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Introduction to Science Based on Symmetry*
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In order to comprehend what is “Science Based on Symmetry” it is essential to
get acquainted with the mechanism of development of the equilibrium configuration of
symmetry as an assembly of five identical regular tetrahedrons and its projected
configuration in a plane as a square consisting of 25 identical square units. Deductions
from the different inbuilt properties of this configuration can be applied to explain any

aspect of the universal phenomenal nature. The talk covers the following important

topics :
The concepts of nine digits, the numerical continuum having critical states at
1, 10, 100, 1000, etc. and that of ene and zero, have their origin in this configuration.

In the phenomenal nature, the whole square of the total aspects is equal to the
sum of the squares of the condensed and uncondensed aspects. They explain
progressive evolution of numbers of elements in atomic continuum in periodic system
in macrosphere following 2,2 ; 8, 8 ; 18, 18 ; 32, 32, etc. and the progressive increase
of electrons in orbits within the microsphere of atoms following 2,2; 2,6; 2 6;
2,6,10; 2,6,10; 2,6, 10,14 ; 2, 6, 10, 14, etc

They give eight forms of transformations (including the one of Lorentz) each
having a distinct geometrical configuration. These have been applied in correlating
changes in variable properties in thermodynamics and specific heats in terms of changes
in temperatures maintaining conservation In space time transformations they show
that both space and time can dilate as well as contract. When Einstein propounded
the relativistic relationship, the only form of transformation available to him was
that of Lorentz. In the light of the discovery of these forms of transformations there

is bound to be rethinking in the entire concept of relativistic science.
They explain dynamic aspect of mechanism of catalytic chemical reactions.

YMMETRY?” is a very familiar expression generally
conveying the sense of uniformity, identicality,
perfectly balanced arrangement of things etc.

f‘lowever, one may ponder over questions such as
‘symmetry of what, amongst what or between what
—the implication involving the kind of relativity
In_similarity or identicality between at least two
things. Symmetry among or between ideas;
symmetry among or between things which are
static ; or actions which are dynamic may be cited
as examples. Progressively deeper and deeper
probes in this manner ultimately reveal that the
expression in fact is a concept of quantitative signi-
ficance, having geometrical configuration amenable
to quantitative mathematical treatment and deduc-
tions from the concept can be applied to explain
Scientific aspects of phenomenal nature.

. The speaker attempts to briefly describe the
science based on symmetry in the talk that follows.
Section 1.

Fundamental Configuration of Symmetry

1(a) Suppose a point source of energy radiation
radiates rays in a perfectly symmetrical manner

in all possible directions from the position of

the point source. Conventionally, it is taken
for granted that after emission, the rays af an
instant, will be at equal distances from the point
source and the radiated rays will describe a

spherical surface with the position of the point
source as their centre. As a result, with respect to
the centre, all the rays residing on the spherical
surface will be identical and the emission of rays is
symmetrical. From the point of view of the position
of the point source, no doubt, all the rays forming
the spherical surface (at that instant) would be
symmetrical. But, what about the relative status of
the individual rays themselves vis-a-vis others while
they are on the spherical surface ? Are all other
rays identical with respect to any one ray ? Since
with respect to the point source, which 1s the cause,
its emitted rays, which are the effects, are identical
and symmetrical, it is logically expected that each
ray would also want the other effect rays to be
symmetrical and identical with respect to it. There
should not be discrimination in symmetrical rela-
tionship between centre vis-a-vis the emanated rays
and any individual ray vis-a-vis the other rays on
the spherical surface. But at the spherical surface
with respect to any ray all the other rays are not
symmetrical. Thus all the emanated rays do not,
at an instant, describe spherical surface front during
emission. We, therefore, require to find an alterna-
tive configuration for the rays (at an nstant) which
will symmetrically satisfy both the point source as
well as the emanated rays among themselves. There
is only one configuration, namely, a regular tetra-
hedral mode, which would completely satisfy both
the source at the centre and the 4 rays (at an
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jnstant) occupying the 4 corner positions of the
tetrahedron. Thus with respect to any ray the other
3 rays will be symmetrical and identical and with
respect to the centre the 4 eman_ated rays are
identical. In other words the point source has 4
directional symmetry and each ray has three direc-
tional symmetry. This is the picture, at an instant,
during emission. To oppose this action of the
point-source and to get an equilibrium configura-
tion, each of the four identical equilateral triangular
faces must be opposed (as reaction) face to face by
one identical regular tetrahedron. The action of
the central one is due to energy and the reaction of
the outer ones is due to matter significance. Thus
the equilibrium configuration consists of a unit
package of 5 regular tetrahedrons : one at the centre
and 4 outer ones placed against the four equilateral
triangular faces of the one at the centre. One can
call this as an unit universal wave or unit square
wave or can call this as a quantum of unit con-
figuration of the Universe in its miniature form,
just like a seed and a tree. We shall call this as
fundamental configuration of symmetry or simply
configuration of symmetry. The _ceptral tetrahedron
represents (action) energy radiation and the four
opposing outer tetrahedrons represent matter signi-
ficance as reactions to the action of the former. A
tetrahedron when projected on a plane passing
through the centre and parallel to a pair of opposite
sides is a square (Fig. 1) 1n the plane.
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Fig. 1

Similarly, the composite configuration of 5 tetra-
hedrons, when projected on a plane passing through
the centre and parallel to a pair of two opposite
sides of the central tetrahedron would also be pro-
jected as a square as shown in Fig. 2.

The Fig. 2 thus, when expressed in terms O:
identical square units on the plane generateswn
square comprising 25 identical square units as sho ai-
in Fig. 3. This is derived from the inbuilt mag n
tudes of the dimensions in a regular tetrahe roi:
For example, in a regular tetrahedron if the magno
tude of distance between the centre and centre

the triangular faces is 1, the distance between t0

Fig. 8

centre and the corner positions is 3, the distanc®
between a corner position and centre of the opPo”
site triangular face 1s 341=4. When a regl_'laf
tetrahedron is placed against one equilateral trial”
gular face of the central tetrahedron, the distanc®
between the centre of the central tetrahedron an
apex corner position of the outer tetrahedron 18
1+4=5. Applying these data, we get the project®
square comprising 25 identical square units, the tW0
diagonals will have (10+10)=20 identical units of
distance of diagonals and 4 sides of the square Wi 1
have 20 identical units of distance (5+5+ 5+5), of
sides (Fig. 4). This square configuration consisting
of 25 identical square units has 9 diagonals and

| 1 |

| i | [
Fig 4

equal linear units on the central diagonal (Figs- 6
and 7). Fig. 5 shows the arrangement of the squar®
units in the configuration of 25 ; there are 8 units
in four pairs in continuity of the central squar®
unit and there are 4 times 4 units along the 4 diver-
gent directions of the two diagonals which are dis-
continuous with respect to the central unit.

Further, it may be noticed that when the con-
figuration expands, the size of the new square unit$
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to l?e added in continuity of the central unit always
maintain constant magnitude of size of each unit.
But in the diverging 4 directions towards the corners
along the diagonals, the size of square units can
vary. This aspect of continuity and discontinuity,
it may be noted, will play important role in the
development of science based on symmetry.

1(b) Some of the important properties of the
Jundamental configuration of symmetry :

Digits and numerical continuum : From a glance
at the fundamental configuration of symmetry
(Figs. 6 and 7) comprising 25 identical square units
it can be seen that in between two opposite corner
positions there are nine finite diagonals, situated
apart at equal units of linear distances numbering
10 on the main diagonal. But the number of identi-
cal units on each side is always 5.

Numerically, the sum of the roots of two squares
of § units of side is equal to root of square of 10
units of diagonal :

N3T + 5 = JT0s,
It should be noted that the magnitude of units on
the left hand side is different from the units on
Tight hand side. Actually ,/3 unit of side is equal
to one unit of diagonal.

. In the square ABCD, the magnitudes of the9
diagonals vary in an undulatory mode in the square
configuration. Thus the magnitudes of diagonals
(Fig. 8) within the square configuration ABCD
Increase progressively starting with zero at A and
then as 1, 2, 3, 4 reaches maximum of 5 at BD after
Which they progressively decrease as 4, 3,2, 1and
Zero at C, * But on either of the outer sides of the

a
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Fig. 8

configuration the magnitudes increase as shown by
dotted lines as two times 1, 2, 3, 4 and 5. Thus the
magnitude of the diagonal passing through C is
545=10. In this manner the numerical continuum
develops in magnitude. The numerical continuum
on this basis is shown in Fig. 9.
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Fig. 9. Evolution of numbers from square continuum in one
direction.

