April: APL Compiling to Common Lisp

Andrew Sengul

asengul@fastmail.fm

_J_JJ_IJJJ___ﬁJ_J_IJ 11
_JJJJ_J_I_:I:|_I .‘JI.J_J_ 1
11

|

|
JJ___ﬂ_L i | ~ull
111 ol

1
I T TTT

JJI L1] I.‘_J_LLH.I_I_IJJ_IJ_JJJJ_JJ J_I_J_I_Jil_‘I_LJ_I 111. |J|
T JIJJI.%.LU |11 I | 1. | A1
1 1 1d ld 1 |

T

.|.+J Lid1_11

L1l]

pulibpa 144

IR YRR
| IHjJJ -ll

| 11111 o

[

1 I
_+.|_I.|_|_I_JJ_J_.|%J_IJ JJ.I_-I_-IJ

+E

“—'-—Jlil—l' ﬂ ﬁ AL 15744/ {1 wv.A3 4=+/,1 0 T1e.01 0 T10"cwF\7pc1-<?9 112p2 .
A J_LIJ_IJJJ

11
1_11

vl

TTT

J

Figure 1: An APL expression framed by its output

ABSTRACT

This paper demonstrates the April APL compiler (code hosted at
https://github.com/phantomics/april). April compiles a subset of
the APL language into Common Lisp, allowing APL’s terse, effi-
cient syntax to be leveraged for array processing and mathematical
operations within a Common Lisp program. Along with the com-
piler April includes a suite of specification tools making it easy to
extend the language, allowing for a uniquely flexible development
approach. Released under the permissive Apache 2.0 license, April
has been leveraged in a graphical display hardware startup and a
variety of applications including statistical analysis, vector graph-
ics and terminal interfaces.

CCS CONCEPTS

- Software and its engineering — Software design engineering;
+ Computing methodologies — Computer algebra systems;
Representation of mathematical functions.

KEYWORDS

demonstration, compiler, array, DSL, APL, Lisp, linear algebra, vec-
tor languages, interoperability

ACM Reference Format:

Andrew Sengul. March 2022. April: APL Compiling to Common Lisp. In
Proceedings of the 15th European Lisp Symposium (ELS’22). ACM, New York,
NY, USA, 5 pages. https://doi.org/10.5281/zenodo.6349745

1 INTRODUCTION

APL is known for its exotic character set and minimalist style. Like
Lisp the language was originally designed as a mathematical nota-
tion [7] and creator Ken Iverson didn’t anticipate that APL expres-
sions could be evaluated by a computer. His colleagues built the
first APL interpreter using a variant of Iverson’s notation simpli-
fied for use with a teletype terminal [4], just as John McCarthy’s
students traded M-expressions for S-expressions to develop the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ELS’22, March 21-22, 2022, Porto, Portugal

© March 2022 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.6349745

original IBM 704 Lisp interpreter. APL followed an evolutionary
path somewhat similar to that of Lisp as the language grew to
prominence on mainframes, functioning as a complete operating
system for the machines where it ran [5].

Work on April began in late 2017 and it has since gone through
multiple development iterations of its core compiler, functions and
specification macros. A previous talk I gave on April can be viewed
athttps://youtube.com/watch?v=AUEIgfj9koc. Since then April has
evolved considerably, incorporating tacit function composition, in-
line operators and multithreading support for almost all functions.

2 USING APRIL

The simplest way to use April is to pass APL strings to the (april)
macro. An example is (april "1+1 2 3"), which returns the vec-
tor#(2 3 4) - APL composes addition and other scalar functions
over arrays, so the 1 is added to each element of #(1 2 3). APL’s
core functions are all just one character long, like +, -, x and +.
April can also take files of APL code as input and it has a wide va-
riety of configuration options. April’s parameters may be passed
as the first argument to the (april) macro inside a (with) form.

A complete introduction to the APL language is far beyond the
scope of this section but a good starting point is April’s README
file, located at the link in the abstract. The README has guide-
lines on ways of entering APL characters and links to online re-
sources including tutorials from Dyalog and other sources. April
is included in Quicklisp and installing it is as simple as evaluating
(ql:quickload ‘april).

