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ABSTRACT2

Social robotics is an emerging field that is expected to grow rapidly in the near future. In fact, it is3
increasingly more frequent to have robots that operate in close proximity with humans or even4
collaborate with them in joint tasks. In this context, it is still an open problem the investigation of5
how to endow a humanoid robot with social behavioural skills typical of human-human interactions.6
Among the countless social cues needed to establish a natural social attunement, the paper7
reports our research towards the implementation of a mechanism for estimating gaze direction,8
focusing in particular on mutual gaze as fundamental social cue in face-to-face interactions.9
We propose a learning-based framework to automatically detect eye-contact events in online10
interactions with human partners. The proposed solution achieves high performance both in silico11
and in experimental scenarios. Our work is expected to be the first step towards an attentive12
architecture able to endorse scenarios in which the robots are perceived as social partners.13

Keywords: mutual gaze, joint attention, human-robot interaction, humanoid robot, computer vision, experimental psychology,14
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1 INTRODUCTION

Joint attention (or shared attention) is one of the most important mechanisms occurring in a non-verbal16
interaction between two or more individuals. It is achieved when individuals direct their gaze on the same17
object or event in the environment as consequence of social gestures (e.g. gaze shift, pointing, facial18
expressions) (Moore et al., 2014). The ability to establish joint attention is crucial in many mechanisms of19
social cognition, for example comprehension, language development, intention, to cite a few (Tomasello,20
1995; Tomasello et al., 2005; Mundy et al., 2007). A failure in such abilities, indeed, represents one of21
the earliest and basic social impairments in autism and communicative deficits (Mundy and Neal, 2000;22
Dawson et al., 2004).23

In this context, designing and building an attention architecture enabling joint attention between a human24
and an embodied artificial agent, such as iCub, has inspired many researchers from different fields, spanning25
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from artificial intelligence to robotics, from neuro and cognitive science to social science (Henschel et al.,26
2020; Wykowska, 2020). Inspired by the behaviour of human beings, our ambitious goal is to develop27
a robotic visual attention system that responds to several social cues characterising an effective non-28
verbal human interaction. For example, as social cue, eye gaze estimation plays a crucial role for the29
prediction of human attention and intention, and hence is indispensable for better understanding human30
activities (Kleinke, 1986; Emery, 2000). Humans, indeed, tend to look at an object before trying to grasp31
it with the hand (Voudouris et al., 2018). This implies that it is possible to predict human intention just32
observing where his/her attention is focused at.33

In our long-range aim, the humanoid robot iCub will be able to establish social attunement with the34
human partner recognising and reproducing a wide range of social abilities in a human-like manner. The35
robot’s ability to imitate human-like behaviours might bring the human to adopt the so called intentional36
stance as strategy towards the robot like s/he does with other humans (Marchesi et al., 2019). As proposed37
by the philosopher Daniel Dennett, intentional stance is the strategy of prediction and explanation that38
attributes beliefs, desires and intentions to an agent, and predicts its future behaviour from what it would39
be rational for an agent to do given those mental states (Dennett, 1989).40

In this research report we present our first successful step in the ongoing implementation of such a robotic41
system. Specifically, we spent our initial effort on endowing iCub with the key ability of recognising42
eye-contact events. The report is organised in the following way. In the next section (Section 2) we discuss43
the importance of the mutual gaze in dyadic interactions. In Section 3 we describe the proposed solution44
for eye-contact detection. We benchmarked this algorithm in Section 4 where we compare it against the45
state-of-the-art. In Section 5, we test our architecture in a real HRI experimental setup, discussing the46
advantages of our solution in regard to the chosen case study. Finally, we draw the conclusion in Section 6.47

2 FOCUS ON MUTUAL GAZE AND MOTIVATION

In the context of joint attention, eye-contact provides a foundation of effective social interaction since it48
signals the readiness for interaction and the attention of the partner. Given the sensitivity of a human when49
being watched by another one, it is not surprising that the mutual eye contact may influence the efficiency50
of the person-construal process (Macrae et al., 2002). For example, studies revealed that human observers51
are faster to detect target faces/eyes with direct gaze than those with averted gaze (Coelho et al., 2006) and52
the perceived eye-contact enhances the activation of components of the social brain network (Senju and53
Johnson, 2009).54

