Complexes of 2-Guanidinobenzimidazole with Copper(II)

P. D. SINGH and L. K. MISHRA*

Department of Chemistry, Science College, Patna University, Patna-800 005

Manuscript received 30 May 1980, revised 11 November 1980, accepted 10 March 1981

Some complexes of 2-guanidinobenzimidazole with copper(II) have been prepared and characterised by elemental analysis, magnetic moment measurement, ir spectral and electronic reflectance spectral studies.

THE complexes of 2-guanidinobenzimidazole(GB) and several benzimidazole derivatives have been reported¹⁻⁶. Ghosh and Banerjee have reported¹ that magnetic moment values of Cu(GB)₂X₂.nH₂O (X=Cl, Br, NO₈ and $\frac{1}{2}SO_4$; n=3 to 7) fall in the range of 1.76 to 1.86 BM. Ali *et al*¹ latter on prepared anhydrous Cu(GB)₂X₃ (X=Cl, Br, NO₈ and $\frac{1}{3}SO_4$) and claimed that magnetic moment values of these copper(II) complexes fall in the range of 1.50-1.55 BM. Besides reexamining these results, we are reporting the preparation and characterisation of a number of copper(II) complexes with 2-guanidinobenzimidazole of formulae [Cu(GB)₈-(RCOO)₃]nH₃O (RCOO=formate, acetate, propionate, butyrate, lactate and chloroacetate ; n=0 or 2), [Cu(GB)X₃] [X=Cl or Br) and neutral chelate [Cu(GB-H)₈].

Experimental

The ligand was prepared as described earlier¹. In general, the complexes were collected on a filter, washed with ethanol and dried in air.

 $[Cu(GB)_{\mathfrak{g}}(RCOO)_{\mathfrak{g}}]nH_{\mathfrak{g}}O, [Cu(GB)X_{\mathfrak{g}}] (X=Cl and Br) and [Cu(GB)_{\mathfrak{g}}X_{\mathfrak{g}}] (X=Cl, Br and NO_{\mathfrak{g}})$: The complexes were obtained when appropriate copper(II) salts dissolved in dry ethanol were refluxed with the hot ethanolic solution of the ligand in stoichiometric proportion.

The bis chelated complex sulphate $(Cu(GB)_{3}SO_{4}]$ -H₃O was obtained by adding a saturated aqueous solution of CuSO₄.5H₃O to a hot ethanolic solution of the ligand (in 1 : 2.5 molar ratio).

 $[Cu(GB-H)_{2}]$: It was obtained as a dull brown product on refluxing an aqueous suspension of $[Cu(GB)_{2}Cl_{2}]$ at pH 10-11 on a water bath.

The magnetic susceptibility, electrical conductance, infrared and visible reflectance spectra of the complexes were recorded as reported earlier⁸.

The analytical results, colour, molar conductance data in DMF at 28°, μ_{eff} at 300°K and

electronic reflectance data of the complexes are given in Table 1.

Results and Discussion

2-Guanidinobenzimidazole forms two types of complexes with copper(II) salts in methanol or ethanol: (a) [Cu(GB) $_{\bullet}X_{9}$]nH $_{\bullet}O$ (where X=Cl, Br, NO $_{\bullet}$, $\frac{1}{2}SO_{4}$, HCOO, CH $_{\bullet}COO$, CH $_{\bullet}CH_{9}COO$, CH $_{\bullet}CH_{9}CH_{9}COO$, CH $_{\bullet}CH(OH)COO$ and ClCH $_{\bullet}$ -COO and n=0, 1 and 2). (b) [Cu(GB)X_{9}] (where X=Cl and Br only).

At higher pH the ligand is deprotonated and a neutral bis chelate $[Cu(GB-H)_{g}]$ is formed. The hydrated complexes lose water molecules below 120°, indicating them to be uncoordinated. The complexes $[Cu(GB)_{s}X_{s}]nH_{s}O$ and $[Cu(GB)X_{s}]$ are slightly soluble in ethanol, dioxane and acetone but dissolve appreciably in DMF. At room temperature the DMF solution of the complexes show electrical conductances in the range 8-22 ohm⁻¹ mole⁻¹ cm², indicative of non-ionic nature of the complexes. The slight conductance values of the complexes are attributed to some solvation of coordinated anions. At room temperature, the magnetic moment values (Table 1) of the complexes $[Cu(GB)_{s}X_{s}]nH_{s}O$ (X=Cl, Br, NO_s and $\frac{1}{3}SO_{s}$ and n=0 or 1) are in the range of 1.84-1.88 BM which are almost similar to the reported values of Ghosh and Banerjee¹. The values reported by Ali et al^T are in the range of 1.50-1.55 BM (at 295°K) which are decidedly different. The magnetic moment values of carboxylate complexes [Cu(GB)] $(RCOO)_{a}]nH_{a}O$ are also found in the range of 1.90-2.03 BM. The μ_{eff} values of the complexes suggest an octahedral or distorted octahedral stereochemistry⁸. The magnetic moment values of [Cu(GB)Cl_g] ca. 1.90 BM, [Cu(GB)Br_g] ca. 1.81 BM and neutral bis chelate [Cu(GB-H)] ica. 1.96 BM also fall in the range of magnetically dilute copper(II) complexes.