It should be emphasised that the method of
derivation of the fundamental configuration of
symmetry as a package unit of 5 regular tetrahedrons
and their projected square configuration in a plane
consisting of 25 identical square units were the basis
for the development of 9 and only 9 digits, 10
magnitudes, concepts of zero and one, and the
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jcal continuum as unit, 10, 100, 1000 etc. etc.,
ﬁg?;e{)een possible. A significant aspect should be
realised that the numerical continuum is not a
uniform continuity as far as digits are concerned.
The digits start with least magnitude in a phase and
rise to maximum in that pha}se. Again the digits, in
a higher phase, starts with least and rises to
maximum. This process is repeated as the
numerical magnitudes increase in terms of higher
and higher magnitudes of phase continuum as unit,
10, 100, 1000, 10000, etc. etc. or as unit, 10, 20, 30,
40,.... These states are designated as critical states.

1(c). Criteria for development of square conti-
nuum of identical square units in a plane are the

operation of the 4 symbols +,—, X, & :

1=2 2+2=4 34+3=6 4+4=8
it1=0 2~-2=0 3-3=0 4—-4=0
ixl=1 2x2=4 3x3=9 4x4=16
1=-1=1 2+2=1 3+3=1 4+4=1and

SO on.

Sum total Sum total Sum total Sum total
is 4=2° is 9=32 is 16=4* s 25=5¢

Let us start with zero and following the identical
procedure as above, we get the series
0 + 0
o - 0

-0 0

0 + 0 =
whose sum total is 12

As per the above criteria the development of
increasing square magnitudes in a plane are :

12,23, 39,42, 5%, ...

Therefore 0-0=1 and is not indeterminate. It can
be called oneness.
From this one can realise that zero is an abstract
concept, which has no configuration, whose
magnitude is nil or nothing, which cannot cause
anything, which has no root but whose homogeneity
or identicality or oneness contributes to the concept
of one. When zero assumes the power of anything
that is reduced to one. One is also an abstract
concept, which has no cause ; it itself is its own
cause and it is the cause of all others. It has no
root, it itself is its root. It has configuration but
that can assume any magnitude. It is powerless
and anything which is powerless is reduced to one.
Unless one assume the power of everything, objective
existence is not possible. Unless one whole is
differentiated into finite parts, the objective concept
of existence cannot be realised or described.

1(d). Swastika method of development of square

towards increase in magnitude or decrease in
magnitude :

There are many methods of development of
square  configuration from lower to higher
magnitudes or from higher to lower.

des C Swastika
method in Fig. 10 is the most generalised method

among others.

4

The generalised formula is :
¢b—-oa $b- ¢a s = Eq. !
4|20 824 ga] [£2%2) 4 ga2 = (4b)

or, [4(¢b;-¢a)] [‘bb;d‘a]_*_(d,a)e___((#b)s

‘a’ and ‘b’ can be magnitude of any function-.vg
can be linear, square, root, numbers, cumulati o
etc. Let ¢b be greater than ¢a. In the abo

formula when (¢4a)?2=0, Fig. 10(a) becomes the
Fig. 10(b).

-

] l
= |
5 L

Fig. 10a Fig. 10b

lustrations : Suppose we want to increase 2° t0

62, we will have 4[(_6;22.)+2][6_~;2]+2=

or 4.(4).(2)+22=132+422=6*

In the reverse case, suppose we want to decreasé
7% to 22 we will have

R o
or (9).(—5)+49=49-45=4=2°

Two ways of expressing a square configuration :

axa=a? where a is side of the square; *_md
2Z(a—-1)4-a=a®* where a=number of identical
square units along the central diagonal.

1(e) Differentiation of whole Square into com
densed square and uncondensed Square :

Suppose each of the 25 square units of the
configuration is condensed to points of position at
the centre of each square unit. There will then be
25 condensed points of positions and by linking

these they generate 16 indentical condensed Square
units (Fig. 11).

its (I The total whole square of

units minus 16 condensed square units leaves out ?
Square units uncondensed. Thus total whole square
is 25, condensed whole square is 16 and uncon-
densed whole square is 9, Thus 59 —4%~3%, If the

central uncondensable square unit could be
condensed to one point of position, that could only
generate a point of nil

ionship i square itude.
:ﬁl_atlonsl:];p in that case wogld be mlig.l.] :);l =12 1In
1s way the whole configurati . -vely
develop in 4 1guration will progressi

. directions . llowins
[Figs. 13(a) and 14] ; as in the follo
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[~
Fig. 11
1
j YR TABLE 2
A3 A D =9 \:\\ Total whole square  Condensed square Uncondensid square
T 12 - 0? = 1)
Z 2 Z A A 31 - 9* = %:llgi'
VN 7 - 6? = (J/18)?
] 1 . \\ 183 - 198 _ (“'/13)’
< , 21° - 20° = (V1)
2], 2
s Formula (2ZN+1)% - (2ZN)?= J(4sN+1)*
b ) Eq. 4
. ; . Eq.
In four directions In onedirection

(a) (b)
Fig. 18
TABLE 1
Total whole square  Condensed square Uncondensed square
1? - 0® - 1?
5* - 4 = g®
13* - 19¢ = 5
5* - 24°* = 7

——

(a) In the configuration of symmetry and the
continuum of square waves, sum of the number of
square units at the starting front, in four directions,
and finishing front is a square.

‘ Th; above‘ series can be expressed by the
ollowmg relationships :

(i) (4=N+1)2—(4sN)?=(2N41)® Eq. 2.
Wher;e N can assume magm‘tudgs 0,1,2,3,4, ..
(1) (a®+b2)3 - 4a%b®= (a2 —b2)* .. Eq. 3.

where a 15 greater than b by unity.

andSmee the above deductions are 1n four directions
Square development in each direction is

identical, the dey . 1
; > elo
as 1n Table 2, pment in any one direction is

thatIt shall be noted from Fig. 13(b), 15 and 16
2 runcondensed square units in one direction are
: 00ts of total whole square in 4 directions. In
manner many significant deductions can be

entioned. We :
: . shall mention here only a few
mportant cases, Y

TaBLE 3
Total whole square Square units in front
L]
5 16
Ngs
130 nd
12*
25° 96!
16*
41* 160

(b) The sum of the roots of total whole square
and condensed whole square is equal to uncon-
densed whole square 1n four directions,

TABLE 4
Root of total Root of condensed Uncondensed
whole square whole square whole square
V1T + Aov = 1?
N5® + Nas = 3®
‘J-Tg' + Jﬁ’ = 59
N35% + Nags = 7?
NZTLR w10 = 9

e e see
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'I:he above deductions giving three whole square
relatlonships are unique in the sense that universal
Square waves propagate in terms of whole (not in
parts or fractions) squares from a lower state to
a higher state. The concept is similar to the concept
of quanta.

(c) Figs. 15 and 16 show that in one direction,
excluding the uncondensed square units in continua-
tion of central square, total square groups in com-
bination of both condensed and uncondensed in
Sequence increase as 1.22, 2.42, 3.6%, 4.82, ...

I(f) Variation in forms of transformation of
changes in properties of two dimensions, in
equilibrium  combination, ~ between critical states
;?thin constant whole square, maintaining conserva-
on :

One of the most important consequences derived
from the configuration of symmetry is the
progressive development of higher magnitudes of
square waves in the universal context. The
relationships have been presented in Table 1. Let
us confine to the square configuration of 25 square
units of configuration of symmetry and refer to
Figs. 12(a), 12(b), (12(c) and 12(d).

(b), (c) and (d). In these figures the two magnitudes
of changes of x, and x, vary together between the
bottom and top sides maintaining conservation, in
such a way that if at the bottom side OX, one of
them x, will be zero and the other xg will be equal
to the side OX, i.e., the maximum critical value as
Xgo- At the top side, similarly if x;=0 x, =x,,
maximum constant critical value. The bottom side
of the square is one critical state and the top side
of the square is another critical state. Above the
top critical state there can be one or more critical
states but the nature of those phases in combination
will be different from x, and x,; combination.
Similarly below the bottom critical state there can
be one or more critical states wherein also the
phases, in combination will vary together but they
will be different from x,x, combination. In
between the two critical states changes of properties
of the two components x, and xg will vary in two
zones separated either by a circular line with radius
5 as in Figs. 12(a) and 12(b) or they may be
separated by the diagonal of the square as shown in
Figs. 12(c) and 12(d). The form of relationships
of x, and x, in the four configurations would be as

in Table 5.

