
Circular lists in Iris ∗ deduction rules of ▷

Herman Bergwerf

March 11, 2022

2

Introduction

One concern of theoretical computer science is to prove the correctness of algo-
rithms, for example the implementation of datastructures that are at the core of
almost all programs. This becomes especially complicated when concurrency is
involved in a non-trivial way, such that multiple parts of memory that logically
belong together are modified in parallel.

Proof Assistants are computer programs that enable logical reasoning in a
strict formal proof system. Developing proofs inside a such a proof assistant re-
quires extreme rigour. As long as your definitions are not flawed, it is practically
impossible to miss edge cases. The proof assistant we use is called Coq [18].

Coq is not readily usable to reason about programs that use mutable re-
sources, but the Iris project has built a framework inside Coq that offers a con-
venient language and toolbox for this [19]. Iris uses separation logic and modal
logic to reason about memory, concurrency, and potentially non-terminating
recursion.

Contributions:

1. Circular lists in Iris We formalize a circular doubly linked list in Coq/Iris
using separation logic. We only verified synchronous list operations. This
chapter demonstrates the use of separation logic to reason about locations
stored on a heap. To our knowledge this is the first interactive verification
of a circular list using separation logic.

2. Deduction rules of ▷ We study the model of plain step-indexed propo-
sitions without resources, a basic interpretation of the ▷ modality. We
determine a complete set of deductions, and formalize an algorithm that
checks a finite number of potential counterexamples in Coq, proving de-
cidability and completeness.

3

4

Chapter 1

Circular lists in Iris

A circular doubly linked list is a linked list where each node has a pointer to the
previous and next node. The first and last node are also connected as shown
schematically in Figure 1.1.

Figure 1.1: The conceptual layout of a circular list
with ten nodes. The red arrows represent pointers to
the next node, and the blue arrows to the previous
node.

Our goal is to implement the algorithms to create and modify such a list,
and prove that they are correct. This is also called verification. When is an
algorithm correct? This depends on the context, and the requirements it needs
to satisfy. We will define this using pre- and postconditions describing the
memory structure, and show that the algorithms follow these definitions. More
specifically we prove total correctness, meaning that each verified function, given
an input satisfying the precondition, terminates without crashing with an output
satisfying the postcondition. A stronger sense of validity can be achieved when
considering asynchronous execution, for example parallel inserts at different
points in the list. Here we only consider synchronous execution.

5

6 CHAPTER 1. CIRCULAR LISTS IN IRIS

1.1 Separation logic
In 1969 Hoare introduced a logic to reason about computer programs [4]. This
logic uses so called Hoare triples to specify program behavior. A Hoare triple
contains a precondition P , a program (or command) C, and a postcondition Q,
and is written as {P}C{Q}. The pre- and postcondition are formulae specifying
properties of the state before and after the program is executed.

To reason about programs that use mutable memory locations, the points
to predicate was later added. A points to predicate is written as l 7→ v, and
asserts that location l points to value v.

When verifying even slightly complex programs, overlap between locations
becomes a critical issue. In the case of our list, it will be essential to require
that each node is stored at a separate location in memory. Instead of writing
this down in the formula explicitly, the separating conjunction was introduced
to indicate that two formulae hold with respect to two separate parts of the
heap, giving rise to separation logic [13]. The separating conjunction of two
formulas P and Q is written as P ∗ Q. Here the points to predicates in P are
disjoint from those in Q; both formulas describe a separate part of the heap.
Writing P ∗ Q is similar to saying “the heap can be split into two parts, such
that P holds for one part, and Q for the other part”.

1.2 Working with Iris
Iris is a framework to carry out program verification. It is built for the Coq
Proof Assistant, and requires no additional plugins. The design of Iris has
multiple layers of abstraction, the top-level layer implements a small language
called HeapLang.

HeapLang HeapLang is a small untyped language. It supports the follow-
ing values: a unit element, integers, memory locations, functions, products
(e.g. pairs), and sums. The language contains the following constructs: re-
cursive lambda expressions, function application, if statements, basic integer
operations, and heap modification (allocating, storing, loading, and freeing).
There are a few other constructs, for example for concurrency, but these are
not relevant to this chapter.

Hoare triples Iris allows writing program specifications using Hoare triples
with a notation that roughly looks as follows:

[[{ P }]] program [[{ x, RET x; Q x }]]

Here P and Q x are Iris predicates with type iProp, program is a HeapLang expres-
sion, and x is variable representing a HeapLang value. The RET x captures the
value that is returned by the program. The above expression states that if the
input satisfies P, then the program will terminate with output x satisfying Q x.

1.3. IMPLEMENTATION 7

Figure 1.2: A circular list containing only a single
dummy node. This is the result of make.

Verification To verify the basic circular list operations, we will implement
them in HeapLang (Section 1.3) and define suitable predicates describing the
structure of the circular list (Section 1.4). We then formulate pre- and postcon-
ditions that describe the behavior of each list operation and prove that these
are satisfied with an interactive Coq proof (Section 1.5).

1.3 Implementation
In this section we look at the HeapLang implementation of basic circular list
operations. Nodes are encoded as a tuple of the form (p, n, v) where p and n
are the location of the previous and next node, respectively, and v is the value
of the node. We store values either as NONE or SOME v to support dummy nodes
holding no value. These dummy nodes cannot be deleted or modified, and will
be used to represent empty lists. When a new list is created it will consist of a
single dummy node, as shown in Figure 1.2.

Empty list A new list contains one dummy node pointing to itself.
Definition make : val F=
λ: F>,
let: "node" F= ref NONE in
"node" F- (("node", "node"), NONE)F;
"node".

Getters and setters We implement basic getters and setters for convenience.
Notation prev' node F= (Fst (Fst node)).
Notation next' node F= (Snd (Fst node)).
Notation value' node F= (Snd node).

Definition get_prev : val F= λ: "node", prev' !"node".
Definition get_next : val F= λ: "node", next' !"node".

Definition set_prev : val F=
λ: "node" "prev",
let: "node_v" F= !"node" in
"node" F- ("prev", next' "node_v", value' "node_v").

Definition set_next : val F=
λ: "node" "next",
let: "node_v" F= !"node" in
"node" F- (prev' "node_v", "next", value' "node_v").

8 CHAPTER 1. CIRCULAR LISTS IN IRIS

Insert a node Insert a new node after the "prev" node with "v" as value.
Definition insert : val F=
λ: "prev" "v",
let: "next" F= get_next "prev" in
let: "node" F= ref ("prev", "next", SOME "v") in
set_next "prev" "node"F;
set_prev "next" "node"F;
"node".

Delete a node Delete a given "node". Dummy nodes cannot be deleted.
Definition delete : val F=
λ: "node",
let: "node_v" F= !"node" in
match: value' "node_v" with
NONE F> NONE |
SOME "value" F>
let: "prev" F= prev' "node_v" in
let: "next" F= next' "node_v" in
set_next "prev" "next"F;
set_prev "next" "prev"F;
Free "node"F;
SOME "value"

end.

Deque operations Deque is an abbreviation for “double-ended queue”. A
double ended queue supports push and pop operations and both the front and
the back. Figure 1.3 illustrates the structure of our deque.
Definition push_front : val F= λ: "dq" "v", insert "dq" "v"F; F().
Definition push_back : val F= λ: "dq" "v", insert (get_prev "dq") "v"F; F().
Definition pop_front : val F= λ: "dq", delete (get_next "dq").
Definition pop_back : val F= λ: "dq", delete (get_prev "dq").