April runs its character input through a lexer, converting the
characters to tokens which are then fed to a compiler that gener-
ates Common Lisp code. The (:print-tokens) parameter prints
tokens output by the lexer before they are passed to the compiler:

% (april (with (:print-tokens)) "1+1 2 3")
(321 CGEINHLD) D
#(2 3 4)

Note that the lexer accumulates the tokens in reverse order; this
is natural since APL code is evaluated from right to left and the
tokens are thus fed to the compiler starting from the end of each
line read.

The (:compile-only) parameter causes April to print its com-
piled output instead of evaluating it:

https://github.com/phantomics/april
https://doi.org/10.5281/zenodo.6349745
https://doi.org/10.5281/zenodo.6349745
https://youtube.com/watch?v=AUEIgfj9koc

ELS’22, March 21-22, 2022, Porto, Portugal

x (april (with (:compile-only)) "1+1 2 3")
(IN-APRIL-WORKSPACE COMMON
(LET (COUTPUT-STREAM =STANDARD-OUTPUT=*))
(DECLARE (IGNORABLE OUTPUT-STREAM))
(SYMBOL-MACROLET
(CINDEX-ORIGIN c*INDEX-ORIGIN=*)
(PRINT-PRECISION c*PRINT-PRECISION+)
(COMPARISON-TOLERANCE
c+xCOMPARISON-TOLERANCE=)
(DIVISION-METHOD c*DIVISION-METHOD*)
(RNGS c*RNGS*))
(A-OUT (A-CALL CAPL-FN-S +)
(AVEC123) 1
<PRINT-PRECISION
PRINT-PRECISION))))

Note the C reader macro. It works to intern symbols in the proper
workspace packages in tandem with the (in-april-workspace)
macro. Like other APLs April stores its functions and variables
in named workspaces, which are implemented as Common Lisp
packages. When the macro (in-april-workspace common ...)
is expanded, an instance of £Symbo1l within is transformed into the
symbol april-workspace-common::symbol. Considerable work
has been done to make April’s compiled output human-readable,
with many macros abbreviating common structures that would
otherwise bloat the code.

Compared to other APL implementations April stands out for
its seamless interoperability with Common Lisp, and through CL
other languages and systems. APLs have traditionally been imple-
mented as monolithic interpreters, and communication with ex-
ternal APIs must be done through a plugin to the interpreter. The
most popular APL implementation, Dyalog APL!, is proprietary
and thus any such plugin must be created by Dyalog. Other free
software APLs exist, but their implementation in Algol descendants
like C++ and Java makes extension an ordeal.

The simplest way to pass values from CL into April is to use the
(april-c) macro. Here, the number 10 is passed as the second
argument to (april-c) and is represented by W, which stands for
the right argument, within the APL function.

* (april-c "{w+5}" 10)
15

April’s (:state) parameter with the sub-parameters (:in) and
(:out) can be used for more complex input and output.

* (april (with (:state :in ((a 3) (b 5))
qout (a c)))
"cea+1b")
3
#(45678)

Variables named a and b are passed in, and the variables named
a and C are returned. The [1 index] function seen here produces
avector of numbers from 1 to its argument, and « assigns the result
of the vector’s addition to a to the variable C.

Passing functions into April is likewise simple:

https://www.dyalog.com/

Andrew Sengul

* (april (with (:store-fun
(add-ten (lambda (x)
(+ x 100N
IIII)

NIL 33 nothing is evaluated, so nil is returned

* (april "addTen 20")
30

Dash-separated variable names are converted to camelCase within
April, since the - character expresses the subtraction function in
APL.

