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Additional Data

Figure S1: Images from Protein Data Bank. Top right, the assembly α2β2 which forms a
subunit (1EYX) of the R-PE protein. Top left, a unit of R-PE (α2β2)3. Bottom images: Two
different projections of the BSA (3V03). It is clearly seen that both proteins are mainly made
out of alpha-helices.
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Figure S2: Cross-correlation Functions (CCFs). CCFs in the presence of micro-molar con-
centrations of fluorescent dyes obtained with density filters along the optical path combined
with averaging during long acquisition times. The left panel shows the comparison of Cross-
Correlation Functions (CCFs) of a single solution of the dye Atto 488 at the concentration of 1
nM, measured without OD (Optical Density) filter (no OD, black line) along the fluorescence
path, with OD1 and with OD1.3 (cyan and magenta lines, respectively). Panels on the right
show the Auto-Correlation Functions (ACFs) obtained with the signals of channels 1 and 2 for
the same measurements. At short time-lag the ACFs clearly show a sharp increase, whereas
this phenomenon is absent on CCFs. The phenomenon is consequently an artifact attributed to
afterpulsing. Each CCF was obtained by averaging 72 CCFs, each one obtained from a record
of 50 seconds, corresponding to an overall acquisition time of one hour.



Figure S3: FCCS results at high concentrations of fluorescent molecules and using density
filters. Panels A to C display the CCFs - as shown in Figure S2 - corresponding to solutions of 1
nM, 1 µM, and 10 µM of Atto 488 dye using no OD filter, OD1, and OD1.3 filters, respectively.
Each CCF was obtained by averaging 72 CCFs, each one obtained from a record of 50 seconds,
corresponding to an overall acquisition time of one hour. The fitting curves are also displayed
in black on each panel, and the residuals are visible below each CCF (displayed in percentage).
The same values of τ reported in Figure S2 are found within a 2% deviation.
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Figure S4: Traces recorded by channel 1 of the FCCS device during 60 seconds, for solu-
tions of R-PE. The average distances among the proteins are, from top to bottom, respectively:
1800 Å, 1350 Å, 1000 Å, 850 Å, 700 Å, 550 Å. The left panel shows the results for the laser
output power set at 50 µW, middle panel for the laser power set at 100µW, and right panel
for the laser power set at 150 µW. The sharp increase of fluorescence fluctuations at increasing
laser power and protein concentration is due to the formation of clusters as shown by the on-line
Videos.
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Figure S5: Normalized traces. The same outcomes of Additional Data Figure S4 are here
shown by normalizing the data to the highest fluorescence value recorded for each trace. Fluo-
rescence traces recorded by channel 1 of the FCCS device during 60 seconds, for solutions of
R-PE. The traces are normalized by the highest value of each trace.
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Figure S6: Variance of the fluorescence intensity. Data recorded for R-PE solutions at differ-
ent laser power input: 50 µW (blue circles), 100 µW (green down-pointing triangles), and 150
µW (red up-pointing triangles). Only upper error bars are shown on this plot for convenience,
as the y axis is on a logarithmic scale.
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Figure S7: Cross-Correlation Functions (CCFs) for R-PE solutions at different concentra-
tions. From left to right the average intermolecular distances are: 〈d〉 = 1950 Å, 〈d〉 = 900 Å,
〈d〉 = 550 Å, respectively. The upper panels display the results obtained with a laser power
input of 50 µW (grey lines). The lower panels display the results obtained with a laser power
input of 150 µW (grey lines). A Savitzky-Golay filter is used to smooth the CCFs (red lines),
and to consequently obtain the diffusion time τD at Half Height (THH). Fits of the CCF are
also shown (black lines), and the extended fits (outside of the original fitting range) are repre-
sented with dashed lines. Residuals of the fits are also plotted: the black lines correspond to the
standard residuals, and the grey lines to the extended residuals. At the highest concentration,
for 〈d〉 = 550Å, and laser power input of 150 µW , the correlation time is increased by several
orders of magnitude, entailing a drop of the diffusion coefficient by the same amount.



Figure S8: Decay of the clusters of R-PE induced by a sudden lowering of the laser power
density. The results reported here have been obtained using ten samples corresponding to an
average intermolecular distance of 650 Å. On panel A, the laser input has been lowered from
150 µW to 50 µW at t = 25 s. Panel B is a zoom of panel A, starting at t = 25 s. Panel C is the
standard deviation of the intensity of the different samples recorded and displayed by panels A
and B. Here the thermal fluctuations overcome the attractive electrodynamic forces weakened
by the lowering of the energy input rate, thus destroying the clusters. The initial time t = 0 has
been arbitrarily chosen in the already clustered phase.
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Figure S9: Data analysis procedure for rectenna-based THz-spectroscopy. (a) Spectra for
NaCl-water solution and R-PE-NaCl-water solution when the laser is switched OFF (black and
blue lines, respectively) and when the laser is switched ON (red and pink lines, respectively).
(b) Normalization procedure, according to the Beer-Lambert law (see Main text Eq. (5)). In
red (resp. black) the result is plotted which is obtained by dividing the spectra of proteins (resp.
NaCl) in solution under illumination by the spectra of proteins (resp. NaCl) in solution without
illumination. (c) Ratio of two previous spectra of (b) and Lorentzian fit. Only the fundamental
mode at 0.071 THz is observed by operating with laser power at 50 mW, and an overall exposure
time of 96 seconds (240 points are here reported, each one obtained with an exposure time of
400 ms).