Figure 1.3: A circular list with one dummy node in
gray. The push_back and push_front operation insert
nodes before and after the dummy node.

1.4. LIST PREDICATES 9

1.4 List predicates
The list predicates that we define relate a standard Coq list to a correctly laid
out circular list on the heap. This relation will allow us to specify the list
operations in terms of modifications to the Coq list.

We define three predicates; dseg describes an arbitrary list segment given a
Coq list of locations and associated values, dlist describes a full circular list
segment given a Coq list of locations and values, and deque describes a circular
list using a Coq list of just values and the location of the initial dummy node.
The predicates build on top of each other.

It turned out useful to use as little existential quantification as possible.
Instead of asserting the existence of node locations in dseg they are given as
input. This way we can carry out case analysis in Coq by destructing the input
list, instead of destructing Iris hypotheses.

A list segment Segments are specified by a Coq list of locations with associ-
ated values. The function convert_val maps values of the type option val to the
corresponding HeapLang value (options are implemented using HeapLang sum
values). The dseg predicate states that the given nodes : list (loc * option val)
form a segment of doubly linked nodes. The location of the node before the first
node and after the last node is given by prev after : loc.
Fixpoint dseg (prev after : loc) (nodes : list (loc * option val)) : iProp F=
match nodes with
| [] F> True
| [(l, v)] F> l ↦ (#prev, #after, convert_val v)
| (l, v) F: ((next, _) F: _) as nodes' F>
l ↦ (#prev, #next, convert_val v) ∗
dseg l after nodes'
end.

A circular list A circular list consists of a single segment where the first and
last nodes are joined together. The function dlast retrieves the location of the
last node. The location of the first node, n.1, is provided as a default argument.
Notation dlast l nodes F= (last l (map fst nodes)).

Definition dlist (nodes : list (loc * option val)) : iProp F=
match nodes with
| [] F> True
| n F: _ F> dseg (dlast n.1 nodes) n.1 nodes
end.

A value list For the final deque specification we hide the node locations. The
deque predicate only requires the location of the dummy node, l : loc, and the
values that are in the list, vs : list val. For the predicate to hold there must
be a list of node locations to which those values belong.
Definition deque (l : loc) (vs : list val) : iProp F=
∃ ls, ⌜length ls = length vs⌝ ∗
dlist ((l, None) F: zip ls (map Some vs)).

10 CHAPTER 1. CIRCULAR LISTS IN IRIS

1.5 Specifications and proofs
Splitting and gluing segments It is useful to split and glue segments sat-
isfying the dseg predicate. We prove that a bigger segment can be split into two
adjacent segments, and that two adjacent segments can again be combined into
a single segment.
Lemma dseg_split lA lB vB lC vC lD ns1 ns2 :
dseg lA lD (ns1 F+ (lB, vB) F: (lC, vC) F: ns2) -∗
dseg lA lC (ns1 F+ [(lB, vB)]) ∗ dseg lB lD ((lC, vC) F: ns2).

Lemma dseg_glue lA lB vB lC vC lD ns1 ns2 :
dseg lA lC (ns1 F+ [(lB, vB)]) ∗ dseg lB lD ((lC, vC) F: ns2) -∗
dseg lA lD (ns1 F+ (lB, vB) F: (lC, vC) F: ns2).

Rotating a circular list With the help of these lemmas we can prove a very
useful property of dlist. We can move elements at the front of the list to the
back, and vice versa.
Lemma dlist_step n ns :
dlist (n F: ns) ⊣⊢ dlist (ns F+ [n]).

List operations The specification of list creation, insertion, and deletion uses
the dlist predicate. The delete_none_spec states that delete does not delete
dummy nodes.
Lemma make_spec :
[[{ True }]]
make F()
[[{ l, RET #l; dlist [(l, None)] }]].

Lemma insert_spec l0 v0 v ns :
[[{ dlist ((l0, v0) F: ns) }]]
insert #l0 v
[[{ l, RET #l; dlist ((l0, v0) F: (l, Some v) F: ns) }]].

Lemma delete_none_spec l ns :
[[{ dlist ((l, None) F: ns) }]]
delete #l
[[{ RET NONEV; dlist ((l, None) F: ns) }]].

Lemma delete_some_spec l v ns :
[[{ dlist ((l, Some v) F: ns) }]]
delete #l
[[{ RET (SOMEV v); dlist ns }]].

Our proof of insert_spec uses a distinction between the initial list containing
just one node pointing to itself, and a list containing multiple nodes. Our proof
of delete_some_spec uses a distinction between the initial list containing just one
node (destroying the list), containing two nodes (leaving one node connected to
itself), and containing three or more nodes.

Deque operations The deque operations push/pop front/back are specified
using the deque predicate, because the underlying node locations are not impor-
tant. The make_deque_spec is a version of make_spec using the deque predicate.

1.6. RELATED WORK 11

Lemma make_deque_spec :
[[{ True }]]
make F()
[[{ l, RET #l; deque l [] }]].

Lemma push_front_spec l v vs :
[[{ deque l vs }]]
push_front #l v
[[{ RET F(); deque l (v F: vs) }]].

Lemma pop_front_spec l v vs :
[[{ deque l (v F: vs) }]]
pop_front #l
[[{ RET (SOMEV v); deque l vs }]].

Lemma push_back_spec l v vs :
[[{ deque l vs }]]
push_back #l v
[[{ RET F(); deque l (vs F+ [v]) }]].

Lemma pop_back_spec l v vs :
[[{ deque l (vs F+ [v]) }]]
pop_back #l
[[{ RET (SOMEV v); deque l vs }]].

These specifications use the dlist_step lemma to “rotate” the underlying dlist
predicate, and then apply the specifications of the list operations. Our proof of
push_back_spec also uses a distinction between an empty and a non-empty list of
values.

1.6 Related work
Iris uses the logic of bunched implications, which was proposed over two decades
ago by O’Hearn and Pym [9]. The usage of list predicates such as our dlist is
standard. Such a predicate for ordinary doubly linked lists was already given
in Reynold’s seminal paper on separation logic from 2002 [13]. Various (early)
works on separation logic investigate the verification of a linked list (for example
[11] section 6). To our knowledge this work is the first formal verification of a
circular doubly linked list using separation logic in a proof assistant.

A paper from 2008 describes the automatic verification of a range of linked
datastructures that are implemented in Java, including a circular list [15][16].
Their specifications are written in a special format inside comments in the Java
code1. For the circular list their program relied mainly on MONA [8], a tool
implementing a decision procedure for monadic second-order logic over strings
and trees. This procedure is based on automata.

1The source of their circular list can be found here: https://github.com/epfl-lara/
jahob/blob/master/examples/datastructures/encap/CircularList/
CircularList.java

https://github.com/epfl-lara/jahob/blob/master/examples/datastructures/encap/CircularList/CircularList.java
https://github.com/epfl-lara/jahob/blob/master/examples/datastructures/encap/CircularList/CircularList.java
https://github.com/epfl-lara/jahob/blob/master/examples/datastructures/encap/CircularList/CircularList.java

12 CHAPTER 1. CIRCULAR LISTS IN IRIS

Chapter 2

Deduction rules of ▷

Recursion is a fundamental technique to express algorithms. In order to compute
a result such an algorithm executes itself on a subproblem. These algorithms
may not always be terminating. Sometimes infinite loops are used intentionally,
for example to put a concurrent program in a waiting state. To prove that a
recursive algorithm satisfies a postcondition we use induction: Given that the
results of all subcomputations satisfy the condition, we show that the result of
the whole computation satisfies the condition.

