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I. INTRODUCTION

Our method of updating the MESA equation of state (EOS) to include a new bosonic particle ϕ (not necessarily
a scalar) of mass mϕ and degeneracy gϕ = 2s + 1 is a three-stage process. First, we create tables of the relevant
thermodynamic quantities e.g. pressure, specific entropy. Second, we produce analytic fitting functions for these
tables. Third, we recompute the EOS in MESA using the other eos hook in run star extras.
Our implementation is completely general and there is no need to perform further modifications to run star extras

when the mass and degeneracy are changed. Given a a value ofmϕ and gϕ, our Mathematica script (boson in MESA.nb,
provided with this reproduction package) will generate an inlist of extra controls corresponding the coefficients of the
fitting functions that is read at the start of each run and used in the other eos routine, which already has the
functional form of the fitting functions implemented. Our method is to first call the default MESA EOS from
within the other eos subroutine (called heavy DM eosDT get in the code) by calling the subroutine eos DTget and
then modifying the EOS by passing the MESA pointer containing the EOS variables (res(:)) to the subroutine
add DM DT. The modified form of res(:) is then passed to MESA by heavy DM eosDT get. After the simulation, the
user should check that the temperature evolution (Ṫ /T ) does not exceed the production rate of the particle in the
star.

We now describe each of the three steps above in turn.

II. THERMODYNAMIC QUANTITIES FOR THE NEW BOSONIC PARTICLE

The goal of this section is to derive the pressure, density, internal energy, and specific entropy of the new bosonic
particle. This is achieved by integrating over the Bose-Einstein distribution. We define

Cϕ =
1

π2

(mϕc

ℏ

)3

, and β(T ) =
mϕc

2

kBT
. (1)

Note that we are assuming that the new particles are not charged under any gauge groups and therefore have zero
chemical potential. The thermodynamic quantities are

Pϕ(β) = mϕc
2Cϕ

(gϕ
2

)
H1(β) (2)

ρϕ(β) = mϕCϕ

(gϕ
2

)
H2(β) (3)

uϕ(β) = mϕc
2Cϕ

(gϕ
2

)
H3(β) (4)

sϕ =
kBCϕβ

ρ

(gϕ
2

)
[H1(β) +H3(β)] , (5)

where

H1(β) =

∫ ∞

ε=β

G

(
ε

β

)
B(ε)

dε

β
(6)

H2(β) =

∫ ∞

ε=β

G′
(
ε

β

)
B(ε)

dε

β
(7)

H3(β) =

∫ ∞

ε=β

εG′
(
ε

β

)
B(ε)

dε

β2
(8)

B(ε) =
1

eε − 1
(9)

G(x) =
1

3
(x2 − 1)

3
2 . (10)

These are evaluated numerically to high-precision in our Mathematica script discussed in the next section.

III. FITTING FUNCTIONS

As we will see in section IV, we require fitting functions for the following quantities:

Pϕ, uϕ, sϕ,
∂Pϕ

∂T
,
∂Eϕ

∂T
,
∂sϕ
∂T

,
∂sϕ
∂ρ

,
∂2Eϕ

∂T 2
,
∂2Eϕ

∂T∂ρ
,
∂2Pϕ

∂T 2
,
∂2sϕ
∂T 2

,
∂2sϕ
∂ρ2

,
∂2sϕ
∂T∂ρ

, (11)
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where Eϕ = uϕ/ρ. Since Pϕ, uϕ, and sϕ are analytic in ρ, it is convenient to fit for quantities that are only dependent
upon temperature. For example, rather than fitting for Eϕ, which depends on ρ, we fit for uϕ(T ) = ρEϕ and then
code the ρ-dependence into MESA. The ρ-dependence of the fitting functions is given in the inlists containing the
coefficients for the fitting functions.

