.2. Decidability results
Background on sumbools and Σ-types. To reason about the decidability of a logical proposition we use Coq’s sumbool
library,4 where type {A}+{B} represents the type of an expression that computes either a proof for A, or proof for B. For
instance, type {P ≺ P′} + {P 6≺ P′} declares whether or not phaser P happened before P′. An expression that yields a
sumbool is restricted in that it cannot manipulate proof objects—e.g., cannot destruct a disjunction—while choosing
which branch to prove from A or B. Furthermore, as a result of the extraction process, when translating a sumbool
{A}+{B}, proof objects A and B are erased, so the translated type of a sumbool is isomorphic to the type of booleans.5

A Σ-type [19], also called dependent sum type, notation {x:T | A}, the expression yields an x of type T such that A
holds, where variable x is bound in A. Code extraction erases proof object A from the type and retains the witness,
so type {x:T | A} is extracted as type T. For instance, type {P′ | P

x:o
−−→ P′} declares a phaser P′ that results from a

reduction step.

Operational semantics. The decidable version of the operational reduction benefits from the fact that the rewrite
function of each rule (exec is decidable by definition as it yields a phaser; similarly, function select_rule is also
decidable by definition as it returns a rule. Thus, proving the decidability of the operational semantics amounts
to showing the decidability of the pre-condition of each rule. With the goal of decidability in mind, we revisit the
definition of a rule to include the decidable pre-condition.

Record rule := mk_rule {

pre: tid −> phaser −> Prop;
pre_dec t ph : { pre t ph } + { ¬ pre t ph };
exec: tid −> phaser −> phaser}.

Function eval captures the executable semantics of predicate P
x:o
−−→ P′, by returning Some P′ if, and only if, the

predicate holds and None otherwise.

Definition eval (t:tid) (o:op) ph : option phaser :=
if pre_dec (select_rule o) t ph
then Some (exec (select_rule o) t ph)
else None.

Rule wait. The pre-condition of rule wait is the most interesting due to the difficulty of showing that predicate Phase(P, n)
is decidable. Definition Phase(P, n) def

= ∀x : Signaler P(x) =⇒ P(x).sp ≥ n can be written in Coq as

Definition Phase ph n := ∀ t v, MapsTo t v ph −> Signaler (mode v) −> sp v ≥ n.

where term Signaler P(x) becomes the implication P(x) = v =⇒ Signaler v, which in Coq is formulated as
MapsTo t v ph −> Signaler (mode v).

Our decidability proof of Phase ph n is divided into two parts. First, we declare a function signalers that retrieves
the signal phase of every task that is a signaler in phaser ph. Function List.omap f l is a higher-order function
that applies f to each element e of l and constructs a list of the result of function f e = Some y in the same order.
Function List.omap filters out any element e for which f e = None. Function elements, defined in Coq.FSets.FMaps,
converts the phaser ph into a list of pairs of a task and its view.

Definition signalers ph : list (tid ∗ nat) :=
let handle_entry (p:tid ∗ taskview) :=
let (t, v) := p in

if signaler (mode v) then Some (t, sp v)
else None

in

List.omap handle_entry (elements ph).

We specify function signalers ph with the following lemma.

4https://coq.inria.fr/library/Coq.Bool.Sumbool.html
5Since Coq lets us control the extraction process, in our project a sumbool is translated into an OCaml boolean.

9

https://coq.inria.fr/library/Coq.FSets.FMaps.html
https://coq.inria.fr/library/Coq.Bool.Sumbool.html

Lemma 5 (Correctness). We have (x, n) ∈signalers P if, and only if, P(x).wp = n.

The decidable function of predicate Phase(P, n) is function phase which computes true if, and only if, Phase(P, n)
holds. Function phase returns true if, and only if, each signal phase m in signalers ph we have that m ≥ n.

Definition phase ph n : boolean :=
let f (p : tid ∗ nat) := if ge_dec (snd p) n then true else false in

List.forallb f (signalers ph).