Induction normally uses some kind of decreasing measure. A straightforward
choice is the number of computation steps. To avoid the need to calculate an
upper bound on the number of computation steps needed by the algorithm, and
to reason about potentially non-terminating algorithms, we prove that a pro-
gram satisfies the desired postcondition once it terminates, and that it doesn’t
crash, for any fixed number of available computation steps.

The later modality, written as ▷, serves as a syntactic tool to hide the com-
putation step index. Instead of explicitly doing induction on the number of
allowed steps, we can use an induction principle for this modality which is often
referred to as Löb induction1. Instead of an induction hypothesis that guaran-
tees the postcondition for recursive calls with a smaller number of computation
steps, it will give the postcondition with an added ▷. This modal operator can
only be removed by applying computation steps, such that in effect we can
only apply the induction hypothesis to recursive calls that use less computation
steps. The later modality hides the step indexing.

A more comprehensive introduction to the later modality can be found
in [14]. It plays an important role in Iris [19]. In the rest of this chapter
we are not concerned with program verification, but with the theory of the later
modality.

1Löb induction is named after the German mathematician Martin Hugo Löb. Löb proved
a theorem about provability in Peano Arithmetic that resembles this principle.

13

14 CHAPTER 2. DEDUCTION RULES OF ▷

Contribution We study the model of step-indexed propositions, which pro-
vides a basic interpretation of propositional logic with the later modality. We
introduce this model formally in Section 2.2. In Section 2.3 we introduce stan-
dard deduction rules that also hold in this model. Then we wonder; is this
set of rules complete? Can we derive every formula that is a tautology in the
step-indexing model? We show that the model is essentially a subset of linear
integer arithmetic in Section 2.4. In Section 2.5 we introduce the comparison
rule, which completes the deduction system. We will explain the intuition be-
hind the completeness proof in Section 2.6, and discuss the Coq formalization
of this proof in Section 2.7. In Section 2.8 we briely reflect on these results.

2.1 Definitions
Formulas Let Σ = {P0, P1, ...} be a set of proposition letters. The language
of formulas is defined by the following grammar:

φ0, φ1 ∈ L▷ ::= > | ⊥ | Pi ∈ Σ | φ0 ∧ φ1 | φ0 ∨ φ1 | φ0 ⇒ φ1 | ▷φ0

Remarks:

• We sometimes use the term variables to refer to proposition letters, and
variable index to refer to the index of proposition letters. For example the
index of P3 is 3 (we assume Σ is denumerable).

• Conjunction (∧) has a lower precedence than the other operators, such
that φ0 ⇒ φ1 ∧ φ0 ∨ φ1 is equivalent to (φ0 ⇒ φ1) ∧ (φ0 ∨ φ1).

• We will use φ0 ⇔ φ1 as an abbreviation of φ0 ⇒ φ1 ∧ φ1 ⇒ φ0.

• We will use ▷n as an abbreviation of n successive ▷’s.

Models A model A must define:

• A domain Ȧ (denoted with a dot)

• A binary relation vA ⊆ Ȧ× Ȧ

• A denotation AJφK(Γ) ∈ Ȧ, where φ ∈ L▷ and Γ : Σ → Ȧ

A valuation Γ : Σ → Ȧ assigns a value to each proposition letter. Let φ0, φ1 ∈ L▷

be formulas, we say that φ1 is a consequence of φ0 in A if for all valuations Γ
we have AJφ0K(Γ) vA AJφ1K(Γ). We will write this as φ0 |=A φ1:

φ0 |=A φ1 := ∀Γ. AJφ0K(Γ) vA AJφ1K(Γ)
We will sometimes loosely refer to this as a tautology.

2.2. THE STEP-INDEXING MODEL 15

2.2 The step-indexing model
We now define the step-indexing model B. This model is similar to the model
of Iris2 (see Figure 8 and 10 of [19]) omitting resources. The model of Iris is
based on other research, which we briefly discuss in Section 2.9.

Elements of the step-indexing model are binary sequences that are down-
wards closed. This means that every α in the domain satisfies the formula
∀i∀j ≤ i. α(i) → α(j), i.e. a 0 cannot occur before a 1. We now define B.

Ḃ := {α : N → {0, 1} | ∀i∀j ≤ i. α(i) → α(j)}
α vB β := ∀i. α(i) → β(i)

BJPiK(Γ) := Γ(Pi)

BJ⊥K(Γ) := λi. 0

BJ>K(Γ) := λi. 1

BJφ0 ∧ φ1K(Γ) := λi. BJφ0K(Γ)(i) ∧BJφ1K(Γ)(i)
BJφ0 ∨ φ1K(Γ) := λi. BJφ0K(Γ)(i) ∨BJφ1K(Γ)(i)
BJφ0 ⇒ φ1K(Γ) := λi. ∀j ≤ i. BJφ0K(Γ)(j) → BJφ1K(Γ)(j)

BJ▷φK(Γ) := λi. if i = 0 then 1 else BJφK(Γ)(i− 1)

Downward closed Why are sequences downwards closed? We can make
sense out of this in the context of program verification and computation steps.
Suppose a program is valid (does not crash and, upon termination, satisfies
some condition) for n steps, then it is also valid for less than n steps.

2.3 The deduction system
In the previous section we saw a model for our logic, which gives it a semantic
meaning. We now define a syntactic meaning by defining a deduction system to
derive entailments using deduction trees. We use ` to denote a syntactic entail-
ment between two formulas. Writing φ0 ` φ1 means that a closed (i.e. without
hypotheses) deduction tree exists with this entailment as conclusion. We also
call this a derivation of φ0 ` φ1.

Figure 2.1 introduces the set of standard3 deduction rules. Rules for the
standard logical connectives are equivalent to intuitionistic propositional logic.
Löb induction is given as the ▷-Löb rule.

In our deduction system the context (the formula left of the `) is a single
formula instead of a list or set. The minimal formulation of rules like ∧-elim-l re-
quires that transitivity of ` is included as a basic rule; it is not possible to derive
a deduction theorem. We used this approach to simplify our formalization.

2The Iris repository also contains a formalization of “plain” step-indexed propositions, see:
https://gitlab.mpi-sws.org/iris/iris/-/tree/master/iris/si_logic.

3These rules are very similar to the Gödel-Löb logic given by Appel et al. (Figure 4 of
[14]). Variants appear throughout the literature.

https://gitlab.mpi-sws.org/iris/iris/-/tree/master/iris/si_logic

16 CHAPTER 2. DEDUCTION RULES OF ▷

refl
φ ` φ

φ0 ` φ1 φ1 ` φ2 trans
φ0 ` φ2

>-intro
φ ` >

⊥-elim
⊥ ` φ

σ ` φ0 σ ` φ1 ∧-intro
σ ` φ0 ∧ φ1

φ0 ` φ2 φ1 ` φ2 ∨-elim
φ0 ∨ φ1 ` φ2

∧-elim-l
φ0 ∧ φ1 ` φ0

∨-intro-l
φ0 ` φ0 ∨ φ1

∧-elim-r
φ0 ∧ φ1 ` φ1

∨-intro-r
φ1 ` φ0 ∨ φ1

σ ∧ φ0 ` φ1 ⇒-intro
σ ` φ0 ⇒ φ1

σ ` φ0 ⇒ φ1 σ ` φ0 ⇒-elim
σ ` φ1

▷-intro
φ0 ` ▷φ0

▷-conj
▷φ0 ∧ ▷φ1 ` ▷(φ0 ∧ φ1)

> ` ▷φ
▷-elim

> ` φ

φ0 ` φ1
▷-mono

▷φ0 ` ▷φ1

▷φ ` φ
▷-Löb

> ` φ

Figure 2.1: Standard deduction rules.

