Supplement 4

 40 Ar/ 89 Ar radiometric age estimate sample results for boreholes DSDP Leg 38 sites 350 and 348.

Summary table of the ⁴⁰Ar/³⁹Ar age spectra dating estimate of core samples of wells DSDP Leg 38 sites 348 and 350 in comparison to the existing age K/Ar analysis (1) [*Kharin et al.*, 1976], the new ⁴⁰Ar/³⁹Ar age analysis (2) [*OSU Argon Geochronology Laboratory*], and the magnetic polarity chron age model (3) [*Gradstein et al. 2012*].

DSDP Well	Core; section	Sample Id	K/Ar age (1)	⁴⁰ Ar/ ³⁹ Ar Age (2)	Polarity Chron (3)	Comment
38 - 348	32; Sec. 4	BCR004907 271	18.2 Ma ±2.4 Ma	~22.23 Ma ±0.31 Ma	C6Bn.2n	
38 - 348	33; Sec. 2	BCR004907 273	18.2 Ma ±2.4 Ma	~23.19 Ma ±0.61 Ma	C6Cn.2r	
38 - 348	34; Sec. 2	BCR004907 276	19.4 Ma ±2.2 Ma	~22.15 Ma ±0. 26 Ma	C6Bn.2n	
38 - 350	14; Sec. 2	BCR004907 312	-	No Age	-	Very fine -crystalline to glassy basalt, segment is altered, and is part of the bed rock for the intrusive section just below.
38 - 350	14; Sec. 3	BCR004907 314		No Age		
38 - 350	16; Sec. 1	BCR004907 310	33.5 Ma ±2.8 Ma to 50.5 Ma ±5.5 Ma	~49.28 Ma ±0.30 Ma	C22n	New age dating connects this igneous events caused by the Iceland Plateau Rift I (Brandsdóttir et al. 2015 & Blischke et al. 2017). Note 1
38 - 350	16; Sec. 2	BCR004907 316		~44.05 Ma ±0.21 Ma	C20r	
38 - 350	16; Sec. 3	BCR004907 318		~46.58 Ma ±0.30 Ma	C21n	

Note 1

Although the sample contained good plagioclase phenocrysts in its matrix, the cumulative ³⁹Ar gas release did not form a stable plateau (Fig. 8 in manuscript). Cumulative gas release records that form a stable plateau for more than 50-70% of their heated interval over time are considered robust [Swindle and Weirich., 2017]. Shorter gas release plateaus are considered mini plateaus resulting in a higher uncertainty. If a rock sample has been disturbed by thermal reheating after its emplacement, ⁴⁰Ar-³⁹Ar radiometric ages will be lower than the true age [Swindle and Weirich, 2017]. The overall radiometric dating uncertainty range has improved with ⁴⁰Ar-³⁹Ar dating for site 350 despite potential reheating issue.