
PhyPiDAQ
Data Acquisition and analysis for Physics education with Raspberry Pi

This is the English version of the documentation.

For German readers:
Die deutsche Version dieses Dokuments findet sich unter dem Link README_de.md bzw.
README_de.pdf . Aktuelle Präsentationen zur Projekt PhyPiDAQ: http://ekpwww.etp.kit.edu/~qua
st/Projects/PhyPiDAQ/

This python3 code provides some basic functionality for data acquisition and visualisation like
data logger, bar-chart, XY- or oscilloscope display and data recording on disk.

In addition to the GPIO inputs/outputs of the Raspberry Pi, the analogue-to-digital converters
ADS1115 and MCP3008 and PicoScope USB-oscilloscopes are supported as input devices for
analogue data, as well as a number of digital sensors using protocols like I²C or SPI.

The package provides an abstraction layer for measurement devices and sensors connected to a
Raspberry Pi. Dedicated classes for each device provide a simple, unified interface, containing
only the methods init(<config_dictionary>) , acquireData(buffer) and closeDevice() .
Simple examples with minimalist code illustrate the usage. The graphical user interface
phypi.py and the script run_phypi.py provide a configurable environment for more complex
measurements.

Fig. 1: Visualisation of the time dependence of two signals connected to an ADC

Quick-start guide

After installation - see below - a number of unified classes for data acquisition, visualisation and
recording is available from the sub-directory ./phypidaq . Each supported device needs a
specific configuration, which is read from configuration files in sub-directory ./config . The
overall configuration is given in files of type .daq , specifying which devices and display modules
to use, the readout rate, calibrations or analytical formulae to be applied to recorded data, or
ranges and axis labels of the graphical output.

af://n0
af://n2
file:///home/quast/git/PhyPiDAQ/README_de.md
file:///home/quast/git/PhyPiDAQ/README_de.pdf
http://ekpwww.etp.kit.edu/~quast/Projects/PhyPiDAQ/
af://n10

The graphical user interface phypi.py aids in the administration of the configuration options
and can be used to start data acquisition. In this case, configurations and produced data files are
stored in a dedicated sub-directory in $HOME/PhyPi . The sub-directory name is derived from a
user-defined tag and the current date and time.

Data acquisition may also be started via the command line:

If no configuration file is given, the default PhyPiConf.daq is used.

The sub-directory ./examples contains a number of simple python scripts illustrating the usage
of data acquisition and display modules with minimalist code.

For many typical measurement tasks, preamplifiers are used to adjust the impedance (e.g.
electrometer amplifier), to adjust the range levels or to amplify small signals in the µV range. A
suggestion for the simple implementation of such circuits is documented in the Hardware /
directory.

Configuration files for PhyPiDAQ

The script run_phypi.py allows users to perform very general measurement tasks without the
need to write custom code. The options for configuration of input devices and their channels as
well as for the display and data storage modules are specified in a global configuration file of
type .daq (in yaml markup language), which contains references to device configuration files of
type .yaml .

Main configuration file

A typical, commented example of the main configuration file is shown below. Note that text
following a ''#''-sign is ignored and contains descriptive comments or alternatives.

file PhyPiConf.daq

run_phypi.py <config_file_name>.daq

-- Configuration Options for PhyPiDAQ

#

-- configuration files for hardware devices

#

DeviceFile: config/ADS1115Config.yaml # 16 bit ADC, I2C bus

optional:

#DeviceFile: config/MCP3008Config.yaml # 10 bit ADC, SPI bus

#DeviceFile: config/MCP3208Config.yaml # 12 bit ADC, SPI bus

#DeviceFile: config/groveADCConfig.yaml # 12 bit ADC on grove RPI shield

#DeviceFile: config/PSConfig.yaml # PicoTechnology USB scope

#DeviceFile: config/MAX31865Config.yaml # Pt 100 sensor

#DeviceFile: config/GPIOCount.yaml # frequency count

#DeviceFile: config/DS18B20Config.yaml # digital temperature sensor

#DeviceFile: config/MAX31855Config.yaml # thermo element

#DeviceFile: config/BMP180Config.yaml # pressure/temperature sensor

#DeviceFile: config/INA219Config.yaml # Voltage/Current sensor

#DeviceFile: config/MMA845xConfig.yaml # Accelerometer

#DeviceFile: config/VL53LxConfig.yaml # ToF distance sensor

af://n20
af://n22

an example of multiple devices

#DeviceFile: [config/ADS1115Config.yaml, config/GPIOCount.yaml]