Example Below is an example deduction tree to illustrate the way these rules
can be composed. The left branch is not completely spelled out, but is trivial
to complete. A derivation of the strong-Löb rule is given in Appendix A.

... ` φ0 ⇒ φ1

... ` ▷φ1 ⇒ φ0 ... ` ▷φ1 ⇒-elim
... ` φ0 ⇒-elim

▷φ1 ⇒ φ0 ∧ φ0 ⇒ φ1 ∧ ▷φ1 ` φ1 ⇒-intro
▷φ1 ⇒ φ0 ∧ φ0 ⇒ φ1 ` ▷φ1 ⇒ φ1

strong-Löb
▷φ1 ⇒ φ1 ` φ1 trans

▷φ1 ⇒ φ0 ∧ φ0 ⇒ φ1 ` φ1 ⇒-intro
▷φ1 ⇒ φ0 ` (φ0 ⇒ φ1) ⇒ φ1

Soundness The model B from the previous section realizes all deductions.
The proof proceeds by induction on the deduction tree.
Theorem 1. (soundness of B) If φ0 ` φ1, then φ0 |=B φ1.

2.4. THE ARITHMETIC MODEL 17

2.4 The arithmetic model
We strip the step-indexing model B down to its essence; the number of 1’s in
the sequence. Every sequence contains either a finite number of 1’s followed
by only 0’s, or it contains an infinite number of 1’s. Hence the domain of our
new model is N ∪ {ω}, where ω denotes infinity. We define a model that is
isomorphic4 to B, by mapping every sequence to its prefix length:

α ∈ Ḃ 7→

{
n α = 1n0ω

ω α = 1ω

Below is a precise definition of N. The definition of ≤, min, max is extended to
include ω in the obvious way.

Ṅ := N ∪ {ω}
p vN q := p ≤ q

NJPiK(Γ) := Γ(Pi)

NJ⊥K(Γ) := 0

NJ>K(Γ) := ω

NJφ0 ∧ φ1K(Γ) := min{NJφ0K(Γ), NJφ1K(Γ)}
NJφ0 ∨ φ1K(Γ) := max{NJφ0K(Γ), NJφ1K(Γ)}
NJφ0 ⇒ φ1K(Γ) := if NJφ0K(Γ) ≤ NJφ1K(Γ) then ω else NJφ1K(Γ)

NJ▷φK(Γ) := if NJφK(Γ) = n ∈ N then n+ 1 else ω

Note that given a formula φ, we have > |=N φ when5 NJφK(Γ) = ω for every
valuation Γ. Also note that this model is indeed ismorphic to B:

Theorem 2. φ0 |=B φ1 if and only if φ0 |=N φ1

Proof. Let f : Ḃ → Ṅ be the isomorphism given at the start of this section.
Show ∀α, β ∈ Ḃ. α vB β ↔ f(α) vN f(β).
Show ∀φ ∈ L▷. f(BJφK(Γ)) = NJφK(Γ).

With this model we have translated our logic to linear integer arithmetic. It
is known that linear integer arithmetic is decidable using quantifier elimination
(first demonstrated by Presburger [1] and later improved by Cooper [5]), or
using finite automata [2][7].

4This isomorphism is non-constructive since it needs to distinguish between sequences that
only contain 1’s and sequences that contain a 0. This classical principle is known as LPO (see
page 21 of [20]).

5Can you see why the law of excluded middle, P ∨ ¬P , is not a tautology of N?

18 CHAPTER 2. DEDUCTION RULES OF ▷

2.5 The comparison rule
Since the models B and N are isomorphic, and B is sound, N is also sound.
The deduction rules in Figure 2.1 all correspond to arithmetic tautologies via
the translation in the previous section. For example the ▷-intro rule roughly6

translates to ∀n. n ≤ n+1, the ▷-mono rule to ∀ m n. n ≤ m → n+1 ≤ m+1,
and the ⊥-elim rule to ∀n. 0 ≤ n.

We now face the following question: what deduction rules can we add to our
logic such that every tautology is provable? Can we perhaps find such a rule
as a translation of another arithmetic tautology? It turns out we need just one
more rule, which in arithmetic states the linear ordering of natural numbers:
∀ m n. m ≤ n∨m > n. We can express this rule in L▷ and add it as an axiom.
We call this the comparison rule:

compare
> ` φ0 ⇒ φ1 ∨ ▷φ1 ⇒ φ0

Figure 2.2: The comparison rule.

Note that this rule holds in both N and B (so Theorem 1 still holds). Lets
see how we can make more complex case distinctions using this rule. Since
the full proof tree is large and contains many trivial steps, we give an informal
desription.

Theorem 3. > ` ▷φ0 ⇒ φ1 ∨ φ0 ⇔ φ1 ∨ ▷φ1 ⇒ φ0

Proof. Eliminate > ` φ0 ⇒ φ1 ∨ ▷φ1 ⇒ φ0. (case A) Suppose φ0 ⇒ φ1.
Eliminate > ` φ1 ⇒ φ0 ∨ ▷φ0 ⇒ φ1. (case A1) Suppose φ1 ⇒ φ0. Now we
have φ0 ⇔ φ1. (case A2) Now we have ▷φ0 ⇒ φ1. (case B) Now we have
▷φ1 ⇒ φ0.

Note that under the arithmetic translation Theorem 3 corresponds to the law
of trichotomy, which states ∀ m n. m < n ∨m = n ∨m > n. We can add more
eliminations of the comparison rule to obtain more specific case distinctions, for
example one corresponding to the following disjunction:

∀ m n. m+ 2 ≤ n ∨m+ 1 = n ∨m = n ∨ n+ 1 = m ∨ n+ 2 ≤ m

The next section will explain how we prove the completeness and decidability
of the deduction system resulting from adding the comparison rule to the rules
in Figure 2.1.

6We are ignoring the role of ω.

2.6. ELIMINATING CONNECTIVES 19

2.6 Eliminating connectives
We prove completeness and decidability together by giving an algorithm that,
given a formula φ, constructs a derivation of φ (i.e. a deduction > ` φ), or out-
puts a valuation Γ such that φ is not realized (i.e. NJφK(Γ) 6= ω). This section
outlines the intuition behind this algorithm, and the next section describes its
precise formalization in Coq.

Analogy with truth-tables Our process is somewhat reminiscent of the
method of truth-tables for classical propositional logic; by checking all rows of
a truth-table one can determine that the formula is a tautology, which can be
derived with repeated use of the law of excluded middle, or one finds a row
(i.e. a valuation) such that the formula is false. But in contrast with 2-valued
logic, our “N ∪ {ω}”-valued logic has an infinite number of possible valuations!

The key insight is that we do not have to check all of these valuations; it
suffices to check just a finite number of them. All other valuations are in some
sense similar enough to these valuations such that we can omit them. The
reason for this will hopefully become clear over the course of this section.