Main results. There are two main results. First, that the operational semantics is decidable. Second, that the happens-
before relation is decidable.

Lemma 6 (Correctness of the executable semantics). We have eval (x, o) P = Some Q if, and only if, P
x:o
−−→ P′. We

have eval (x, o) P = None if, and only if, ∀P′ : P 6
x:o
−−→ P′.

The next result follows trivially, where the decidability algorithm is function eval. The type signature deserves
some discussion. Type sum A B holds two constructors, one holds a value of type A, the other a value of type B. In
this case, each of which is a Σ-type. The first type, {P′ | P

x:o
−−→ P′}, pairs a phaser P′ with a proof of reduction. The

second type, {u : unit | ∀P′ : P 6
x:o
−−→ P′}, pairs a unit value with a proof that there is no possible reduction for task x

and action o. The unit value only serves as a witness type to associate the proof object with.

Theorem 4 (Reduction is decidable). For all x, o, and P, we have that sum {P′ | P
x:o
−−→ P′} {u : unit | ∀P′ : P 6

x:o
−−→ P′}.

Theorem 5 (Decidable Happens-Before). Well-formed views, well-ordered phasers are decidable and so is the
happens-before relation.

• For all v and v′, we have that {v ∈ VWF} + {v < VWF} and also {v ≺ v′} + {v 6≺ v′}.

• For all phasers P and P′ we have {P ∈ PWO} + {P < PWO} and also {P ≺ P′} + {P 6≺ P′}.

7. Formalization in the browser

Having an executable implementation of the reduction relation helps users understand and exercise the phasers
semantics. In this section, we present, as a companion artifact, a web page (link below) that lets users exercise the
definitions included in this paper.

http://cogumbreiro.github.io/jlamp17/

The artifact includes a JavaScript library that is translated automatically from our Coq formalization. The trans-
lation process is two parted. Coq can translate any decidable definition as an OCaml function. js_of_ocaml6 can
translate OCaml code into JavaScript. Thus, we use Coq to translate Definitions 1 to 4 and Figure 2 as an OCaml
library and then use js_of_ocaml to expose this OCaml library as a JavaScript library. The latter step requires some
programming to expose OCaml functions as JavaScript, as code generated from js_of_ocaml cannot be invoked from
regular JavaScript as is; this programming consists of data serialization code.

The web page includes a prompt to evaluate JavaScript expressions, so that the user can invoke our library. Addi-
tionally, we include a graph-visualization widget that renders the happens-before relation on a sequence of operations.
The graph-generation code is also implemented in Coq, but we leave a theoretical discussion of this feature as future
work.

6http://ocsigen.org/js_of_ocaml/

10

http://cogumbreiro.github.io/jlamp17/
http://ocsigen.org/js_of_ocaml/
http://ocsigen.org/js_of_ocaml/
http://ocsigen.org/js_of_ocaml/
http://ocsigen.org/js_of_ocaml/

[[1, wait()]

[3, signal ()],

[1, wait()],

[3, wait()],

[3, signal ()],

[2, drop()],

[2, reg(1, WO)],

[2, reg(3, SW)]]

(a) Operation trace. (b) Happens-before visualization.

Figure 3: Depicting the running example in our JavaScript executable semantics.

JavaScript library. The web page documents the available functions along with examples of their usage. We briefly
discuss the reduction relation and the happens-before relation. The prompt evaluates the user input and prints the
result of evaluation. Any code after >>> is a user input. The subsequent line displays the result of evaluating the user
expression.

In the following example we declare a phaser with two tasks — task identifiers are non-negative integers encoded
as strings. The code below assigns a phaser to variable p1 and then displays the state of p1 back to the user.