Demo options:

#DeviceFile: ToyDataConfig.yaml # simulated data

#DeviceFile: config/ReplayConfig.yaml # data from File

#

-- configuration options for Channels

ChanLabels: [U, U] # names for channels

ChanUnits: [V, V] # units for channels

ChanColors: [darkblue, sienna] # channel colours in display

eventually overwrite Channel Limits obtained from device config

##ChanLimits:

- [0., 1.] # chan 0

- [0., 1.] # chan 1

- [0., 1.] # chan 2

calibration of channel values

- null or - <factor> or - [[<true values>], [<raw values>]]

#ChanCalib:

- 1. # chan0: simple calibration factor

- [[0.,1.], [0., 1.]] # chan1: interpolation: [true]([<raw>])

- null # chan2: no calibration

apply formulae to (calibrated) channel values

#ChanFormula:

- c0 + c1 # chan0

- c1 # chan1

- null # chan2 : no formula

#

-- configuration options for graphical display

#

Interval: 0.1 # logging interval

#NHistoryPoints: 120 # number of points used in history buffer

DisplayModule: DataLogger # history of channel signals

#DisplayModule: DataGraphs # text, bar-graph, history and xy-view

#DisplayModule: null # no graphical display

#Title: Demo # display title

#XYmode: false # enable/disable XY-display

if more than two channels active:

#Chan2Axes: [0, 1, 0] # assign channels to axes

#xyPlots: # define which axes to show

- [0, 1] # in xy-plot

- [0, 2]

- [1, 2]

#

-- start in running or paused mode

startActive: true # start in running mode

#

-- configuration options for output to file

#

Device configuration files

Typical, commented examples of device configurations are shown below. The device
configuration file for the analogue-to-digital converter ADS1115 specifies the active channels,
their ranges and single or differential operation modes.

file ADS1115Config.yaml

The USB-oscilloscope PicoScope can also be used as data logger. In this case the average of a
large number of measurements at high rate is taken. Choosing a measurement time of 20 ms
very effectively eliminates 50 Hz noise.

#DataFile: testfile.csv # file name for output file,

DataFile: null # null to disable

#CSVseparator: ';' # field separator, set to ';' for German Excel

enable buffering of latest data (depth NHistoryPoints from above)

#bufferData: PhyPiData # file name to track latest data and eventually

#bufferData: null # store them, or null to switch off

enable output to fifo (a linux pipe) to send data to other processes

DAQfifo: null

#DAQfifo: PhyPiDAQ.fifo

example of a configuration file for ADC ADS1115

DAQModule: ADS1115Config # phypidaq module to be loaded

ADCChannels: [0, 3] # active ADC-Channels

 # possible values: 0, 1, 2, 3

 # when using differential mode:

 # - 0 = ADCChannel 0

 # minus ADCChannel 1

 # - 1 = ADCChannel 0

 # minus ADCChannel 3

 # - 2 = ADCChannel 1

 # minus ADCChannel 3

 # - 3 = ADCChannel 2

 # minus ADCChannel 3

DifModeChan: [true, true] # enable differential mode for Channels

Gain: [2/3, 2/3] # programmable gain of ADC-Channel

 # possible values for Gain:

 # - 2/3 = +/-6.144V

 # - 1 = +/-4.096V

 # - 2 = +/-2.048V

 # - 4 = +/-1.024V

 # - 8 = +/-0.512V

 # - 16 = +/-0.256V

sampleRate: 860 # programmable Sample Rate of ADS1115

 # possible values for SampleRate:

 # 8, 16, 32, 64, 128, 250, 475, 860

af://n27

file PSconfig.yaml

Examples of other devices like the analog-to-digital converter MCP3008, of rate measurements
via the GPIO pins of the Raspberry Pi or temperature measurements with the 1-wire digital
thermometer DS18B20, PT100 sensors and the resistance-to-digital converter MAX31865 or
thermocouples and the thermocouple-to-digital converter MAX31855 are also contained in the
configuration directory, see files MCP3008Config.yaml , GPIOcount.yaml , DS18B20Config.yaml
, MAX31865Config.yaml or MAX31855Config.yaml , respectively.

example of a configuration file for PicoScope 2000 Series

DAQModule: PSConfig

PSmodel: 2000a

channel configuration

picoChannels: [A, B]

ChanRanges: [2., 2.]