While the effect of mutual eye gaze has been largely studied in human-human and human-screen55
scenarios with the use of reaction time measures (Galfano et al., 2012), saccadic behaviour (Ueda et al.,56
2014; Dalmaso et al., 2017a,b) and EEG (Hietanen et al., 2008; Pönkänen et al., 2011), few works exist57
in the literature investigating whether similar attention mechanisms arise in human-robot scenarios as58
well (Boucher et al., 2012).59

For example in the context of human-human interaction, Chong et al. (2020) proposed a novel approach60
based on deep neural networks to detect eye contact in PoV camera video with reliability equivalent to61
expert human raters. The proposed algorithm has been used in this work as baseline for the comparison62
(see Section 4.3).63

Wykowska (2021) underlined the importance of the role of humanoid robots as physical presence in64
real-time interaction since they provide higher ecological validity than screen-based stimuli and better65
experimental control than human-human interaction. Along the same line, Kompatsiari et al. (2018)66
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exploited the widely used Posner paradigm (Posner, 1980) to propose a novel interactive protocol involving67
the humanoid robot iCub (Metta et al., 2010) and examine the impact of mutual gaze on the mechanisms of68
joint attention.69

Posner paradigm (together with its variations) is a neuropsychological test typically used to investigate70
attentional orienting in response to a directional cue. In such a gaze cueing task, the observer is typically71
asked to discriminate an object target (usually presented in a lateral location) while looking at a directional72
cue (e.g. schematic face or arrows) presented centrally, in-between the locations of potential target73
presentation. The cue can be either valid or invalid, depending on whether it pointed to the target object or74
to a different direction.75

In their study, iCub was positioned between two lateral screens on which the object target was presented76
(in line with the Posner paradigm). iCub was used as the experimental apparatus both to establish real-time77
eye-contact with the human participant and to manipulate the directional gaze cue across the trials. The78
results revealed that the human reaction times depended on the combined effect of cue validity related to79
the iCub’s gaze direction and social aspect of mutual gaze. Another example can be found in Stanton and80
Stevens (2017) where the Nao humanoid robot1 was used to study the impact of three different levels of81
robot gaze (averted, constant and situational) in cooperative visual tracking task. Nevertheless the main82
drawback of the aforementioned studies is the use of the robot as a passive stimuli. Specifically, in both83
studies the humanoid robot was operated either with pre-programmed default text-to-speech and timed84
head movements or through pre-programmed gaze behaviour. As such, the robot had neither any perception85
of the real human’s gaze nor any feedback by the surrounding environment.86

Some authors support the notion that a robot embodying artificial models capable to reproduce human87
skills is a unique and invaluable tool to explain human cognition (Wykowska (2021); Pfeifer et al. (2007);88
Wainer et al. (2006)). With this motivation, in this work we propose a new module for iCub which allows to89
automatically detect whether the mutual gaze is established with the human partner during the interaction.90
Specifically, the report consists of three main contributions:91

i. Dataset collection for mutual gaze detection in frontal human-robot interaction. In the context of frontal92
tasks, the dataset was collected general enough to be suitable in many different experimental scenarios.93
To the best of our knowledge it is the first mutual-gaze dataset collected involving a humanoid robot.94

ii. Designing, implementation and training of a learning module based on the aforementioned dataset.95
Such a module is then embedded in the iCub’s framework and validated both in silico and in online96
scenarios. Furthermore, we compare our method with the solution proposed in Chong et al. (2020)97
achieving an improvement in the accuracy of around 15 percentage points.98

iii. As a case study, we select the experimental setup proposed in Kompatsiari et al. (2018) where iCub99
was used as a passive experimental apparatus. Within this framework, we performed several controlled100
experimental trials to test our application also in a time-constrained social robotics experiment.101

Our approach aims at reducing the amount of hardware equipment required by the robot to detect mutual102
gaze with the human partner (e.g. external cameras, eye-tracker, and so on). The robot, indeed, relies only103
on the image frames captured by its eye-like cameras making the interaction as natural as possible. The104
algorithm developed in this work is an important building block for robotic setups that can be used to study105
human social cognition in naturalistic interaction.106

1 https://www.softbankrobotics.com/emea/en/nao
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3 EYE-CONTACT LEARNING APPROACH