Captions for Movies S1 - S4

Movie S1 : R-PE protein concentration 0.5 micro Moles (absence of protein clusters). No

optical filter. Each 128 x 128 pixel confocal image corresponds to a 30 x 30 µm field of view

and recorded at a pixel dwell time of 0.1 ms at a rate of 2.8 s/frame. Each stack of images was

made of 375 images where the laser power has been adjusted every 75 images to 50, 150, 50,

150 and then 50 µW. When indicated, an OD1 filter (Thorlabs ND-10B) has been added before

the detector. Then, the video made from these images were compressed at a rate of 7 frame/s.

Thus, each second of video corresponds to about 21 seconds of measurements.

Movie S2 : R-PE protein concentration 0.5 micro Moles (absence of protein clusters). Each

128 x 128 pixel confocal image correspond to a 30 x 30 µm field of view and recorded at a

pixel dwell time of 0.1 ms at a rate of 2.8 s/frame. Each stack of images was made of 375

images where the laser power has been adjusted every 75 images to 50, 150, 50, 150 and then

50 µW. An OD1 filter (Thorlabs ND-10B) has been added before the detector. Then, the video

made from these images were compressed at a rate of 7 frame/s. Thus, each second of video

corresponds to about 21 seconds of measurements.

Movie S3 : R-PE protein concentration of 2.9 micro Moles (protein clusters are observed).

Each 128 x 128 pixel confocal image correspond to a 30 x 30 µm field of view and recorded

at a pixel dwell time of 0.1 ms at a rate of 2.8 s/frame. Each stack of images was made of 375

images where the laser power has been adjusted every 75 images to 50, 150, 50, 150 and then

50 µW. An OD1 filter (Thorlabs ND-10B) has been added before the detector. Then, the video

made from these images were compressed at a rate of 7 frame/s. Thus, each second of video

corresponds to about 21 seconds of measurements.

Movie S4 : R-PE protein concentration 6.5 micro Moles (protein clusters are observed). Each

128 x 128 pixel confocal image correspond to a 30 x 30 µm field of view and recorded at a

pixel dwell time of 0.1 ms at a rate of 2.8 s/frame. Each stack of images was made of 375



images where the laser power has been adjusted every 75 images to 50, 150, 50, 150 and then

50 µW. An OD1 filter (Thorlabs ND-10B) has been added before the detector. Then, the video

made from these images were compressed at a rate of 7 frame/s. Thus, each second of video

corresponds to about 21 seconds of measurements.



1 Theoretical interpretation of the experimental results

In this part we present the theoretical and numerical models that provide a conceptual frame-

work for the interpretation of the experimental results. Throughout the following sections, it

is implicitly assumed that the biomolecules of interest have undergone the condensation phe-

nomenon of polar vibrations into the lowest frequency mode under external energy supply as it

has been observed in Ref.[19] of Main text. This phonon condensation results in a collective in-

tramolecular vibration bringing about a large coherent oscillating dipole moment that activates

long-range electrodynamic intermolecular forces (Ref.[12] of Main text).

2 Effects of electrodynamic interactions on molecular diffu-

sion

In this section we introduce three different theoretical and numerical models in order to interpret

the FCCS experiment on the R-PE protein that undergoes a clustering transition. We will show

how the experimental outcomes can be explained by the presence of long range dipole-dipole

electrodynamic intermolecular interactions.

Some simplifications are assumed to define a model that can be studied at least semi-

analytically. We are interested in the behaviour determined by long-range interactions for val-

ues of the R-PE concentration in solution such that the intermolecular average distance is much

larger than the characteristic size of the molecule. For this reason the particles are considered

as spherical in our models. All the spheres are assumed to have the same radius. The radius of

the spherical particles has been chosen such that their volume is equivalent to the volume VRPE

of the R-PE estimated from the mass MRPE ≈ 2.5×102D,

a =

(
3

4π

MRPE

ρBM

)1/3

' 42Å (1)



where the density of the biomolecule has been set to ρBM = 1.27 g cm−3 (Refs.[48] and [49]

of Main text).

2.1 The effective potential

The interaction potential among resonant oscillating electric dipoles is supposed to take the

effective form

Ueff(rij) = −3ceffkBTR
3
0

r3
ij + 2R3

0

(2)

where rij = ‖rj − ri‖ is the distance between the i-th and j-th molecules, kB is the Boltzmann

constant, T is the temperature and R0 is a length scale. The form of the potential in Eq.(2) has

been chosen such that

Ueff(R0) = ceffkBT and U ′′eff(R0) = 0 . (3)

The regularization in the denominator has been introduced in order to avoid the divergence

in ‖ri − rj‖ = 0. The parameter R0 has been chosen to be the sum of two molecular radii

R0 = 2a = 84Å. The strength of the potential in kBT units at the distance R0 between

the particle centers is given by the parameter ceff which can hardly be assessed a priori. The

dynamical electric dipole moment can be estimated by equating the effective potential with the

quasi-static dipole-dipole interaction energy

Udd(rij) ' −
p2

4πε0εW (ω)r3
ij

(4)

at the distance rij = r∗, i.e. Udd(r∗) = Ueff(r∗). The relative dielectric constant of the medium

is assumed to be εW (ω) = |ε(ωCVM)|, where the suffix CVM stands for Collective Vibrational

Motion, the relation between the strength of the potential and the electric dipole moment of the



biomolecules is given by p = α(r∗, T )c
1/2
eff , where the calibration constant α depends on the

distance r∗ at which the two potentials are set equal and T is the temperature. The results for

different choices of T and r∗ are reported in Table S1 for R-PE (νCVM = 71GHz).

r∗[Å] T [K] α[D]
82 293 7.10× 102

950 293 1.23× 103

82 303 1.25× 103

950 303 1.30× 103

Table S1: Different values of the factor α.