The electronic reflectance spectra of complex⁶⁵ $[Cu(GB)_{s}X_{s}]nH_{s}O$ exhibit a d-d transition in the

			TABLE 1				
Complexes	Colour	Analy N(%)	tical data, F	ound (Calc.) Anions(%)	µ _{eff} at 300°K BM	$\lambda_m (Ohm^{-1} mole^{-1} cm^2)$	Electronic bands' position (cm ⁻¹)
[Cu(GB) s(HCOO)]	Ash grey	27.61 (27.80)	12.81 (12.61)	_	1.94		17241, 22780
[Ou(GB) _{\$} (OH _{\$} OOO) _{\$}]	Greenish- blue	26.18	(12.01) 12.01 (11.95)		2.03	8	16950, 25000
[Cu(GB) ₉ (OH ₂ CH ₂ COO) ₂]	Greenish-	(26.33) 24.89	11.46	—	1.90	10	17241, 28809
[Cu(GB);(CH;CH;CH;000);]2H;0	brown Greenish-	(25.02) 22.31	(11.35) 10.21 (10.10)		2.00	11	17544, 22730
[Cu(GB) ₉ (OlOH ₂ COO) ₂]	brown Greenish-	(22.45) 23.21	(10.18) 10.61		1.94	9	17544, 23809
[Ou(GB),(CH,OHOOO),2H,O	brown Bluish-	(23,31) 22.24	(10.57) 10.25		1.94	8	16950, 22730
он Он	green	(22.91)	(10.12)				
[Ou(GB)Cl _e]	Light-	22.51	20.61	23.01	1.90	18	11900, 19608sh
	brown	(22.61)	(20.51)	(22.94)			25000
[Ou(GB)Br ₂]	Deep-	17.61	16.01	40.41	1.81	16	19510, 2000sh
(a. (a. T)]	brown	(17.57)	(15.94)	(40.14)	1.00	0	25000
[Ou(GB-H),]	Brown	93,99 (34.05)	15.91		1.96	6	17544, 23809sh
[Ou(GB) Ol]	Bluish-	28.63	(15.48) 13.15	14.71	1.84	15	17860, 12820sh
[ou(0)][ou]]	grey	(28.89)		(14.65)	1.04	10	1,000, 1101014
[Ou(GB),Br,]	Ash grey	24.51	11.12	27.91	1.84	21	17544, 26315
		(24,41)	(11.08)	(27.87)			
[Ou(GB)•(NO•)•]	Bluish-	31.19	11.65		1.88	22	18020, 25641
(0.(0P) 90 JH 0	green Bluish-	(31.25) 26.44	(11.82) 11.90	18.01	1.00		15041 04000
[Ou(GB) ₉ SO ₄]H ₉ O	green	(26.53)	(12.04)	(18.19)	1.88		17241, 24390

range 18020-16950 cm⁻¹ assignable to $E_{g} \rightarrow T_{gg}$ transition in approximately octahedral field⁹⁻¹¹. The complexes also display strong absorption near 26315-22730 cm⁻¹ due to the charge transfer transition. It has been found that the energy of the d-d band slightly differs from one anion to another indicating that anions are involved in coordination. The reflectance spectra of $[Cu(GB)X_{a}]$ (where X = Cl and Br) display very broad and asymmetric band at 13510-11900 cm⁻¹ assignable to the combination of ${}^{2}B_{1g} \rightarrow {}^{9}B_{2g}$, ${}^{3}B_{1g} \rightarrow {}^{9}E_{g}$ and ${}^{a}B_{1g} \rightarrow {}^{a}A_{1g}$ transitions in distorted octahedral field. Besides the broad d-d transition, the complexes also exhibit a charge transfer band at 25000 cm⁻¹ and a shoulder near 20000-19608 cm^{-1} . The shoulder is attributed to some contribution from d-d transition. The complex $[Cu(GB-H)_{s}]$ displays a weak d-d band at 17544 cm⁻¹ and a charge transfer band at 23809 cm⁻¹. The d-dband at 17543 cm⁻¹ is assigned to ${}^{2}E_{g} \rightarrow {}^{9}T_{9g}$ transition in distorted octahedral field. From the energy of d-d transition it is found that tetragonal distortion in complexes $[Cu(GB)X_{2}]$ is larger than bis chelated complexes $[Cu(GB)_{2}X_{2}]nH_{2}O$.