3.1 Data collection107

3.1.1 Participants108

A total of 24 participants were recruited for the data collection (mean age = 29.54± 3.14, 15 females).109
All participants had normal or corrected normal vision (6 participants out 24 wore glasses) and provided110
written informed consent. The data collection was conducted at the Istituto Italiano di Tecnologia, Genoa,111
and it was approved by the local ethical committee (Comitato Etico Regione Liguria).112

3.1.2 Setup113

The humanoid robot iCub embeds two Dragonfly2 cameras2 (right and left eye); only one eye-camera114
was used with the frame resolution set to 640x480 pixels. In this study we used the right eye-camera, but115
the left-eye camera could be used equivalently. In order to have also higher quality images for the training116
phase of the proposed eye-contact classifier, a second dataset was also collected with the Intel RealSense117
depth camera D4353 (see Figure 1 for a visual evidence). The RealSense camera was mounted on the118
iCub’s head through a 3D printed headseat. The middleware YARP (Yet Another Robot Platform) (Metta119
et al., 2006) was used to integrate the different modules (e.g. iCub’s controller, cameras, data dumper, code120
modules). The recording setup is shown in Figure 1. In line with what we claimed in Section 1 – i.e. to121
avoid need of external hardware – we underline that the RealSense camera was used only for acquiring122
training data. In the deployment phase, the system was always tested using images provided by the cameras123
mounted in the eyes of the iCub.124

3.1.3 Task125

Participants were asked to sit in front of the iCub at a distance of around one meter and to establish first126
mutual gaze and then averted gaze with the iCub’s eyes in order to acquire frames both in eye-contact and127
in no eye-contact condition. In the eye-contact recording session, participants were also asked to look at128
the iCub’s eyes but moving first their torso and then their head (Figure 1). For each position, the frame was129
captured both by the iCub’s right camera and the RealSense pressing the bar space of the laptop’s keyboard.130
The final datasets consist of 484 frames each (207 in eye-contact and 277 in no eye-contact condition).131

3.2 Eye-contact classifier132

Once the dataset was collected, the vector feature is extracted from each frame image by means of133
OpenPose4 (Cao et al., 2019), a well-known real-time system for multi-human pose estimation. Specifically,134
OpenPose takes as an input a w × h color image as input and produces in output the 2D locations (x, y)135
of anatomical keypoints for each person in the scene with the corresponding detection confidence level k.136
Relying on a multi-stage deep convolutional neural network, OpenPose can jointly detect body, face, hands137
and foot keypoints reaching high accuracy and real-time performance, regardless the number of people in138
the image.139

In our work, a subset of 19 face keypoints are considered (8 points for each eye, 2 points for the ears and 1140
for the nose), resulting in a vector of 57 elements (i.e. the triplet (x, y, k) is taken for each point). Then, the141

2 http://wiki.icub.org/images/c/c9/POINTGREY - Dragonfly2.pdf
3 https://www.intelrealsense.com/depth-camera-d435/
4 https://github.com/CMU-Perceptual-Computing-Lab/openpose, https://github.com/robotology/human-sensing
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detected keypoints are centered with respect to the head centroid, computed as the mean coordinates of all142
face keypoints, and normalised on the farthest point from the head centroid. The use of the face keypoints143
as feature vector has the main advantage of making the classifier independent of the light conditions and144
the picture’s background.145

The resulting feature vector is finally used as input to the binary classifier. Support Vector Machine (SVM)146
with RBF kernel was chosen to address this classification task. We compared the SVM with a random147
forest classifier; the former was chosen because it reported the best performance in terms of accuracy148
and F1-score (for a detailed comparison, see Supplementary Material). Moreover, given the results of the149
Principal Components Analysis (PCA), we considered the RBF kernel (see the Supplementary Material for150
further details). The hyperparameters of the SVM model were selected using an exhaustive search over a151
grid parameters and optimised by a 5-fold cross-validation (Pedregosa et al., 2011). After the training, the152
classifier’s output is the pair (r, c) where r = 1 if mutual gaze is detected (0 otherwise), while c ∈ [0, 1] is153
the confidence level of the prediction.154

The overall learning architecture is depicted in Figure 2.155

3.3 Training details156

The mutual gaze classifier was trained both using the dataset collected with the RealSense and with157
iCub’s eye. From now on, we refer to the classifier trained with the dataset from iCub’s right eye since it158
reported higher performance metrics. For the full comparison between the two datasets, see Supplementary159
Material.160

