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In order to comprehend what is ''Science Based on Symmetry" it is essential to 
get acquainted with the mechanism of development of the equilibrium configuration of 
symmetry as an assembly of five identical regular tetrahedrons and its projected 
configuration in a plane as a square consisting of 25 identical square units. Deductions 
from the different in built properties of this configuration can be applied to explain any 
aspEct of the universal phenomenal nature. The talk covers the following important 
topics: 

The concepts of nine digits, the numerical continuum having critical states at 
I, 10, 100, 1000, etc. and that of one and zero, have their origin in this configuration. 

In the phenomenal nature, the whole square of the total aspects is equal to the 
sum of the squares of the condensed and uocoodensed aspects. They explain 
progressive evolution of numbers of elements in atomic continuum in periodic system 
in macrosphere following 2, 2 ; 8, 8 ; 18, 18 ; 32, 32, etc. and the progressive increase 
of electrons in orbits within the microsphere of atoms following 2, 2 ; 2, 6 ; 2, 6 ; 
2, 6, 10; 2, 6, 10; 2, 6, 10, 14; 2, 6, 10, 14, etc 

They give eight forms of transformations (including the one of Lorentz) each 
having a distinct geometrical configuration. These have been applied in correlating 
changes in variable properties in thermodynamics and specific heat" in terms of changes 
in ternperatures maintaining conservation In space time transformations they show 
that both space and time can dilate as well as contract. When Einstein propounded 
the relativistic relationship, the only form of tran!>formation available to him was 
that of Lorentz. In the H~~:ht of the discoverv of these forms of transformations there 
i'l bound to be rethinking in the entire concept of relativistic science. 

They explain dynamic aspect of mechani'lm of catalytic chemical reactions. 

SYMMETRY" is a very familiar expression generally 
conveying the sense of uniformity, identicahty, 
perfectly balanced arrangement of things etc. 

However, one may ponder over questions such as 
"symmetry of what, amongst what or between what 
:-th~ ~mplication involving the kind of relativity 
m_ Similarity or identicality between at le3;st two 
thmgs. Symmetry among or between 1deas ; 
svmmetry among or between things which are 
static ; or actions which are dynamic may be cited 
as examples. Progressively deeper and deeper 
probes in this manner ultimately reveal that the 
expression in fact is a concept of quantitative signi­
ficance, having geometrical configuration amenable 
to quantitative mathematical treatment and deduc­
tions from the concept can be applied to explain 
scientific aspects of phenomenal nature. 

. The speaker attempts to briefly describe the 
sctence based on symmetry in the talk that follows. 

Section t. 
Fundamental Configuration of Symmetry 

~(a) Suppose a point source of ener~y radiation 
~adJates rays in a perfectly symmetncal. J?anner 
m all possible directions from the posttJOn of 
the point source. Conventionally, it is taken 
for granted that after emission, the rays at an 
instant, will be at equal distances. from the_point 
source and the radiated rays wtll descnbe a 

spherical su~face with the position of the point 
source as the1r centre. As a ~e~ult, with respect to 
the cemre, all. the . rays restdmg on the spherical 
surface ~Ill be tdentJcal an~ the emission of rays is 
symmetnc?l. From the pomt of view of the position 
of the po~nt source, no doubt, all the rays forming 
the sph~ncal surface (at that instant) would be 
symmetncal. But, what about the relative status of 
the mdividual rays themselves vis-a-v1s others while 
they are on the sphencal surface ? Are all other 
rays identical with respect to any one ray ? SJDce 
with respect to the point source, which JS the cause 
its emitted rays, which are the effects, are 1dent1cai 
and symmetrical, it is logically expected that each 
ray would also want the other effect rays to be 
symmetrical and identical wtth respect to 1t. There 
should not be discrimination in symmetncal rela­
tiOnship between centre vis-a-vis the emanated rays 
and any indivtdual ray vis-a-vis the other rays on 
the spherical surface. But at the sphencal surface 
with respect to any ray all the other rays are not 
symmetrical. Thus all the emanated rays do not 
at an instant, describe spherical surface front during 
emission. We, therefore, reqmre to find an alterna­
tive configuration for the rays (at an mstant) whtch 
will symmetrically satisfy both the pomt source as 
well as the emanated rays among themselves. There 
is only one configuration, namely, a regular tetra­
hedral mode, which would completely sattsfy both 
the source at the centre and the 4 rays (at an 
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instant) occupying the 4 corner positions of the 
tetrahedron. Thus with respect to any ray the other 
3 rays will be symmetrical and identical and with 
respect to the centre the 4 emanated rays are 
identical. In other words the point source has 4 
directional symmetry and each ray bas three direc­
tional symmetry. This is the picture, at an instant, 
during emtssion. To oppose this action of the 
point-source and to get an equilibrium configura­
tion each of the four identical equilateral triangular 
face; must be opposed (as reaction) face to fa~e by 
one identical regular tetrahedron. The action of 
the central one is due to energy and the reaction of 
the outer ones is due to matter significance. Thus 
the equilibrium configuration consists of a unit 
package of 5 regular tetrahedrons : one at the centre 
and 4 outer ones placed against the four equilateral 
triangular faces _of th~ one at the centre .. One can 
call this as an umt umversal wave or umt square 
wave or can call this as a quantum of unit con­
figuration of the Universe in its miniature form, 
just like a seed and a tree. We shall call this as 
fundamental configuration of symmetry or simply 
configuration of syrometry. The central tetrahedron 
represents (action) energy radiation and the !ou_r 
opposing outer tetrahedrons represf'nt matter stgnt­
ficance as reactions to the action of the former. A 
tetrahedron when projected on a plane passing 
through the centre and parallel to a pair of opposite 
sides is a square (Fig. 1) m the plane. 

A~D 

8 c 
Fig. 1 

Similarly, the composite configuration of 5 tetra­
hedrons, when projected on a plane passing through 
the centre and parallel to a pair of two opposite 
sides of the central tetrahedron would also be pro­
jected as a square as shown in Fig. 2. 

Fig. 2 

The Fig. 2 thus, when expressed in terms 0! 
identical square units on the plane ~enerates wn 
square comprising 25 identical square umt~ as sh~ni­
in Fig. 3. This is derived from the inbmlt roa n 
tudes of the dimensions in a regular tetrahedra i: 
For example, in a regular tetrahedron if the roagnof 
tude of distance between the centre and centr~he 
the triangular faces is 1, the distance between 

F1g. 3 

centre and the corner positions is 3, the distance 
between a corner positton and centre of the oppo­
site triangular face 1s 3+ 1 =4. When a reg~tar 
tetrahedron is placed against one equilateral tflan­
gular face of the central tetrahedron, the distancd 
between the centre of the central tetrahedron an 
apex corner position of the outer tetrahedron 1J 
1+4=5. Applying these data, we get the projecte 
square comprising 25 identtcal square units, the twf 
diagonals will have (10+ 10) = 20 identical units ~ 
distance of diagonals and 4 sides of the square wtl} 
have 20 identical units of distance (5+5+5+5). 0 

sides (Fig. 4). This square configuration consisttng 
of 25 identical square units has 9 diagonals and 10 

Fig 4 

equal linear units on the central diagonal (Figs. 6 
an~ 7): Fig. 5 shows the arrangement of the squa~e 
"!lntts m the configuration of 25 • there are 8 untts 
tn . four pairs in continuity of the central square 
umt an~ th~re are 4 times 4 units along the 4 div~r­
gent dtrecttons of the two diagonals which are dts· 
continuous with respect to the central unit. 

Fur.ther, it may be noticed that when the con­
figuration expands, the size of the new square units 
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Fig. 5 Fig. 6 

8 
Fig. 7 

to ~e a~ded in continuity of the central unit always 
mau!-tam c~nstant magnitude of size of each umt. 
But m the diverging 4 directions towards the corners 
along the. diagonals, the. size of square units can 
yary. Thts aspect of ~ontmuit~ and discontinuity, 
It may be noted, Will play Important role in the 
development of science based on symmetry. 

l(b) Some of the important properties of the 
fundamental configuration of symmetry: 

Digits and numerical continuum : From a glance 
at . the fundamental . configuration of symmetry 
~Ftgs. 6 and 7) co~pnsmg 25 identical square units 
It c~~ be seen that m between two opposite corner 
postttons there ar~ nine finite diagonals, situated 
apart at equ.al ~mts of linear distances numbering 
10 on ~he mam dtagonal. But the number of identi­
cal umts on each side is always 5. 

Numerically, the sum of the roots of two squares 
of 5 units of side is equal to root of square of 10 
units of diagonal : 

../5" + ../5• == .v'l09 • 

Iht should be noted that the magnitude of units on 
t. e left hand side is different from the units on 
rtght hand side. Actually ../2 unit of side is equal 
to one unit of diagonal. 

. In the square ABCD, the magnitudes of the 9 
dtagonals vary in an undulatory mode in the square 
c(~~figuration. Thus the magnitudes of diagonals 
. tg. 8) within the square configuration ABCD 
mhcrease progressively starting with zero at A and 
t e!l as 1, 2, 3, 4 reaches maximum of 5 at BD after 
Whtch they progressively decrease as 4, 3, 2, 1 and 
zero at C. But on either of the outer sides of the 
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configuration the magnitudes increase as shown by 
dotted lines as two times 1, 2, 3, 4 and 5. Thus the 
magnitude of th.e diagonal passing through Cis 
5+5 = 10. In thts manner the numerical continuum 
develops in magnitude. The numerical continuum 
on thts basis is shown in Fig. 9. 

Fig. 9, Evolution of numbers from square continuum in one 
direction. 