Reduction rules Below are six reduction rules that will aid our algorithm.
Rules 1 to 5 are straightforward, and also hold for plain intuitionistic logic. Rule
6 is interesting because deriving it requires the Löb induction rule. We derived
the left to right implication of this rule in Section 2.3.

φ0 ⇒ φ1 ` (φ0 ∧ φ1) ⇔ φ0 (1)
φ1 ⇒ φ0 ` (φ0 ∧ φ1) ⇔ φ1 (2)

φ0 ⇒ φ1 ` (φ0 ∨ φ1) ⇔ φ1 (3)
φ1 ⇒ φ0 ` (φ0 ∨ φ1) ⇔ φ0 (4)

φ0 ⇒ φ1 ` (φ0 ⇒ φ1) ⇔ > (5)
▷φ1 ⇒ φ0 ` (φ0 ⇒ φ1) ⇔ φ1 (6)

Example Recall the disjunction we proved in Theorem 3. We will show how
this disjunction, combined with the above reduction rules, produces a derivation
the formula (▷P0 ⇒ P1 ∧ P1 ⇒ P0) ⇒ P0. We prove this by showing that is is
equivalent to >:

((▷P0 ⇒ P1 ∧ P1 ⇒ P0) ⇒ P0) ⇔ >

20 CHAPTER 2. DEDUCTION RULES OF ▷

Theorem 4. > ` ((▷P0 ⇒ P1 ∧ P1 ⇒ P0) ⇒ P0) ⇔ >

Proof. Eliminate > ` ▷P0 ⇒ P1 ∨ P0 ⇔ P1 ∨ ▷P1 ⇒ P0 (Theorem 3).

• Case 1: Suppose ▷P0 ⇒ P1. We apply reductions until > is left.

(▷P0 ⇒ P1 ∧ P1 ⇒ P0) ⇒ P0

Using 5 replace ▷P0 ⇒ P1 with >, and using 6 replace P1 ⇒ P0 with P0:

(> ∧ P0) ⇒ P0

Note that P0 ⇒ > follows from >-intro. Using 2 replace > ∧ P0 with P0:

P0 ⇒ P0

Note that P0 ⇒ P0 follows from refl. Using 5 replace P0 ⇒ P0 with >:

>

We have shown that under the assumption ▷P0 ⇒ P1, the following holds:

((▷P0 ⇒ P1 ∧ P1 ⇒ P0) ⇒ P0) ⇔ >

• Case 2: Suppose P0 ⇔ P1.

(▷P0 ⇒ P1 ∧ P1 ⇒ P0) ⇒ P0

Note ▷P1 ⇒ ▷P0 using ▷-mono. Use 6 and 5:

(P1 ∧ >) ⇒ P0

Use 1 and then 5:
>

• Case 3: Suppose ▷P1 ⇒ P0.

(▷P0 ⇒ P1 ∧ P1 ⇒ P0) ⇒ P0

Note P1 ⇒ P0 using ▷-intro. Use 6 and 5:

(P1 ∧ >) ⇒ P1

The rest is analogous to Case 2.

In the above proof we could also have eliminated > ` P1 ⇒ P0 ∨ ▷P0 ⇒ P1,
generating just two cases. However eliminating > ` P0 ⇒ P1 ∨ ▷P1 ⇒ P0

would not work! With the assumption P0 ⇒ P1 we cannot reduce P1 ⇒ P0,
since neither P1 ⇒ P0 nor ▷P0 ⇒ P1 follows from P0 ⇒ P1. Making a case
distinction that is “detailled” enough is an important aspect of our algorithm.

2.6. ELIMINATING CONNECTIVES 21

The reduction theorem We will call formulas like ▷P0 ⇒ P1, P0 ⇔ P1, and
▷P1 ⇒ P0 in Theorem 4 case formulas. To always finish the reduction process
we need the case formulas to contain enough information. For this we need a
way to define what subformulas we can possibly encounter during the reduction
process. First we define the set of variables (FV) and the modal depth (MD) of
a formula. Below the □ is a placeholder for any of the three binary connectives
∧,∨,⇒.

FV(Pi) := {Pi}
FV(▷φ) := FV(φ)

FV(φ0 □ φ1) := FV(φ0) ∪ FV(φ1)

MD(Pi) := 0

MD(▷φ) := 1 + MD(φ)

MD(φ0 □ φ1) := max{MD(φ0),MD(φ1)}

The elimination of connectives is carried out bottom-up (starting at the leafs
of the formula), and will at each step yield a formula of the form ▷nx. Here x
is either >, ⊥, or a proposition letter Pi. Note that the ▷’s may stack up, but
their number will never exceed the modal depth of the formula we are reducing.

With these ideas in mind we define atomic formulas of φ. For added clarity we
will now use τ to denote atomic formulas, and σ to denote case formulas.

Definition 5. A formula τ is a φ-atomic formula if there exists an n ≤ MD(φ)
and an x ∈ {>,⊥} ∪ FV(φ) such that τ = ▷nx.

We can now define what it means for a case formula to contain “enough infor-
mation” to carry out a full reduction. We call this property exhaustive.

Definition 6. A formula σ is exhaustive for φ if for every two φ-atomic for-
mulas τ0 and τ1 either σ ` τ0 ⇒ τ1 or σ ` ▷τ1 ⇒ τ0.

Using these definitions we can define the reduction theorem, which generalizes
the reduction process that we used in the example.

Theorem 7. If σ is exhaustive for φ then there exists a φ-atomic formula τ
such that σ ` φ ⇔ τ .

We proved this theorem in Coq, so we will encounter it again in the next section.

22 CHAPTER 2. DEDUCTION RULES OF ▷

Cases Note that the number of atomic formulas of a formula φ is finite. We
can use the comparison rule to make a deduction of a disjunction of exhaus-
tive case formulas, just like we did in Theorem 3. In practice this disjunction
includes all possible permutations of FV(φ) combined with different possible
▷-offsets between these variables. Because the notion of offset will return in the
discription of our Coq formalization, we will now define it.

Definition 8. The offset between τ0 and τ1 in σ is at least n if σ ` ▷nτ0 ⇒ τ1,
and at most n if σ ` τ1 ⇒ ▷nτ0.

Valuations It is straightforward to determine a valuation that realizes a given
case formula. To see this it is useful to again translate formulas to arithmetic.
Consider the case formula ▷P1 ⇒ P0 that we encountered in Theorem 4. This
corresponds to p1+1 ≤ p0 in arithmetic, where pi represents the value assigned
to Pi. To satisfy this inequality we could pick p1 = 0 and p0 = 1. The formula
P0 ⇔ P1 corresponds to p0 = p1, and we could pick p0 = p1 = 0. The case
formulas are constructed in such a way that a valuation can easily be determined.
Moreover, we can always pick a valuation not containing ω.

Completeness If for some case formula, the input formula φ reduces to an
atomic formula that is not equivalent to >, then that case formula is a coun-
terexample. There exists a valuation Γ such that NJφK(Γ) 6= ω. However if φ is
a tautology, i.e. > |=N φ, then there cannot be any counterexamples. Therefore
φ should reduce to > under every case formula. Together with a deduction of
the disjunction of case formulas this produces a deduction of φ.

Theorem 9. (completeness) If φ0 |=N φ1 then φ0 ` φ1.

We also proved this theorem in Coq. Together with the soundness of N it shows
that deductions in our system correspond exactly with the tautologies of N.

Second example We look at how reduction yields a counterexample.