The acquired dataset was augmented in order to be robust to the degenerative case in which OpenPose161
fails to detect the eyes’ boundaries and the pupils. To simulate such a condition, the coordinates of those162
keypoints in case of eye-contact were set to zero, while the others (namely, the ones for nose, ears and163
eyes) are left unchanged. Moreover, we applied a further augmentation by geometrically rotating the164
face keypoints, extracted by OpenPose, to the left and right of a certain angle around the face centroid to165
cover a wider range of head rotations (not covered by the acquired samples). In detail, facial keypoints166
were rotated to the left and right by an angle α ∈ {15◦, 30◦, 45◦, 60◦} taking the {5%, 10%, 10%, 5%} of167
the data respectively. The final augmented dataset consist of 654 samples (377 in eye-contact, 277 in no168
eye-contact).169

We handled the unbalanced dataset properly weighting each class of classification. Such weights were170
chosen inversely proportional to class frequencies in the input data.171

Finally OpenPose parameters were tuned in order to have the best performance for the considered dataset172
(e.g. neural network resolution, images at different scales, and so on).173

4 RESULTS

4.1 Evaluation on the collected test set174

For the training of the classifier, the dataset was split into two subsets taking 19 out of 24 participants for175
the training set and the others 5 participants for the test set. The dataset was split k = 5 times in order to176
average the performance over different participants subsets and evaluate the statistical properties of the177
method. The performance were evaluated in terms of accuracy, precision, recall and F1-score reaching in178
all metrics values around 90%. Precisely we had: accuracy = 0.91± 0.03, precision = 0.90± 0.08, recall179
= 0.89± 0.06, F1-score = 0.89± 0.04.180
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4.2 Evaluation on temporal sequences181

The mutual-gaze classifier was validated also on video streams recorded from the iCub’s camera during182
different controlled interactions with a human. In detail, four video streams were recorded in order to cover183
the following scenarios: 1) no mutual gaze, 2) frontal mutual gaze, 3) human rotating the head to left/right184
while keeping mutual gaze with the robot, and 3) human rotating the torso while keeping mutual gaze with185
the robot. To avoid the flickering in the classifier predictions caused by the high video frame rates, we186
implemented a mechanism to propagate the predictions to those frames for which the classifier output is187
not available due to frame rate incompatibilities. The reason behind this is that, in practical settings, it is188
reasonable to assume coherent predictions in a ∼ 100ms time span. To this aim, we implemented a buffer189
of 3 elements at inference time. The actual classifier result was selected through a majority rule evaluated190
on the buffer. The implementation of the buffer allows to reach even higher level of accuracy. Specifically,191
the accuracy registered in the first three scenarios reaches its maximum value – i.e. 1.0 –, whereas in the192
last one the accuracy is 0.93. Analysing the last scenario, the classifier made wrong predictions when the193
human’s torso reached the extreme angles of 90 (right) and −90 (left) while keeping the head straight194
toward the robot (see the videos in Supplementary Material). Such a drop in performance for the extreme195
torso rotations is reasonable, since the classifier was trained for frontal task.196

4.3 Comparison with State-of-the-art method197

In this Section the mutual gaze classifier is compared with the solution proposed in Chong et al. (2020).198
To the best of our knowledge, this is the most recent solution in the current literature that best adapts to our199
purposes. In Chong et al. (2020) authors trained a deep convolution neural network (i.e. ResNet-50 (He200
et al., 2016)) as backbone to automatically detect eye contact during face-to-face interactions. As network201
performance, authors reported an overall precision of 0.94 and F1-score of 0.94 on 18 validation subjects.202
The network was trained only with egocentric cropped frames of the individuals’ face.203

Because the training code of Chong et al. (2020) was not released by the authors, we used the publicly204
available pre-trained model. We tested this model on our scenario where the participants wore face-masks205
due to Covid19’s ordinance and the frames captured by the robot were low quality frames. Since the206
algorithm used in Chong et al. (2020) failed to detect the bounding boxes of the humans’ face in 33% of207
cases (probably due to the face-masks), we used OpenPose for the bounding box detection. Such bounding208
box was then used to crop the image sent as input to the convolution neural network. This was done to209
obtain a fair comparison between the two algorithms. Accuracy and F1-score were evaluated as metrics210
both on the test set and on the video streams:211

