
Task/Result Queues

ML-based drug screeningReal-time crystallography

You request a
function be

executed on
endpoint A and B

Federated Function as a Service
● Modern computing environments are distributed

and heterogeneous; modern workloads require
specialized hardware, rapid responses, and remote
processing (e.g., near data)

● FaaS provides an intuitive interface for users to
register and invoke programming functions
without regard for underlying infrastructure

● Federated FaaS enables functions to be
dispatched to remote endpoints chosen for data
locality, security, or other concerns

● funcX allows users to execute Python functions
(which may invoke executables, MPI programs,
etc.) on arbitrary resources (e.g., CPUs, GPUs)
from short to long run times

from funcx.sdk.client import FuncXClient

fxc = FuncXClient()

Instantiate a funcX client

Register Python function with input args

Execute a function by specifying endpoint
and input arguments

Fire-and-forget execution
Outsource the challenging aspects

of remote execution
funcX manages authentication, serialization

of functions and data, reliable execution
optionally in containers, and delivery of

results back to requesting users

Transform resources into
FaaS endpoints
Easily manage execution across
distributed resources
The funcX endpoint software can be deployed on
laptops, clouds, clusters, and supercomputers. It
provisions resources elastically based on workload.

High performance
Launch millions of tasks

funcX supports batch submission and
monitoring, asynchronous callbacks,

container warming, automated resource
scaling, fault tolerance, prefetching, and

memoization

Portable serverless computing to enable scalable data science

def hello_world():

 return "Hello World!"

func_uuid = fxc.register_function(hello_world)

ep_id = '4b116d3c-1703-4f8f-9f6f-39921e5864df'

result = fxc.run(endpoint_id=ep_id,

 function_id=func_uuid)

fxc.get_result(result)

Retrieve results (and exceptions)
asynchronously

$ pip install funcx_endpoint

$ funcx-endpoint configure

$ funcx-endpoint start <ENDPOINT_NAME>

Install and configure a funcX endpoint

def compute(args):
 # do something
 return results

(1) Registration
(function + container)

F(ep1,1)
F(ep1, 2)
F(ep1, 3)
F(ep1, 4)
F(ep1, 5)
F(ep1, 6)

(2) Execution
(function, endpoint, args)

A A

1

3

2

funcX manages the reliable
and secure execution on

those endpoints

funcX notifies
you when the
function is
complete

funcX development has been supported by NSF 2004894/2004932 and an Argonne Lab Directed Research and Development award

Try on Binder
https://funcx.org/binder

HEP fitting as a service

Application examples

Functions

Endpoints

Yadu Babuji*, Josh Bryan*⚑, Kyle Chard*⚑, Ryan Chard*⚑, Ben Clifford*, Ian Foster*⚑, Ben Galewsky°, Daniel S. Katz°, Kevin Hunter Kesling*, Zhuozhao Li*, Kirill Nagairtsev*, Stephen Rosen*, Tyler Skluzacek*

*University of Chicago & Argonne National Laboratory; ⚑Globus;
°National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2004894
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2004932