TABLE 6
i(a). x,/%0= N(Fo® —y¥)lyo? i(b). xXefxge=1- N(Fo® —y")/7c* Fig. 12(a).
1i8). x/xy0=N{Fo = (Fo=7)W7o" 1i(b). xalxso=1- N{7e* = Fo—¥) V30" Fig. 13(b).
lii(a). x,/x,0=(yc - y)/7c iii(b). Xa/Xge=1—(ye—¥)ye Fig. 12(c)
(@), xi/xie={yo—(ye~y)H¥e iv(b). xu/xee=1—{yo—(yc=7)}¥e Fig. 12(d)

Total whole — Condensed whole = Uncondensed
whole square

Square square
12 - 0® = 12
5 42 = 32

The total whole square remaining constant as 5%,
changes in the magnitudes of condensed x, and
uncondensed x, vary in combination together along
One axis say, horizontal axis OX maintaining
Conservation " i.e., x,+xg=5. They vary, Wwith
Tespect to variation of a dimension y along the
Vertical axis OY, from zero at to O maximum 5 at Y
Where the dimension y will attain critical, constant
Maximum value y,. Thisis shown in Figs. 12(a),

It should be noted here that the form of relation-
ship in equation i(a) has the same form of the
famous Lorentz transformation for length contrac-
tion, and equation i(b) is the form of transforma-
tion for time dilation. All these forms have been
verified by employing established data in the
subsequent sections.

Section 2

Application in Phenomenal Nature :
and Microsphere

The universal nature is phenomenal ; some
aspects in it are distinguishable while some others

Macrosphere

7
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. 1 inouishable or unobservable. The pheno-
ﬁ:ﬁﬁdﬁﬁe cannot be wholly distinguishable or
wholly unobservable. The ungvers_al nature exists
always as an equilibrium combination of both these
aspects. Nature is an_ever changing entity. _The
change takes place in terms of progressively
changing phase combmat}ons'throug.h critical states
towards either (Fig. 5) directions (higher or lower).
In the fundamental configuration of symmetry the
square units in continuation of the central square
upit are most indistinguishable or uncondensable
and 4 times 4 square units along diagonal are most
segregated or condensed units (say atomic confi-
gurations). It may be noted that Fig. 11 gives 3% as
ancondensed. Fig. 5 also_gives 9 square units in
continuation of and including the central one
uncondensed.

The significance of critical state in th_e' present
context is identical with vapour liquid critical state
of H,O at 705.4°F through which vapour and liquid
phase combination of H3O changes to H,O as
permanent gas above 705.4°F. In the reverse
direction, when H,O as permanent gas 1s cooled
below the critical temperature two phases namely,
liquid HLO and vapour Hg O in equilibrium
combmation, are formed. The above relates to
macrosphere of Universal Nature only. As we have
stated, the universal nature contains two opposite
kinds of phenomenal deyeloppnent, one is macro-
sphere and the other is microsphere. The pla-
nets, galaxies, nebula, quasar, atomic continuum,
plant and animal domains etc. etc. are macrospheric
phenomenal manifestations. The  microspheric
development takes place within a constant configura-

tion. The development of electrons 10 °ﬂ?‘tg
indefinitely within atomic configurations, whic
remain constant, is a microspheric phenomenon'
Thus as far as the chemical elements are concerné
in macrosphere, number of elements progresswely
develops in free space ; while in the other case, t
atomic configuration remaining constant,
number of electrons progressively develops 1D the
atomic orbits within the microsphere of atoms.

2(a) Macrospheric  development and periodic
classification of elements :

Since, square wave developments, in each of the
4 directions, are identical, we shall deal with the
continuum in one direction to investigate the
phenomenal nature of square wave development 18
one direction. This has been deduced in Figs- 15

and 16 employing condensed, uncondensed and total
whole relationship 1n Table 2.

For easy understanding, the nature of square
waves 1n sequence as detailed group-wise in Fig- 16
have been shown in Table 6 in which they 3aré
arranged horizontally, so that each honzoni?l
column containing square and rectangular groups 15
one square wave and these can be termed as B wavé,
C wave, D wave, E wave etc. There is no wave 0
A because 1t 1s wholly uncondensed. In the othef
waves the groups contamning A,, A,, A, etc. at the
both ends of the horizontal columns of the squar®
waves are uncondensed. In other words, the twC
ends of each wave are zero or nil waves. Leaving
out the square units in A’s continuity, the square
magnitudes in increasing order of magnitudes
of waves in sequence are 1.22, 2.42, 3.6%, 4.8%,

—
TABLE 6
8.1' 8.2
A, B,
61*
A,
e
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Along the diagonal progressively more and more
denser and segregated condensed matter elements
develop as 22, 42, 62, 8%, .. ... in the universal con-
text. In continuity of A, energy intensity pro-
gressively decreases as the numbers of square units
increase. In between these two extreme states the
intermediate phase groups exist, containing both
matter and energy in combination. To maintain
symmetry the squares along the diagonal will
require to be split in two halves, one half for the left
wing and the other for the right wing of a particular
wave. This is shown in Fig. 18. Thus the number
of chemical elements progressively develop as 2,2;
8,8; 18,18 ; 32,32 and so on. These aspects are
elaborated in Fig. 18 and the periodic classification
of elements in this approach has been shown in
Fig. 19(a) and Fig. 19(b). (For detailed analysis refer
to “Science Based on Symmetry”*, Chapter 3).

We do not intend to go into a detailed discussion
on how the waves progressively develop more and
more condensed phases while passing through
critical states. We are mentioning some essential
points, which are different from conventional classi-
fication. In this classification we cannot use the
conventional atomic numbers, because here the first
group (Fig. 19) contains 4 elements as against 2 in
the conventional classification. The number 4 as
22 for the first group arises from the consideration
of the square wave continuum developed from con-
figuration of symmetry, in which two numbers only
in the first group cannot be reconciled.

* K. R. Chakravorty, “Science Based on Symmetry”’, FIRMA
KLM(P) Ltd., Oalcutta-12,:1977.

JCS—2

Therefore our assigned numbers for the elements
will be two more than the conventional atomic
numbers.

In the absence of any other data, to fill up the 4
positions we have suggested ortho- and para-hydro-
gen as two elements and neutron as an inert gas.
Many properties of ortho- and para-hydrogen and
of neutron suggest this approach. Butit may be
argued that ortho-hydrogen and para-hydrogen refer
only to two molecular states of a single atomic
species of hydrogen and that a neutron has got no
detectable orbital electron. Nevertheless, it is
asserted that if the theory propounded hére, on the
basis of configuration of symmetry, is correct the
number of lighter elements ending with Helium,
must comprise four members and not two. Itis
possible that with improved experimental techni-
ques, discoveries may be made of a sub-hydrogenic
element or perhaps distinguishing features in the
atomic state which lead to the formation of mole-
cular ortho- and para-hydrogen, and also of further
details of the structure, which will confirm the vali-
dity of this hypothesis. In the absence of any
other data we continue to use ortho- and para-
hydrogen as two elements and neutron as an inert
gas.

There could be another explanation. Ortho and
para could represent combination of two opposite
phases (periods) in the first group, just as every
subsequent group comnsists of two periods. In
similarity with H;O as liquid and vapour combina-
tion, ortho and para may be two similar phase
combination. At higher temperature vapour

9
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ity increases and liquid density decreases. At
3:;.5-11%.1“ critical state liquid phase is e_hmmatqd.
Similarly, at lower temperature liquid density
increases and vapour density decreases and atca
certain lower critical temperature near about 4'C
the liquid density is the highest and vapour densny
is negligible. In like manner, ortho % in equi-
librium mixture increases with increase in tempera-
ture and para % decreases ; and ortho % decreases
and para % increases with decrease of temperature.
At 20°K almost the whole is para (99.82%). Just
as liquid and vapour phases have opposite
properties, ortho and para also have certain
opposite characteristics. Thus, para has antisym-
metric nuclear spin function, whereas ortho has
symmetric nuclear spin function. Para has only
even rotational states while ortho has only odd rota-
tional states. These are some suggestions which may
be considered in order to see whether ortho and

10

para can fit in the first group of four elements. The

number of chemical elements in the first group as
four has been

settled by the configuration of
symmetry itself as 22.