We fit each of the quantities in equation 11 (in some cases multiplied by powers of ρ), which we denote collectively
by {Xi}, to an eighth-order polynomial of the form

log10(Xi) =

8∑
n=0

ci,n log
n
10(T8) where T8 = T/(108K), (12)

over a range spanning T8,initial ≤ T8 ≤ T8,final where Xi(T8,initial) ≪ X̄i with X̄i the MESA default (such that the
contribution of ϕ to the EOS is subdominant) and T8,final an upper temperature of the simulation. In practise, we
find we may use an initial temperature kBT8,initial = 10−2.5mϕc

2/108K and T8,final = 102. The coefficients ci,n need
to be determined to a number of decimal places depending on the order of the polynomial and the temperature range
over which the new controls are switched on. For example, for a temperature range of three orders of magnitude the
coefficients need to be determined with a precision of four or more decimals. In the supplied notebook, the coefficients
are generated with 14 digit precision. The coefficients are then written to extra controls (x ctrl()) in a new inlist
called inlist mϕkeV gϕDOF, which can directly be used in the supplied MESA module. For example, the coefficients
for the heavy axion with mass ma = me = 511 keV studied in our paper would be output to inlist 511kev 1DOF.

IV. INCORPORATING THE NEW BOSON INTO THE MESA EOS

The results of the default MESA EOS are contained in a pointer calles res(:). Information on this is given in
$MESA DIR/eos/public/eos def.f90. There are 16 entries corresponding to the 16 EOS variables used by MESA.
These are shown in table I. Three of these, µ, µe, and η, are unaffected by the inclusion of new particles so we will
not discuss them further. This leaves 13 quantities to modify. In what follows, we use overbars to denote quantities
returned by the default MESA EOS.

Since we are calling the default MESA EOS and modifying it rather than recomputing all quantities from first
principles, it is not necessarily the case that we can simply add the bosonic contribution to a quantity to its default
value. To exemplify the reason for this, we define two concepts of addition. A quantity is additive if we can algebraically
(theoretically) add contributions from different species. An example is the following:(

∂P

∂T

)
s

. (13)

Since the pressure P is just the sum of the pressure of each individual species, the quantity above is then found by
summing (

∂Pi

∂T

)
s

(14)

for each species. Now consider adding a new bosonic particle. If we were calculating this contribution concurrently
with all other particle species then we could simply add it to the sum but this is not how our procedure works. The
default MESA EOS returns the array res(:) defined in each cell (each cell has a specified T and ρ). This means
that the value that we start with is ∑

i ̸=DM

(
∂Pi

∂T

)
s̄,(15)

i.e. the sum over all species except the new bosonic particle computed at constant s̄, where s̄ is the entropy of all
species excluding the boson. This is where the technicality arises. We cannot simply add an expression calculated
for the boson in isolation because the numerical returned by the default MESA EOS is calculated holding a different
quantity constant.

The discussion above leads to the second concept of addition. A quantity is MESA-additive if, when passed a
numerical res(i) EOS quantity by MESA, we can add the DM contribution, possibly up to some multiplicative
factor. In the example above, the quantity is additive but not MESA-additive. All MESA-additive quantities are
additive but not all additive quantities are MESA-additive. Since T and ρ are defined in each cell, or, equivalently,
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since we are using T and ρ as the input variables for the EOS, the MESA-additive quantities are P , u, s, and
derivatives at constant T and ρ. All other quantities are not MESA additive.
Our procedure for incorporating the bosonic particle into the MESA EOS is then as follow. First, we use the

MESA-additive quantities passed by MESA and update them to include the boson. All quantities that are not
MESA-additive can then be recalculated in full from these additive quantities, which now correspond to the combined
fluid.

We now detail the calculation of each quantity in res(i) excluding those that are not modified. To begin, we
define Y = ρTcV and X = PχT for later convenience. In what follows, one should assume that all barred quantities
are known since they are passed by the default MESA EOS, and that any previous quantities have already been
calculated.

res(1): Gas pressure. We calculate this as Pg = P̄g + Pϕ. We have a fitting function for Pϕ.

res(2): Specific internal energy per gram. This is given by

E =
∑

speciesi

ui

ρ
(16)

so we calculate this as:

E = Ē +
uϕ

ρ
. (17)

We have a fitting function for uϕ.

res(3): Specific entropy. We calculate this as s = s̄+ sϕ. We have a fitting fucntion for sϕ

res(11): cV . This is MESA-additive since it is a derivative at constant ρ and one therefore has

cV =

(
∂E

∂T

)
ρ

=

(
∂Ē

∂T

)
ρ

+

(
∂Eϕ

∂T

)
ρ

. (18)

We this means we can simply take the MESA value and add

1

ρ

(
∂uϕ

∂T

)
ρ

= −kBCϕ
g

2

β2

ρ

dH3(β)

dβ
. (19)

We have a fitting function for ∂uϕ/∂T .