• Proposed approach212

• Test set. Accuracy = 0.91± 0.03; F1-score = 0.89± 0.04.213

• Stream videos. Accuracy = 0.97; F1-score = 0.98.214

• Chong et al. (2020) + OpenPose215

• Test set. Accuracy = 0.76± 0.05; F1-score = 0.77± 0.06.216

• Stream videos. Accuracy = 0.89; F1-score = 0.82.217

Since data were normally distributed (Shapiro-Wilk test, p-value > 0.05), paired T-test was performed to218
assess the statistical difference between the performance of the two approaches (accuracy: p-value = 0.01,219
Cohen’s d = 2.009, 95% CI for Cohen’s d [0.385, 3.581]; F1-score: p-value = 0.037, Cohen’s d = 1.375,220
95% CI for Cohen’s d [0.072, 2.609]).221
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On the test set we obtained an improvement of 15% in accuracy and of 12% in F1-score, whereas on222
the video streams we obtained an improvement of 8% in accuracy and of 6% in F1-score. In addition, our223
method is based on a low dimensional feature vector computed from facial and body landmarks. With224
respect to Chong et al. (2020), and other methods based on RGB information, it can be trained with less225
expensive hardware and without acquiring sensitive information (i.e. full RGB images depicting faces)226
from subjects.227

The drop in the performance reported by Chong et al. (2020) in their work demonstrates the need of228
collecting a new dataset and shows that the current approaches in literature are not suitable for our scenario.229
Indeed, the considered setting is challenging both for the presence of face masks and for the low resolution230
camera that often is available in humanoid robots. On the contrary authors in Chong et al. (2020) used high231
resolution camera from camera glasses (1080p resolution). Notably, we could not compute the performance232
of our algorithm on the dataset used in Chong et al. (2020), because the latter was not made publicly233
available due to constraints imposed by the IRB protocol.234

4.4 Model interpretability235

With the aim of understanding which face keypoints have larger contribution to the final output of the236
learning architecture, SHAP analysis was performed on the trained SVM model. SHAP (SHapley Additive237
exPlainations) is a method based on coalitional game theory used to explain individually each prediction238
made by the learning algorithm. For each individual prediction, a value (SHAP value) is assigned to each239
feature as measure of its impact on the model’s output. The final contribution for each feature is evaluated240
averaging its SHAP values over a set of predictions (Lundberg and Lee, 2017).241

In Figure 3 the bar plot of the feature impact on the model output is reported for the first 20 most important242
face keypoints. It can be observed that the internal points of the eyes (pts 15, 16, 38, 39, 40, 42) and partially243
the ears (pt 18) have a mean SHAP value between 0.02 and 0.09; this means that a change in these features244
in input has an impact on the prediction of around 2− 9% percentage points. The analysis reveals that there245
is no feature that predominates on the others but all the elements of the feature vector make a comparable246
contribution to the prediction in output. This is also confirmed by the principal components analysis247
reported in the Supplementary Material. The PCA performed on the data, indeed, does not make any248
improvement to the system implying that none of the considered features is completely redundant.249

5 DEPLOYMENT IN AN EXPERIMENTAL SETUP

Next, we further validated our approach presented in the Section 3. As testbed example, we integrated our250
algorithm in the experimental scenario presented in Kompatsiari et al. (2018). In such a setup, participants251
were seated face-to-face with the iCub robot at a desk 125cm wide. iCub was positioned between two252
lateral screens on which target letters were presented to the participant. Also, iCub’s height was set at253
124cm from the floor in order to have its eyes aligned with participants’ eyes (Figure 4).254

The conclusions of Kompatsiari et al. (2018) were based on the assumption that mutual gaze was255
established between subjects and the robot, as confirmed by manual annotation by an experimenter.256
Therefore, the solution presented here offers a significant advancement, as it provides an automatic257
mechanism that can avoid manual annotation and implements a contingent robot behaviour allowing258
bi-directional eye contact mechanisms, which, as shown by the results of Kompatsiari et al. (2018), are259
crucial for establishing joint attention in HRI.260

The experimental trial was designed as follows:261
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• iCub starts with the head pointing down and with its eyes closed for 2s;262