It should be emphasised that the method of 
derivation of the fundamental configuratiun of 
symmetry as a package unit of 5 regular tetrahedrons 
and their projected square configuration in a plane 
consisting of 25 identical square units were the basis 
for the development of 9 and only 9 digits, 10 
magnitudes, concepts of zero and one, and the 
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The generalised formula is : 

4 (~b; ~a+ ~a] [;b 2 <t>a] +~as= (~b)ll Eq. l. 

or, (4(•bi<Pa)] (rl>b;cl>a) +(<Pa)• = (cpb)' 

numerical continuum as unit. 10, 100, 1000 etc. etc., 
have been possible. A significant aspect should be 
realised that the numerical continuum is not a 
uniform continuity as far as digits are concerned. 
The digits start with least mag01tude in a phase and 
rh.e to maximum in that phase. Again the digits, in 
a higher phase, starts with least and nses to 
maximum. This process is repeated as the 
numerical magnitudes increase in terms of higher 
and higher magnitudes of phase contmuum as unit, 
10 100, 1000, 10000, etc. etc. or as unit, 10, 20, 30, 40: .... These states are designated as critical &tates. 

'a' and 'b' can be magnitude of any function .. It 
can be linear, square, root, numbers. cumutauves 
etc. Let <t>b be greater than cpa. In the above 
formula when (<t>a)9 =0, Fig. lO(a) becomes tbe 
Fig. IO(b). 

l(c). Criteria for development of square conti­
nuum of identical square units in a plane are the 
operation of the 4 symbols +,-, x, + : 
1+ 1 =2 2+2=4 3+3=6 4+4=8 
1-1=0 2-2=0 3-3=0 4-4=0 
txl=l 2x2=4 3x3=9 4x4=16 
t-;.1 = 1 2+2= l 3+37 1 4+4= 1 and 

Sum total Sum total 
is4=29 is9=39 

Sum total 
is 16=49 

so on. 
Sum total 
is 25=59 

Let us start with zero and following the identical 
procedure as above, we get the series : 

0 + 0 = 0 
0 0 = 0 
0 X 0 = 0 
0 0 ... l 

whose sum total is 19 

As per the above criteria the development of 
increasing square magnitudes in a plane are : 

19 ,211 ,311,411 , 59 , •••••• 

Therefore 0+0= 1 and is not indeterminate. It can 
be called oneness. 

From this one can realise that zero is an abstract 
concept, which has no configuration, whose 
magnitude is nil or nothing, which cannot cause 
anything, which has no root but whose homogeneity 
or identicality or oneness contributes to the concept 
of one. When zero assumes the power of anything 
that is reduced to one. One is also an abstract 
concept, wh1ch has no cause ; it itself is its own 
cause and it is the cause of all others. It has no 
root, it itself is its root. It has configuration but 
that can assume any magnitude. It is powerless 
and anything which is powerless is reduced to one. 
Unless one assume the power of everything, objective 
existence is not possible. Unless one whole is 
differentiated into finite parts, the objective concept 
of existence cannot be realised or described. 

l(d). Swastika method of development of .~quare 
towards increase in magnitude or decrease in 
magnitude: 

There are many methods of development of 
square configuration from lower to higher 
magmtu~es .or fr~m higher to lower. Swastika 
method tn F1g. 10 1s the most generalised method 
among others. 
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Illustrations: Suppose we want to increase 21 to 

611 , we will have 4(<6 -;2)+2){6~2)+211 

or 4.(4).(2)+29=32+29 =69 

In the reverse case, suppose we want to decrease 
1• to 2• we will have 

4{(2~7)][2~71 +7• 
or (9).(-5)+49=49-45=4=21 

Two ways of expressing a square configuration : 
a X a= a 11 where a is side of the square ; ~nd 
:U:(a-1)-ta=a• where a=number of identtcal 
square un1ts along the central diagonal. 

l(e) DiQerentiation of whole square into con­
densed square and uncondensed square : 

Suppose e~ch of the 25 square units of the 
configuration 1s condensed to points of position at 
the centre of each square unit. There will then be 
25 condensed points of positions and by linking 
the_se the~ generate 16 indentical condensed square 
un~ts (~tg. 11). The total whole square of 25 
umts mm~s 16 condensed square units leaves out 9 
~quare umts uncondensed. Thus total whole square 
ts 25t condensed whole square is 16 and uncon~ 
den sed whole square is 9. Thus s• _ 41 = 3•. If tbe 
central uncondensable square unit could be 
condensed to one point of position that could onlY 
gene~ate a. p~int of nil square 'magnitude. The 
re~at10nsh1p m that case would be 1• _ 011 = 1•. In 
~hls iay t~e whole ~n~guration will progressivelY 
[Fr;s~f3c~} a~ 1~jr~cttons as in the following 
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In four directions In onedirect1on 
(a) (b) 

F1g. 13 

T.ux,:at 1 
Total whole square Condensed square Uncondensed square 

5' 
13' 
251 

o• 
4' 

12' 
24. 1 

= 

The above series can be expressed by the 
following relationships : 

(i) (4l:N+l) 9 -(4.EN) 11 =(2N+l) 11 Eq. 2. 
where N can assume magnitudes 0, 1, 2, 3, 4, ... 

(ti) (a11 +bB)ll-4allbll=(all-bll)ll .. Eq. 3. 
Where a IS greater than b by unity. 

Since the above deductiOns are m four dtrections 
and . square development in each directiOn ~!. 
Ide?ttcal, the development in any one dtrectiOn IS 
as In Table 2. 

It shall be noted from Fig. 13(b), 15 and 16 
t~at uncondensed square units in one direction are 
:h ~ roots of total whole square in 4 directions. In 

Is .r_nanner many sigmficant deductions can be 
~entioned. We shall mention here only a few 
Important cases. 

I 

.... 1.1. 

TABI,lt 2 

Total whole square Condensed square 

I" o• 
31 2• 
71 6" 

131 121 

21 1 20' 

Uncondensed square 

( ..tfJ• 
( ,J5)• 
(,Jls)' 
( ,Jii6}' 
(..!41) 0 

Formula (2EN+ 1) 2 - (2EN) 11 = .J(4..EN+ 1) 9 

.. Eq. 4 

(a) In the configuration of symmetry and the 
continuum of square waves, sum of the number of 
square units at the starting front, in four directions, 
and finishing front is a square. 

Total whole square 
1" 

5' 

131 

25° 

41 1 

TABI,Jt q 
Square umts in front 

0 
'4' ts! -"s• 

48/ 
)121 

96 >161 

160 

(b) The sum of the roots of total whole square 
and condensed whole square is equal to uncon­
densed whole square m four directions. 

TABX.lt 4 
Root of total Root of condensed Unoondensed 
whole square whole square whole square 

.,jfi" + ..!fit 1' 

..t5s + ..!4" a• 
,JIS' + ..JI'}.' 5' 
,.j251 + ..tw 7' 
..!411 + ..!401 9' 
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~he above deductions giving three whole square 
relationships are unique in the sense that universal 
square waves propagate in terms of whole (not in 
par~s or fractions) squares from a lower state to 
a higher state. The concept is similar to the concept 
of quanta. 

{c) Figs. 15 and 16 show that in one direction, 
e~cluding the uncondensed square units in continua­
tion of central square, total square groups in com­
bination of both condensed and uncondensed in 
sequence increase as 1.211 , 2.4lll, 3.611, 4.8 11 , ••• 

l(f) Variation in forms of transformation of 
cha'!?eS. in properties of two dimensions, in 
equ1libnum combination between critical states 
within constant whole sq~are, maintaining conserva­
tion: 

One of the most important consequences derived 
from t!te configuration of symmetry is the 
progressive development of higher magnitudes of 
square waves in the universal context. The 
relationships have been presented in Table 1. Let 
us _confine to the square configuration of 25 square 
UJ;tits of configuration of symmetry and refer to 
Ftgs. 12(a), 12(b). (12(c) and 12{d). 

Fig. 12(a) Fig. 12(d) 

{b), (c) and (d). In these figures the two magnitudes 
of changes of x1 and X 11 vary together between the 
bottom and top sides maintaining conservation, in 
such a way that if at the bottom side OX, one of 
them x1 will be zero and the other x51 will be equal 
to the side OX, i.e., the maximum critical value as 
Xsc· At the top side, similarly if x51 =0 x1 = x10 

maximum constant critical value. The bottom side 
of the square is one critical state and the top side 
of the square is another critical state. Above the 
top critical state there can be one or more critical 
states but the nature of those phases in combination 
will be different from x1 and x51 combination. 
Similarly below the bottom critical state there can 
be one or more critical states wherein also the 
phases, in combination will vary together but they 
will be different from x1 x51 combination. In 
between the two critical states changes of properties 
of the two components x1 and x11 will vary in two 
zones separated either by a circular line with radius 
5 as in Figs. 12(a) and 12(b) or they may be 
separated by the diagonal of the square as shown in 
Figs. 12(c) and I2(d). The form of relationships 
of x1 and x11 in the four configurations would be as 
in Table 5. 

TABLE: 5 

i(a). 

ii(a.). 

iii(a). 

iv(a). 

Total whole 
square 

}II 

5• 

"•'"••= ..J(yo•-y•)/yc• i(b). 

x.lx.c= ..J{yo•- (yo-y)1}/yc" ii(b). 

x./x1 c=(Yc- y)/yc 

x 1 /x 10={y0 - (y0 - y)}/yc 

Condensed whole 
square 

011 

411 

iii(b). 

iv(b). 