While discussing the periodic classification of
elements, Fyenman stated that it was necessary to
find solutions of the form y=f(r,, ry) WHET to
obtain the stationery states and energy levels as the
geometrical dependence is contained in f, which is
a function of six variables—the simultaneous posi-
tions of the two electrons but no one has foun
an analytical solution though solution for the
lowest energy states has been obtained by numerical
methods. According to him, it is hopeless to try
to obtain exact solutions with 3,4 or 5 electrons
and it would be going too far to say that quantum

mechanics has given a precise understanding of the
periodic table.
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Pig. 19. Periodic table of elements as per evolution in plane square continuum,

We are not including detailed discussion on
Wave mechanism based on symmetry, as per our
approach, because the scope is limited for the
Present purpose. Therefore in the following we are
mentioning only a few relevant conclusions on the
Dature of matter energy wave, connected with the
1l}‘efl'wdlc classification of elements. (For details
eler to “Science Based on Symmetry”, Chapter 6).

(i) The magnitudes of condensed waves in
nature progressively develop in terms of increasing
integral multiples of square of increasing magni-
tudes of maximum amplitudes as even numbers.
(Refer to Fig. 16 and Table 6). For example :

D wave E wave
3.6% 4.82

B wave C wave

1.2¢ 2,42 and so on.

11
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i e nature of development of the wave
lengtllzs c'l;g be expressed as the mggmtudes of the
average wave lengths of waves in nature pmi
gressively develop 1 terms of increasing mtegrg
multiples of maximum amplitudes, which must be
even magnitudes. For example take D wave.

S RS T PR

average \123 ,\(431\31) 3\4 1 gs‘
=18.

(ii) The maximum amphtudes decide the
whole wave as well as its wave length and ratio of
whole wave magnitude and the magunitude of
average wave length gives magnitude of maximum
amplitude of the waves. For example :

128 242 3.6° 4.8%

12° 24° 36 4as’
tudes 2,4, 6,8, ..

.\ Magnitude of each half of the square of
ma)(c‘l‘xlr)mm atiplitude is identified with magnitude
of average wave length. For example :

2%, 43, 69, 83, ...=2+2, 8+8, 18+18, 32+32,

Average wave lengths=2, 8, 18, 32,

=maximum ampli-

(v) Every group in the periodic table of
elements represents square of maximum amplitude
of a condensed wave ot nature in wave continuum
\n the universal context. The squares of maximum
amphlitudes  represent the magnitudes of total
numbers of elements in the groups, each comprising
two periods. The magnitude of numbers of ele-
ments in each period of a group represent magni-
tude of average Wwave length of the corresponding
condensed wave of nature. Square of max. amph-
tude : 28, 4%, 63, 8%, =pumber of elements n
groups. Number of elements in two periods in
each group ar¢ 2, 2 5 8: 8 s 18, 18 5 323 32 5

(vi) The increase in the total number of ele-
ments from a previous to the next group in sequence
in the periodic table occurs i terms of two times
the sum of maximum amplitudes of the previous

e

and the next waves. For example :

2(0+2) 2(2+4) 2(4+6) )
A->B wave ; B wave->C wave; C wave->D wave
oras2,2; 6,6; 10, 10;

2(6+8) .

D Snave-ivE wave

14,14; . - )

2(b) Microspheric development and electroni¢
structure of atomic configuration :

Like the macrospheric development, theré ar;
three square relationships in the case of mlcl‘Ore
pheric development also. It starts with 9 S_Cl“ao
units from the 25 square units of configuratiolt 5
symmetry in one direction, in which there are 1
uncondensed and 4 condensed making the tot?
whole as 32. [Figs. 17(b), 20 and 21].

Progressively developing series in the micros
pheric case will be as in Table 6(a).

e
.....

e
TABLE 6(a)
Total whole square Condensed Uno:ondeme‘1
3 = 4.1? + 5.1°
6* = 4,99 + 5.2°
9? = 4.9¢ + 5.3°
122 = 44° + 5.4°
sen e LXLd

The roots of three square relationship in mi°f°5;
phere will be root of total whole square minus 1'°°f
of condensed whole square and is equal to root ©

uncondensed minus condensed square as showd n
Table 6(b).

B
TABLE, 6(b)
Root of Root of Root of

Total whole Condensed whole Uncondensed —- Condﬁmw‘1
sguare square square
Ng o - B = T
NS iB i
T N3g = N3t
Vi - N JI

—

Ll

RERE

1

Pig. 17

12
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There could be a valid question that while the this is so is illustrated by f. i ionship *
macrosphere can develop indefinitely, there must be Total whole squ y following relationship
some scope available for micx:ospheric development Uncondensed — C Eq— are
also—within a constant atomic configuration. That ondensed squa;g 65 9% 12°_g
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This

remair?il;;niog.:;;mwm:i dthe atomic conﬁguratlion

c . additi it
41 g0 on without limit, on of electrons 1n orbits

Jus

directif)nasonc}eve.lopmellt of macrosphere in one
eric devel Yy 1s relevant to us, so also are micros-
, Macrge b iehts in one direction. Numeri-
takes start fspheflc and microspheric developments
Ol symmetyr rom 9 square units in the configuration
dlﬂ‘erence uy consisting of 25 square units. The
Macre deveeis In the fact that the configuration in
3 indicate dol?lnem; varies (here increase) outwar
»24; 8,8 i“ Fig. 17(a) following the series
rbital micro 8,18; 32,32 and so on but in
I orbit as 2devel°Pment, the electrons increase
26,10, 135 22 263 2,65 2,6,1052,610;
Yasis the elect »6, 10, 14 and so on. On these
?rawn in igc ;Omc structures of atoms have been
he electrOns} 2. It may be noticed that in Fig. 22
?"a“ged in th?, orbits of atomic configuration are
er Ofgg;f as 14, 10, 6, 2, i.c., decreasing

ere g .

1 Ie ¢ . .

U the ney, ra;‘;::; unique and obvious features
ent,

(i) This explains why the elements Sc, Y and
La possess almost identical chemical properties with
rare earlh group of tervalent elements which
possess, in the last three columns, one electron each.

(ii) Likewise Ce and Th have one electron in
each of the last four columns and though they are
included in the tervalent rare earth and actinium
series, they have special properties in being quadri-
valent and have oxides which are highly incandes-
cent. Again, though these two elements are tetra-
valent they are different from other tetravalent
elements like Ti, Zr and Hf.

Section 3
Application in Thermodynamics and Specific Heats

3(a) Nature of thermodynamic phase continuum
from properties of vapour and liquid H40 in equili-
brium combination in different phases starting from
H,O as permanent gas to solid ice :

The thermodynamic data of H,O as permanent
gas, vapour and liquid in combination as well as
equilibrium combination of solid ice and super-
cooled liquid, particularly with respect to two

15
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P
TABLE 7
Equilibrium Phases
Temperature Space |_H,O a8 permanent gas
°F | 8p Vol. | Entropy
1600 0.3703 1.7080
1200 0.2806 1.5742 .
1000 0.2288 1.4874 Liquid H;0 phase eliminated
900 0.1981 1.4309
800 0.1583 1.3508
'Vagp-Liq
7054 Oritical | 00503 1.0580
State
Vapour H,O
Liquid H,0
8p. Vol.
P Vol ‘ Entropy 8p. Vol. | Entropy
_ 705.4 | 0.0503 |  1.0680 0.0503 | 1.0580
600 0.2668 1.3307 0.0236 0.8131
%%g 1.0993 1.4793 0.0194 0.6280
6.466 1.6850 -0,01745 C.4369 Solid
phase
150 917.07 1.8685 0.01634 0.2149 oliminated
Solid
(39.3,) |Hamd | g51s 2.1620 0.01602 0.0142
state
82 } 3306 { 2.1877 0.01602 0.0000
Temp. °C Liquid H,O super-cooled Solid H,Q
P Den. gmJc.c. | Entropy [Sv. Vol. | Entropy
0 14810 2.3297 (+4) 1.0000 0.01742 | —0.3244
(0°C) 0.99987
- 50 249600 2.6028 (—4) 0.99945 0.01785 | —0.8758
-~150 935200 2.9503 (~8) 0.99869 0.01720 | —0.4266
-(10°C)
0.99815
8peocific Vol. as Cft/lb Entropy as BTU/1b/°R
Data above 705.4°F are at constant pressure of 3206.2 1b/sq inch abs.
™

specific properties, namely, specific volume and
entropy have been presented in Table 7. The solid/
liquid critical state has been assumed near about
39.2°F or 4°C at which the liquid phase has the
maximum density. No data is available about the
property of ice between 0°C and 4°C. There must be
appearance of solid ice phase between 4°C and 0°C.