2.2 Semi-Analytical Model

The discussion of this semi-analytical model is adapted from an analogous calculation for the

clustering transition in a self-gravitating system (Ref.[50] of Main text) where the long-range

attractive interaction potential among particles scales with the distance r as r−1. The model

developed in this section aims at verifying the existence of a clustering transition in the FCCS

experiments when the translation degrees of freedom of the molecules are at thermal equilib-

rium and the interparticle electrodynamic interaction potential scales as r−3. The experimental

setting is represented in a simplified way as a system ofN spherical particles of radius a = 42Å

confined in a sphere of radius R of volume equal to the FCCS confocal effective volume as

defined by

Veff = (2)3/2Vconf = π3/2w2
0z0 . (5)

In real experiments the two sizes w0 and z0 have been estimated to be w0 = 2.8×103Å and

z0 = 5w0 = 1.4×104Å, yielding a volume-equivalent spherical system of radius

R =

(
3π1/2

4
w2

0z0

)1/3

' 5.265×103Å (6)



The configuration of a system of N particles is in principle described by the probability density

function in configuration space ρN(r1, ..., rN). In the simplified model here considered, the

volume, the temperature and the number of molecules inside the volume are fixed so that the

thermodynamic equilibrium is defined as the probability distribution that minimizes the free

energy functional F [ρN ](N, V, T )

F [ρN ](N, V, T ) = U [ρN ]− TS[ρN ] . (7)

where U [ρN ] is the average potential energy

U [ρN ] =

∫
S3(R)

d3r1...

∫
S3(R)

d3rN U(r1, ...rN)ρN(r1, ..., rN) (8)

while the entropy S[ρN ] is defined as

S[ρN ] = −
∫
S3(R)

d3r1...

∫
S3(R)

d3rN ρN(r1, ..., rN) log [ρN(r1, ..., rN)] . (9)

The distribution ρN,eq such that δF [ρN,eq]/δρN = 0 and δ2F [ρN,eq]/δρ2
N > 0 corresponds to the

probability distribution at thermodynamic equilibrium in the canonical ensemble. We point out

that such a description does not coincide with the real experimental setting because in FCCS

experiments the particles can freely enter into and exit out of the confocal volume, so that the

hypothesis of a fixed number of particles holds only in the average. The control parameter

in real experiments is the concentration of biomolecules, or, equivalently, the intermolecular

average distance 〈d〉: in our model this corresponds to a different choice of the number of

molecules in the total volume

N(〈d〉) =

⌊
4π

3

(
R

〈d〉

)3
⌋

(10)



where b·c is the floor operator. It is convenient to introduce adimensionalized quantities, choos-

ing the effective radius as the length scale of the model so that R̃ = R/a ' 1.25× 102.

We consider a mean field approximation for the probability density distribution of the biomolecules

in the volume, i.e.

ρN(r1, ..., rN) =
N∏
i=1

ρ1(ri) (11)

We make the following ansatz about the functional form of ρ1(r), i.e.

ρ1(r̃, η) = ηΘ(R̃∗(η)− ‖r̃‖)ρc(r) + (1− η)Θ(‖r̃‖ − R̃∗(η))Θ(R̃− ‖r̃‖)ρh(r) =

= ηΘ(R̃∗(η)− ‖r̃‖) 3

4πR̃3
∗(η)

+ (1− η)Θ(‖r̃‖ − R̃∗(η))Θ(R̃− ‖r̃‖) 3

4π
[
R̃3 − R̃3

∗(η)
]

which means that a particle is found with probability η in a spherical cluster of radius R∗

located at the center of the ambient spherical space. The radius of the cluster is determined by

considering the random close packing for spheres g = 0.637 (maximum volume fraction for a

randomly packed 3D system) such that

R̃∗(η, 〈d〉) = R∗/a = 3
√
g−1ηN(〈d〉) (12)

where a is the effective radius of the considered molecules in the cluster, taking into account

all short range interactions (dispersive forces, hydrodynamic forces, etc.). In what follows, we

denote by a tilde superscript the adimensionalized length expressed in units of the particles

radius a.

Remark. The mean field approximation and the form of the one-particle distribution in

Eq.(12) is a sort of ”fluid approximation”: the more the volume of the particles is negligible

with respect to the total volume, the better the approximation.
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Figure S10: Dependence of effective accessible volume. Effective accessible volume γ, for
intermolecular distances 〈d〉 in the range 90 ÷ 600Å. In red circles the numerical values of γ
calculated using the exact expression in Eq.(13), the blue line representing the data obtained
using the approximated function. In this case, the effective radius of the molecule is a = 42Å
and the radius relative to the total volume R = 5246Å.

An estimation of the excluded volume effects is provided by the following parameter

γ(〈d̃〉, R̃) =

{∏N(〈d̃〉,R̃)
i=1 [V − (i− 1)4πa3/3]

V N(〈d̃〉,R̃)

} 1
N(〈d̃〉,R̃)

=
N(〈d̃〉,R̃)

√√√√N(〈d̃〉,R̃)∏
i=1

[
1− (i− 1)R̃−3

]

(13)

In the limit of large R̃, γ is a function only of the (adimensionalized) intermolecular average

distance, in fact

log γ =
1

N(〈d̃〉, R̃)

N(〈d̃〉,R̃)∑
i=1

log
[
1− (i− 1)R̃−3

]
≈ − R̃−3

N(〈d̃〉, R̃)

N(〈d̃〉,R̃)∑
i=1

(i− 1)

=
1

2

[
N(〈d̃〉, R̃)− 1

]
R̃3

≈ − 2π

3〈d̃〉3
+

1

2R̃3
≈ − 2π

3〈d̃〉3
= log γapp . (14)

As a first approximation, we can assume that in the FCCS experiments - reported in the main



text - the degrees of freedom relative to the centers of the biomolecules are at thermal equilib-

rium, and that the number of particles in the confocal volume is constant. These assumptions

allow to tackle the system of interacting biomolecules in the canonical ensemble framework.