res(8): χρ. From the definition in table I we have

χρ =

(
∂ lnP

∂ ln ρ

)
T

=
ρ

P

(
∂P

∂ρ

)
T

. (20)

Now
(

∂P
∂ρ

)
is MESA-additive but Pϕ only depends on T there is no correction. Note however that what MESA

passes is

χ̄ρ =

(
∂ ln P̄

∂ ln ρ

)
T

=
ρ

P̄

(
∂P̄

∂ρ

)
T

. (21)

so it is necessary to alter this entry because we need the total pressure (including the boson) in the denominator.
This change is

χρ =
P̄

P
χ̄ρ. (22)

P̄ is passed to us by MESA and P has already been calculated above.

res(9): χT . One has

χT =

(
∂ lnP

∂ lnT

)
ρ

=
T

P

[(
∂P̄

∂T

)
ρ

+

(
∂Pϕ

∂T

)
ρ

]
(23)
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with (
∂Pϕ

∂T

)
ρ

= −kBCd
g

2
β2 dH1(β)

dβ
. (24)

The complete calculation is

χT =
P̄

P
χ̄T +

T

P

(
∂Pϕ

∂T

)
ρ

, (25)

where the first term accounts for the fact that the pressure included in the value of χT that MESA passes us
does not include the new boson.

res(13): This is (
∂s

∂T

)
ρ

=

(
∂s̄

∂T

)
ρ

+

(
∂sϕ
∂T

)
ρ

. (26)

One finds (
∂sϕ
∂T

)
ρ

= −kBCϕ

ρ

g

2

β

T

[
H1(β) +H3(β) + β

(
dH1(β)

dβ
+

dH3(β)

dβ

)]
.

We have a fitting function for this quantity.

res(12): This is (
∂E

∂ρ

)
T

=

(
∂Ē

∂ρ

)
T

− uϕ

ρ2
(27)

where we used the fact that uϕ is independent of ρ.

Once we have all of the additive expressions above, we can use them to calculate the remaining quantities that are
not MESA-additive and cannot be found with a simple correction to the numerical results that MESA passes. This
has to be done in a specific order because previous results are used to calculate subsequent quantities. Note that since
the additive quantities now include the corrections due to the boson, using them to calculate the remaining quantities
ensures that the effects of the boson are propagated. At this point, we also have all of the requisite quantities to
calculate X and Y . The remaining quantities are then calculated as follows:

ref(16): This is

Γ3 = 1 +

(
∂ lnT

∂ ln ρ

)
s

= 1 +
X

Y
. (28)

res(15): This is

Γ1 =

(
∂ lnP

∂ ln ρ

)
s

= χρ + χT
X

Y
. (29)

res(7): This is

∇ad =

(
∂T

∂ lnP

)
s

=
X

Y Γ1
. (30)

res(10): This is

cP =
cV
χρ

Γ1. (31)
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A. Derivatives

In addition to the thermodynamic variables discussed above, MESA contains two additional vectors that contain
the derivatives of these quantities, which are crucial for determining the time-step. These are d dlnRho const T(:)
and d dlnT const Rho(:). These correspond to(

∂ res(i)

∂ lnT

)
ρ

and

(
∂ res(i)

∂ ln ρ

)
T

(32)

respectively. In this section, we describe our implementation of these into MESA. As with the EOS quantities, we first
calculate all MESA-additive quantities and then use these to recalculate the remaining derivatives. In this section,
the quantities appear in the order in which they appear in res(:).

1. d dlnRho const T(:)

1. (∂ lnPgas/∂ ln ρ)T . Note that Pϕ is independent of ρ.(
∂ lnPgas

∂ ln ρ

)
T

=
ρ

Pgas

(
∂Pgas

∂ρ

)
T

=
P̄gas

Pgas

ρ

P̄gas

(
∂Pgas

∂ρ

)
T

=
P̄gas

Pgas

(
∂ ln P̄gas

∂ ln ρ

)
T

. (33)

2. (∂ lnEgas/∂ ln ρ)T Note that E = u/ρ.(
∂ lnE

∂ ln ρ

)
T

=
ρ

E

∂E

∂ρ
=

Ē

E

ρ

Ē

(
∂E

∂ρ
+

∂Eϕ

∂ρ

)
=

Ē

E

∂ ln Ē

∂ ln ρ
+

ρ

E

∂Eϕ

∂ρ
.