At 705.4°F, the vapour/liquid critical state, the
specific volume and entropy of both vapour and
liquid are identical. At this state, liquid phase
loses its identity from vapour phase. At tempera-
tures above this critical state, vapour and liquid
phase cannot exist, only Hg,O as permanent gas can
exist. Below this critical state, vapour and liquid
co-exist in equilibrium combination. At 705.4°F,
H,O as permanent gas arrives at its least specific
volume, from 0.3703 at 1600°F to 0.0503 and the
entropy changes from 1.7080 at 1600°F to 1.0580.
The properties of vapour phase and liquid phase in
equilibrium combination, below their critical state,
vary in opposite directions. The specific volume
and entropy progressively increase in the vapour
phase with decrease in temperature while in the
liquid phase in combination, they change in oppo-
site direction. The liquid H,O phase starting with

16

0.0503 as specific volume and 1.0580 as entropy g;
705.4°F progressively decreases to 0.01602 spec!’
volume and O entropy at 32°F whereas in t163
vapour phase the specific volume starts with 0.05
at 705.4°F and increases to 3306 at 32°F.

Below the solid/liquid critical state, the denslt);
of H,O in the super-cooled liquid phase decreads® .
from 1 at 4°C to 0.99815 at -10°C i.e., the increa®
of sp. vol. of super-cooled liquid with tempelfat“.n
occurs just in the same way as that of HsO: "
vapour phase does with lowering of temperatur® ,3_
its phase combination with liquid above the solt
liquid critical state. The properties of solid Hs
in equilibrium with super-cooled liquid H,O bel®
solid-liquid critical state progressively change fro®®
0.1742 in specific volume and —0.3244 in entrofP A
at 0°C to 0.01720 in specific volume and —0.4260 ’se
entropy at —150°C. It can be seen in_this Phase
combination also that the super-cooled liquid Phahe
progressively increases in specific volume whilé gﬁa
solid phase progressively decreases in SPec p
volume. The data for entropy in the liquid Phao_
is not available but the nature of change of P*
perties of phase combinations of H,O which 0
through the vapour/liquid critical state, identi®
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Dature of change of .
18¢ of properties also should occur

tﬁl:g:ll:gt?l the solid-liquid critical state. It is signi-
Critica) at the liquid phase above the solid/liquid
liquid ;tate Possesses opposite characteristics of
e mp 1ase below the solid/liquid critical state.
the SOI% lllp um density is at 4°C. Liquid phase below
iquidl {,lquld critical state is not the identical
the sol‘g ove the solid-liquid critical state. Above
as ice c‘ /liquid critical state, 4°C, the phase of H,O
above ?ﬁlnot permanently exist just as liquid phase
cannot € vapour-liquid critical state of 705.4°F
similar ie: lgz{tur’?}us, the two critical states are

3(5) Brief descr iption of the nature of continuum :

of g,l},'i-"ssem? of the whole picture of the nature
progreslsl-mum in the evolutionary context is .hke
through ive changes of twin phase combinations
respect tcﬂtlcal States one after the other with
dimension i change of magnitude of a critical
light et:; n like critical temperature, velocity of

H,0 as permanent s i
pulimanent gas, vapour and liquid phases
y stae “r/liquid critical state of T05.4°F s in such
istin u'°1f equilibrium that none of the phases is
state gofls able. The critical state is an abstract
starts Stexlgtence wherefrom phenomenal nature
critical argng from a temperature higher than the
own taiit € temperature is progressively lowered
density -, ritical temperature, the permanent gas
maxi ng'u progressively increases, till it becomes
ca temm at the critical state. Just below the criti-
its contjper-at“re Peérmanent gas becomes vapour in
new phanuxtly, having the maximum density and a
which v se (liquid) with least density appears with
two hapour. IS 1n equilibrium combination. The
Oppogt: Ses in equilibrium combination possess
one pha Properties. With lowering of temperature,
Perties o, ed(hq“‘d H,40) increases in intensive pro-
Perties tl‘lll the vapour decreases in intensive pro-
temperat‘ the two in combination arrive at a
0 max‘ure State where condensed phase increases
vVapour !mum intensity and the uncondensed phase,
emper;tamves at the minimum intensity. This
Tom on ure state is the second critical state where-
transits phase (liquid) with maximum intensity
liquig Hmocol?tmulty to a phase of super-cooled
Phase (jeay : with maximum intensity and a new
(ice) is generated in the new twin combination.
3

tiny ) Similar ity between thermodynamic con-

. :
™ and numericql continuum :

The conti .
b ilinuum of thermodynamic phases has
theee'; dualitatively shown in Fig.y 23 which follows

ti patterﬂ as .ll lh i -
n . 1 (-] l con

th N(;lim.e"iqal continuum of fundamental unit and
&S in combination have been explained in
C T 7;%?‘?‘1 9. The ultimate fundau;]en;al is
Wor: 181ts vary from 1 to 9 within the frame
natignof ONE.” The unit and the digits in combi-

make the different frames of phases of

JICS_3
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numbers from 1 to 10, 11 to 20, 21 to 30 etc. The
states 10, 20, 30 etc. are numerical critical states
as shown in Figs. 8 and 9. The nature of association
is obvious from the figure. The critical states
through which the numerical phases change from
previous to next are similar to the thermodynamic
critical states.

The thermodynamic data of H,O, available in
Table 7 covering approximately three zones of phase
combinations and two critical states, are in con-
formity with the configuration of symmetry of phase
continuum.*

% (“Science Based on Symmetry,” Chapter. 1 for detailed
analysis)
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TABLE 8—THERMODYNAMIC DATA OF H,0 ON TRMPERATURE, Sp. VOLUMER,

PRESSURE, ENTROPY, DENSITY AND

HRAT OF VAPORIZATION eto.,, BETWEEN THE Two CRITICAL STATES : 89.2°F AND 705.4°F
(PERRY, HAND BOOK AND HopneMaN, HAND BoOK)

Vap. pre- 8pecific volume Heat of vapou- Entro; Densit;
Temp. ssure (abs) Liquid  Vapour rization Liquid \pfipour Liquid yV&FO‘“
P 1b/sg. inch cft/lb oft/Ib BTU/Ib BTU/Ib/R° BTU/Ib/R® jeit  Ibfeft
89.2 0.1217 0.01602 2518 1071.95 0.0162 97
50 0.1781 0.01608  1708.2 1065.63 0.0361 gﬁ%%l 63'5 0'00-03
100 0.9492 0.01613 850.4 1037.23 0.1295 1.9826 62.00 0 002884
4° t 100.4°
200 11,5626 0.01663 88.64 977.91 0.2938 1.7762 ot 10%3.1}? ) 0.03 &
300 67.013 0.01743 6.466 909.11 0.4369 1.6350 57.47 0.1552
.9° 0.2°F'
400 247.3 001864 1.8683 826.03 0.5664 1.5272 (ot 30%:2%‘) (atOP:gQB )
° 0°F
500 680.8 0.0204 0.6749 773.9 0.6887 1.4325 (ot 4]295;)2 (ot :.186 )
600 1542.9 0.0236 0.2668 548.5 0.8131 1.8807 42.87 8.746
700 3093.7 0.0369 0.0761 172.0 0.9905 1.1389 7.1 18.14
705.4 8206.7 0.0503 0.0508 1.0580 1.0580 19.88 19.88

3(d) Variations of thermodynamic properties :

Following the principle enunciated in Section
1(f) it is intended to verify the validity of the four
pairs of forms of transformations listed in Table 5
by adopting various changes in thermodynamic
properties of H,O with respect to change in tem-
perature. Established data of different thermo-
dynamic properties of H,O between solid/liquid
critical state at 39.2°F and vapour/liquid critical
state at 705.4°F have been listed in Table 8.

Let 100=C,AT¢=CyaAPc=C;ADc=C,ASc
=C,AQc=C;AEc etc. in which AT, AP, AS,
AQ, AD and AE are changes in temperature,
pressure, density,entropy, heat of vapourisation and
energy intensity in vapour phase and AT¢, APc,
etc. are their critical values respectively. The follow-
ing procedure has been adopted to work out the
various changes of properties with respect to the
yard-stick of temperature.

Suppose we want to study the variation of
changes of vapour pressure AP and heat of vapori-
zation AQ with respect to changes of temperature
AT.

(a) Take a square configuration of 100 units x
100 units.

(b) Let the dimension temperature be taken, in
terms of which relationships of changes of different
properties will be studied. It should be emphasised
that variation of those properties which undergo
changes between the two critical states should be
taken into consideration. That part of the proper-
ties which do not undergo change should be
eliminated.

(c) Calculate the change in temperature between
the two critical states. Let ATc be the change in
temperature between the two critical states. Let
this temperature change ATc be equal to 100 units
of the side of the square configuration. The AT
changes in temperature at lower levels will be cal-

. 100 . .
culated as follows : mx AT units of side of

this square.