The ir spectra of carboxylate complexes display greater separation of $v_s(COO)$ and $v_{as}(COO)$ vibrations than free acid¹⁹. It is also observed that $v_s(COO)$ vibrations shift to lower frequency from the ionic carboxylate group indicating that carboxylate ions are bonded to central copper(II) atom as monodentate anions (Table 2)¹⁹.

TABLE 2INFRARED VIBRATION OF COORDINATED CARBOXYLATE ANIONS IN cm ⁻¹									
Complexes	₽ as(000)	\$ _(COO)	Diff						
[Ou(3B) _s (HCOO) _s] HCOONa ¹⁰ [Ou(GB) _s (CH ₀ COO) _s] OH ₀ COONa ¹⁰ [Ou(GB) _s (CH ₀ CH ₀ COO) _s] [Ou(GB) _s (OH ₀ CH ₀ COO) _s] [Ou(GB) _s (OlOH ₀ COO) _s] [Ou(GB) _s (OH ₀ OHOOO) _s]2H ₂ O OH	1568	1940 1366 1400 1414 1408 1405 1405 1415 1415	220 201 170 162 160 165 178 155						

The ir spectra of dinitrato complex [Cu(GB),-(NO_a)_a] exhibits nitrate group vibrations at 1460, 1350 and 820 cm⁻¹ which according to Curtis and Curtis¹⁸ are characteristics of coordinated nitrate group. The ir spectra of the complex, Cu(GB)₂-SO $H_{9}O$, exhibit broad SO²⁻ vibrations at 1140 and 1090 (ν_{8} split) and 940 cm⁻¹ (ν_{1}) indicating that SO²⁻ group is coordinated to copper(II) ion as a unidentate sulphate¹⁴. It is found that GB displays imidazole ring NH vibration at 3335 cm⁻¹ and several weak and broad guanidine = NH and -NH_g vibrations between 3250-2850 cm⁻¹. The imidazole ring C = N stretch, N - H bending vibration, guanidine part - NH₂ and - NH - bending bands are observed between 1550 and 1650 cm^{-1} . The =NH bending band of the guanidine is observed at 1690 cm⁻¹. In almost all the complexes, benzimidazole NH stretching band is not

affected indicating that benzimidazole ring N-His not involved in coordination. The (=NH) bending band (guanidine part) shifts to lower frequency and is observed at $1670 \pm 10 \text{ cm}^{-1}$. Thus, it is concluded that the ligand is bonded to copper(II) through tertiary nitrogen of benzimidazole ring and C=NH nitrogen of guanidine part. In neutral *bis* chelate, the absence of =NH bending band at 1690 cm⁻¹ of the ligand indicates the chelation of the ligand by the deprotonation of =NH hydrogen.

References

- S. P. GHOSH and A. K. BANERJEE, Indian J. Chem., 1964, 2, 292; J. Indian Chem. Soc., 1961, 38, 227.
- 2. S. P. GHOSH and A. K. BANERJEE, J. Inorg. Nuclear Chem., 1968, 28, 167.
- 3. S. P. GHOSH and A. I. P. SINHA, Indian J. Chem., 1964, 2, 312.

- 4. S. P. GHOSH and A. K. BANERJEE, J. Indian Chem. Soc., 1967, 44, 589; 1969, 46, 811.
- 5. S. P. GHOSH and L. K. MISHRA, Inorg. Chim. Acta, 1973, 7, 545.
- S. P. GHOSH, L. DUBRY, P. BHATTACHARJER and L. K. MISHRA, J. Indian Chem. Soc., 1977, 54, 230.
- 7. S. M. ALI, N. AHMED and M. S. HUSSAIN, Pakistan J. Sci. Res., 1963, 18, 33; Chem. Abs., 1968, 68, 8882p.
- 8. R. S. NYHOLM and J. LEWIS, Progress of Inorganic Chemistry, Edited by F. A. COTTON, Vol. 6, p. 41.
- 9. L. SACCONI and M. CIAMPOLINI, J. Chem. Soc., 1964, 278.
- 10. J. FERGUSON and B. O. WEST, J. Chem. Soc., 1966A, 1959.
- 11. J. L. FUNK and T. R. ORTOLANO, Inorg. Chem., 1968, 7, 567.
- K. NAKAMOTO. "Infrared Spectra of Inorganic and Coordination Compounds", John Wiley & Sons, Inc., 1967, p. 198.
- N. F. CURTIS and Y. M. CURTIS, Inorg. Chem., 1965, 4, 804; A. B. P. LEVER, Inorg. Chem., 1965, 4, 1042.
- K. NAKAMOTO, "Infrared Spectra of Inorganic and Coordination Compounds", John Wiley & Sons, Inc., 1967, p. 176.