>>> p1 = {"1": {sp:0,wp:0,mode:SW}, "2":{sp:0,wp:0,mode:SW}}

{"1":{"sp":0,"wp":0,"mode":"SW"},"2":{"sp":0,"wp":0,"mode":"SW"}}

Function hj.run(e,ph) reduces state ph and an event e (which represents a task-operation pair); failing to reduce
throws an exception. An event is encoded as a two-element array [t,o] where t is a non-negative integer and o is an
operation. For instance, in the next code listing, task 1 signals phaser ph1 and returns the new state.

>>> hj.run([1, signal ()], p1)

{"1":{"wp":0,"sp":1,"mode":"SW"},"2":{"wp":0,"sp":0,"mode":"SW"}}

Function hj.hb(ph1,ph2) returns true if, and only if, ph1 happens before ph2. As we know, from Lemma 4, the
input of hj.run cannot happen before its output, hence the return value of the following expression.

>>> hj.hb(p1, hj.run([1, signal ()], p1))

false

Graph visualization. The syntax of the input is a JavaScript array that consists of events. The array of events is
ordered from the most recent at position 0 to the least recent (i.e., first operation performed). Figure 3a lists the
operation trace and Figure 3b shows the graph rendering. Each event corresponds to a node in the graph; the solid
and dotted edges can be mapped to the reduction relation over a pair of states. All nodes of the same task id share
the same color. The dashed arrows depict the happens-before relation among states. The nodes highlighted in yellow
represent the task views of each task, constituting the phaser state. For instance, task 2, in blue, does not have a task
view associated to a node, since it is deregistered from the phaser.

8. Conclusion

In this paper we propose the first formalization of Habanero phaser semantics and of Phase Ordering, from which
we derive the May-Happen-In-Parallel (MHP) and Happens-Before (HB) relations for phaser operations, as part of an

11

ongoing effort to formalize the Habanero programming model. Our definitions and proofs are mechanized using the
Coq proof assistant, consisting of 2800 lines of code and 140 lemmas.

We discuss the design of our Coq formalization as well as implement the reduction relation as a web application,
compiled automatically from our Coq code as a JavaScript library. Our implementation of the reduction rules are
proved to be correct with respect to the semantics we defined. The code responsible for constructing the graph used
in our web application consists of 1900 lines of Coq code, plus 200 lines of OCaml code.

Our next step is to verify data-race errors in parallel programs that feature collective producer-consumer synchro-
nization patterns. Since race detectors are based on analyzing a causality graph of memory accesses, we need to define
the phaser semantics in terms of a causality graph and show that the Phase Ordering property captures the causality
relation.

References

[1] J. Shirako, D. M. Peixotto, V. Sarkar, W. N. Scherer, Phasers: a unified deadlock-free construct for collective and point-to-point synchroniza-
tion, in: ICS’08, ACM, 2008, pp. 277–288. doi:10.1145/1375527.1375568.

[2] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, V. Sarkar, X10: an object-oriented approach to
non-uniform cluster computing, in: OOPSLA’05, ACM, 2005, pp. 519–538. doi:10.1145/1103845.1094852.

[3] T. Cogumbreiro, R. Hu, F. Martins, N. Yoshida, Dynamic deadlock verification for general barrier synchronisation, in: PPoPP’15, ACM,
2015, pp. 150–160. doi:10.1145/2688500.2688519.

[4] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Communications of the ACM 21 (7) (1978) 558–565. doi:

10.1145/359545.359563.
[5] E. Duesterwald, M. L. Soffa, Concurrency analysis in the presence of procedures using a data-flow framework, in: TAV’91, ACM, 1991, pp.