• it opens its eyes for 500ms without moving the head;263

• iCub looks towards the participant’s eyes (eye contact) for 2.5s;264

• iCub moves the head laterally towards one of the lateral screens, where the letter V or T appeared265
randomly either on the same screen where the robot is looking at (valid trial) or on the opposite screen266
(invalid trial) for 200ms;267

• the participant is instructed to identify the target letter pressing V or T on the keyboard while keeping268
mutual gaze with the robot and without gazing at the screen.269

To validate the classifier, we asked a total of 4 participants to carry out 8 blocks of 8 trials each. The270
experiments were controlled in order to have the ground truth for each block of trials. In detail, the271
participant was asked to maintain mutual gaze with the robot in 5 blocks of trials and to always simulate a272
distracted participant in the other 4 blocks left (e.g. checking the phone, looking at the lateral screens). To273
assure the quality of the ground truth, the experimenter monitored online eye movements of the participants274
and the trials were further checked offline before the analysis. Only one trial was discarded.275

As done before, the performance were evaluated in terms of accuracy, precision, recall and F1 score. We276
registered: accuracy = 0.97, precision = 0.95, recall = 1.00, F1-score = 0.97.277

6 CONCLUSION

In this research report we presented our first results of an ongoing work aiming at developing a novel278
attentive architecture for the humanoid robot iCub. In this context, we focused on the social cue of279
the mutual gaze making iCub capable of recognising eye-contact events while interacting online with a280
human partner. We validated the proposed mutual gaze classifier both computationally and experimentally,281
showing high performance values. We also compared the proposed approach with the state-of-the-art282
method Chong et al. (2020) reporting a consistent improvement in performance. We underline that our283
method requires neither any additional hardware (e.g. external camera, eye tracking glasses) nor a robot284
with embedded high-quality and expensive eye-cameras. Another advantage of our method is that it uses285
relatively low dimensional features extracted by facial landmarks which are intrinsically anonymous. With286
respect to other methods that use RGB information it can be re-trained with less expensive hardware and287
without storing personal data from subjects. Our results may potentially allow the research community288
to use an active robotic framework in more complex interactive scenarios helping the study of human289
cognition. For example, it has been previously found that the mutual gaze condition increases the level290
of engagement and/or rewarding during a human-robot interaction compared to averted gaze (Kampe291
et al., 2001). Similarly, Schilbach et al. (2010) investigated the neural correlates of joint attention finding292
that following or directing someone else’s gaze activates several cortex areas of the brain related to the293
coordination of perceptual and cognitive processes.294

Improving and extending the mutual gaze scenario to the wider problem of the gaze estimation is part295
of the current research. As a potential improvement, temporal information (e.g. temporal coherence296
between consecutive frames, optical flow, and so on) from dynamic data, like videos, could bring297
additional information to the system increasing performance and generalisation capabilities. Furthermore,298
the implementation of an attention system with the ability to detect social cues is a fundamental step toward299
the realisation of socially capable humanoid robots.300
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(a) (b)

Figure 1. Dataset collection. (a) Overall setup. The participant was seated at a desk in front of iCub. The
latter was mounted with a RealSense camera on its head. (b) Sample frames were recorded using both
iCub’s camera (first row) and the RealSense camera (second row). Different frames capture different human
positions (rotation of the torso/head) and conditions (eye-contact and no eye-contact).

OpenPose

x1

x2
y1

y2

y3
x3

c1
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c3

Mutual gaze
SVM

(r, c)

Figure 2. Learning architecture. The acquired image is first used as input for OpenPose in order to get
the facial keypoints and build the feature vector for the individual in the scene. Then, such a feature vector
goes in as input to the mutual gaze classifier whose output is the pair (r, c), where r is the binary result of
the classification (eye-contact/no eye-contact) and c is the confidence level.
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Figure 3. Feature importance. (a) Bar plot reporting on the x-axis the SHAP feature importance in
percentage measured as the mean absolute Shapley value. Only the first 20 most important features are
reported on the y-axis. (b) Numbered face keypoints of the feature vector.

(a) (b)

Figure 4. Experimental setup. (a) The iCub is positioned between two lateral screens face to face with
the participant at the opposite sides of a desk that is 125cm wide. (b) Sample frames acquired during the
experiment in which the participant first looks at the robot to make an eye contact and then simulates
a distraction looking at the lateral screen. On each frame, the prediction (eye Contact yes/no) with the
confidence value c is also reported.
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