18

(d) Let AQc be the critical change in latent
eat of vapourization between the two critical
states. The AQ at different temperature levels will

be given by ﬂo_x AQ units.

AQc
(e) Similarly AP will be given by
units.

(f) Plot AT units along the vertical axis AY
in Fig. 25.

(8) Plot AQ units along the X-axis from AY
towards XB at different temperature levels.

(h) Plot AP units from XB towards AY at
different temperature levels.

From Fig. 25 we get

100 _ T, 2 s

AQX AQ= ,\/ (ﬁ—Tox 100) - (%%x 100)

= 100“/ AT - ATS

100 P
= XN
APc

AT,2
or, AQ _ AT 32— ATS Eq. 5.
. X AT
Similarly,
AP 100 _ AT,

100 _ AT, 100 ATI=ATS
AP,= AT *100-100, / A*————-«T;\T%

[
AP =] AT 22— AT
OP, AT, 3

These transformation equations have the same
forms as i(a) and i(b) in Table 5. The Eq. 5 has
the form of Lorentz transformation for length

(space) contraction and Eq. 6 ch
to time dilation. 1 ¢ s the present approa

The above equations can b i i f
! ¢ written in terms ©
reduced states of the different dimensions.

Thus AQ:= J1-AT, Eq. 7.
and AP,=1- JTTAT ... Eq.8
These can also be expressed in the forms :
CsAQ=C, VAT s ATs Eq. 9.

and C,AP=C,{AT,~ yATF=FTS} .. Eg 10

or,

Egq. 6
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Th . )
100 © relationship of ﬁ—% would be given by or, %=—§—TP£>< —ﬁx (AT.~ VATI=ATY)
x [}
iﬁ Ae(ATe— JRTFTATY) =q. 11.
&x A = 2 . Changes of heat ofvapourization AQ and changes
AT, T , Qﬂx AT in energy intensity AE of vapour phase have been
AT, plotted against changes of temperature in Fig. 26
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AEC,=C,(AT.— VAT - AT?) Eq. 12.
—Ag9£=(ATe— JATE - AT?)
1
Substituting in equation 11 we have,
_A_P_=___[_\_g_°_— Ex G.ﬁ
AT AT, T < AF%e, Eq. 13.
From this we get
AP _ Ce E
AT, C,AT ATX JAY Eq. 14.
Putting the values of C4 and C,
AP, _ AE
AT. DE, AT: Eq. 15.
. AQ AQ.
E= and AE;=—r~—
Since A AV, -V AV.-V,).
we finally have
AP, DQ .
ATr ATr A(Vv"vl)r Q- 16.

This has the form of Clausius Clapeyron’s
famous equation correlating changes of vapour
pressure with changes of temperature and latent
heat of vapourization all expressed 1n their reduced
states.

3(e) Changes of entropy of vapour and liquid
phases of HyO :

Following the same procedure, variation of
entropy changes AS, and AS, in the vapour and
liquid phases respectively have been calculated and
the data have been plotted in Fig. 27. The figure

shows that the entropy changes vary l?etween the
two critical states maintaining conservation.

Thus, ASy=(AT.— AT) and AS,=

~AT)
(AT ps, _(AT.—o0
AT~ (AT.—~ AT) and further ASe AT,

and DS, =1 _(AT‘,— AT) Eq. 17.

DS, AT,

The forms of transformations follow iii(a) and
iii(b) in Table 5.

A significant point may be noted is ghat vall'l?"s
tion of entropy changes in the two opposite phas®®
in equilibrium combination maintaining conser\]as
tion, goes against the famous postulate of Clausi¥
namely, “Energy of the universe is constant, entropy
tends to maximum”. The relationship shows th?
entropy does maintain conservation.

3(f) Changes of specific heats: These ar¢
much more complicated than variations of change$
of thermodynamic properties with respect to
changes in temperatures. Some of the factors coB

tributing to the apparent anomalies and complica
tions are :

(a) Many substances vary in specific volumes
while in equilibrium existence comprisin®
different phase combinations.

It may not be known in what phase a
substance belongs to. Whether it is uncos”
densed or the condensed phase. Because If
the present approach if a substance is 2

(b)

709
600 °®
7o v
&
L4 ] x
(-]
2 AS, e X3
0
’;. 555 Y x
g- A8, as
9
a 200 =~ ®
5=
w.

Variation of 45, and as,
Fig. 27
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Condensed phase its specific heat should
Increase with temperature and if un-
condensed, specific heat should decrease
with temperature. For example, specific
heats of super-cooled liquid HoO, which
18 a uncondensed phase, decrease with
temperature and specific heats of solid ice
which is condensed phase increase with
temperature.

(©) A substance may be a mixture of both
Phases like a solid solution. Specific heat
of solid Hg upto its melting point —36.7°C

Increases with temperature, behaving as a
condensed phase. But at temperature above
~36.7°C, the specific heats decrease with
temperature, Liquid Hg is behaving here as
ancondensed phase. Similarly, data on H,O
from 0°C to 34°C are anomalous. Specific
heat of solid Pb from —270°C upto 360°C
increases with temperature behaving like
condensed phase. There are many other
cases which require further study.

o We shall deal with the variations in changes
temSpecxﬁc heats of aluminium with changes_ of
are perature following the same procedure. We
in presenting in Fig. 28 the variation of changes

specific heats of aluminium with changes of

temperature. Einstein and Debye did extensive
work on this and Debye’s formula has been
found to be near to the experimental data.
Applying our method we got the following relation-
ship from Fig, 28.

Ah _ ~/Am —(AT.- AT)®
Ah, AT,2

where Ah is variable specific heats at different
temperature levels and Ah, is critical specific heat
at 660°C which is the melting point.

It should be noted that the form of transforma-
tion in this case is ii(a) of Table 5. This form of
transformation is exactly opposite of Lorentz form.

3(g) Variation of specific heats of ice with
temperature :

Variation in changes of specific heats of ice with
changes of temperature have been plotted in Fig. 29.
The relationship of the form of transformation is
expressed as :

Ab _ AT,- (AT, — AT)
Ahb, AT,

This form corresponds to iv(a) in Table 5.

Eq. 18.

Egq. 19.
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Section 4 C
Application in Space and Time Transformations.
Analysis of Motion along Circular path in a Plane
4(a) Velocity components and their space and
time contents along X and Y axes : g Y 0
Consider the velocity components along X and A
Y axes of an object in uniform motion along Y,
circular path in a plane. Let A be the starting
position. In Fig. 30 the object moves in uniform X \i
motion along AA,; A BCD etc. X2 X1 A

While the object is in uniform motion, at any
instant in its own path, the space covered and time
taken are- intimately associated. Space and time
move simultaneously with the object at various
instants and positions in its own path. Thus space
and time are inseparable with respect to the object
in motion. In other words the total path described
by the object is a measure not only of space but
also equally of time. Both time and space are
expressed in terms of space.

Let us divide the circular path between A and B
in Fig. 30 into 3 equal parts viz., AA,, A,A,, A B.
Time and space for each of these three equal parts
are identical,

1t is intended to bring the space aspect as well as
the time aspect in the configuration as they would
be realised along the X and Y axes. As the motion
(velocity) is uniform in circular path, space covered

22

Fig. 80. Components along X and Y axes of
uniform motion along circular path.

divided by time taken (which is velocity) from A 10
A,,A, to A;and A, to B are identical along tb®
circular path of the motion along AA,A,B. But
their components along X axis would be AX;, Xt.x s
and X,X. Similarly along Y axis the corresponding
components would be AY,, Y,Y, and Y,Y-
may be seen that the magnitudes of the components
along the two axes vary in opposite manner. ,The
velocity component along X axis progresswely
decreases in proportion to AX,, X,X, and Xs
respectively. Along the X axis magnitude of spac®
of each component progressively decreases Whi
magnitude of time progressively increases (bﬂ"ause
the velocity component L/T progressively decrﬂasef’f
along X axis). Similarly along Y axis magnitude ©



CHARRABORTY : INTRODUCTION TO SCIENCE BASED ON SYMMEBTRY

:lligge ggmtponent progressively increases and magni-

(becane ;nlle .component progressively decreases

inores le ocity component L/T progressively

oroases a ong Y axis). This should be expected
5¢ X and Y axes are opposites.

conf: Imwmg this method, one can visualise the

the re‘l]atinces onspace and time configurations and

along x °ﬂ§h1ps between the velocity components

object gl Y axes for the complete motion of the
Ject along the circular path.