= Uncondensed 
whole square 

= 

~e tot~l whole square remaining constant as 511 , 

c anges tn the magnitudes of condensed X 1 and 
uncondensed x11 vary in combination together along 
one axis say, horizontal axis OX maintaining 
conservation i.e., x1 +x11 = 5. They vary, with 
resp_ect to variation of a dimension y along the 
verttcal axis OY, from zero at to 0 maximum 5 at Y 
whe~e the dimension y will attain critical, constant 
maximum value Yo· This js shown in Figs. 12(a), 

"·'"··=1- ../(y.•-y•)ly.• Fig. lla(a.). 

x 1 /X 1c=l- rJ{yc•- (yo-Y)"}/yo• Fig. 12(b). 

x1 /x.c=1- (yc-y)/Yc Fig. 12(c) 

x.fx.c=1-{yc- (Yc -y)}/yc Fig. 12(d) 

It should be noted here that the form of relation­
ship in equation i(a) has the same form of the 
famous Lorentz transformation for length contrac­
tion, and equation i(b) is the form of transforma• 
tion for time dilation. All these forms have been 
verified by employing established data in the 
subsequent sections. 

Section 2 
Application in Phenomenal Nature : Macrospbere 

and Microspbere 

The universal nature is phenomenal ; some 
aspects in it are distinguishable while some others 

1 
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are indistinguishable or unobserva~IC:· ~he pheno-
l nature cannot be wholly dtstmgmshable or 

mena · 1 t · t holly unobservable. The un~ver~a na ure exis s 
:tways as an equilibrium combmatJ~n of b?th these 
aspects. Nature is an. ever changmg entity •. The 
change takes place . tn . terms of pr~~ressively 
changing phase c~mbmat~ons _throug~ critical states 
towards either (Fig. 5) dtrectt~ns (higher or lower). 
In the fundamental. con~guration of symmetry the 
quare units in contmuation of the central square 
~nit are most indistin~uishable ~r uncondensable 
and 4 times 4 square umts al~ng diagonal ~re most 
segregated or condensed umts (say atomtc confi­
guratiOns). It may be noted_that Fig. 11 gives~" ~s 
uncondensed. Fig. " a~so gi!es 9 square umts tn 
continuation of and tncludtng the central one 
uncondensed. 

The significance o~ cntical sta.te _in t~e. present 
context is Identical wtth vapour hqUJd cnttcal state 
of H 0 at 705.4oF through which vapour and liquid 
phas: combination of H .o changes to H 9 0 as 
permanent gas above 705.4° F. In the reverse 
duect1on. when H 90 as permanent gas is cooled 
below the crittcal temperature two phases namely, 
ltqutd H :~.0 and vapour H 110 in equilibrium 
combmation, are .formed. The above relates to 
macrosphere of Umversal Nature only. As we have 
:.tated, the umversal nature contains two. opposite 
ktnds of phenomenal development, one ts macro­
sphere and the other is microsphere. The pla­
nets galaxtes, nebula. quasar, atomic continuum, 
plan't and animal domain!> etc. etc. are macrospheric 
phenomenal mamfestattons. The microspheric 
development takes place within a constant configura-

tion. The development of electrons in or~its 
indefinitely within atomic configurations, wbtch 
remain constant, is a microspheric phenomenon. 
Thus as far as the chemical elements He conc~rne1d 
in macrosphere, number of elements progresstve Y 
develops in free space ; while in the other case, thhe 
atomic configuration remaining constan~, t e 
number of electrons progressively develops tn the 
atomic orbits within the microsphere of atoms. 

2(a) Macrospheric development and periodic 
classification of elements : 

Since, square wave developments, in each of the 
4 dtrections, are identical, we shall deal with the 
continuum in one dtrection to investigate t~e 
phenomenal nature of square wave development tn 
one duection. Tbrs has been deduced in Figs. 15 
and 16 employing condensed, uncondensed and total 
whole relat1onsh1p m Table 2. 

For easy understandmg, the nature of gquare 
wave!> m sequence a& detailed group-wtse in Fig. 16 
have been shown m Table 6 m which they are 
arranged horrzontally, so that each honzontal 
column contammg square and rectangular groups is 
one square wave and these can be termed as B wave, 
C wave, D wave, E wave etc. There is no wave of 
A because tt 1:. wholly unconden!>ed. In the other 
wave& the groups contatmng A1 , A3 , A8 etc. at the 
both ends of the honzontal columns of the square 
waves are uncondensed. In other words the tW0 
ends of each wave are zero or nil waves.' Leaving 
out the !>quare umt:. m A'& continuity the square 
magnttud~s in mcreasmg order of' magnttudes 
of waves m sequence are J.2ll, 2.4ll, 3.6~~, 4.8 9 , 

TABLK 6 

8 

8.2 8.4 
B 1 0 1 

8.6 
D, 

6.2 6.4 
B 1 0 1 

8" 
E 

6' 
D 

1" 
A 

8.6 8.4 8 2 
D, 0 1 B 1 

6.4 6 2 
0, B. 
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Along the diagonal progressively more and more 
denser and segregated condensed matter elements 
develop as 211, 411 , 6~~, 8~~, ..... in the universal con­
text. In continuity of A energy intensity pro­
~ressively decreases as the ~umbers of square units 
mcrease. In between these two extreme states the 
intermediate phase groups exist, containing_ bo~h 
matter and energy in combination. To mamtam 
symmetry the squares along the diagonal will 
re_quire to be split in two halves, one half for t~e left 
wmg and the other for the right wing of a parttcular 
wave. This is shown in Fig. 18. Thus the number 
of chemical elements progressively develop as 2,2 ; 
8,8; 18,18 ; 32,32 and so on. These aspects are 
elaborated in Fig. 18 and the periodic classification 
o~ elements in this approach has been sh?wn in 
Ftg. 19(a) and Fig. 19(b). (For detailed analysts refer 
to "Science Based on Symmetry"'*', Chapter 3). 

We do not intend to go into a detailed discussion 
on how the waves progressively develop more and 
m?~e condensed phases while passing throu~h 
cnttcal states. We are mentioning some essenttal 
points, which are different from conventional classi­
fication. In this classification we cannot use the 
conventional atomic numbers because here the first 
group (Fig. 19) contains 4 ele~ents as against 2 in 
the conventional classification. The number 4 as 
2' for the first group arises from the consideration 
of the square wave continuum developed from con­
~guration of symmetry, in which two numbers only 
tn the first group cannot be reconciled. 

* K. R. Oha.kravorty, ''Science Based on Symmetry", FIRMA 
KLM:(P) Ltd., Oalcutta-12,~1977. 

JICS-2 

Therefore our assigned numbers for the elements 
will be two more than the conventional atomic 
numbers. 

In the absence of any other data, to fill up the 4 
positions we have suggested ortho- and pa~a-hydro­
gen as two elements and neutron as an mert gas. 
Many properties of ortho- and para-hydrogen and 
of neutron suggest this approach. But it may be 
argued that ortho-hydrogen and para-hydrogen refer 
only to two molecular states of a single atomic 
species of hydrogen and that a neutron has go! n_o 
detectable orbital electron. Nevertheless, It ts 
asserted that if the theory propounded here, on the 
basis of configuration of symmetry, is correct the 
number of lighter elements ending with Helium, 
must comprise four members and not two. It is 
possible that with improved experimental techni­
ques, discoveries may be made of a sub-bydrogenic 
element or perhaps distinguishing features in the 
atomic state which lead to the formation of mole­
cular ortho- and para-hydrogen, and also of further 
details of the structure, which will confirm the vali­
dity of this hypothesis. In the absence of any 
other data we continue to use ortho- and para­
hydrogen as two elements and neutron as an inert 
gas. 

There could be another explanation. Ortho and 
para could represent combination of two opposite 
phases (periods) in the first group, just as every 
subsequent group consists of two periods. In 
similarity with H 9 0 as liquid and vapour combina­
tion, ortho and para may be two similar phase 
combination. At higher temperature vapour 

9 
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density increases and liq~id_ density ~ecre!'ls~s. At 
vap.-liq. critical state hqutd phase !S ~hmmat~d. 
Similarly, at lower temp~rature hqutd denstty 
increases and vapour denstty decreases and at a 
certain lower critical temperature near about 4~C 
the liquid density is the highest and vapour. denstt~ 
is negligible. In like ma~ne~, ortho . % In equi­
librium mixture increases wtth mcrease tn tempera­
ture and para % decreases ; and ortho % decreases 
and para% increases with decrease of temperature. 
At 20°K almost the whole is para (99.82%). Just 
as liquid and vapour phases have opposi~e 
properties, ortho . a~d para also have c~rtam 
opposite character_tsttcs. ~bus, para has anttsym­
metric nuclear spm function, whereas ortho has 
symmetric nuclear spin . function. Para has only 
even rotational states whlle ortho has only odd rota­
tional states. These are some suggestions which may 
be considered in order to see whether ortho and 

10 

para can fit in the first group of four elements. The 
number of chemical elements in the first group as 
four has been settled by the configuration of 
symmetry itself as 29 • 

While discussing the periodic classification of 
elements, Fyenman stated that it was necessary to 
find solutions of the form Y,=f(r1 , r 1 ) 0-UJn>ET to 
obtaiu the stationery states and energy levels as th_e 
geometrical dependence is contained in f, which JS 
a function of six variables-the simultaneous posi­
tions of the two electrons but no one has found 
an analytical solution though solution for the 
lowest energy states has been obtained by numerical 
methods. According to him, it is hopeless to try 
to obtain exact solutions with 3 4 or 5 electrons 
al}.d it would be going too far to ;ay that quantum 
mechanics has given a precise understanding of the 
periodic table. 
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Fig. 19. Periodic table of elements a.s per evolution in plane square continuum. 