The adimensional specific free energy functional is defined as

F [ρN ]

NkBT
=
U [ρN ]

NkBT
− S[ρN ]

kBN
= u[ρN ]− s[ρN ] . (15)

The (adimensional) specific entropy s[ρN ] is given by

s[ρN ] =
S[ρN ]

NkB
= − 1

N

∫
S3(R̃)

ρN log ρN

N∏
i=1

dr3
i . (16)

and substituting Eq.(12) in the previous expression we obtain

s(η, 〈d〉) = s[ρN ] = −

[
η log

(
3η

4πR̃3
∗(η, 〈d〉)

)
+ (1− η) log

(
3(1− η)

4π(R̃3 − R̃3
∗(η, 〈d〉))

)]
.

(17)

The expected specific potential energy u[ρN ] is given by three separate contributions:

u[ρN ] = uc−c[ρN ] + uc−h[ρN ] + uh−h[ρN ] (18)

the self-interaction of the molecules contained in the central cluster

uc−c(η, 〈d〉) = uc−c[ρN ] = −η2N(〈d〉)− 1

2

∫
S(R̃∗)

d3r̃i

∫
S(R̃∗)

d3r̃j ρc(r̃i)ρc(r̃j)
24ceff

‖r̃i − r̃j‖3 + 16
,

(19)

the interaction among the halo and the cluster



uc−h(η, 〈d〉) = uc−h[ρN ] = (20)

= −η(1− η)
N(〈d〉)− 1

2
×
∫
S(R̃∗)

d3r̃i

∫
C(R̃,R̃∗)

d3r̃j ρc(r̃i)ρh(r̃j)
24ceff

‖r̃i − r̃j‖3 + 16
,

and the self-interaction of the halo

uh−h(η, 〈d〉) = uh−h[ρN ] = (21)

= −(1− η)2N(〈d〉)− 1

2
×
∫
C(R̃,R̃∗)

d3r̃i

∫
C(R̃,R̃∗)

d3r̃j ρh(r̃i)ρh(r̃j)
24ceff

‖r̃i − r̃j‖3 + 16
.

where S(x) is a sphere with radius x centered at the origin and C(x, x′) is a spherical shell

centered at the origin and with external and internal radii x and x′ respectively. The fraction

of clustered molecules at equilibrium is obtained by minimizing the specific free energy with

respect to η at fixed 〈d〉, i.e.

ηmin(〈d〉) =

{
η ∈ [0, 1] |F (ηmin) = min

η∈[0,1]

F (η, 〈d〉)
N(〈d〉)kBT

for any fixed 〈d〉
}
. (22)

As it can be observed in Figure S11, there exists a range of values of the effective dipole-dipole

potential strength ceff such that the specific free energy F/(NkBT ) has a relative minimum for

a certain value of the clustered fraction η′ ∈ [0, 1], for any fixed value of the intermolecular

average distance 〈d〉.

The thermodynamic equilibrium configurations are attained at the global minimum of the

free energy. Being the clustering fraction η an order parameter defined on a compact domain,

such a global minimum of the free energy can be attained both at η = 0 or inside the domain if

a relative minimum of the free energy exists at ηc such that F (ηc) < F (0).

In the considered system, the value of the relative minimum of the specific free energy decreases
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Figure S11: Specific free energy dependence with cluster fraction. Specific free energy
F/(kBTN) vs. clustered fraction η for different values of the intermolecular average distance
〈d〉 at ceff = 0.325. Left panel : 〈d〉 = 900Å; center panel: 〈d〉 = 950Å; right panel: 〈d〉 =
975Å.

with the intermolecular average distance 〈d〉. This means that it is possible to find a value of

the parameter ceff such that F (η′) < F (0) for 〈d〉 < 950 Å.

In our case, we have empirically found that by setting ceff = 0.325, it is F (η′) . F (0) for

〈d〉 . 950Å (see Figure S11). Moreover, almost all the molecules are in the clustered phase

as η′ = ηmin > 0.93 for ceff = 0.325 and 〈d〉 . 950Å (see Figure S11), while for 〈d〉 &

975Å the equilibrium of the system is in the disperse phase. We conclude that long range

attractive interactions scaling as r−3 with the intermolecular distance r can induce a clustering

phase transition at least in qualitative agreement with the experimentally observed transition.

According to Table S1 the estimated value of the dynamic dielectric dipole is |p| = 400÷740D.

We remark that such a value constitutes an underestimation of the real dynamical dielectric

dipole because the electrodynamic interactions can be either attractive or repulsive, and this

depends on the mutual oscillation phase and orientation of the dipoles, whereas in the mean

field model considered in this section, the interactions are always attractive.
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Figure S12: Specific free energy dependence with intermolecular average distance. Clus-
tered fraction η as a function of the intermolecular average distance 〈d〉 for a system of particles
interacting through the potential in Eq.(2) with ceff = 0.325. ηmin ' 1 corresponds to the
clustered phase whereas ηmin ' 0 corresponds to the dispersed (gaseous) phase.

2.3 Molecular Dynamics Study of the clustering transition

Molecular dynamics simulations have been done in order to estimate the effect of long-range

electrodynamic interactions, described by the effective potential in Eq.(2), on the self-diffusion

coefficient D of a system of interacting molecules defined by

D = lim
t→+∞

〈‖∆ri(t)‖2〉i
6t

(23)

where ∆ri(t) is the displacement at time t of the i-th molecule with respect to its initial position,

and 〈·〉i is the average over all the particles in the system. This is the physical quantity measured

by means of FCCS experiments thus allowing a direct comparison between the outcomes of

numerical simulations and the outcomes of lab experiments.