φ := (▷P0 ⇒ ▷P1) ⇒ P0 ⇒ P1

Note that by definition ⊥ is also a φ-atomic formula, and so it must be taken
into account. The formula σ := ⊥ ⇔ P1 ∧ ▷P1 ⇔ P0 is exhaustive for φ. Note
that σ ` ▷P1 ⇒ P0. Applying the reduction algorithm yields σ ` φ ⇔ P1. This
is a counterexample because P1 is not equivalent to >. The following valuation
realizes σ:

Γ : Σ → N ∪ {ω} := {(P0, 1), (P1, 0)}

Now NJφK(Γ) = NJP1K(Γ) = 0 6= ω, demonstrating that φ is not a tautology.

Decidability The process we have described is an algorithm. We can effec-
tively search for a counterexample, and construct a deduction if there is none.
Therefore our result also shows that deductions are decidable.

2.7. THE COQ FORMALIZATION 23

2.7 The Coq formalization
We have worked out a proof of Theorem 9 in Coq. This section will outline the
definitions and intermediary lemmas of this formalization. We used list and set
utilities from the Coq-stdF+ library [21].

Formulas The definition of formulas is straightforward. Formulas have a
dynamic type for terms, such that we can use both syntactic terms (>, ⊥, and
Pi) and model values. This is useful as intermediate type for evaluation. The
type of syntactic formulas is written as form term.

Deductions Deductions are implemented as an inductive predicate. The de-
duction rules are equivalent to those given in Figure 2.1 and 2.2.
Inductive deduction : form term F> form term F> Prop F=
| d_reFl p : p ⊢ p
| d_trans p q r : p ⊢ q F> q ⊢ r F> p ⊢ r
| d_true_intro p : p ⊢ ⊤
| d_false_elim p : ⊥ ⊢ p
| d_conj_intro c p q : c ⊢ p F> c ⊢ q F> c ⊢ p `∧` q
| d_conj_elim_l p q : p `∧` q ⊢ p
| d_conj_elim_r p q : p `∧` q ⊢ q
| d_disj_intro_l p q : p ⊢ p `∨` q
| d_disj_intro_r p q : q ⊢ p `∨` q
| d_disj_elim p q r : p ⊢ r F> q ⊢ r F> p `∨` q ⊢ r
| d_impl_intro c p q : c `∧` p ⊢ q F> c ⊢ p ⟹ q
| d_impl_elim c p q : c ⊢ p ⟹ q F> c ⊢ p F> c ⊢ q
| d_later_intro p : p ⊢ ▷p
| d_later_elim p : ⊢ ▷p F> ⊢ p
| d_later_fix p : ▷p ⊢ p F> ⊢ p
| d_later_mono p q : p ⊢ q F> ▷p ⊢ ▷q
| d_later_conj p q : ▷p `∧` ▷q ⊢ ▷(p `∧` q)
| d_compare p q : ⊢ p ⟹ q `∨` ▷q ⟹ p
where "p ⊢ q" F= (deduction p q) and "⊢ q" F= (⊤ ⊢ q).

N-ary operators We defined a function to create a conjunction or a disjunc-
tion of a list of formulas. Deductions can be made with the following lemmas.
Lemma d_big_conj_intro c ps : (∀ p, p ∈ ps F> c ⊢ p) F> c ⊢ ⋀ ps.
Lemma d_big_conj_elim p ps : p ∈ ps F> ⋀ ps ⊢ p.
Lemma d_big_disj_intro p q qs : p ∈ ps F> p ⊢ ⋁ ps.
Lemma d_big_disj_elim ps q : (∀ p, p ∈ ps F> p ⊢ q) F> ⋁ ps ⊢ q.

The reference model We will show that all tautologies of N have a deduc-
tion, so we have to define N in Coq as well. In our formalization the domain of
N has type Sω, which refers to the ordinal S(ω).

Inductive Sω F= Finite (n : nat) | Infinite.

We define a number of simple operations on Sω to build an evaluation function
called eval corresponding to the denotation of N.

24 CHAPTER 2. DEDUCTION RULES OF ▷

Fixpoint eval (f : form Sω) : Sω F=
match f with
| ($x) F> x
| (▷p) F> Sω_succ (eval p)
| (p `∧` q) F> Sω_min (eval p) (eval q)
| (p `∨` q) F> Sω_max (eval p) (eval q)
| (p ⟹ q) F> if Sω_leb (eval p) (eval q) then Infinite else eval q
end.

A function called interp maps terms to Sω using a valuation Γ : nat F> Sω that
assigns values to proposition letters. The value of ⊥ is Finite 0 and the value
of > is Infinite. Using this we define realization within N.
Definition realizes (Γ : nat F> Sω) (p q : form term) : Prop F=
Sω_le (eval (interp Γ FF> p)) (eval (interp Γ FF> q)).

Note that realizes Γ p q means the same as p |=N q. We prove that that a
deduction is realized for every valuation (i.e. that N is sound). This proof
proceeds by induction on the deduction tree.
Theorem deduction_sound Γ p q :
p ⊢ q F> realizes Γ p q.

Formula reduction We prove the reduction theorem (Theorem 7) given a
case formula ctx : form term, a set of variables fv : gset nat, and a modal depth
md : nat. The atom predicate is analogous to Definition 5. We assume that ctx
is exhaustive (Definition 6) for the given variables and modal depth.
Hypothesis exhaustive : ∀ a b,
atom fv md a F> atom fv md b F>
ctx ⊢ a ⟹ b F/ ctx ⊢ ▷b ⟹ a.

The reduction is formulated as follows.
Theorem d_reduce_to_atom f :
FV f ⊆ fv F> MD f ≤ md F>
∃ a, atom (FV f) (MD f) a F\ ctx ⊢ f ⟺ a.

Implication permutations Now we need to find a deduction for a disjunc-
tion of cases, such that each case is exhaustive. The first step is to look at the
order in which the variables imply each other. We define a function adj that
returns a list of adjacent pairs of elements in a list. For example:
adj (x0 F: x1 F: x2 F: xs) = (x0, x1) F: (x1, x2) F: adj (x2 F: xs)

Using this utility we define a formula representing one such ordering. Here
xs : list nat is some permutation of variable indices, p.1 is a notation to extract
the first element of a pair, and #i is a notation for the formula Pi.
Definition perm_form xs F= ⋀ ((λ p, #p.1 ⟹ #p.2) FF> adj xs).

We prove that a disjunction of all possible permutations can be derived.
Theorem d_permutations (xs : list nat) :
⊢ ⋁ (perm_form FF> permutations xs).

2.7. THE COQ FORMALIZATION 25

Later offsets Given two formulas p, q : form term such that ctx ⊢ p ⟹ q, we
prove that a disjunction of all possible offsets (Definition 8) between 0 and
n can be deduced. The remaining case states that the offset is at least n:
ctx ⊢ n*▷p ⟹ q. Here n*▷p is a notation for ▷np.
Lemma d_offsets ctx p q n :
ctx ⊢ p ⟹ q F>
ctx ⊢ n*▷p ⟹ q `∨` ⋁ ((λ i, i*▷p ⟺ q) FF> seq 0 n).

Case listing We can combine the permutations and offsets into a disjunction
of exhaustive cases. Each case is generated by a list (nat * nat) that specifies
the variable permutation and offsets. The list_cases function generates all cases
given a set of variables and a modal depth.
Definition list_cases (fv : gset nat) (md : nat) : list (list (nat * nat)) F=
let skips F= seq 0 (2 + md) in
let perms F= permutations (elements fv) in
xs ← perms; mapM (λ i, pair i FF> skips) xs.