We are not including detailed discussion on 
wave mechanism based on symmetry, as per our 
approach, because the scope is limited for the 
prese~t J?Urpose. Therefore in the following we are 
mentwnmg only a few relevant conclusions on the 
nat~re .of matter energy wave, connected with t~e 
Pertodtc classification of elements. (For details 
refer to "Science Based on Symmetry", Chapter 6). 

(i) The magnitudes of condensed waves in 
nature progressively develop in terms of increasing 
integral multiples of square of increasing magni­
tude& of maximum amplitudes as even numbers. 
(Refer to Fig. 16 and Table 6). For example: 

B wave C wave D wave E wave 
1.211 2.41 3.611 4.81 and so on. 

u 
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(ii) The nature of development of the wave 
lengths can be expressed as the m~gnitudes of the 
average wave lengths of waves. tn n_atur_e pro­
gresstvely develop in terms of mcreasmg mtegral 
multiples of maximum amplitudes, whtch must be 
even magnitudes. For example take D wave. 

and the next waves. For example: 
2(0+2) 2(2+4} 2(4+6) . 

A~B wave ; B wave~C wave ; C wave~D wave • 
or as 2, 2; 6, 6 ; 10, 10 ; 

2(6+8) ........ . 
D wave~E wave • 

14, 14; ... Starting \B 9\C1 \D!C 1 \B 11 \ fimshing ~B~~ 1C1\ D ~C~IB'\ 
state 2, 4, 0, 4, 2 state 2 14 6, 6 4 2 

average \Bs\Cl\ D \Ct\B11\ 2 4 3, 34 2 

2(b) Microspheric development and electronic 
structure of atomic configuration : 

Like the macrospheric development, the~e are 
three square relationships in the case of m1cros· 
phenc development also. It starts with 9 square 
umts from the 25 square units of configuration °~ 
symmetry in one direction, in which there are 
uncondensed and 4 condensed makmg the total 
whole as 39 • [Figs. 17(b), 20 and 21). 

=18. 

(iil) The maxtmum amphtudes decide the 
whole wave as well as tts wave length and ratio of 
whole wave magmtude and the magmtude of 
average wave length gtves magmtude of maximum 
amplitude of the waves. For example : 

1.29 2.49 3·611 4·8' ... =maxtmum ampli-
1.2 , 2.4 • 3.6 ' 4.~ • 

Progressively developing series in the micros· 
pheric case wtll be as in Table 6(a). 

tudes 2, 4, 6, 8, .. TABLll6(a) 
(iv) Magnitude of each half of the square of 

maxtmum amplitude is identified wtth magnitude 
of average wave length. For example: 

Total whole square Condensed Uncondensed 

2', 4', 611 , 89 , ... =2+2, 8+8, 18+ 18, 32+32, 
Average wave lengths=2, 8, 18, 32, ..... 

(v) Every group in the penodic table of 
elements represents square of maxtmum amplitude 
of a condensed wave ot nature m wave contmuum 
10 the universal context. The squares of maxtmum 
amphtudes represent the magnitudes of total 
numbers of elements in the groups, each compnsing 
two periods. The magmtude of numbers of ele­
ments in each penod of a group represent magni­
tude of average wave length of the correspondmg 
condensed wave of nature. Square of max. ampli­
tude': 211 ,49 , 69 , 811 , =number of elements m 
groups. Number of elements in two penods in 
each group are 2, 2; 8, 8; 18, 18; 32, 32; .. 

(vi) The increase in the total number of ele­
ments from a prev10us to the next group in sequence 
in the periodtc table occurs m terms of two times 
the sum of maximum amplitudes of the previous 

" " " - l/ 

1/ \' , 
fo'-ol ,, " I 

s• 4.P + 5.1" 
6" 4.21 + 5.21 

9" 4.31 + 5.81 

121 4.41 + 5.41 

The ~oots of three square relationship in micros· 
phere will be root of total whole square minus root 
of condensed whole square and is equal to root of 
uncondensed minus condensed square as shown tO 
Table 6(b). 

TABI.ll 6(b) 

Root of Root of Root of 
Total whole Condensed whole U ncondenaed- Condensed 

square square square 

..Jii ../4 = ,.flo 

.Jib ./iS ,J'f.i 

../Si. ../36 ,Jd'-

.Ju""i ../64 ./41 

' :/ 
I' , 

~ "' Ll r\: 
It 
lllioil'j 

Fig.l'7 
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There could be a valid question that while the 
macrosphere can develop i~definitel.>:, there must be 
some scope available for mtc~osphenc deyelopment 
also-within a constant atomtc configuratiOn. That 

this is so is illustrated by following relationship : 
Total wh_ole square 

Uncondensed- Condensed square 
3!1 

=}!I' 

OR&IT5 o._eia~b*tJb•P..Ic 5 l!osfo~c:~l>c_l<1'1'fr~ 7 1"'1"'1 .. ~c,la..l«•l 
"r.:''-~~~T lllCTIVII z JzJ '121' I z 1111 'Jtpof6J2Il4IIOJ6J2114J:ItJ6J21 ... _ -... c ... ... 
!! ....... :E 

= 2:~ ~ -, .. =::.:- ... 
1ST I Ill I 
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14 ~. 1/ I I 
15 Al I 2. I 

" 51 J I 
17 p ) 4 I• 
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" (I I & I IHOPUATIU OIBii 
!0 _II 111 2 6 2 6 2 

Stll 21 K I 
22 Cll \ I I I 
2'!o Sc I I I 
24 Ti Z I I 
25 v [\ :I 3 I I 

26 Cr 4 I I 
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u h \ I 

' I I 
27 Co 7 I I 
so "' I I I 
II Cll II \ ' I I 
51 lll 

10 ' I 
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54 Ce I \ 10 J I 
35 ., If 4 I 
56 se 10 s I 
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Fig. 2:!. Electronic structure of elements. 
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Fig. llll {Contd) Elaotronlc structure of elements. 

This means th . remainin at Wtth the atomic configuration 
can go o:w':0thnstan~, !!ddition of electrons 10 orbits 

t out hmtt. 

Just as d 1 direction 0 ev~ opment of macrosphere in one 
Pheric dev~ly IS rele':ant to us, so also are micros­
caUy macr opm~nts m one direction. Numeri­
take; start fsphenc and microspheric developments 
o~ symmet rom 9 ~q~are units in the configuration 
drff'erence 1~ .consrsttng of 25 square units. The 
macro dev'is tn the fact that the configuration in 
as indicate~ 0l?men~ varies (here increase) outward 
2, 2; 8 8 . ~~ Ftg. 17(a) following the series 
~rbital ~ic;o • 18 ; 32, 32 and so on but in 
Jn orbit a development, the electrons increase 
2, 6, 10, 14 ~ 2• 2 ; 2, 6 ; 2, 6 ; 2, 6, 10 ; 2, 6 10 ; 
basis the el~ 2, 6~ 10, 14 and so on. On these 
drawn in Fi ctrontc structures of atoms have been 
the electron;·. 22. I~ may be noticed that in Fig. 22 
:rranged in thn orbits of atomic configuration are 
owards outer e obr?er as 14, 10, 6, 2, i.e., decreasing 

T or tts. 
· here ar 
" 1 the new ~ certain unique and obvious features 

rangement. 

(i) This explains why the elements Sc, Y and 
La possess almost identical chemical properties with 
rare earth group of tervalent elements which 
possess, in the last three columns, one electron each. 

(ii) Likewise Ce and Th have one electron in 
each of the last four columns and though they are 
included in the tervalent rare earth and actinium 
series, they have special properties in being quadri­
valent and have oxides which are highly incandes­
cent. Again, though these two elements are tetra­
valent they are different from other tetravalent 
elements like Ti, Zr and Hf. 

Section 3 
Application in Tbermodynamics and Specific Heats 

3(a) Nature of thermodynamic phase continuum 
from properties of vapour and liquid H,.O in equili­
brium combination in different phases starting from 
H,.O as permanent gas to solid ice: 

The thermodynamic data of H 8 0 as permanent 
gas, vapour and liquid in combination as well as 
equilibrium combination of solid ice and super­
cooled liquid, particularly with respect to two 
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Equilibrium Phases 

Temperature Space I H.O as permanent gas 
OF Sp Vol. I Entropy 
1600 0.3'103 1.'1080 
1200 0.2806 1.5742 
1000 0.2288 1.4874 

900 0.1981 1.4309 
800 0.1583 1.3508 

Va.p-Ltql I 705'4 Critical 00503 1.0580 
State 

I 
Vapour HsO 

Sp. Vol. I Entropy 

705.4 1 0.0503 I 1.0580 
---600 

I 
0.2668 1.3307 

450 1.0993 1.4793 
800 6.466 1.6850 
150 97.07 1.8685 -

I Solid I 
( 89.1!?) 

liquid 2518 2.1620 critical 
state 

82 I 3306 I 2.1877 

Temp. 00 I I 
0 U810 2.8297 

-50 249600 2.6028 

-150 935200 2.\J503 

---- --- --

Liquid HsO phase elimi 

Liquid H.O 
Sp. Vol. I Entropy 
0,0503 I 1.0580 
0.0236 

I 
u.sun 

0.0194 0.6260 
-o.01745 0.4369 

0.01634 0.2149 

0.01602 (1.0142 

0.01602 I 0.0000 

na.ted 

Solid phase 
eliminated 

Liquid HsO super-~!._ed 
Den. gm/c.c. 1 
(+4) 1.0000 
(0°0) 0.99987 
(- 4) 0. 99941> 

(- 8) 0.99869 
-(10"0) 

0.99815 

--- --

Entropv 

-- -

Sp. Vol. I Entrouv 
0.01742 -0.3244 

0,01735 - 0.3'158 

0.01720 -0.4266 

Specific Vol. as Oft/lb Entropy as BTU/lb/"R 
Data. above 705.4"F are at constant pressure of 3206.2 lb/sq inch abe. 

specific properties, namely, specific volume and 
entropy have been presented in Table 7. The solid/ 
liquid critical state has been assumed near about 
39.2"F or 4"C at which the liquid phase has the 
maximum density. No data is available about the 
property of ice between o·c and 4"C. There must be 
appearance of solid ice phase between 4"C and O"C. 