For example Fi
; gs. 31(a) and (b) reveal the
::sl,;:gty vomponents along X axis and Y axis
Circula:vely of the motion along the complete
Path. These velocity components have

M
¢ N M c

7

P

X
A P X A P

Pig. 3
: l(a)-n:’:é:eiﬁy of compo.  Pig. 81(b). Velocity of compo-
slong X axig nents of Y axis for

for the com X
plete the complete circular

circular t

motion, b of path of motion.

been - .
-COnltlen?s“g;er ISP!“ into space content and time
°°0mpletve ocity components of motion along
Contents of ¢ Il’atl;, Fig. 32 shows space and. time
ig. 33 showe oY components along X axis and
Compone tws Space and time contents of velocity
nts along Y axis, Rearranging, the total
M c N
Y SPAC, SP.ACE

Y SPAC \! Y SPAC

X A P
Fig. 83, Space and time con-
tents of  velocity
components  slong

Y axis,

" Space
tiop j c;) n;ents. of X and Y axes into one configura-
Along x anwn In Fig. 34(a) and total time contents

axes in Fig. 34(b).

he _
Servatiabove geometrical analysis establishes
es;ablisheson of velocity components. It also

Ot only conservation of space content

L) C N M C N

==
SPACE| XSPACEN, ™
1\ / } A ‘ ! l ‘

Y TIME

L,

J

Y TIME

xsncy N :t;} A
X TiM X TiM
X A P X A P

Fig. 34(a). Variation of X space Fig, 34(b). Variation of X time
and Y space along and Y time along
X axis. Y axis.

Y TIME

X SPACE

*
X_
A\

and time content but also space time conservation, .
equivalence and interchangeability of space and
time in the universal context. Another important
point is that both space and time can dilate and
contract depending on the course of motion. And
all the space and time contents, of all varying
velocity components along X and Y axes, undergo
dilation or contraction according to the following
forms of transformation equations :

(2) E’—c‘:ﬁ and ty=t, [1 u/g’_:g_’;]

la=1, B

and (b) 1g=1, ,/S2~(€=V)*
cl

and ty=t, [l—,\/‘?f_f_g‘_"lf]

These forms have already been listed in Table 5.*

4(b) Geometrical ~configuration of Lorentz
transformation : space can contract and dilate ; so
also time :

The most important aspect of Lorentz’s trans-

formation is the factor, /> ~V®. When v=0, the

c’
factor becomes unity, and when v=c, the factor
becomes zero. These conditions are satisfied if the
three dimensions viz., ¢, v and ,/(c®—v?) form the
three sides of a right-angled triangle in which v
varies, /c® —v? varies and ¢ remains constant as
hypotenuse [Fig. 35(a)].

In Fig. 35(a) v varies along Y axis. Its value at
Ais zero. ,J(c¥—v®) varies along X axis which
ranges in values from XA, where v=0, to zero at Y,
where v=c.

Let a rod of length 1,, in Fig. 35(b), be at rest
along AX. This rod at velocity v will be 1l
following the relationship 14/1,= A/ v

c!
When v=0, the length is 1,. If velocity appro-
aches ¢, 1, will be zero at Y,.

*“Science Based on Symmetry”, Chapter 5, Bection XVII
and XVIII for details,
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Y

A §
Lz _ /c%v?
L 1 “ cz
C _ y‘ 3
9 - = f1- N
lz —d C 2
T /
X [4 [ X N A
Fig. 85(a) Fig. 35(b)

In order to find variation of magnitude of time,
Lorentz’s formula can be applied in an extended
form as shown in Fig. 35(c).

In this approach if the area AXY is described by
varying horizontal full lines (which are the space
contents of velocity component) of magnitudes
Jo® —v® with velocity v varying from A to Y, the
horizontal dotted lines in the area XBY will be
described by time contents of the velocity
component.

Fig. 35(c) shows that c— Jf(c®—v®)=t, while
the velocity v would increase from A to Y. If the
velocity is equal to c=AY, the corresponding
magnitude of 1, at Y will be zero and the time

magnitude will be t, =BY. This is the form of
transformation for dilation of time.

The relationship is given by tg=t, (6= JeT—vi).
c

B
c-Jfci-v?

Y

Fig. 35(c)

It should be noted that the forms of transforma-
tions of space and time contraction and dilation
respectively follow same forms as deduced in
Table 5. In the specific case under consideration
space contraction and time dilation will obey the
following forms :

s — v3
1’=11~/c c’v

to=t (c— Je2—v3)
c

a7 "1

It must be emphasised that in the universi‘l
nature, contraction of space and dilation of tim®
are not the only processes which work in pheno
menal manifestations. There are processes in which
space dilates and time contracts, following th¢
forms of relationships, ii(a) and ii(b) in Table
as would be evident from Fig. 35(d) where

1,::11«/0_’°£CS‘V’ and

tamty (1 /).

cﬂ

In this case space dilates and time contracts
with increase of velocity.
B ly o
c tz:h(l-\‘ (2-(C"V)z)
C 2
-
ta v /ci-(c-v)z
]2 ' 2 =l' c 2
{
X t A
Pig. 85(d). Reverse or opposite configuration of fl'-»ﬁ'““(m‘s

teansformat ion which could lead to time contrd®
tion and length dilation with velocity increase:

We have already shown the application of this
form in variation of changes in specific heatS:
numerous cases of analysis of space and time 08
tents of velocity components of uniform motion
along circular path as well as matter energy wave
mechanism based on symmetry in our approach-

4(c) Relativistic mass and matter ene'®
relationship :

In the special theory of relativity, conventionally:

the variable mass M of a body moving with velocity
v is given by
m
M=___°__, where m, is rest mass
VAT

c!
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ggesno¥=0’ M=m,. At this state there is no kinetic

mass iy energy. This is a critical state, where all

of M beer ass, m,. When v=c, the magnitude
€Comes infinity and m,/M becomes zero.

witt?l;t in the case of variable length 1 of a body
o a@s rest length the relationship is
ci—ys =]
AT,
ll>yisapplying Lorentz form of transformatinn where
variable length and 1, is rest length,

gllttzhf lncreasing v and decreasing value of the
limits fa°t°€ the variable length 1 decreases, the
variati: z'a"at“ms are zero and 1,. But with a
direction Ohthe_ value of Lorentz factor in the same
infinit n, the limits of variation of M is m, and
:10ity.  Out of the eight forms of transformations,

d . .
IScovered in science based on symmetry, one of

:?:;1 ’ [1%]), listed in Table 5], is Lorentz transforma-
suc'::'ttsst‘ullese fogms of transformations have been
eStablishedy a(ll)phed to numerous cases employing
eats, spa, ata, in thermodynamics, specific
as m’ecrl;ace' and time contents of motion as well
our g rmsm of matter energy waves (based on
case m};p qacg of concept of symmetry). In no
to inﬁn"gmt% es of any changing property increase
shows cy. ach and every varying property
critical s?n:er\'atlon_, within finite limits between
of finite  cn It is asserted that in the context
(within [ manifestations in the finite universe,
tendip tlomlts of v=0 and v=c) a varying property
canno tg inWalrds ghlat;on or increase in magnitude
orm of trvo ‘t{e infinity. By adopting appropriate
or increas élllsf ormation, variation towards _dllatlop
mum lim'te 0l magnitude can be up to a finite maxi-
can dilalt' Eor example, a dimension like time
transfol.m:ﬁon{ adopting the following forms of

ia]—Jca—V’
& =

;ﬁ?:et show that time can dilate only up to maxi-
is in One should not forget that variable mass

Masg combination with matter coming out of rest

in conl?b"-wu?‘ increasing velocity. When the two

in op Mation vary, both should undergo variation

In relgto'sl.te directions and maintain conservation.

enerw LVIstic form of equation there is no matter
T8Y conservation.

is ;Aetrg Critical state where kinetic mass or energy
Temaing at zero velocity, at that state, only mo
generateq But when velocity is imparted to mo,
from Kinetic energy forms _with some mass
Magnityde a twin phase combination in which
direction es of both phases must change in opposite
incres With increasing v. Therefore, when

t maintaSes with velocity, m, must decrease
Originaj ain conservation ; m, cannot retain its
magnitude when v=c. All of m, at that

JCs—y

critical state becomes one with the medium in
which everything possess velocity c. The changes
of M and m, can vary according to any of the
following forms :

dilates with v=c.