The case_form function generates a formula for each case. We prove that each
case_form is indeed exhaustive7, and that a disjunction of case formulas based
on list_cases can be deduced.
Lemma d_list_cases fv md :
⊢ ⋁ (case_form md ⊥ FF> list_cases fv md).

Case realization Given the configuration of one case, we assign a number to
each variable index i : nat using the case_val function.
Fixpoint case_val (case : list (nat * nat)) (i : nat) : nat F=
match case with
| [] F> 0
| (j, n) F: case' F> n + if i =? j then 0 else case_val case' i
end.

When composed with the Finite constructor of Sω this becomes a valuation. We
prove that this valuation realizes the case formula. The condition NoDup case.*1
requires that there are no duplicate variable indices in the case list.
Lemma case_val_realizes_case_form md case :
NoDup case.*1 F>
realizes (Finite ∘ case_val case) ⊤ (case_form md ⊥ case).

7This lemma is omitted since it is quite verbose.

26 CHAPTER 2. DEDUCTION RULES OF ▷

Counterexample search Using the case valuation we can compute if a for-
mula f : form term is true for a given case. This is computed by the eval_case
function, which internally uses eval.
Definition eval_case (f : form term) (case : list (nat * nat)) : bool F=
Sω_leb Infinite (eval (interp (Finite ∘ case_val case) FF> f)).

Now we can implement a function that decides if a formula is a tautology. It
uses list_cases to get a complete list of cases, and eval_case to evaluate each
case. If the result is false for one case, then that case is a counterexample. The
first counterexample is returned, or None if the formula is a tautology.
Definition counterexample (f : form term) : option (list (nat * nat)) F=
find (negb ∘ eval_case f) (list_cases (FV f) (MD f)).

When a counterexample is found the formula is not realized with the corre-
sponding case valuation (i.e. counterexample is sound).
Theorem counterexample_sound f case :
counterexample f = Some case F>
¬realizes (Finite ∘ case_val case) ⊤ f.

Completeness If the formula is true for a given case, then it must reduce to >.
We use this to prove the completeness of eval_case. The case.*1 ≡ₚ elements (FV f)
condition requires that the case variables are a permutation of the formula vari-
ables.
Lemma eval_case_complete f case :
case.*1 ≡ₚ elements (FV f) F>
eval_case f case = true F>
case_form (MD f) ⊥ case ⊢ f.

Finally we prove that if there is no counterexample, then there is a deduction
of the formula. This requires the d_list_cases lemma.
Theorem counterexample_complete f :
counterexample f = None F> ⊤ ⊢ f.

Since φ0 ` φ1 if and only if > ` φ0 ⇒ φ1 we can generalize this result. We
explicitly show that deductions are decidable.
Theorem deduction_decidable p q :
{ p ⊢ q } + { ∃ Γ, ¬ realizes Γ p q }.

From this the completeness of deductions (Theorem 9) directly follows.
Corollary deduction_complete p q :
(∀ Γ, realizes Γ p q) F> p ⊢ q.

2.8. CONCLUSION 27

2.8 Conclusion
We have seen how propositional logic with the ▷ modality translates to a subset
of linear integer arithmetic, and how the comparison rule completes our deduc-
tion system by enabling a truth-table like algorithm. It is not clear under what
extensions, such as quantification or a separating conjunction with mutable re-
sources, the comparison rule remains valid. The author suspects the scope of
the comparison rule is rather limited.

The Disjunction Property The Disjunction Property states that for every
deduction φ0 ` φ1 ∨ φ2 with ∨ not occuring in φ0, there is either a deduction
φ0 ` φ1 or φ0 ` φ2. Intuitionistic logics satisfy the Disjunction Property[6], but
our comparison rule cearly does not. Therefore we consider it anti-intuitionistic.

2.9 Related work
Models such as the one used by Iris have been studied a lot. A key paper about
this is by Appel et al. [14]. This paper develops the later modality, which is
analogous to the approximation modality developed by Nakano in 2000 [10].
Nakano proved the Kripke-completeness8 and decidability of the modal logic
corresponding to the typing rules for his approximation modality [12]. His
typing rules9 are based on λµ, the simply typed lambda calculus with recursive
types. It is perhaps unsurprising that his logic has no analog to the comparison
rule, since Kripke-completeness is commonly used for intuitionistic logics.

Van Doorn proved the completeness of a classical deduction system for
propositional logic in Coq [17]. This proof proceeds by converting formulas
to Conjunctive Normal Form, and proving that they are tautologies precisely
when every clause contains either ¬⊥ or p ∨ ¬p. Similar to our formalization
van Doorn uses inductive types to represent a deduction system.

There is a range of publications about the later modality and related type
theories. We did not investigate this literature in detail, though it appears the
completeness result presented in this chapter has not been discussed before.

8Kripke-completeness refers to derivability with respect to Kripke models: the logic is
Kripke-complete when a formula is derivable if and only if it is true in every Kripke model for
this logic. Intuïtionistic natural deduction is Kripke-complete [3].

9See Figure 3 of [12].

28 CHAPTER 2. DEDUCTION RULES OF ▷

Bibliography

[1] Mojżesz Presburger. “Über die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation
hervortritt”. In: Comptes Rendus du I congrès de Mathématiciens des Pays
Slaves (1929), pp. 92–101, 395.

[2] J. Richard Büchi. “Weak Second-Order Arithmetic and Finite Automata”.
In: Mathematical Logic Quarterly 6.1-6 (1960), pp. 66–92. doi: https:
//doi.org/10.1002/malq.19600060105.

[3] Saul A. Kripke. “Semantical Analysis of Intuitionistic Logic I”. In: For-
mal Systems and Recursive Functions. Ed. by J.N. Crossley and M.A.E.
Dummett. Vol. 40. Studies in Logic and the Foundations of Mathematics.
Elsevier, 1965, pp. 92–130. doi: 10.1016/S0049-237X(08)71685-9.

[4] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In:
Commun. ACM 12.10 (Oct. 1969), pp. 576–580. issn: 0001-0782. doi:
10.1145/363235.363259.

[5] David C Cooper. “Theorem proving in arithmetic without multiplication”.
In: Machine intelligence 7.91-99 (1972), p. 300.

[6] Alexander Chagrov and Michael Zakharyashchev. “The Disjunction Prop-
erty of Intermediate Propositional Logics”. In: Studia Logica: An Interna-
tional Journal for Symbolic Logic 50.2 (1991), pp. 189–216. issn: 00393215,
15728730. url: http://www.jstor.org/stable/20015573.

[7] Alexandre Boudet and Hubert Comon. “Diophantine equations, Pres-
burger arithmetic and finite automata”. In: Trees in Algebra and Program-
ming — CAAP ’96. Ed. by Hélène Kirchner. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1996, pp. 30–43. isbn: 978-3-540-49944-2.

[8] Jacob Elgaard, Nils Klarlund, and Anders Møller. “MONA 1.x: New Tech-
niques for WS1S and WS2S”. English. In: Computer Aided Verification.
Ed. by Alan J. Hu and Moshe Y. Vardi. Lecture Notes in Computer
Science. 10th International Conference on Computer Aided Verification.
CAV 1998 ; Conference date: 28-06-1998 Through 02-07-1998. Nether-
lands: Springer, 1998, pp. 516–520. doi: 10.1007/BFb0028773.