At 705.4"F, the vapour/liquid critical state, the 
specific volume and entropy of both vapour and 
liquid are identical. At this state, liquid phase 
loses its identity from vapour phase. At temper!'l­
tures above this critical state, vapour and hqmd 
phase cannot exist, only H 110 as permanent gas can 
exist. Below this critical state, vapour and liquid 
co-exist in equilibrium combination. At 705.4"F, 
H 110 as permanent gas arrives at its least specific 
volume, from 0.3703 at 16oo•p to 0.0503 and the 
entropy changes from 1.7080 at 1600QF to 1.0580. 
The properties of vapour phase and liquid phase in 
equilibrium combination, below their critical state, 
vary in opposite directions. The specific volume 
and entropy progressively increase in the vapour 
phase with decrease in temperature while in the 
liquid phase in combination, they change in oppo­
site direction. The liquid H 110 phase starting with 

16 

0.0503 as specific volume and 1.0580 as entropY .fi~ 
705.4"F progressively decreases to 0.01602 ~peel be 
volume and 0 entropy at 32•p whereas tn t 03 
vapour phase the specific volume starts with 0.05 
at 705.4°F and increases to 3306 at 32•F. 

Below the solid/liquid critical state, the densit~ 
of H 110 in the super-cooled liquid phase decrease" 
from 1 at 4"C to 0.99815 at - IOOC i.e., the increase 
of sp. vol. of !>Uper-cooled liquid with temper~u~n 
occurs just in the same way as that of lis ~ll 
vapour phase does with lowering of temperaturerd· 
its phase combination with liquid above the so 10 
liquid critical state. The properties of solid ~t fl 
in equilibrium with super-cooled liquid H 110 be 0 tll 
solid-liquid critical state progressively change fro y 
0.1742 in specific volume and -0.3244 in entr~~Jl 
at o·c to 0.01720 in specific volume and -0.426 se 
entropy at - 150" C. It can be seen in this phil se 
combina~ion ~lso that the super-cooled liqui~ ph:be 
progresstvely mcreases in specific volume whtle .6, 
solid phase progressively decreases in spe~t se 
volume. The data for entropy in the liquid P 110, 
is not available but the nature of change of pr ut 
perties of phase combinations of H 110 whicp. oc~ al 
through the vapour/liquid critical state, tdentt' 
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nature of change of properties also should occur 
through the solid-liquid critical state. It is signi­
fi~a~t that the liquid phase above the solid/liquid 
f.rJtJ~al state possesses opposite characteristics of 
T~urd P~ase below the solid/liquid critical state. 

e m~1mum density is at 4°C, Liquid phase below 
~~e ~ohd/liquid critical state is not the identical 
thqurd .above the solid-liquid critical state. Above 

C: sohd/liquid critical state, 4°C, the phase of H 110 
asborce cannot permanently exist just as liquid phase 
a ve the vapour-liquid critical state of 705.4oF 
c:tn~1ot exist. Thus, the two critical states are 
81mr ar in nature. 

3(b) Brief description of the nature of continuum : 
The _essenc~ of the whole picture of the !latt_Ire 

of contn~uum ID the evolutionary context 1s hke 
phrogresstve changes of twin phase combinations 
t rough critical states one after the other with 
r~spect. to a change of magnitude of a critical 
ld.rmhensJOn like critical temperature, velocity of rg t etc. 

HaO as permanent gas, vapour and liquid phases 
at vapour/liquid critical state of 705.4°F is in such 
a. s~ate . of equiJibrium that none of the phases is 
dJstJnguJshable. The critical state is an abstruct 
state of existence wherefrom phenomenal nature 
st~~ts. Starting from a temperature higher than the 
CrJtJcal, as the temperature is progressively lowered 
~ow~ to the critical temperature, the permanent gas 

ens.Jty progressively increases, till it becomes 
max1mum at the critical state Just below the criti­i'-1 te~pe~ature permanent gas becomes vapour in 
1 s contrnurty, having the maximum density and a 
0 h'! Phase (liquid) with least density appears with 
~ Ich vapour. is in equilibrium combination. The 
wo P.hases ID equilibrium combination possess 

opposrte properties. With lowering of temperature, 
one phase (liquid H 110) increases in intensive pro­
pert!es a~d the vapour decreases in intensive pro­
perties till the two in combination arrive at a 
:e~npera~ure state where condensed phase increases 
0 maxrmum intensity and the uncondensed phase, 
~apour, arrives at the minimum intensity. This 
femperature state is the second critical state where-
t rom. on~ phase (liquid) with maximum intensity 
1fan~tts 1n co~tinuity _to a phase .of super-cooled 

qutd ~.o. Wtth maximum intens1ty and a ~ew 
Phase (lee) 1s generated in the new twin combination. 

ti. 3(c) Similarity between thermodynamic con-
nuum and numerical continuum: 

b The continuum of thermodynamic phases bas 
u::n qualitatively shown in Fig. 23 WhlC~ follows 
tinu sam~ Pa!tern as in the case of numer1cal con-

um In FJg. 24. 

the N~~eric_al continuum of fundamental un.it a~d 
Fi s dJgrts Jn combination have been explamed r.n oA . 6• 7, 8 and 9. The ultimate fundamental IS 
Wor~· The digits vary from 1 to 9 within. the fram.e 
nat· of ONE. The unit and the digits m comb1· 

ton make the different frames of phases of 

SPACE PJIASE. 

Evolution of Thermodynamic Phase 
Crrnt.nuurn of lizO. 

Fig. liS 

PHASE OF "rHIRT'I 

Fig,l!4 

numbers from 1 to 10, ll to 20, ~1 to 3~. etc. The 
states 10, 20, 30 etc. are numertcal critical .st~tes 
as shown in Figs. 8 and 9. The nature o~ ~ssoc1atton 
is obvious from the figure. The crrt1cal states 
through which the numertcal phases change from 
previous to next are similar to the thermodynamic 
critical states. 

The thermodynamic data of H 110, available in 
Table 7 covering approxim~t~ly three zones of phase 
combinations and two crJtJcal states, are ID con­
formity with the configuration of symmetry of phase 
continuum.• 

* ("Science &sed on Symmetry;• Chapter. 1 for defalled 
analysis) 

17 
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TABI.Jt 8-THKRMODYNAMIC DATA OF H.O ON TSMPKRATURE, Sp. 'VOI.UM:Jt, PRESSURJt, ENTROPY, DSNSITY AND 
HKAT OF 'VAPORIZATION etc., BKTWR:RN THB: Two CRITICAl. STATES: 39.2°F AND 705.4"F 

(PERRY, HAND BOOK AND HODGMAN, HAND BOOK) 

Va.p. pre- Specific volume Heat of va.pou- Entropy Density 
Temp. ssure (ab~) Liquid Vapour 

"F lb/sq. inch oft/lb oft/lb 
rization Liquid Vapour LIJuid Vapour 
BTU/lb BTU{lb/R" BTU/lb/R" lb oft lb/oft 

89.2 0.1217 0.01602 2518 1071.25 0.0162 2.1597 62.5 0.000397 
50 0.1781 0.01608 1708.2 1065.68 0.0361 2.1264 -100 0.9492 0.01618 850.4 1037.23 0.1295 1.9826 62.00 0 002884 

11.526 0.01668 88.64 977.iH 
(at 100.4"F) (at too.4•F) 

200 0.2938 1.7762 60.1 0.09 300 67.013 0.01743 6.466 909.11 0.4369 1.6350 57.47 0.1552 

400 !H-7.3 001864 1.8683 826.03 0.5664 
(at 300.2"F) (at 300.2"F) 

1.5272 5!1.28 0.598 

500 680.8 0.0204 0.6749 778.9 0.6887 
(at 410"F) (at uo•F) 

1.4325 49.02 1.486 600 1542.9 0.0236 0.2668 548.5 0.8131 1.3307 42.97 3.746 700 8093.7 0.0369 0.0761 1'72.0 0.9905 1.1~89 27.1 13.14 705.4 8206.7 0.050~ 0.0503 

3(d) Variations of thermodynamic properties: 
Following the principle enunciated in Section 

1(f) it is intended to verify the yalidi.ty of. the four 
pairs of forms of transformations hsted m Table 5 
by adopting various changes in thermodynamic 
properties of H 9 0 with respect to change in tem­
perature. Established data of different thermo­
dynamic properties of H 9 0 between solid/liquid 
critical state at 39.2"F and vapour/liquid critical 
state at 705.4"F have been listed in Table 8. 

Let 100=C1 .6. Tc=Cg.6.f.c=C8 .6.Dc=C • .6.Sc 
=-C 1 .6.Qc=C8 t:.Ec etc. in which ,t:. T, t:.P, t:.S, 
t:.Q, t:.D and .6.E are changes m te?lp~rature, 
pressure, density, entropy, heat of vapounsahon and 
energy intensity in vapour phase and .6. T c. t:.Pc, 
etc. are their critical values respectively. The follow­
ing procedure has been ado~ted ~o work out the 
various changes of properttes wtth respect to the 
yard-stick of temperature. 