We considered a system made of a fixed cubic box of volume equal to the effective volume

in Eq.(5), hence of side L = (Veff)1/3 = 8486Å. Given an intermolecular distance 〈d〉, the



corresponding number of particles in the box is determined through Eq.(10).

The dynamics is given by the Langevin equations in the overdamped limit (without inertial

terms):
dri
dt

= −1

γ
∇ri

∑
j 6=i

U(‖ri − rj‖) +

√
2kBT

γ
ξi(t) ∀i = 1, .., N (24)

where γ is the viscous friction constant, T is the temperature of the solution and ξi(s) is a noise

term, s.t.

〈ξA,i(t)〉t = 0 〈ξA,i(t)ξB,j(t′)〉t = δ(t− t′)δABδi,j ∀i, j = 1, ..., N ∀A,B = 1, ..., 3 .

(25)

As we have assumed that the molecules are represented by spherical particles, we use Stokes’

formula for the viscous friction constant of a sphere in a viscous fluid, i.e.

γ =
1

6πRHηW (T )
(26)

where RH is the hydrodynamic radius in water and ηW (T ) is the dynamical viscosity of water

at the temperature T . As we are more interested in a qualitative rather than a quantitative

description of the diffusive dynamics and of the clustering transition, we can reasonably assume

that RH = a = 42Å while the water dynamical viscosity as a function of temperature at the

atmospheric pressure is estimated using the following formula (Ref.[51] of Main text)

ηW (T ) = A exp[B/(T − C)] (27)

where A = 2.407×10−5Pa · s, B = 571.5K and C = 139.7K. The water dynamical viscosity

is η(Texp) = 0.7915×10−3 Pa · s at the experimental value Texp = 30oC = 303.15K, according



to Eq.(27). The potential energy used for these molecular dynamics simulations is given by

U(r) =

Ueff(r) + UDebye(r) r > 2(1.01)a

USC(r) r ≤ 2(1.01)a
(28)

where Ueff is the effective potential energy of Eq.(2) due to electrodynamic interactions. Short

range electrostatic repulsion is described through the Debye potential UDebye due to electrostatic

interactions

UDebye(r) =
Z2e2 exp

[
− r
λD

]
4πε0εW (1 +R/λD)r

. (29)

Here Z is the net charge of the molecule, e is the electric charge of the electron, ε0 is the vacuum

permittivity, εW is the water relative dielectric constant and λD is the Debye length

λD =

(∑
i ρ∞,ie

2z2
i

ε0εWkBT

)−1/2

, (30)

where ρ∞,i is the concentration of the i-th electrolyte species and T is the temperature of the

solution. In our case, this results in a Debye length λD ≈ 9.74Å. The net charge for R-PE

molecules has been fixed to Z = +10.

The effect of Pauli’s repulsion among the electronic clouds of molecules is described through a

Buckingham-like soft core potential USC

USC(R) = ASC exp

(
− r

λB

)
(31)

where λB = 2a. The parameter ASC fixing the strength of the potential has been chosen such

that if the molecules overlap for the 10% of their radii they are brought back to be tangent to

one another, i.e.

‖∆SCx1 + ∆SCx2| =
2‖Fsc(1.9 a)‖

γ
∆t = 0.1 a (32)



yielding

ASC = 0.05γa exp [−0.95] ≈ 1.93× 10−3 γa

∆t
. (33)

A soft-core potential has been preferred with respect to an hard-core potential because the

latter would require a very small integration time step (i.e. of the same order as in all-atoms sim-

ulations, 10−12s) to avoid nonphysical large displacements. Moreover, using a very small time

step would be at odds with the hypothesis of overdamped Brownian dynamics. And the dynam-

ics would require a prohibitively large number of time steps. Periodic boundary conditions have

been assumed for the positions of the particles but not for the long-range interactions that are

computed without taking into account the images of the particles (due to the periodic boundary

conditions). This latter choice is due to the fact that the long range electrodynamic interactions

are supposed to be active only for particles in the effective volume of FCCS, simulated by the

cubic box.

The numerical simulations have been performed using the Heun predictor-corrector algo-

rithm with a time step ∆t = 5×10−4µs and for a total number of steps Nsteps = 2 × 107,

corresponding to a total simulation time Ttot = 104µs. In order to assess the adequacy of this

integration time, let us first notice that with the present choice of parameters the Brownian diffu-

sion coefficient of the spherical molecules in simulations is D = kBTγ
−1 = kBT (6πaηW )−1 '

6.68×103Å
2
µs−1. Then considering a sphere circumscribing the box, thus of radius Rcirc =

√
3l/2 ' 7.35×103Å, the characteristic time scale expected for a molecule to explore all the

volume is tVol = R2
circ/(6D) ' 1.35×103µs, largely contained in the total integration time of

104µs.

Molecular Dynamics simulations of equations (24) yield the results for the diffusion coeffi-

cient D, normalized by the Brownian value D0, reported in Figure 5 of Main text, as a function

of the average intermolecular distance 〈d〉.

The sudden drop of D/D0 has been observed in presence of the attractive potential repre-



Figure S 13: Molecular dynamics simulations. Snapshots of spatial distributions of 500
molecules corresponding to an intermolecular average distance of 〈d〉 = 1000Å. Left box:
the initial condition. Right box: the final configuration after 104µs.

Figure S 14: Molecular dynamics simulations. Snapshots of spatial distributions of 700
molecules corresponding to an intermolecular average distance of 〈d〉 = 950Å. Left box: the
initial condition. Right box: the final configuration after 104µs.

senting the electrodynamic dipole-dipole potential. Such a drop of the relative diffusion coef-

ficient is the observable manifestation of the clustering phase transition. The same pattern of

D/D0 versus 〈d〉 is displayed by the experimental outcomes of FCCS experiments reported in



Figure 4 of the Main text.