All derivatives are at constant T . We have E from the EOS we calculated above, the barred quantities from the
default MESA EOS, and a fitting function for the final derivative.

3. (∂ ln s/∂ ln ρ)T . Precisely the same logic as (∂ lnEgas/∂ ln ρ)T but with E → s:(
∂ ln s

∂ ln ρ

)
T

=
s̄

s

∂ ln s̄

∂ ln ρ
+

ρ

s

∂sϕ
∂ρ

. (34)

We have a fitting function for (∂sϕ/∂ρ).

4-6. µ, µe, η. No change.

7. (∂cv/∂ ln ρ)T . cv = (∂E/∂ρ)T . We have a fitting function for the final derivative.(
∂cv
∂ ln ρ

)
T

= ρ

((
∂c̄v
∂ρ

)
T

+
∂2Eϕ

∂T∂ρ

)
=

(
∂c̄v
∂ ln ρ

)
T

+ ρ
∂2Eϕ

∂T∂ρ
. (35)

8. (∂χρ/∂ ln ρ)T . χρ = (∂ lnP/∂ ln ρ)T .(
∂χρ

∂ ln ρ

)
T

= ρ
∂

∂ρ

(
∂ lnP

∂ ln ρ

)
= ρ

∂

∂ρ

(
ρ

P

∂P

∂ρ

)
= − ρ2

P 2

[
∂P

∂ρ

]2
+

ρ2

P

∂2P

∂ρ2
+

ρ

P

∂P

∂ρ
= χρ − χ2

ρ +
ρ2

P

∂2P̄

∂ρ2
. (36)

All derivatives at constant T . Note that in the final equality we used the fact that Pϕ is independent of ρ. Note
further that Prad is independent of ρ. To calculate this, we can use the value of χρ that we calculated in the
previous section, but we need ∂2P̄ /∂ρ2. MESA does not output this so we need an expression for it in terms of
quantities MESA does provide. To find this, we use equation (36) and replace all quantities with their barred
version and re-arrange to find

∂2P̄

∂ρ̄2
=

P̄

ρ2

(
χ̄2
ρ − χ̄ρ +

∂χ̄ρ

∂ ln ρ

)
. (37)

MESA gives us both expressions on the right.
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9. (∂χT /∂ ln ρ)T . χT = (∂ lnP/∂ lnT )ρ.(
∂χT

∂ ln ρ

)
T

= ρ

(
∂

∂ρ

∂ lnP

∂ lnT

)
= ρ

∂

∂ρ

(
T

P

∂P

∂T

)
= ρT

(
− 1

P 2

∂P

∂ρ

∂P

∂T
+

1

P

∂2P

∂T∂ρ

)
= − ρ

P

P

ρ

∂T

∂P

∂P

∂T
+

ρT

P

∂2P

∂T∂ρ
= −χTχρ +

ρT

P

∂2P̄

∂T∂ρ
. (38)

Derivatives with respect to ρ are at constant T and vice-versa. The final quantity is not computed in MESA
so we use the method introduced above where we replace all quantities with their barred versions to find it in
terms of quantities MESA does compute:

∂2P̄

∂T∂ρ
=

P̄

ρT

(
∂χ̄T

∂ ln ρ
+ χ̄T χ̄ρ

)
. (39)

10. (∂Γ3/∂ ln ρ)T . Γ3 = 1 +X/Y , X = PχT , Y = ρTcv.(
∂Γ3

∂ ln ρ

)
T

=
∂

∂ ln ρ

(
PχT

ρTcv

)
= −X

Y
+

χT

ρTcv

∂P

∂ ln ρ
+

P

ρTcv

∂χT

∂ ln ρ
− χTP

ρTc2v

∂cv
∂ ln ρ

(40)

=
X

Y

[
−1 +

1

χT

∂χT

∂ ln ρ
− 1

cv

∂cv
∂ ln ρ

+
1

P

∂P

∂ ln ρ

]
.

We have all of the quantities from previous computations, except for the final term in the brackets. We find
this by noting that P = Pgas + Prad + Pϕ and that only Pgas depends on density so that

1

P

∂P

∂ ln ρ
=

P̄gas

P

1

Pgas

∂P̄gas

∂ ln ρ
=

P̄gas

P

∂ ln P̄gas

∂ ln ρ
. (41)

We have all of these quantities computed already.