ChanOffsets: [-1.95, -1.95]

ChanModes: [DC, DC]

sampleTime: 2.0E-02

Nsamples: 100

oscilloscope trigger

trgActive: false # true to activate

trgChan: A

#trgThr: 0.1

#pretrig: 0.05

#trgTyp: Rising

#trgTO: 1000 # time-out

internal signal generator

frqSG: 100.E+3 # put 0. do disable

frqSG: 0.

Installation of PhyPiDAQ on a Raspberry Pi

Get PhyPiDAQ code and dependencies

After setting up your Raspberry pi with the most recent version of the Debian Release stretch,
enter the following commands in the console window:

For your convenience, the script installlibs.sh installs all components needed for PhyPiDAQ.
Simply execute the script installlibs.sh once on the command line (without text after #):

The installation is now done and PhyPiDAQ is ready to be used.

The last part of the inatallation procedure is also valid to update an exiting verion of PhyPiDAQ .

To test the installaion without connected hardware or on a system other than the Raspberry Pi,
PhyPiDAQ may be started in demo-mode:

Anmerkung

Remark

PhyPiDAQ is meant to be an educational tool. Confronting students with the full contents of this
package is therefore not appropriate. Instead, it is recommended to create a working directory
and copy examples from there to the student's working directory. This is achieved via the
following commands:

You might also consider moving the PhyPiDAQ package to system space, e.g. /usr/local:

Please note that the paths in the example above must be adjusted in this case, e.g. ´~/git/` ->
/usr/local/. The paths in ~/Desktop/phypi.desktop must also be changed appropriately. This is most
easily achieved by right-clicking the icon and use the dialog "Properties".

mkdir git

cd git

git clone https://github.com/GuenterQuast/PhyPiDAQ

cd ~/git/PhyPiDAQ # change to installation directory

git pull # eventually update to latest version of PhyPiDAQ

./installlibs.sh

cd ~/git/PhyPiDAQ # change to installation directory

./run_phypi.py # execute run_phypi.py with configuration PhyPiDemo.daq

create PhyPi working directory and make examples and config files available

cd ~/git/PhyPiDAQ

./install_user.sh [<directory name>]

 # the input of a directory name is optional; default is "PhiPi"

provide icon to graphical user interface

cp ~/git/PhyPiDAQ/phypi.desktop ~/Desktop

sudo mv ~/git/PhyPiDAQ /usr/local/

af://n36

Dependencies on external packages

The PhyPiDAQ package relies on code from other packages providing the drivers for the
supported devices and libraries for data visualisation:

the Adafruit Pyhon MCP3008 library
https://github.com/adafruit/Adafruit_Python_MCP3008
the Adafruit Python ADX1x15 library
https://github.com/adafruit/Adafruit_Python_ADS1x15
the Adafruit Python MAX31855 library
https://github.com/adafruit/Adafruit_Python_MAX31855
the w1thermsensor library by Timo Furrer
https://github.com/timofurrer/w1thermsensor
components from the picoDAQ project
https://github.com/GuenterQuast/picoDAQ
the python bindings of the pico-python project by Colin O'Flynn
https://github.com/colinoflynn/pico-python
the low-level drivers contained in the Pico Technology Software Development Kit
https://labs.picotech.com/raspbian

For convenience, installation files for external packages and for modules of this package in pip
wheel format are provided in sub-directory ./installlibs.

The visualization modules depend on matplotlib.pyplot, Tkinter and pyQt5, which must also be
installed.