When the electrodynamic dipole-dipole interactions are not included in numerical simulations,

the relative diffusion coefficient is always the Brownian one.

The parameters entering Ueff have been adjusted in order to observe the clustering transi-

tion at an intermolecular average distance of ∼ 1000 Å, this led to set R0 = 2a = 84 Å and

ceff = 2.25 that correspond to a dynamical effective dipole of |p| ∼ 1850 D. This dipole mo-

ment is larger than the one found in the semi-analytical model even if it is of the same order

of magnitude. This can be explained by considering that the semi-analytical model represents

a mean-field approximation of the particle model, thus enhancing the effect of long-range cor-

relations. Moreover, in the semi-analytical model only the global minimum of free energy has

been considered, while in molecular dynamics simulations also the relaxation from the initial

disperse phase to the final equilibrium state has been followed. A-priori we cannot exclude that

with |p| ∼ 1850 D the disperse state could be a metastable state with a very long lifetime, that

is certainly not the case for the semi-analytical model which thus provides a lower bound for

the estimated dynamic electric dipole modulus.

2.4 MonteCarlo simulations for the clustering transition

Equation 2 provides a first rough approximation of the electrodynamic potential derived in

Ref.[12] of Main text for the interaction among two oscillating electric dipoles, as it does not

take into account their mutual orientation nor their relative oscillation phase. At first, taking into

account these degrees of freedom results in an interaction potential of indefinite sign, i.e. the

long-range electrodynamic force between oscillating biomolecules can be attractive or repulsive

as well. Therefore, it is important to check whether or not the clustering transition takes place

also in presence of an orientation-dependent dipole-dipole interaction. If this is the case, we

need to determine the value of the oscillating electric dipole moment that is necessary to explain



the experimental observations, that is, the value of 〈d〉 at which the clustering transition is found.

A more refined study of the clustering transition requires considering a more accurate model

of the out-of-equilibrium electrodynamic interactions including information on mutual orienta-

tions and phase differences among the oscillating dipoles. For this reason a different electro-

dynamic dipole-dipole potential will be considered in the next section. Moreover, Molecular

Dynamics simulations taking into account the relative orientations of the dipoles would re-

quire to take into account the random rotational dynamics of the dipoles. However, simulating

roto-translational diffusion dynamics is a hard task to be implemented for biomolecules in our

context. In fact, the rotational random dynamics is expected to introduce a faster process with

respect to the spatial diffusion thus requiring integration time steps smaller than those already

used. This would make the numerical simulations much heavier than those performed in the

present work, simulations that already required many thousands of CPU hours. Thus an equiva-

lent but more efficient computational approach consists in resorting to Monte Carlo simulations

to study the clustering transition under the assumption of thermodynamic equilibrium of the

roto-traslational degrees of freedom.

2.4.1 Potential Energy

A different model of intermolecular interactions with respect to the one used in previous sections

is introduced in Monte Carlo simulations to achieve a more accurate description of the clustering

transitions. The following form for the potential energy has been considered in Monte Carlo

simulations:

UTot(pi,pj, rij) = +∞ rij < 2a

UTot(pi,pj, rij) = UHmk(rij) + UDby(rij) + UEDdip(pi,pj, rij) rij ≥ 2a (34)



where rij is the vector joining the centers of the i-th and the j-th molecule, UDby is the screened

electrostatic potential of the force exerted between net charges of biomolecules, UEDdip is the

electrodynamic potential between resonant oscillating giant dipoles and UHmk is the pairwise

Hamaker dispersion interaction energy. More in details:

• the electrostatic screened potential due to the presence of counterions has the form of the

Debye-Hückel potential UDebye(r) in Eq.(29) with the same choice of parameters;

• a more refined description of the clustering transition requires to take into account disper-

sion forces. At the biomolecular scale, dispersion forces can be effectively described by

the Hamaker interactions (Ref.[52] of Main text)

UHmk(r) =− A

6

[
2R1R2

(2R1 + 2R2 + r)r
+

2R1R2

(2R1 + r)(2R2 + r)
+

+ ln
(2R1 + 2R2 + r)r

(2R1 + r)(2R2 + r)

]
(35)

whereA = 3−10 kBT is the typical value of the Hamaker constant for proteins (Refs.[53]

and [54] of Main text), and Ri is the radius of the i-th particle. In our simulations the

Hamaker constant has been set to A = 10 kBT with the radii R1 = R2 = a = 42Å.

• The electrodynamic interaction is assumed to be pairwise and of the form

UEDdip(pi,pj, rij) = freg(rij)
pi · pj − 3(pi · r̂ij)(pj · r̂ij)

4πε0εW (ωCVM)r3
ij

(36)

where pi is the dynamical electric dipole moment of the i-th molecule, r̂ij = rij/rij is

the unit vector directed from the i-th particle to j-th one. The details of the derivation of

this potential will be provided in Section 3.1.