11. (∂Γ1/∂ ln ρ)T . Γ1 = χρ + χTX/Y .

∂Γ1

∂ ln ρ
=

∂χρ

∂ ln ρ
+

X

Y

∂χT

∂ ln ρ
+ χT

∂Γ3

∂ ln ρ
. (42)

At this stage in the computation, we have all of these.

12. (∂∇ad/∂ ln ρ)T . ∇ad = X/(Y Γ1).

∂∇ad

∂ ln ρ
= − 1

Γ2
1

X

Y

∂Γ1

∂ ln ρ
+

1

Γ1

∂

∂ ln ρ

(
X

Y

)
= −∇ad

Γ1

∂Γ1

∂ ln ρ
+

1

Γ1

∂Γ3

∂ ln ρ
. (43)

13. (∂cP /∂ ln ρ)T . cP = Γ1cv/χρ.

∂cP
∂ ln ρ

=
cv
χρ

∂Γ1

∂ ln ρ
+

Γ1

χρ

cv
ln ρ

− cP
χρ

∂χρ

∂ ln ρ
. (44)

We have all of these quantities.

14. (∂/∂ ln ρ)T (∂E/∂ρ). This is equal to

ρ
∂2E

∂ρ2
= ρ

∂2Ē

∂ρ2
+ ρ

∂2Eϕ

∂ρ2
. (45)

The first term is computed by MESA, and we have a fitting function for the second.

15. (∂/∂ ln ρ)T (∂s/∂ρ)T . Same as above but E → s. This is equal to

ρ
∂2s

∂ρ2
= ρ

∂2s̄

∂ρ2
+ ρ

∂2sϕ
∂ρ2

. (46)

Once again, we have all of the quantities and fitting formulas that we need.

16. (∂/∂ ln ρ)T (∂s/∂T )ρ. Identical logic to above but one of the ρ derivatives is replaced by T . The result is

∂

∂ ln ρ

(
∂s̄

∂T

)
+ ρ

∂2s

∂T∂ρ
. (47)

The first term is computed by MESA and we have a fitting function for the second.
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2. d dlnT const Rho(:)

Many of these expressions are identical to those above with ρ and T interchanged but a couple are more complicated.
This is because both Prad and Pϕ depend on T but not ρ so extra terms are needed. In cases where no extra terms
are needed, we simply quote the results since the formula is the same as in the previous subsection with T and ρ
switched and the derivation is identical.

1. (∂ lnPgas/∂ lnT )ρ.

∂Pgas

∂ lnT
=

T

Pgas

∂Pgas

∂T
=

P̄gas

Pgas

∂ lnPgas

∂ lnT
+

T

Pgas

∂Pϕ

∂T
. (48)

The first term is composed of quantities computed by MESA and we have a fitting function for the second.

2. (∂ lnE/∂ lnT )ρ. Same as above with E → T :

∂ lnE

∂ lnT
=

Ē

E

∂ ln Ē

∂ lnT
+

T

E

∂Eϕ

∂ lnT
. (49)

3. (∂ ln s/∂ lnT )ρ. Same as above with E → s:

∂ ln s

∂ lnT
=

s̄

s

∂ ln s̄

∂ lnT
+

T

s

∂sϕ
∂ lnT

. (50)

4-6. µ, µe, η. No change.

7. (∂cv/∂ lnT )ρ. (
∂cv
∂ lnT

)
ρ

=
∂c̄v
∂ lnT

+ T
∂2Eϕ

∂T 2
. (51)

We have a fitting formula for the last quantity.

8.

∂χρ

∂ lnT
= −χTχρ +

ρT

P

∂2P̄

∂T∂ρ
. (52)

The final quantity can be found using equation (39).

9. (∂χT /∂ lnT )ρ. This equation has extra terms compared with its analog in the previous section.

∂χT

∂ lnT
= T

∂

∂T

[
T

P

∂P

∂T

]
= χT − χ2

T +
T 2

P

∂2P

∂T 2
= χT − χ2

T +
T 2

P

(
∂2P̄

∂T 2
+

∂2Pϕ

∂T 2

)
. (53)

We have a fitting function for ∂2Pϕ/∂
2T so we just need ∂2P̄ /∂T 2. To find this, we use the equation above and

set all quantities equal to their barred (MESA default) versions. This means we have

∂2P̄

∂T 2
=

P̄

T 2

(
χ̄2
T − χ̄T +

∂χ̄T

∂ lnT

)
. (54)

Thus, we have all the quantities we need.