Suppose we want to study the variation of 
changes of vapour pressure t:.P and heat of vapori­
zation .6.Q with respect to changes of temperature 
t:. T. 

(a) Take a square configuration of 10[) units x 
100 units. 

(b) Let the dimension temperature be taken, in 
terms of which relationships of changes of different 
properties will be studied. It should be emphasised 
that variation of those properties which undergo 
changes between the two critical states should be 
taken into consideration. That part of the proper­
ties which do not undergo change should be 
eliminated. 

(c) Calculate the change in temperature between 
the two critical states. Let .6. T c be the change in 
temperature between the two critical states. Let 
this temperature change t:. Tc be equal to 100 units 
of the side of the square configuration. The t:. T 
changes in temperature at lower levels will be cal-

culated as follows : l~c x .6. T units of side of 

this square. 

18 

0 1.0580 1.0580 1Q,88 19.88 

(d) Let t:.Qc be the critical change in latent 
heat of vapourization between the two critical 
states. The t:.Q at different temperature levels will 
b . b 100 Q . e gtven y .6. Qc x .6. untts. 

(e) Similarly .6.P will be given by 100 x tJ,P 
.6.Pc units. 

(f) Plot .6. T units along the vertical axis AY 
in Fig. 25. 

(g) Plot t:.Q units along the X-axis from AY 
towards XB at different temperature 1evels. 

{h) Plot AP units from XB towards AY at 
different temperature levels. 

From Fig. 25 we get 

l~~x t:.Q=J(~Tcx too)' -(6T x 100) 51 

.6.T. .6.Tc 

= IooJ .6. Tc'- t:. T 51 

ATc 9 

or 6Q =J~Tc11 -t:.T!l 5 
' .6.Qc - - .6. T ll Eq. . 

Similarly, e 

.6.P X lOO = .6. Te x 100-IOOJ.6. Tc51 - b. T~a 
APe tl.To t:.Tcll 

or, t:.Pp = 1-J6 Tc 9 - .6. T Eq 6. 
.6. e A.Tc1 .•. • 

These ~ransforma.tion equations have the same 
forms as t(a) and t(b) in Table 5. The Eq. 5 has 
the form of Lorentz transformation for length 
(sp~ce) co.ntr~ction and Eq. 6 is the present approach 
to ttme dllatton. 

The above equations can be written in terms of 
reduced states of the different dimensions. 

Thus t:.Q,= ../1- t:. T, Eq. 7. 
and AP,= 1- ../1-~ T, Eq. 8. 
These can also be expressed in the forms : 
Ca.6.Q=C1Jt:.T.9 -AT!l ... Eq.9. 

and C,.6.P=C1 {AT0 - .JATo'-AT'} ... Eq.lO. 
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6 P 6P a I J-=-=...-r--..,--== 
or, 6T= 6Ta X 6TX{6Ta- 6Tc•-6T•) 

... Eq. 11. 

Changes of heat of:vapourization AQ and changes 
in energy intensity 6E of vapour pha~e h~ve been 
plotted against changes of temperature m F1g. 26 