For completeness, the steps performed by the script installlibs.sh are documented here:

#

script to install libraries PhyPiDAQ depends on

#

sudo apt-get install python3-yaml

sudo apt-get install python3-scipy

sudo apt-get install python3-matplotlib

sudo apt-get install python3-pyqt5

sudo apt-get install libatlas-base-dev # needed to build nupmy

sudo pip3 install installlibs/whl/*.whl # python wheels

sudo pip3 install installlibs/tgz/*.tar.gz # python packages

sudo dpkg -i installlibs/picoscopelibs/*.deb # picoscope

sudo usermod -a -G tty pi # grant acces to USB for user pi

af://n55
https://github.com/adafruit/Adafruit_Python_MCP3008
https://github.com/adafruit/Adafruit_Python_ADS1x15
https://github.com/adafruit/Adafruit_Python_MAX31855
https://github.com/timofurrer/w1thermsensor
https://github.com/GuenterQuast/picoDAQ
https://github.com/colinoflynn/pico-python
https://labs.picotech.com/raspbian

The drivers for PicoScope oscilloscopes may also be installed from the repository of the vendor,
which is included as follows:

1. Open file /etc/apt/sources.list by sudo nano /etc/apt/sources.list .

2. Use arrow keys to navigate to the next free line and add entry deb
http://labs.picotech.com/raspbian/ picoscope main to /etc/apt/sources.list.

3. Save file /etc/apt/sources.list by Ctrl + O and Enter .
4. Close /etc/apt/sources.list by Ctrl + X .

Now the drivers for drivers for the various PicoScope devices can be included end eventually
updated with apt-get:

Overview of files contained in PhyPiDAQ

Programs

run_phypi.py

run data acquisition and display modules as specified in configuration files (default
PhyPiConf.daq and .yaml files ins subdirectory config/)
phypi.py

graphical user interface to edit configuration files and start the script run_phypi.py

Modules

phypidaq/__init__.py

initialisation for package phypidaq

phypidaq/_version_info.py

version info for package phypidaq

phypidaq/ADS1115Config.py

class for handling of analog-to-digital converter ADS1115

phypidaq/MCP3008Config.py
class analog-to-digital converter MCP3008

phypidaq/MCP3008Config.py

class for current and voltage sensor INA219

phypidaq/DS18B20Config.py

class for handling of digital thermometer DS18B20

phypidaq/BMPx80Config.py

class for the digital temperature and pressure sensors BMP180/280 or BME280

phypidaq/MMA8451Config.py

class for the digital accelerometer MMA8451

phypidaq/GPIOCount.py
class for reading rates from GPIO pins

phypidaq/MAX31855Config.py

class for MAX31855 thermocouple-to-digital converter

phypidaq/MAX31865Config.py

class for MAX31865 resistance-to-digital converter

wget -O - http://labs.picotech.com/debian/dists/picoscope/Release.gpg.key |

sudo apt-key add -

sudo apt-get update

sudo apt-get install libps2000

sudo apt-get install libps2000a

allow access of user pi to usb port

sudo usermod -a -G tty pi

af://n91
af://n92
af://n98

phypidaq/PSConfig.py

class for PicoScope USB oscilloscopes

phypidaq/VL53LxConfig

class for VL53L1X distance sensor

phypidaq/TCS34725Config class for TCS34725 RGB color sensor

phypidaq/AS7262Config class for AS7262 six channel color sensor

phypidaq/AS7265xConfig class for AS7265x 18 channel spectral sensor

phypidaq/GDK101Config.py

class for gamma ray detektor GDK101, FTLAB

phypidaq/ToyDataConfig.py

class to generate simulated data (for test, debugging or exercises)

phypidaq/ReplayConfig

class to replay data from file

phypidaq/Display

interface and background-process handling data visualisation

phypidaq/DataLogge

class for display of data histories and xy diagrams

phypidaq/DataGraph

general display module for data as bar graphs, history plots and xy-graphs

phypidaq/DataRecorde

store data in CSV format

phypidaq/pulseGPIO class to set or pulse GPIO pin of raspberry py

phypidaq/runPhyPiDAQ

class for script run_phypi.py

phypidaq/runPhyPiUI.py class for graphical user interface phypi.py , uses phypiUI as
base class

phypidaq/phypyUI

base class for runPhyPyUI , generated from phypi.ui with pyuic5

phypidaq/phypi.ui output of designer-qt5 , describes the graphical user interface