(a) M=(c- Jc"—v9)

(b) me= ,Jc2—v® ... contracts with v=c.
() M= Je*~(c—-v)® ... dilates with v=c.
(d) me=c-— Jc®~(c—v)? ... contracts with v=c.
() M=c-(c—V) . dilates with v=c.
(f) my=(c—v) ... contractswith v=c.
(g; M=c~(c—V) . dilates with v=c.
(h) me=c-fc~(c—-v)} ... contracts with v=c.

4(d) Relationship in matter and energy variation

in vapour and liquid equilibrium of HgyO with tem-
, perature :

Established data on equilibrium variation of
kinetic energy and potential energy, kinetic mass
and potential mass with velocity or temperature
between two critical states as such are not available
to demonstrate matter/energy variation in our
approach. We can, however, test our hypothesis
on energy/matter variation in vapour and liquid in
equilibrium between two critical temperature states
from available data of H,O.

We have to first ascertain what are the matter
and energy significances of vapour and liquid
phases. Energy significance as BT U/cft. of vapour

phase can be represented by E=_——<—, where Q,

Vo and v, are heat of vapouri;atic;n, Sp. vol. of
vapour and Sp. vol. of liquid respectively. Similarly,

matter significance as density d of liquid is ol

The values of AE and Ad have been presented in
Table 9.

We can examine from these the variation of
energy of vapour with matter of liquid, since both
the variables have a common denominator.

In terms of the critical maximum changes of
these properties, namely, AT., AE, and Ad,,
between the two critical states the values of AE and
Ad at different temperature levels have been pre-
sented in Table 9.

TABLE 9
Temperature AR Ad In terms of numbers of
level °F BI'Ufelt. 1bleft. units of side of 100*
of vapour of liquid AR Ad
39,2 0 42.52 . 0 100
50 0.0006 —_ 0.01 —_
100 2.540 42.19 0.50 98.8
(100.4°F) (100.4°F)
200 28.6 40.22 0.59 94.5
300 140.5 87.69 2.7 88.2
(800.2°F) (800.2°F)
400 447.4 82 40 8.8 784
(410°F) (410°F)
500 1091 29.14 21.4 68.4
600 2255 22.49 44.3 52.8
700 4387 7.22 86.4 17
705.4 5090 0 100 0
25
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The values of AE and Ad in terms of units of
side of 100® have been presented in Table 9 and
plotted at different temperature levels in Fig. 35,
which gives the forms of transformation relation-
ships for

———————

_, JBTE T

Ado ATO’
and AE, 1 J ATS

It may be seen that as expected, the relative
variations of the changes of Ad and AE take place
in opposite directions between the two critical states
maintaining matter-energy conversation.

Section §

Mechanism of Catalytic Chemical Reaetioh
Dynamic aspects :

In all changes involved in nature whether it is a
chemical reaction or a phenomenal manifestation,
for equilibrium existence two opposite components
like condensed and wuncondensed phases are
necessary for generating resultant equilibrium. For
example, an observed crystalline structure must
have within it a component configuration vibrating
between opposite phases so that the observed or
perceived configuration of the crystalline structure
is the resultant of these two opposites.

26

This can be illustrated by a simple example ofé
perceived cubic configuration, generated from a
tetrahedron having its centroid position fixed, vibra-
ting between two opposite phases (Fig. 37) ABCD

ang abed, where 8 positions occupy 8 corners of 2
cube.

Fig. 87

_ Such a cubic crystal of equilibrium configura"
tion, of course, does not have any vacant position

of the tetrahedron while vibrating between the tWO
opposite states.

Similarly, when a tetrahedron vibrates betweet
two opposite phases, with mid point of altitud®
fixed, result only six cognisable positions in the
equilibrium configuration result, which appei“'ln
perception as an octahedron (Fig. 38). .
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Pig. 88

The mechanism of catalytic chemical reaction

has been put fo
rward ; . .
concept. P below according to this basic

mughg entities which catalyze a reaction (catalysts)
& perc _av% a conﬁgugatxon. The solid catalyst has
ofva €ivable equilibrium configuration in the form
Structrnllous crys_talhqe structures. In these crystalline
that thres hav1qg different configuration, it may be
any c € perceived configuration corresponding to

g’ rystalline structure may be only a portion of

e dagtual equilibrium configuration in which the
catal stp pc];s.Inons are not amenable to function as
satuy While the unoccupied or unfilled or un-

rated positions can be active as catalyst.

exp;raf;: taibove }llustratiops provide the basis for the
Pal'ticula:]m .:’ mechanism of catalytic reaction,
a catal ticy lbs dynamic aspects. It is possible that
chStal{in substance is one in which an equilibrium
are not j ¢ configur ation exists where all positions

SOmgcorpqr_ated in the apparent configuration
ciated or pos&tmns remain unoccupied or unasso-
incomplet unI lled, rendering the configuration
COmpolim; + It is in these vacant positions that
orbed and ihas feactants are adsorbed or chemis-
tions betw en, because of oscillation of these posi-
Phase ande on two opposite phases, namely reactant
densed phage roduct-phase, corresponding to con-
orientedp aze and uncondensed phase, they are
adsorbed anc transformed into products from the
Number Ofl'eat_:tants. . To facilitate the maximum
free) reacy active positions available for the (poison
tain prom ants to be adsorbed, a catalyst may con-
tion, ¢ oters, if required pretreatment like reduc-

» dehydration etc. may be necessary and

REACTANT

POSITIONS
IN GAS PHASE|

State 1 State 2

Reactants Adsorbed
Fig. 39,

pressure and temperature are to be adjusted to the
desired level to make the vibration not only opti-
mum for rate of reaction but also for rendering the
catalyst dynamic enough to establish optimum
equilibrium between adsorption and desorption.
The sequences in the mechanism of a catalytic reac-
tion would be as shown in Fig. 39.

In Fig. 39 equilibrium configuration of the cata-
lyst has been assumed to be constituted of compo-
nent configuration, like a tetrahedron vibrating
between two opposite phases, generating a resultant
configuration like that of a cube or octahedron.

In a complete catalytic transformation process
there will be three main steps of action in sequence
in the direction of conversion of reactants to
products :

(i) First action is conversion of the reactant
positions to be adsorbed in the first phase of the
catalyst configuration at suitable temperature,
pressure, etc. This requires the reactant positions
distributed in space to be brought to correct con-
centration (say by pressure adjustment) to suit
distribution in the catalyst configuration in the first
phase. The first action is likened to condensed
phase such as liquified H,O from vapour phase.

(ii) The second action is the change of orienta-
tion of the catalyst configuration from the first
phase with reactant positions occupying the active
positions to the second phase of the catalyst con-
figuration, during which the reactants have been
converted into products i.e. the reactants have
undergone orientation in their combination. During
this process the reactants, which were present in the
first phase of the configuration associated with
certain intensity of space (in this theory energy
radiation is space) energy have also undergone
change in the second phase, in which the products
in the configuration associated with changed energy
intensity of space, decide whether the reaction wall
be exothermic or endothermic.

(iii) The third action is the process of desorp-
tion or ejection of the product positions received
from the second phase. The rate of desorption of
the product positions formed in the second phase of
the catalyst will be due to the difference in driving
force between concentration of the product positions

PRODUCT
POSITIONS
LiN GAS PHASE,

State 4
Products Formed

Mechanism of catalytic reactions.
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in the catalyst and their concentration in the gas
phase. The third action is likened to vapourisation
of liquid phase to vapour phase i.e. conversion of
condensed phase into uncondensed phase.

Thus all the three steps or actions described
above are factors which should be controlling the
reaction.

The presence of a second or third entity mixed
in the catalyst has direct effect in modifying the
catalyst and its performance. They may help in
generation of more active positions in tt_xe first state
or they may start filling up the active positions
themselves in the first state. These compounds act
in two opposite ways ; they may function as promo-
ters 1n the former case and as poison in the latter.

It should be noted that the physical structure of

a catalyst need not be simple or elementary in
nature like a tetrahedron oscillating between two

28

states giving the impression of a cube or Ot
hedron. It can be a combination of a number 9
associated configurations oscillating between WO
opposite phases either resonating with the vibratiod
of the main catalyst or just vibrate in opposite M9 &

of the main catalyst and thereby stopping catalytic
activity.

The most important factor in the sugSe_St."d
mechanism is the introduction of dynamicity

between the states of chemisorption of reactants and
desorption of products.

_ The above concepts not only render understand-
ing of the mechanism and rate of reaction easy but
also explain the effects of promoters and poisons
and such other parameters as temperature, pressuré
and space velocity, and role of such processes as
adsorption and desorption in chemical reactions:
These concepts can also be utilized to explain the
epdothermlclty or exothermicity in chemical reac”
tion and establishing equilibrium.