UJ 
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~ECe=C1(~Tc- ,J ~Ta•- AT 11) 

~~~~~ = (~ Tc- ,J ~ T0 11 - ~ T 11 ) 

Substituting in equation 11 we have, 

~p = /\.Po X ~ExCe 
~T ATa AT C1 

From this we get 

~p·=~X~E 
b,.Tr C1~T 

Putting the values of C 11 and Cl. 
~Pr_ ~E 
.6. T.- ABc .6. Tr 

Eq. 12. 

Eq. 13. 

.. Eq. 14. 

... Eq. 15. 

Since ~E= ~(t~v1) and .6.Ea= ~($:~v1)a 
we finally have 

APr_ ~Q. .•. Eq. 16 . 
.6,T.- AT • .6.(Y.,-V1)r 
This has the form of Clausius Clapeyron's 

famous equation correlating changes of vapour 
pressure with changes of temperature and latent 
beat of vapourization all expressed m their reduced 
states. 

3(e) Changes of entropy of vapour and /;quid 
phases of H ,p : 

Following the same procedure, variation of 
entropy changes ~S., and ~S1 in the vapour and 
liquid phases respectively have been calculated and 
the data have been plotted in Fig. 27. The figure 

7oCi 

6t:O-

~· 

Aoo "' LI.S. 

shows that the entropy changes vary between the 
two critical states maintaining conservation. 

Thus, ~S.,=(~Tc-.6.T) and AS1= 
S (~T -~'f) 

~T0 -(ATc- ~T) and further .6.s" =~ 
.6, "c c 

... Eq. 17. and ~=1 (ATa- ~T) 
AS1c ~To 

The forms of transformations follow iii(a) and 
iii(b) in Table 5. 

A significant point may be noted is that varia· 
tion of entropy changes in the two opposite phase~ 
in equilibrium combination maintaining conser~a 
tion, goes against the famous postulate of ClaustUS 
namely, "Energy of the universe is constant, entrohp; 
tends to maximum". The relationship shows t a 
entropy does maintain conservation. 

3(f) Changes of specific heats : These are 
much more complicated than variations of changes 
of thermodynamic properties with respect to 
changes in temperatures. Some of the factors c~n· 
tributing to the apparent anomalies and comphca· 
tions are: 

(a) Many substances vary in specific vol~~es 
while in equilibrium existence compnstnS 
different phase combinations. 

(b) It may not be known in what phase a 
substance belongs to. Whether it is unco~· 
densed or the condensed phase. Becaus~ tn 
the present approach if a substance IS a 

l7 
• 1/ 

7 
17 

.L ?t.. 

17 LI.S\~ 

y 17 "' ~ 

1.00-

too--v 
~·'l 

> 

20 

Ll." [7 AS\l 

i/ • 
v 
~· 

Vcn•tQ\:iQV) oP A s" Clnd A s"' 
Fig. 27 
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?ondensed phase its specific heat should 
mcrease with temperature and if un­
condensed, specific heat should decrease 
with temperature. For example, specific 
~eats of super-cooled liquid H 110, which 
IS a uncondensed phase, decrease with 
te~pera~ure and specific heats of solid !ce 
Whtch ts condensed phase increase wtth 
temperature. 

{c) A substance may be a mixture of both 
phases like a solid solution. Specific heat 
~f solid Hg upto its melting point -36.7•c 
mcreases with temperature, behaving as a 
condensed phase. But at temperature above 
- 36.7·c, the specific heats decrease with 
temperature. Liquid Hg is behaving here as 
uncondensed phase. Similarly, data on H110 
from o·c to 34"C are anomalous. Specific 
~eat of solid Pb from - 21o·c upto 360"C 
tncreases with temperature behaving like 
condensed phase. There are many other 
cases which require further study. 

f We _shall deal with the variations in changes 
~ spectfic heats of aluminium with changes of 
emperatur~ following the same procedure. We 
~re pres~ntmg in Fig. 28 the variation of changes 
tn specific heats of aluminium with changes of 

\ 
\ 

\ 

\ 
~ 
~ 

"' ,.;,.., 

temperature. Einstein and Debye did extensive 
work on this and Debye's formula has been 
found to be near to the experimental data. 
Applying our method we got the following relation­
ship from Fig. 28. 

Ah =JAT0 11 -(AT0 -AT)11 

Abc A T0 11 
... Eq. 18. 

where Ah is variable specific beats at different 
temperature levels and Aho is critical specific heat 
at 66o·c which is the melting point. 

It should be noted that the form of transforma­
tion in this case is ii(a) of Table 5. This form of 
transformation is exactly opposite of Lorentz form. 

3(g) Variation of specific heats of ice with 
temperature : 

Variation in changes of specific heats of ice with 
changes of temperature have been plotted in Fig. 2?. 
The relationship of the form of transformation ts 
expressed as : 

Ah _AT.- (6T.-AT) 
6h.- 6T., 

... Eq. 19. 

This form corresponds to iv(a) in Table 5. 

~ 

1c» 

'lC. ICO 

1lt 0 

-5o 
lt --·-•sa 

' G 
_,_ 

r-- •• .QAO 
~ -no 

.. 
-m 

Vc:.t"1a~iot') or sp~e1f:'1c heats of.' 
Alumi..,ium will, tc.mpeYCIIi"uYc 

Fig. 28 
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Section 4 
Application in Space and Time Transformations. 

Analysis of Motion along Circular path in a Plane 
4(a) Velocity components and their space and 

time contents along X and Y axes : 
Consider the velocity components along X and 

y axes of an object in uniform motion along 
circular path in a plane. Let A be the starting 
position. In Fig. 30 the object moves in uniform 
motion along AA1 AsBCD etc. 

While the object is in uniform motion, at any 
instant in its own path, the space covered and time 
taken are· intimately associated. Space and time 
move simultaneously with the object at various 
instants and positions in its own path. Thus space 
and time are inseparable with respect to the object 
in motion. In other words the total path described 
by the object is a measure not only of space but 
also equally of time. Both time and space are 
expressed in terms of space. 

Let us divide the circular path between A and B 
in Fig. 30 into 3 equal parts viz., AA10 A1 A8 , A8 B. 
Time and space for each of these three equal parts 
are identical. 

It is intended to bring the space aspect as well as 
the time aspect in the configuration as they would 
be realised along the X and Y axes. As the motion 
(velocity) is uniform in circular path, space covered 

22 

c 

Xt A 

Fig. SO. Components along X and Y axes of 
uniform motion along circular path. 

divided by time taken (which is velocity) from A to 
..t\u A1 to All and All to B are identical along tb~ 
CJr~ular path of the motion along AA1 AliB. Bu 
their components along X axis would be AX1 , X~,?'s 
and XliX. Similarly along Y axis the corresponding 
components would be AY1 , Y1 Yll and Y.Y. It 
may be seen that the magnitudes of the components 
along_ the two axes vary in opposite manner .. rhe 
veloctty component along X axis progressi-ve~ 
decreases in proportion to AX X x. and Xs 
respectively. Along the X axis ~agnitude of spa~e 
of ea?h comp?nent progressively decreases wbde 
magmtud.e of ttme progressively increases (because 
the veloctt~ com~o~ent L/T progressively d~rease~ 
along X axts). Stmtlarly along y axis magmtude 0 
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:~~~e ~fmJ?onent progressively increases and magni- !It c N 
(becaus II1e . component progressively decreases r----==--==---. 
increa e ~e octty component L/T progressively 
becausseX a ong Y axis). This should be expected 

e and Y axes are opposites. 

con~llowing this method, one can visualise the 
the re?u~nces .on space and time configurations and 
along ~hon~hyps between the velocity components 
object 1 an ax~s for the complete motion of the 

a ong the ctrcular path. 

vet!if example Figs. 3l(a) and (b) reveal the 
res ecf components along X axis and Y axis 
cir~ula:vely hof the motion along . the complete 

pat · These velocity components have 
M 

A p 
Fig, 31() V 8 • eloclty of compo. 

nents along x axis 
for the complete 
circular path of 
motion. 

c 

A 

Fig. S!(b). Velocity of compo­
nents of Y axi.s for 
the 90mplete circular 
p•th of motion. 

been . furth 1. . 
. contents er 8P.1t mto space content and time 
·the complft veloctty components of motion along 
contents e e pat~. Fig. 3! shows space and time 
Fig. 33 s~f veloctty components along X axis a~d 
compone ~w\ space and time contents of vel<?ctty 

n 8 a ong Y axis. Rearranging, the total 
M 

p 

M 

A 

Fig. 88, Space and time con­
tents of velocity 
components along 
Y axis. 

space cont 
tion is sh ents. of X and Y axes into one configura-
along X 0~0 tn Fig. 34(a) and total time contents 

·The an Y axes in Fig. 34(b). . . 
conservarabove geometrical analysis establishes 
estabfisheton of velocity components. It also 

s not only conservation of space content 

Fig. 34(a). Variation of X space Fig. 34(b). Variation of X time 
and Y space along and Y time along 
X axis. Y axis. 

and time content but also space time conservation, , 
equivalence and interchangeability of space and 
time in the universal context. Another important 
point is that both space and time can dilate and 
contract depending on the course of motion. And 
all the space and time contents, of all varying 
velocity components along X and Y axes, undergo 
dilation or contraction according to the following 
forms of transformation equations : 

(a) l 9 =1 1J~ and t1 =t1 [1~ Jcs~vs] 

and (b) 11 =1 1 Jcs-(c-v)s 
cs 

and t9 =t1 [1- Jc~.:--~iv)s] 

These forms have already been listed in Table 5."' 
4(b) Geometrical configuration of Lorentz 

transformation : space can contract and dilate ; so 
also time: 

The most important aspect of Lorentz's trans­

formation is the factorJcs- vs. When v =0, the 
cs 

factor becomes unity, and when v=c, the factor 
becomes zero. These conditions are satisfied if the 
three dimensions viz., c, v and .j (cs- vs) form the 
three sides of a right ·angled triangle in which v 
varies, .)0 s- vs varies and c remains constant as 
hypotenuse (Fig. 35(a)]. 

In Fig. 35(a) v varies along Y axis. Its value at 
A is zero. .J(cl-vs} varies along X axis which 
ranges in values from XA, where v=O, to zero at Y, 
where v=c. 

Let a rod of length 11 , in Fig. 35(b), be at rest 
along AX. This rod at velocity v will be 18 

following the relationship 11 /1 1 =Jcs-v'. 
cl 

When v=O, the length is 11 • If velocity appro­
aches c, 11 will be zero at Y 1 • 

.. 'Science Based on Symmetry'', Chapter 5, Section XVII 
and XVIII for detaila, 
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c 
Fig. BIS(a.) 

In order to find variation of magnitude of time, 
Lorentz's formula can be applied in an extended 
form as shown in Fig. 3S(c). 

In this approach if the area AXY is described by 
varying horizontal full lines (which are the space 
contents of velocity component) of magnitudes 
Jc• -v• with velocity v varying from A to Y, the 

horizontal dotted lines in the area XBY will be 
described by time contents of the velocity 
component. 

Fig. 3S(c) shows that c- J(c• -v•)=t. while 

the velocity v would increase from A to Y. If the 
velocity is equal to c=AY, the corresponding 
magnitude of 11 at Y will be zero and the time 
magnitude will be t 1 =BY. This is the form of 
transformation for dilation of time. 

The relationship is given by t.=tt. (c- .Jc• -v•). 
c 

Fig. 35(c) 

It should be noted that the forms of transforma­
tions of space and time contraction and dilation 
respectively follow . same forms as deduced in 
Table 5. In the specific case under consideration 
space contraction and time dilation will obey the 
following forms : 

1.=11 ,~ 
"'' c• 

It must be emphasised that in the universal 
nature, contraction of space and dilation of time 
are not the. only processes which work in pheJ?-0" 
menal maDifestatlons. There are processes in whtCh 
space dilates and time contracts following the 
forms of relat.ionships, ii(a) anl ii(b) in Table 5, 
as would be evxdent from Fig. 3S(d) where 

1.=1 /c•-(c-v)• d 
1~ c• an 

t.=t1 (t-Jc•- ~~-v)•). 
In this case space dilates and time contracts 
with increase of velocity. 

t '8 
Fig. 35(d). Reverse or opposite configuration of Lof&D 21 

teausformat ion which could lead to time contrao~ 
tlon and length dilation with velocity Increase. 

We .have a!re~dy shown the applicatio~ of thiS 
form ID vartatlon of changes in specific beats, 
numerous cases of analysis of space and time c~n· 
tents of velocity components of uniform mot1°11 
along circular path as well as matter energy wa<~e 
mechanism based on symmetry in our approach· 

4(c) Relativistic mass and matter energY 
relationship : 

In th~ special theory of relativity, conventional~Y• 
th~ v~table mass M of a body moving with velocttY 
v ts gxven by 

M J mo , where mo is rest masS· 
c"-v• 
cr-
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When V=O, M= m ... At this state there is no kinetic 
mass ?r energy. This is a critical state, where all 
nraMss 18 rest mass, m... When V=C, the magnitude 
0 becomes infinity and m0 /M becomes zero. 

"thBut in the case of variable length 1 of a body 
WI 1., as rest length the relationship is 