10. (∂Γ3/∂ lnT )ρ. Γ3 = 1 +X/Y , X = χTP , Y = ρTcv. Following the same derivation as (∂Γ3/∂ ln ρ)T , we find
the expression

∂Γ3

∂ lnT
=

X

Y

[
−1 +

1

χT

∂χT

∂ lnT
− 1

cv

∂cv
∂ lnT

+
1

P

∂P

∂ lnT

]
. (55)

We need to find an expression for the last term in the square brackets. Previously, we used the fact that only
Pgas depends only on ρ but we can’t do that this time since all three contributions depend on T . Using the fact
that Prad = aT 4/3 we have

∂P

∂ lnT
=

∂P̄gas

∂ lnT
+ T

∂Prad

∂T
+ T

∂Pϕ

∂T
= P̄gas

∂ ln P̄gas

∂ lnT
+ T

∂Pϕ

∂T
+ 4Prad. (56)

These are quantities that we have from MESA or that we have fitting functions for.
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11. (∂Γ1/∂ lnT )ρ.

∂Γ1

∂ lnT
=

∂χρ

∂ lnT
+

X

Y

∂χT

∂ lnT
+ χT

∂Γ3

∂ lnT
. (57)

12. (∂∇ad/∂ lnT )ρ

∂∇ad

∂ lnT
= −∇ad

Γ1

∂Γ1

∂ lnT
+

1

Γ1

∂Γ3

∂ lnT
. (58)

13. (∂cP /lnT )ρ.

∂cP
∂ lnT

=
cv
χρ

∂Γ1

∂ lnT
+

Γ1

χρ

cv
lnT

− cP
χρ

∂χρ

∂ lnT
. (59)

14. (∂/lnT )ρ (∂s/∂T )ρ

∂

∂ lnT

(
∂s

∂T

)
=

∂

∂ lnT

(
∂s̄

∂T

)
+ T

∂2sϕ
∂T 2

(60)

The first term is computed by MESA and we have a fitting formula for the second.

15. (∂/∂lnT )ρ (∂s/∂ρ)T

∂

∂ lnT

(
∂s

∂ρ

)
=

∂

∂ lnT

(
∂s̄

∂ρ

)
+ T

∂2sϕ
∂T∂ρ

. (61)

The first term is computed by MESA and we have a fitting formula for the second.

16. (∂/palnT )ρ (∂E/∂ρ)T .

∂

∂ lnT

(
∂E

∂ρ

)
=

∂

∂ lnT

(
∂Ē

∂ρ

)
+ T

∂2Eϕ

∂T∂ρ
. (62)

The first term is computed by MESA we have a fitting formula for the second.
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res(i) Quantity Definition Units in MESA

res(1) ln(Pgas) gas pressure ergs/cm3

res(2) ln(E) specific internal energy ergs/g

res(3) s specific entropy ergs/g/K

res(4) µ mean molecular weight per gas particle none

res(5) 1/µe mean number of free electrons per nucleon none

res(6) η ratio of electron chemical potential to kBT none

res(11) cV

(
∂E

∂T

)
ρ

ergs/g/K

res(8) χρ
∂ lnP

∂ ln ρ

∣∣∣∣
T

none

res(9) χT
∂ lnP

∂ lnT

∣∣∣∣
ρ

none

res(14)

(
∂s

∂T

)
ρ

— ergs/g/K2

res(13)

(
∂s

∂ρ

)
T

— ergs cm3/g2/K

res(12)

(
∂E

∂ρ

)
T

— ergs cm3/g2

res(16) Γ3 1 +

(
∂ lnT

∂ ln ρ

)
s

none

res(15) Γ1

(
∂ lnP

∂ ln ρ

)
s

none

res(7) ∇ad

(
∂ lnT

∂ lnP

)
s

none

res(10) cP

(
∂h

∂T

)
P

ergs/g/K

TABLE I. The 16 MESA EOS variables. The ordering of the rows corresponds to the order in which we compute the variables
in our MESA code. The specific enthalpy is h = E + P/ρ. The gas pressure is defined as the total of all sources of pressure
except the radiation pressure Prad = aT 4/3 with a the radiation constant. The total pressure is then P = Pgas + aT 4/3.
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