The interaction energy of a system of oscillating dipoles is generally speaking a function

of time. Nevertheless, following the derivation in Ref.[12] of Main text, the interac-



tion energy has been averaged over a time scale much larger than the typical period of

dipole oscillation. In so doing, the interaction energy depends only on the position of the

dipoles, their orientations and their relative phase of oscillation ∆αij = αj − αi. The ef-

fect of this relative phase can be included in the relative orientation of the dipoles, so that

the system of interacting oscillating resonant dipoles is mapped into a system of static

dipoles. Adopting the above given form of the electrodynamic dipole-dipole potential

requires to adapt accordingly its short distance regularization. In fact, as the potential

depends on both the distance and the mutual orientation of the dipoles, the previously

adopted algebraic regularization [in Eq.(2)] is not well suited because, at short distances,

minor angular variations can determine a substantial nonphysical change of energy (very

large torque). Moreover, a suited regularization should take into account the repulsion

of molecular electron clouds due to the Pauli exclusion principle. For these reasons a

regularization provided by the function freg(rij) has been introduced to soften the electro-

dynamic potential for r −→ R0 = 2a and to make it equal to the non regularized potential

at infinity, i.e. lim
r→+∞

freg(r) = 1. To comply with these requirements, the regularizing

function is chosen of the form

freg(r) = − tanh

(
R0 − r
R0σreg

)
. (37)

where the parameter σreg = 0.679 is determined after the assumption that freg(2R0) =

0.9 (see Figure S15 for the effect of the regularization over a generic potential U(r) =

−r−3).
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Figure S15: Effects of the damping function freg(r) on a potential U = −r−3. In blue the
non regularized potential −r−3, in orange the regularized potential Ureg(r) = freg(r)U(r).

2.4.2 Details of the simulations

The simulations have been performed by considering a cubic box of side L = 8486Å, with

spherical particles of radius a = 42Å. As for the molecular dynamics simulations described in

Section 2.3, the dimensions of the fixed simulation box are chosen so that Veff = L3, and the

number of particles in the box is changed in order to vary the intermolecular average distance

〈d〉, i.e.

N =

⌊
L3

Veff

⌋
(38)

The degrees of freedom updated by the Monte Carlo Dynamics are the three Cartesian coor-

dinates (xi, yi, zi) and the polar angles (φi, θi) defining the position of the center of mass and

the orientation of the dynamical electric dipole of each molecule, respectively. The domain

for the coordinates of the center of mass is defined by xi, yi, zi ∈ [0, L] and φ ∈ [0, 2π),

θ ∈ [0, π] for the angular coordinates. The m-th Monte Carlo step is performed according to

the Metropolis algorithm prescriptions. In a system consisting of N particles, N random ex-



tractions of a particle are performed. At the k-th extraction of the m-th step, a test configuration

{(x̃ik(m), φ̃ik(m), θ̃ik(m)} is created for the chosen particle labeled by ik through a random

displacement in configuration space with respect to a reference configuration, i.e.
x̃ik(m) = xik(m− 1) + ∆x ξik(m)

φ̃ik(m) = φik(m− 1) + ∆φ ξφ,ik(m)

θ̃ik(m) = θik(m− 1) + ∆θ ξθ,ik(m)

(39)

where each ξα,i(m) is a Gaussian-distributed random variable with zero mean and unit variance:

〈ξα,i(m)ξβ,j(m+m′)〉 = δm′,0δi,jδα,β (40)

where the average 〈·〉 is intended over many realizations of the random process. The probability

to accept a trial configuration is given by

Tx→x̃ = min

{
exp[−βV (x̃)]

exp[−βV (x)]
, 1

}
. (41)

If the trial configuration is accepted and a particle exits from the box, it is reinjected into the

volume using the following prescription: the distance of the center of the particle from the box

is calculated as:

di =

√√√√ 3∑
k=1

[
x2
k,iΘ(−xk,i) + (xk,i − l)2Θ(xk,i − l)

]
, (42)

then the particle is reinjected into the box at a distance di from a randomly chosen side of the

box. More precisely, two random numbers η1, η2 are chosen in the interval [0, L] and a third

random number ηsel is extracted in order to determine the reinjection side, i.e. if xi are the



coordinates of the reinjected particle:

xi =



(di, η1, η2) for 0 ≥ ηsel > 1/6

(L− di, η1, η2) for 1/6 ≥ ηsel > 1/3

(η1, di, η2) for 1/3 ≥ ηsel > 1/2

(η1, L− di, η2) for 1/2 ≥ ηsel > 2/3

(η1, η2, di) for 2/3 ≥ ηsel > 5/6

(η1, η2, L− di) for 5/6 ≥ ηsel > 1 .

This particular choice for the boundary conditions has been made in order to mimic the contin-

uous flow of particles in and out of the confocal volume in FCCS experiments. As long-range

interactions are assumed to be activated by the blue light only in the confocal volume and to

be absent outside it, no correction of the long-range electrodynamic potential is needed (this

would be in general the case with long range interactions requiring corrections to account for

the contributions of the images of the system due to periodic boundary conditions).

2.4.3 Results of the simulations

The simulations have been performed choosing random positions and orientations for the par-

ticles in the box which represents the confocal volume. The number of Monte Carlo steps has

been fixed to NMCsteps = 2× 106 with δx = ∆x/a = 2 and δang = ∆θ/π = ∆φ/(2π) = 0.1.

This makes the square root of the mean square displacement of each particle
√

MSD ≈
√

3∆x
√

2× 106 ≈ 2.05×105Å ≈ 24L, that is, large enough. In order to optimize the con-

vergence rate of the dynamics to the stationary state of the system, an adaptive method has

been introduced. Each 102 Monte Carlo steps the running acceptance ratio ηAR is calculated: if

ηAR < 0.33 the relative displacements δx, δang are halved (up to 5 times) while if ηAR > 0.85

the relative displacements are doubled one time. The results reported in Figures S16 and S17



Figure S16: Clustering transition. Snapshots corresponding to the clustered phase in a cubic
system of side L = 8486Å, with intermolecular average distance 〈d〉 = 950Å, obtained by
setting the number of particles to N = 713 and the dynamic electric dipole to |p| = 2900D at
T = 303.15K = 30oC. Left box: the initial condition. Right box: the final configuration after
2× 106 Montecarlo steps.

correspond to a value |p| = 2900D of the modulus of the dynamic electric dipolar momentum.