/c•-v• 1 "'--.---c 1., 
~~applying Lorentz form of transformation where 

ts variable length and 10 is rest length. 
With increasing v and decreasing value of the 

fo~entz factor the variable length 1 decreases, the 
un~ts. of variations are zero and 10 • But with a 
~l_lttat!on of the value of Lorentz factor in the same 
. •r~tJon, the limits of variation of M is mo and 
~~fin1ty · Out of the eight forms of transformations, 

tscovered if! science based on symmetry, one of 
:~em, [t(a), listed in Table 5], is Lorentz transforma-
ton. These forms of transformations have been 

succes.sfully applied to numerous cases employing 
established data, in thermodynamics, specific 
heats, space and time contents of motion as well 
as mechanism of matter energy waves (based on 
our appr<!ach of concept of symmetry). In no 
~~se. magmtudes of any changing property increase 

m.finlty. Each and every varying property 
s~o~s con~ervation, within finite limtts between 
C~Jttcal. states .. lt is. asserted that in the c?ntext 
0 . fi!llt~ !llamfestattons in the finite umverse, 
(WJt~JQ hm1ts of v=O and v=c) a varying property 
tendiDg towards dilation or increase in magnitude 
fannot involve infinity. By adopting appropriate 
or~ of transformation, variation towards dilation 

or mcr.ea~e of magnitude can be up to a finite maxi­
mum hm1t. For example a dimension like time 
tcan fdilate by adopting• the following forms of 
rans ormation : 

-=1- c•-v• t J-
to -c;-

Or !..== Jc•- (c-v)• 
to c• 

These show that time can dilate only up to maxi­
~u.rn .t... One should not forget that variable mass 
Ill IS In co~bii~.ation with matter coming out of rest 
i ass mo With tncreasing velocity. When the two 
i~ combi!lation vary, both should undergo varia~ ion 
I 0 PPos1te directions and maintain conservation. n relat· · · lVIshc form of equation there is no matter 
energy conservation. 

is At a critical state where kinetic mass or energy 
reO:e~o at zero velocity, at that state, only mo 
ge ams. But when velocity is jmparted to mo, 
fro~rated kinetic energy forms with some m!'ss 
ma 0 • mo, a twin phase combination in wht~h 
d" g 1~udes of both phases must change in opposite 
Mre~ttons with increasing v. Therefore, when 
to ~n~rea~es with velocity, m0 must d~cre~se 
orig· atntain conservation · m., cannot retam Its 

IDa} maQnitude when' v=C. All of moat that 

critical state becomes one with the medium in 
which everything possess velocity c. The changes 
of M and m0 can vary according to any of the 
following forms : 

(a) M=(c- Jc•-vi) dilates with v=c. 
(b) mo- JCi=Vi ... contracts with v=c. 
(c) M= Jc•-(c-v)• dilateswithv=c. 
(d) m0 =c- Jc•-(c-v)• ... contracts with v=c. 
(c) M=c- (c-v) ... dilates with v==c. 
(f) mo • ( c- v) . . . contracts with v =c. 
(g) M-c-(c-v) dilateswithv=c. 
(h) m0 =C- {c- (c-v)} ..• contracts with v==c. 

4( d) Relationship in matter and energy Pariation 
in vapour and liquid equilibrium of H 8 0 with tem­

' perature: 
Established data on equilibrium variation of 

kinetic energy and potential energy, kinetic mass 
and potential mass with velocity or tempe~ature 
between two critical states as such are not available 
to demonstrate matter/energy variation in our 
approach. We can, however, test our hypothesis 
on energy/matter variation in vapour and liquid in 
equilibrium between two critical temperature states 
from available data of H.o. 

We have to first ascertain what are the matter 
and energy significances of vapour and liquid 
phases. Energy significance as BTU/eft. of vapour 
phase can be represented byE== _g_, where Q, 

Vo-V1 
V0 and v 1 are heat of vapourisation, Sp. vol. of 
vapour and Sp. vol. of liquid respectively. Similarly, 

d . d f I" "d . 1 b matter significance as enstty o IQUI Is eft• 

The values of ~E and Ad have been presented in 
Table 9. 

We can examine from these the variation of 
energy of vapour with matter of liquid, sinee both 
the variables have a common denominator. 

In terms of the critical maximum changes of 
these properties, namely, D. T0 , D.Eo and D.d •• 
between the two critical states the values of D.E and 
D.d at different temperature levels have been pre­
sented in Table 9. 

TABLB 9 
Tempe,..ture AE Ad In terms of numbers of 
level 0 .1!' BI!U/clt. lb/cft. units of side of 100• 

of va.pour of liquid AE Ad 
8Q.9 0 4Uil 0 100 
ISO 0.0006 0.01 

100 ll.ti40 4.U'l 0.50 98.8 
(100.4°.1!') (100.4".1!') 

200 'A8.fl 4Q.Illl 0.69 94.5 
800 140.5 87.59 ll.'J 88.11 

(SOO.Il"F) (900.1l"F) 
400 44'1.4 8ll 40 8.8 '184 

(410".1!') (410".1!') 
1500 1091 ll9.U ll1.4 68.4 
600 ll21115 !111.49 44.8 511.8 
'100 48117 7.211 86.!l 17 
'105.!1. 5090 0 100 0 
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Fig. 86 

The values of b,E and L).d in terms of units of 
side of 1001 have been presented in Ta~le ~ and 
plotted at different temperature level~ 10 Ftg .. 35, 
which gives the forms of transformation relatton-
ships for 

b.d J.O.T.,~ro-~11 
.O.do,.. b.Tol 

and 
b,E . JAfci-L).TI 
-=1- Afl . ABo o . 

It may be seen that as expected, the relative 
variations of the changes of [ld and [lE take place 
in opposite directions between the t~o critical states 
maint~aining matter-energy conversation. 

Section 5 

Mechanism of Catalytic Chemical Reaction 
Dynamic aspects : 
In all changes involved in nature whether it is a 

chemical reaction or a phenomenal manifestation, 
for equilibrium existence two opposite components 
like condensed and uncondensed phases are 
necessary for generating resultant equilibrium. For 
example, an observed crystalline structure must 
have within it a component configuration vibrating 
between opposite phases so that the observed or 
perceived configuration of the crystalline structure 
is the resultant of these two opposites. 
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This can be illustrated by a simple example of a 
perceived cubic configuration, generated frof!l a 
tetrahedron having its centroid position fixed, vtbr~ 
ting between two opposite phases (Fig. 37) ABC 
and abed, where 8 positions occupy 8 corners of a 
cube. 

Fig. 87 

Such a cubic crystal of equilibrium configura· 
tion, of course, does not have any vacant positions 
of the .tetrahedron while vibrating between the two 
oppos1te states. 

Similarly, when a tetrahedron vibrates between 
two opposite phases, with mid point of al~itude 
fixe~~ r~sult only six cognisable positions tn tb,e 
equthbr.JUm configuration result, which appear 111 
perceptton as an octahedron (Fig. 38). 
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c 

c 
Fig. sa 

ha \he mechanism of catalytic chemical reaction 
Cos een put forward below according to this basic 

ncept. 
The · · · must h entitles whrch c~talyze a reaction (catalysts) 

a .ave a configuratiOn. The solid catalyst has 
olerc~tvable equilibrium configuration in the form 
str~afrous ~ry~talli~e structures. In these crystalline 
thatc t~:s avu~g different configuration, it may be 
an cr p~rceiVed configuration correspondmg to 
th Y ystallme structure may be only a portion of 

e actual "l"b · filled u ~qUI 1 rmm configuration in which the 
catal sr pO~ltiOns are not amenable to function as 
satuiatethtl~ . the unoccupied or unfilled or un-

posittons can be active as catalyst. 

expfa~~~bove }llustratio~s provide the basis for the 
part· 1 Ion . 0 mechantsm of catalytic reaction, 
a ca:~f ~!1Y Its dyna~ic aspects. It is possible that 
crystal tc subs~ance I~ one in which an equilibrium 
are not ~ne con gurat.Ion exists where all positions 
but so :corp~r~ted tn the apparent configuration 
ciated m posrttons remain unoccupied or unasso­
incom 1°r unfill~d,. rendering the configuration 
compJ' e~. It IS m these vacant positions that 
orbed un s as reactants are adsorbed or chemis­
tions b a~d then, because of oscillation of these posi­
Phase ~:Jen t~t opposite phases, namely reactant 
densed h pro uct-phase, corresponding to con­
oriente P ase and uncondensed phase, they are 
adsorb~ and transformed into products from the 
num.be e rea~tants .. :ro faci!itate the maximum 
free) r r of active positrons available for the (poison 
tain eactants to be adsorbed, a catalyst may con­
tion,pr3~oters, .if required pretreatment like reduc-

e Ydratton etc. may be necessary and 

REACTANT 

POSITIONS 

IN GAS PHASE 

State 1 State l1 

pressure and temperature are to be adjusted to the 
desired level to make the vibration not only opti­
mum for rate of reaction but also for rendering the 
catalyst dynamic enough to establish optimum 
equilibrium between adsorption and desorption. 
The sequences in the mechanism of a catalytic reac­
tion would be as shown in Fig. 39. 

In Fig. 39 equilibrium configuration of the cata­
lyst has been assumed to be constituted of compo­
nent configuration, like a tetrahedron vibratmg 
between two opposite phases, generating a resultant 
configuration like that of a cube or octahedron. 

In a complete catalytic transformation process 
there will be three main steps of action in sequence 
in the direction of conversion of reactants to 
products: 

(i) First action is conversion of the reactant 
positions to be adsorbed in the first phase of the 
catalyst configuration at suitable temperature, 
pressure, etc. Thrs requires the reactant positions 
distributed in space to be brought to correct con­
centration (say by pressure adjustment) to suit 
distribution in the catalyst configuration in the first 
phase. The first action is likened to condensed 
phase such as liquified H 1 0 from vapour phase. 

(ii) The second action is the change of orienta­
tion of the catalyst configuration from the first 
phase with reactant positions occupying the active 
positions to the second phase of the catalyst con­
figuration, during which the reactants have been 
converted into products i.e. the reactants have 
undergone orientation in their combination. During 
this process the reactants, which were present in the 
first phase of the configuration associated with 
certain intensity of space (in this theory energy 
radiation is space) energy have also undergone 
change in the second phase, in which the products 
in the configuration associated with changed energy 
intensity of space, decide whether the reaction w1ll 
be exothermic or endothermic. 

(iii) The third action is the process of desorp­
tion or ejection of the product positions received 
from the second phase. The rate of desorption of 
the product positions formed in the second phase of 
the catalyst will be due to the difference in driving 
force between concentration of the product positions 

State 3 

PRODUCT 

POSITIONS 

IN GAS PHASE 

State 4 

Reactants Adsorbed Products Formed 
Fig. 89. Mechanism of catalytic reactions. 
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in the <!atalyst and their concentration in the gas 
phase. The third action is likene? to vapour~sation 
of liquid phase to vapour phase I.e. conversiOn of 
condensed phase into uncondensed phase. 

Thus all the three steps or actions described 
above are factors which should be controlling the 
reaction. 

The presence of a second or third entity mixed 
in the catalyst has direct effect in modifying the 
catalyst and its perf?rmanc~.. Th~y may help in 
generation of more active posttlons tn the first state 
or they may start filling up the active positions 
themselves in the first btate. fbese c<;>mpounds act 
in two opposite ways ; they may functton as promo· 
ters tn the former case and as poison in the latter. 

It should be noted that the physical structure of 
a catalyst need not be simpl~ o~ elementary in 
nature like a tetrahedron oscdlatmg between two 
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states giving the impression of a cube or octaf 
hedron. It can be a combination of a number 0 

associated configurations oscillatmg between t~o 
opposite phases either resonating with the vibrauon 
of the main catalyst or just vibrate in opposite mo~e 
of ~h~ main catalyst and thereby stopping catalyUC 
actlvtty. 

The most important factor in the suggest~d 
mechanism is the introduction of dynamicitY 
between the states of chemisorption of reactants and 
desorption of products. 
. The above con~epts not only render understand· 
mg of the mecbamsm and rate of reaction easy but 
also explain the effects of promoters and poisons 
and such other parameters as temperature, pressure 
and sp~ce velocity, and role of such process~s as 
adsorption and desorption in chemical reactions­
These concepts can also be utilized to explain tbe 
endothermicity or exothermicity in chemical reac· 
tion and establishing equilibrium. 