April does not have any stock functions for system interaction,
but using the (:store-fun) parameter they can easily be added
as required. Here is an example using the uiop? library:

* (april (with
(:store-fun
(sh (lambda (s)
(uiop:run-program
(coerce s 'string)
soutput :string)))))
"
NIL

% (april "' GOODBYE',~sh 'echo HELLO'")
"HELLO
GOODBYE"

In just a few lines, April can thus be extended to support run-
ning terminal commands. Recurring questions addressed to other
vector language projects like “When will we get JSON support?”
and “When will we be able to make HTTP requests?” can be ad-
dressed by April users within minutes.

3 IMPLEMENTATION

Common Lisp has powerful tools for working with arrays but their
syntax is often cumbersome. APL can build and transform arrays
with only a handful of characters, making tasks that take a large
amount of code in Common Lisp much simpler to write. This led to
my interest in leveraging APL within Common Lisp, and CL is one
of the best choices of language to implement APL because it has
almost all of the necessary array faculties inbuilt. With support for
nested arrays, high-rank arrays and zero-rank arrays, it’s easy to
work with April’s array output using standard CL code. This sec-
tion outlines some of the more interesting challenges encountered
in the course of developing April.

3.1 The Core Specification

Building a programming language is a complex task. I wrote the
(specify-vex-idiom) macro to mitigate this complexity, imple-
menting a core specification for April that can be seen in the source
file april/spec.lisp®. This large macro specifies all of April’s
lexical functions and operators along with its language utilities,
putting all the language’s significant configuration in one central

Zhttps://gitlab.common-lisp.net/asdf/asdf/-/tree/master/uiop
3https://github.com/phantomics/april/blob/master/spec.lisp

https://www.dyalog.com/
https://gitlab.common-lisp.net/asdf/asdf/-/tree/master/uiop
https://github.com/phantomics/april/blob/master/spec.lisp

April: APL Compiling to Common Lisp

location. Information like the inverse forms of functions and their
alternative character representations can be found here, along with
all of their unit tests.

This centralized organization has made the development of the
language significantly faster than would have been possible with a
different style. For example, the recent addition of an inverse form
for the [1 where] function required just one new line in the spec
along with an 18-line function added to April’s main library.

Moreover, April’s specification macros can be used to augment
the language with new functional characters in just a handful of
lines.

(extend-vex-idiom
april
(functions
(with (:name :extra-functions))
(o (has :title "Add3")
(ambivalent
(scalar-function
(lambda (omega) (+ 3 omega)))
(scalar-function
(lambda (alpha omega) (+ 3 alpha omega))))
(tests (is "o77" 80)
(is "827" 18)))))

In this code, functional character o is added to the April lan-
guage, implementing a rather silly function called Add3 that adds
three to its argument (if given one argument) or to the sum of
its arguments (if given two arguments). A pair of unit tests for
this function are added to the main test sequence as well. The
(extend-vex-idiom) macro can also be used to overload April’s
utilities, like the functions that strip comments from code and parse
numeric strings.

With this macro skilled developers can patch the language for
specific applications, creating custom variants of April with no
need to fork its main codebase. The specification macros are imple-
mented in April’s sub-package vex?, which contains a set of gen-
eral tools for implementing vector languages. In the future other
vector languages may be implemented based on the veX model.

3.2 Array Prototypes

The only significant array feature APL has that CL lacks is empty
array prototypes. The prototype of an APL array is its first row-
major element [1]. Prototypes are used by functions like [T take]
and [/ expand] to fill the empty space resulting when an array is
made larger. When an APL array is reduced to size 0, as with func-
tions like [p shape] and [1 drop], it retains the “memory” of its
prototype so that if it is expanded to a nonzero size, the prototype
will be used to populate the space in the new array. For a character
array the prototype is a blank space, and for a numeric or mixed
array the prototype is 0. For an array whose first row-major ele-
ment is a nested array, the prototype is an array of the same shape
whose elements are the prototype of the nested array. Thus if the
first element in the array is the matrix #2A((1 2)(3 4)), the ar-
ray’s prototype will be #2A((0 0)(0 0)).