29

https://doi.org/https://doi.org/10.1002/malq.19600060105
https://doi.org/https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1016/S0049-237X(08)71685-9
https://doi.org/10.1145/363235.363259
http://www.jstor.org/stable/20015573
https://doi.org/10.1007/BFb0028773

30 BIBLIOGRAPHY

[9] Peter W. O’Hearn and David J. Pym. “The Logic of Bunched Implica-
tions”. In: The Bulletin of Symbolic Logic 5.2 (1999), pp. 215–244. issn:
10798986. url: http://www.jstor.org/stable/421090.

[10] Hiroshi Nakano. “A modality for recursion”. In: Proceedings Fifteenth An-
nual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).
2000, pp. 255–266. doi: 10.1109/LICS.2000.855774.

[11] John C. Reynolds. “Intuitionistic Reasoning about Shared Mutable Data
Structure”. In: Millennial Perspectives in Computer Science. Palgrave,
2000, pp. 303–321.

[12] Hiroshi Nakano. “Fixed-Point Logic with the Approximation Modality
and Its Kripke Completeness”. In: Proceedings of the 4th International
Symposium on Theoretical Aspects of Computer Software. TACS ’01. Berlin,
Heidelberg: Springer-Verlag, 2001, pp. 165–182. isbn: 3540427368.

[13] J.C. Reynolds. “Separation logic: a logic for shared mutable data struc-
tures”. In: Proceedings 17th Annual IEEE Symposium on Logic in Com-
puter Science. 2002, pp. 55–74. doi: 10.1109/LICS.2002.1029817.

[14] Andrew W. Appel et al. “A Very Modal Model of a Modern, Major, Gen-
eral Type System”. In: SIGPLAN Not. 42.1 (Jan. 2007), pp. 109–122. issn:
0362-1340. doi: 10.1145/1190215.1190235.

[15] Karen Zee, Viktor Kuncak, and Martin Rinard. “Full Functional Verifi-
cation of Linked Data Structures”. In: SIGPLAN Not. 43.6 (June 2008),
pp. 349–361. issn: 0362-1340. doi: 10.1145/1379022.1375624.

[16] Karen Zee. “Verification of Full Functional Correctness for Imperative
Linked Data Structures”. PhD thesis. Massachusetts Institute of Technol-
ogy, Sept. 2010. url: http://hdl.handle.net/1721.1/58078.

[17] Floris van Doorn. Propositional Calculus in Coq. 2015. arXiv: 1503.
08744 [math.LO].

[18] The Coq Development Team. The Coq Proof Assistant, version 8.7.0.
Version 8.7.0. Oct. 2017. doi: 10.5281/zenodo.1028037.

[19] Ralf Jung et al. “Iris from the ground up: A modular foundation for higher-
order concurrent separation logic”. In: Journal of Functional Programming
28 (2018), e20. doi: 10.1017/S0956796818000151.

[20] Wim Veldman. “Intuitionism: An Inspiration?” In: Jahresbericht der Deutschen
Mathematiker-Vereinigung 123 (Apr. 2021). doi: 10.1365/s13291-
021-00230-8.

[21] The Coq-std++ Team. An extended “standard library” for Coq. Available
online at https://gitlab.mpi-sws.org/iris/stdpp. 2022.

http://www.jstor.org/stable/421090
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/1190215.1190235
https://doi.org/10.1145/1379022.1375624
http://hdl.handle.net/1721.1/58078
https://arxiv.org/abs/1503.08744
https://arxiv.org/abs/1503.08744
https://doi.org/10.5281/zenodo.1028037
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1365/s13291-021-00230-8
https://doi.org/10.1365/s13291-021-00230-8
https://gitlab.mpi-sws.org/iris/stdpp

Appendix A

The strong Löb rule

We derive the strong Löb induction rule, which is the following entailment:

▷φ0 ⇒ φ0 ` φ0

To fit this deduction tree on a page we first prove several lemmas.

A.1
∧-elim-l

σ ∧ φ0 ` σ σ ` φ0 ⇒ φ1 trans
σ ∧ φ0 ` φ0 ⇒ φ1

∧-elim-r
σ ∧ φ0 ` φ0 ⇒-elim

σ ∧ φ0 ` φ1

A.2
>-intro

φ0 ` > > ` φ0 ⇒ φ1 trans
φ0 ` φ0 ⇒ φ1

refl
φ0 ` φ0 ⇒-elim

φ0 ` φ1

A.3
∧-elim-r

φ0 ∧ φ1 ` φ1

∧-elim-l
φ0 ∧ φ1 ` φ0 ∧-intro

φ0 ∧ φ1 ` φ1 ∧ φ0 φ1 ∧ φ0 ` φ2 trans
φ0 ∧ φ1 ` φ2

A.4
▷-conj

▷φ0 ∧ ▷φ1 ` ▷(φ0 ∧ φ1)

φ0 ∧ φ1 ` φ2
▷-mono

▷(φ0 ∧ φ1) ` ▷φ2 trans
▷φ0 ∧ ▷φ1 ` ▷φ2

31

32 APPENDIX A. THE STRONG LÖB RULE

A.5
▷-intro

φ0 ` ▷φ0 ▷φ0 ` φ1 trans
φ0 ` φ1

A.6
∧-elim-r

φ0 ∧ φ1 ⇒ φ2 ` φ1 ⇒ φ2 φ0 ∧ φ1 ⇒ φ2 ` φ1 ⇒-elim
φ0 ∧ φ1 ⇒ φ2 ` φ2

A.7
∧-elim-l

▷φ0 ⇒ φ0 ∧ (▷φ0 ⇒ φ0) ⇒ φ0 ` ▷φ0 ⇒ φ0 A.6
▷φ0 ⇒ φ0 ∧ (▷φ0 ⇒ φ0) ⇒ φ0 ` φ0 A.4

▷(▷φ0 ⇒ φ0) ∧ ▷((▷φ0 ⇒ φ0) ⇒ φ0) ` ▷φ0 ⇒-intro
▷(▷φ0 ⇒ φ0) ` ▷((▷φ0 ⇒ φ0) ⇒ φ0) ⇒ ▷φ0 A.5
▷φ0 ⇒ φ0 ` ▷((▷φ0 ⇒ φ0) ⇒ φ0) ⇒ ▷φ0 A.1
▷φ0 ⇒ φ0 ∧ ▷((▷φ0 ⇒ φ0) ⇒ φ0) ` ▷φ0 A.3
▷((▷φ0 ⇒ φ0) ⇒ φ0) ∧ ▷φ0 ⇒ φ0 ` ▷φ0 A.6
▷((▷φ0 ⇒ φ0) ⇒ φ0) ∧ ▷φ0 ⇒ φ0 ` φ0 ⇒-intro

▷((▷φ0 ⇒ φ0) ⇒ φ0) ` (▷φ0 ⇒ φ0) ⇒ φ0
▷-Löb

> ` (▷φ0 ⇒ φ0) ⇒ φ0 A.2
▷φ0 ⇒ φ0 ` φ0

	Circular lists in Iris
	Separation logic
	Working with Iris
	Implementation
	List predicates
	Specifications and proofs
	Related work

	Deduction rules of
	Definitions
	The step-indexing model
	The deduction system
	The arithmetic model
	The comparison rule
	Eliminating connectives
	The Coq formalization
	Conclusion
	Related work

	The strong Löb rule
	
	
	
	
	
	
	