36–48. doi:10.1145/120807.120811.
[6] R. Sharma, M. Bauer, A. Aiken, Verification of producer-consumer synchronization in gpu programs, in: PLDI’15, ACM, 2015, pp. 88–98.

doi:10.1145/2737924.2737962.
[7] Y. Cai, S. Wu, W. K. Chan, ConLock: A constraint-based approach to dynamic checking on deadlocks in multithreaded programs, in:

ICSE’14, ACM, 2014, pp. 491–502. doi:10.1145/2568225.2568312.
[8] T. Elmas, S. Qadeer, S. Tasiran, Goldilocks: Efficiently computing the happens-before relation using locksets, in: FATES’06/RV’06, Springer,

2006, pp. 193–208. doi:10.1007/11940197_13.
[9] P. Maiya, A. Kanade, R. Majumdar, Race detection for android applications, in: PLDI ’14, ACM, 2014, pp. 316–325. doi:10.1145/

2594291.2594311.
[10] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, C. Flanagan, Sound predictive race detection in polynomial time, in: POPL’12, ACM, 2012,

pp. 387–400. doi:10.1145/2103656.2103702.
[11] S. Crafa, D. Cunningham, V. Saraswat, A. Shinnar, O. Tardieu, Semantics of (resilient) x10, in: R. Jones (Ed.), ECOOP’14, Vol. 8586 of

LNCS, Springer, 2014, pp. 670–696. doi:10.1007/978-3-662-44202-9_27.
[12] P. Feautrier, E. Violard, A. Ketterlin, Improving the performance of X10 programs by Clock removal, in: CC’14, Vol. 8409 of LNCS,

Springer, 2014, pp. 113–132. doi:10.1007/978-3-642-54807-9_7.
[13] T. Yuki, P. Feautrier, S. V. Rajopadhye, V. Saraswat, Checking race freedom of clocked X10 programs, CoRR abs/1311.4305.

URL http://arxiv.org/abs/1311.4305

[14] S. Joshi, R. K. Shyamasundar, S. K. Aggarwal, A new method of MHP analysis for languages with dynamic barriers, in: IPDPSW’12, IEEE,
2012, pp. 519–528. doi:10.1109/IPDPSW.2012.70.

[15] P. S. Almeida, C. Baquero, V. Fonte, Version stamps-decentralized version vectors, in: Proceedings 22nd International Conference on Dis-
tributed Computing Systems, 2002, pp. 544–551. doi:10.1109/ICDCS.2002.1022304.

[16] T. Cogumbreiro, J. Shirako, V. Sarkar, Formalization of phase ordering, in: PLACES’16, 2016, pp. 13–24. doi:10.4204/EPTCS.211.2.
[17] C. Baquero, N. Preguiça, Why logical clocks are easy, Communications of the ACM 59 (4) (2016) 43–47. doi:10.1145/2890782.
[18] R. Schwarz, F. Mattern, Detecting causal relationships in distributed computations: In search of the holy grail, Distributed Computing 7 (3)

(1994) 149–174. doi:10.1007/BF02277859.
[19] P. Martin-Lf, G. Sambin, Intuitionistic type theory, Studies in proof theory, Bibliopolis, 1984.

12

http://dx.doi.org/10.1145/1375527.1375568
http://dx.doi.org/10.1145/1103845.1094852
http://dx.doi.org/10.1145/2688500.2688519
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/120807.120811
http://dx.doi.org/10.1145/2737924.2737962
http://dx.doi.org/10.1145/2568225.2568312
http://dx.doi.org/10.1007/11940197_13
http://dx.doi.org/10.1145/2594291.2594311
http://dx.doi.org/10.1145/2594291.2594311
http://dx.doi.org/10.1145/2103656.2103702
http://dx.doi.org/10.1007/978-3-662-44202-9_27
http://dx.doi.org/10.1007/978-3-642-54807-9_7
http://arxiv.org/abs/1311.4305
http://arxiv.org/abs/1311.4305
http://dx.doi.org/10.1109/IPDPSW.2012.70
http://dx.doi.org/10.1109/ICDCS.2002.1022304
http://dx.doi.org/10.4204/EPTCS.211.2
http://dx.doi.org/10.1145/2890782
http://dx.doi.org/10.1007/BF02277859

	Introduction
	Background
	Phaser semantics
	Phase Ordering
	Results
	Coq Formalization
	Operational semantics
	Decidability results

	Formalization in the browser
	Conclusion