“https://github.com/phantomics/april/blob/master/vex/vex.lisp

ELS’22, March 21-22, 2022, Porto, Portugal

The Common Lisp array model does not include a “prototype”
value, but for non-zero-sized arrays it’s unnecessary since the pro-
totype is simply an “empty” version of the first element. Func-
tions that output a zero-sized array will displace the array to a
one-element vector containing a list of metadata with the proto-
type. The (array-displacement) function can be used to fetch
the metadata from any context, making it straightforward to get
the empty array’s prototype for functions that use it.

3.3 Multithreading

One of April’s recent development priorities has been to use multi-
threading wherever possible. April uses macros called (xdotimes)
and (ydotimes) to accomplish this, leveraging the 1pa rallel’ li-
brary. These macros’ definitions can be found in the source file
april/aplesque/aplesque.lisp®. The (xdotimes) macroisused
for algorithms that iterate across the elements in a function’s out-
put array in row-major order. This macro splits an array processing
task into appropriately-sized segments to divide between threads.
Most CL implementations have been observed to use registers with
sizes equal to the sizes of array elements when modifying arrays
of elements 8 bits in size or larger. When dealing with arrays that
have integer elements smaller than 8 bits, 64-bit registers are usu-
ally used to hold the values of elements being processed. This means
that when operating on arrays with sub-8-bit integer elements,
threads must work upon sub-vectors of elements with a length of
(/ 64 element-size) to stop elements from being clobbered as
multiple threads try to write to the same location in memory.

The (ydotimes) macro is like (xdotimes) but it doesn’t sup-
port sub-8-bit elements; in the case of arrays with elements smaller
than 8 bits, (ydotimes) will perform a task synchronously. April
uses (ydotimes) in cases where it’s impractical to iterate over an
output array in row-major order and thus the operation can’t be
divided into 64-bit segments for small integer elements.

Most of April’s array-transforming functions have a similar de-
sign pattern. Based on the dimensions of the input array and the
arguments passed to the function, the shape of the output array
is determined. Then, April iterates over the output or input array
using (xdotimes) or (ydotimes) and performs arithmetic on the
row-major index of each output element to determine the corre-
sponding row-major element in the input, and finally copies the
elements from the input array to the output array.

4 APPLICATIONS

April has been used for image editing, statistical analysis, web de-
velopment, terminal interfaces and more. In my experience, while
Lisp is unmatched as a general-purpose language APL enables the
most intuitive development within its domain of array processing
and discrete algorithms. April shares in the interactive features of
Common Lisp environments, enabling developers to re-evaluate
individual closures in source code, which standard APL environ-
ments don’t allow - their interactivity is limited to the REPL and
to reinterpreting entire discrete functions.

Shttps://Iparallel.org/
®https://github.com/phantomics/april/blob/master/aplesque/aplesque.lisp

https://github.com/phantomics/april/blob/master/vex/vex.lisp
https://lparallel.org/
https://github.com/phantomics/april/blob/master/aplesque/aplesque.lisp

ELS’22, March 21-22, 2022, Porto, Portugal

* (april "
random « {0I0-~?2p~|a w}
p create a randomized binary matrix
life « {51 wv.A3 4=+/,1 0 "1c.01 0 "1¢"cu}
a the classic Conway's Game of Life function
trace « {a[;1]0~cal;2]1{1[o{wxw<zatow}{21,u}d3 3w}

Andrew Sengul

a use [@ stencil] to outline cells according to matrix decoding maps

chars e'-== 1 1 rr 2ty A

ints « 48 384 144 288 16 416 128 304 32 400 256 176

xEncInts « 68 69 257 261 321 324

decodings « intsj;~{wp~1,pu} chars~' '

H« 14 & height

W« 112 a width

I «5 g iterations of life function to perform before printing

Me ' {L(o,050[1;] {Gixw),~5al~cu~0} w[2;] {o{wxwszatoaww} {21,(2 2p0)e3 3p(9p2)Tu} " 12+9} decodings
a map of binary decodings of stencil matrices to box-drawing characters

M3« '+',35xEncInts a add cross-line character values to decoding map

OeM trace life*I~H random W o (sI),' iterations'

I I Iy
00 00

[]