Configuration files

phypidaq.cfg

global configuration for directory with configuration files and inital work directory; if this file
is found in the home directory, it takes priority over the one in the installation directory
PhyPiConf.daq

main configuration file, depends on device configurations in sub-directory config/
config/ADS1115Config.yaml 16 bit ADC
config/MCP3008Config.yaml 10 bit ADC
config/MCP3208Config.yaml 12 bit ADC
config/INA219Config.yaml current and voltage sensore
config/DS18B20Config.yaml digital temperature sensor
config/BMP280Config.yaml temperature and pressure sensor
`config/BMP180Config.yaml temperature and pressure sensor
config/GPIOCount.yaml frequency measruement via GPIO pin

af://n158

config/MAX31855Config.yaml converter for thermocouple
config/MAX31865Config.yaml converter for PT-100
config/INA219Config.yaml current-voltage sensor
config/TCS34752Config.yaml RGB sensor
config/AS7262Config.yaml 6 channel color sensor
config/AS7265xConfig.yaml 18 channel spectral sensor
config/VL53L1XConfig.yaml distance sensor
config/GDK101.yaml gamma-ray detector
config/PSConfig.yaml PicoScope usb oscilloscope

Examples

examples/read_analog.py

very minimalist example to read one channel from an analog-to-ditigal converter
examples/display_analog.py

very minimalist example to read one channel from an analog-to-ditigal converter and
display data as a history graph
examples/display_analog2.py

read two channels from an analog-to-ditigal converter and display data as a history graph
examples/read_INA210.py

read data from INA219 current and voltage sensor
examples/read_18B20.py s simple example to read the temperature sensor DS18B20
examples/readBMPx80.py simple example to read the digital temperature and pressure
sensor BMP180/280
examples/readMMA8541.py simple example to read the digital accelerometer MMA8451
examples/runOsci.py

run an oscilloscope display, configuration as specified in .yaml file (default is PSOsci.yaml)
examples/GPIO-In-Out.py

example to control GPIO pins: generate square signal on output pin from variable voltage on
input pin
examples/poissonLED.py

generate a random signal following Poisson statistics on a GPIO pin
examples/FreqGen.py

generate a fixed frequency signal on a GPIO pin
examples/set_MPC4725

example to set voltage on MCP4725 ditital-to-analog converter

Configuration files for run_phypi.py

examples/Amperemeter.daq

display current and eventually voltage read from INA219 sensor
examples/Barometer.daq

uses BMB180 or BMP280 sensors to display temperature and air pressure
examples/Accelerometer.daq

uses MMA8451 to display x-, y- and z-acceleration
examples/NoiseMeter.daq

measure noise with a microphone connected to PicoScope USB oscilloscope; displays the
rms of 200 samples taken over a time periods of 20 ms. Can also be used with geophone
SM-24
examples/RGBsensor.daq RGB color sensor
examples/ColorSpectrum.daq six channel color sensor

af://n199
af://n226

examples/AS7265x.daq 18 channel spectral sensor
examples/GammaDose.daq

measurement of gamma-ray dose with GDK101
examples/ToyData.daq generation and display of simulated data
examples/ReplayData.daq
data from file (for demo mode)
examples/readPipe.py

read data from named linux pipe (run_phypi.py with option DAQfifo: <pipe name>)

Documentation

doc/Kurs_digitale_Messwerterfassung_mit_PhyPiDAQ.md (.pdf)

German only: Introductory course to measuring with the Raspberry Pi

doc/Einrichten_des_Raspberry_Pi.md (.pdf)

German only: setting up the Raspberry Pi for this project

doc/Komponenten_fuer_PhyPi.md (.pdf)

recommended components for this project

doc/Bauanleitung_Kraftsensor.md (.pdf)

building instructions for a force sensor

Hardware

documentation of card with analog preamplifiers

electrometer
instrument amplifier
level shifter
... and others

af://n251

	PhyPiDAQ
	Data Acquisition and analysis for Physics education with Raspberry Pi
	Quick-start guide
	Configuration files for PhyPiDAQ
	Main configuration file
	Device configuration files
	Installation of PhyPiDAQ on a Raspberry Pi
	Dependencies on external packages
	Overview of files contained in PhyPiDAQ
	Programs
	Modules
	Configuration files
	Examples
	Configuration files for run_phypi.py
	Documentation