"5 iterations"

u I
)
LG L 7

Figure 2: APL evaluated via April implementing the Game of Life function with a convolution kernel to outline cells

4.1 Terminal Graphics

An example using April to generate text-based visuals is shown
in Figure 2. This code includes a classic APL function used to im-
plement mathematician John Conway’s Game of Life [2]. Rather
than displaying the cells themselves, it uses the [l stencil] op-
erator to draw boxes around the locations of the cells. This opera-
tor can implement convolution kernels, a common technology in
computer graphics [3][6]. Convolution kernels are used to blur and
sharpen images, for pattern-matching (to detect faces, for example)
and in this case to find edges.

The trace function uses [@ stencil] to process 3x3 submatri-
ces of the binary matrix generated by the 1ife function, producing
9-bit integers decoded from the binary vector displaced to each sub-
matrix. In other words, matrix #2A((1 1 0)(1 0 0)(0 0 0)) is
displaced to vector #(1 1 0 1 0 0 0 0 0) which decodes in bi-
nary to 416. This number corresponds to the box-drawing charac-
ter r stored in the table M. For decoded values like 416 that indicate
the presence of adjacent cells while no cell is actually present at the

position, box-drawing characters are placed in a character matrix
of the same shape as the Game of Life matrix.

A more complex variant of this function is used in April’s ncurses
demo application (april/demos/ncurses/” in the repository). It's
integrated with the croatoan® CL ncurses binding library to imple-
ment a terminal application displaying the cell outlines generated
by the code in Figure 2. It also varies each character’s background
color to reflect the presence or absence of cells in those spaces over
time. Building these graphical algorithms in Common Lisp would
have required much more code than could fit on one page.

Developing with ncurses has been regarded as a tedious and
painful enterprise since using conventional languages means writ-
ing dozens of nested loops. April offers the potential to quickly and
intuitively specify terminal interface elements and even add some
animation and color to keep things fun.

"hitps://github.com/phantomics/april/tree/master/demos/ncurses
8https://github.com/McParen/croatoan

https://github.com/phantomics/april/tree/master/demos/ncurses
https://github.com/McParen/croatoan

April: APL Compiling to Common Lisp

ELS’22, March 21-22, 2022, Porto, Portugal

Figure 3: Three color combinations shown on the Bloxl display

4.2 Speaking of Color...

The April compiler’s most prominent application is designing pixel
animations for use with a custom LED display built by a hardware
startup called Blox]®. Raster graphics are a natural fit for APL; for
instance, this code using the optic1'® image processing library is
all that’s needed to produce a matrix of the unique colors (one set
of RGB values per row) in a .png image:

(april-c "{§ETu,(E«3p2+8)12 3 1qu}"
(opticl:read-png-file "/path/to/image.png"))

While designing patterns for display on the LED device I exper-
imented with different methods to generate appealing color com-
binations. This is one of the simpler algorithms I wrote:

(april-c "{(ax3)p1-~2+?up8}" segment leds)

Figure 3 shows three of the resulting color schemes. A vector of
random numbers between 1 and 8 of length segment is created, 2
is raised to the power of each element, 1 is subtracted from each
result, and the output vector is repeated to fill a vector of length
leds times 3 (3 RGB integer values for each LED). The resulting 8-
bit integers will manifest a color series on an LED array. Varying
the length of the segment will produce different patterns. In the
span of about 10 minutes I wrote this code and used it to build a
library of palettes for use with the Bloxl display, generating dozens
of RGB vectors and saving the ones that looked good.

April has been a unique boon to the development of Bloxl since
building animations often requires custom code for each animation
that isn’t used anywhere else. Using a more verbose language, I
would be faced with the choice of either placing the custom code
directly inside the spec for an individual animation and bloating
it by many lines or collecting all custom animation functions in
another part of the codebase, adding the cognitive overhead and
technical debt of many more functions that are each only used for
one task. April makes it possible to express sophisticated custom
effects in just a line or two, negating complexity in a way that
wouldn’t otherwise be possible.

“https://bloxl.co
1Ohttps://github.com/slyrus/opticl/

5 ACKNOWLEDGEMENTS

Justin Dowdy and Nikolai Matiushev for many bug reports, Kevin
Jones, Jérome Ibanes and Nathan Rogers for steadfast support, Jan
Miinch, Elias Martenson, Marshall Lochbaum and many others on
IRC, Matrix and Github for conversation and commentary.

6 CONCLUSIONS AND FUTURE WORK

I consider April to have substantially fulfilled my initial design
goal: an alloy of two languages with complementary strengths.
April has reduced the time needed to accomplish many tasks and
made things possible that weren’t before. At events featuring the
Bloxl device I have live coded effects that would have taken hours
to assemble using conventional methods.

Upcoming design priorities for April include further speedups
through the use of SIMD and even possible GPU acceleration through
integration with ArrayFire!!. April remains slower than Dyalog
APL but the compiler has a multifaceted framework for optimiza-
tion, including its parallelizing macros and a pattern matching sys-
tem for code that can be implemented in a faster way than the
compiler normally would (april/patterns.lisp!?).

REFERENCES

[1] APLWiki.com. Prototype, 2020. URL https://aplwiki.com/wiki/Prototype.

[2] APLWiki.com. John scholes’ conway’s game of life, September 2021. URL https:
//aplwiki.com/wiki/John_Scholes%27_Conway%27s_Game_of_Life.

[3] Thiago Carvalho. Basics of kernels and convolutions with opencv, 2020.
URL https://towardsdatascience.com/basics-of-kernels-and-convolutions-with-
opencv-c15311ab8f55.

[4] Adin Falkoff. Apl 360 history. In Proceedings of the Conference on APL, APL
’69, page 8-15, New York, NY, USA, 1969. Association for Computing Machinery.
ISBN 9781450373784. doi: 10.1145/800012.808128. URL https://doi.org/10.1145/
800012.808128.

[5] H. Hellerman. Experimental personalized array translator system. Commun.
ACM, 7(7):433-438, Jul 1964. ISSN 0001-0782. doi: 10.1145/364520.364573. URL
https://doi.org/10.1145/364520.364573.

[6] Roger Hui. Towards improvements to stencil, 2020. URL https://www.dyalog.
com/blog/2020/06/towards-improvements-to-stencil/.

[7] Kenneth E. Iverson. Notation as a tool of thought. Commun. ACM, 23(8):444-465,
Aug 1980. ISSN 0001-0782. doi: 10.1145/358896.358899. URL https://doi.org/10.
1145/358896.358899.

Uhttps://github.com/arrayfire/arrayfire
2https://github.com/phantomics/april/blob/master/patterns.lisp

https://bloxl.co
https://github.com/slyrus/opticl/
https://aplwiki.com/wiki/Prototype
https://aplwiki.com/wiki/John_Scholes%27_Conway%27s_Game_of_Life
https://aplwiki.com/wiki/John_Scholes%27_Conway%27s_Game_of_Life
https://towardsdatascience.com/basics-of-kernels-and-convolutions-with-opencv-c15311ab8f55
https://towardsdatascience.com/basics-of-kernels-and-convolutions-with-opencv-c15311ab8f55
https://doi.org/10.1145/800012.808128
https://doi.org/10.1145/800012.808128
https://doi.org/10.1145/364520.364573
https://www.dyalog.com/blog/2020/06/towards-improvements-to-stencil/
https://www.dyalog.com/blog/2020/06/towards-improvements-to-stencil/
https://doi.org/10.1145/358896.358899
https://doi.org/10.1145/358896.358899
https://github.com/arrayfire/arrayfire
https://github.com/phantomics/april/blob/master/patterns.lisp

	Abstract
	1 Introduction
	2 Using April
	3 Implementation
	3.1 The Core Specification
	3.2 Array Prototypes
	3.3 Multithreading

	4 Applications
	4.1 Terminal Graphics
	4.2 Speaking of Color...

	5 Acknowledgements
	6 Conclusions and Future Work
	References