This value of |p| has been found to produce a clustering transition for 〈d〉 . 950Å (see Figure

S16) that disappears for 〈d〉 & 1000Å (see Figure S17).

The value |p| ∼ 2900D is significantly larger than the value derived from the semi-analytical

model and from molecular dynamics simulations for a clustering transition in the same condi-

tions of temperature and concentration. This is due to the fact that in MC simulations the

long-range electrodynamic interactions are both attractive and repulsive depending on the mu-

tual dipole orientations (and mutual oscillation phases) while in the simulations performed with

molecular dynamics the electrodynamic interactions were represented by an only attractive po-

tential.



Figure S17: Absence of clustering. Snapshots of the disperse phase in a cubic system of side
L = 8486Å, with intermolecular average distance 〈d〉 = 1000Å, obtained by setting the number
of particles to N = 611 and the dynamic electric dipole to |p| = 2900D at T = 303.15K =
30oC. Left box: the initial condition. Right box: the final configuration after 2 × 106 Monte
Carlo steps.

2.5 Further Remarks on the interpretation of FCCS experiments

The experimental values of the Brownian diffusion coefficients obtained at highly diluted solu-

tions of R-PE are found to increase with the laser power.

On the basis of the standard equations for the Brownian diffusion coefficient

D =
kBT

6πη(T )RH

, (43)

and for the temperature dependence of water viscosity in the interval between 0◦C and 370◦C

η(T ) = A× 10B/(T−C) , (44)

by using η(20◦C) = 10−3 Pa sec, with standard values A, B, and C equal to 2.414 × 10−5

Pa sec, 247.8 K, and 140 K, respectively, a straightforward computation, with RH = 42Å



for R-PE, yields the experimentally measured values: D0(50µW ) = 125µm2sec−1 for T =

58.5oC, D0(100µW ) = 200µm2sec−1 for T = 87.2oC, and D0(150µW ) = 260µm2sec−1

for T = 106.6oC. Such an increase of temperature within the confocal volume of the FCCS

apparatus would be in-principle possible but ruled out by the measurement of the diffusion

coefficients obtained with dye molecules (Atto488 or Alexa488) at the same laser powers, in

fact no increase of the diffusion coefficient with increasing laser power is observed in this case.

We might venture the guess that, instead of heating all the water in the confocal volume, a

pseudo-heating effect could concern only the first hydration layers of each protein. In fact,

considering an amplitude of some Angstroms of the collective oscillation of each molecule at

the frequency of 96 GHz we obtain a velocity of expansion of roughly 100 meters s−1 of each

protein molecule. This value is comparable with the velocity of water molecules at T = 30oC

which would hit the proteins at a higher relative velocity and thus higher effective temperature.

A thorough understanding of this phenomenon is beyond the aim of the present work. The

clustering phase transition with sudden drop of D/D0 is a phenomenon which has nothing to

do with the increase of D0, whatever physical mechanism might cause this increment.

3 Effects of electrodynamic interactions on the frequency of

molecular collective vibrations

3.1 Preliminaries

In THz spectroscopy experiments, the absorption peaks corresponding to collective intramolec-

ular vibrations of both R-PE and BSA proteins have been observed to undergo a frequency shift

proportional to molecular concentration.

In Ref.[19] of Main text it has been argued that these absorption peaks are the spectroscopic

signature of a classical Fröhlich condensation-like phenomenon, i.e. when the energy injection



rate exceeds a threshold value the energy pumped into a molecule is almost entirely channelled

into its lowest frequency mode, and this entails a collective vibration of the whole molecule.

Recently, it has been suggested that a full and deeper understanding of the experimental results

reported in Ref.[19] of Main text requires a quantum treatment of the Fröhlich condensation

mechanism (see Ref.[22] of Main text). Even if this proposal is very interesting and robust, for

the purposes of the present work we can proceed in the conceptual framework of a classical

description.

In what follows, a biomolecule of mass M is represented by two spheres, each one of mass

Mcrg = M/2 (where crg stands for center of charge) and effective charge Zeff , connected by a

spring of elastic constant kCVM = Mω2
CVM/4, where ωCVM = 2πνCVM is the characteristic

angular frequency of a collective vibrational mode (CVM).

The spring is actually a doughnut-like extended elastic object (the R-PE protein) mainly

made of α-helices each one behaving like a spring. In its extension modes, because of geo-

metric constraints, we can reasonably assume that the velocity of each mass element of the

molecule is larger at the external parts and lower at the interior. A common assumption is a

linear dependence of the velocity of a mass element passing from the slower part to the faster

part. This means that the velocity u of a mass element dM is taken as u(r) = vr/R, where R

is the larger radius of the molecule and r is the radial coordinate from the center. Assuming a

uniform mass distribution we have dM = M dr/R. The kinetic energy of the molecule then

reads

K =

∫
molecule

1

2
u2(r)dM(r) =

Mv2

2R3

∫ R

0

r2dr =
1

2

M

3
v2

whereM is the rest mass of the molecule andM/3 (known as the Rayleigh limit) is the effective

mass contributing to the kinetic energy of the spring consisting of an extended elastic object.

Due to the Equipartition Theorem, at thermodynamic equilibrium the amplitude ∆x of the



oscillations of the charge barycenters around the equilibrium position is given by

kBT = Meff ω
2
CVM〈(∆x)2〉 ⇒

σ∆x,Th =
√
〈(∆x)2〉 =

1

2πνCVM

√
kBT

Meff

=
7.99×10−2Å

[νCVM ]
√

[Meff ]
(45)

where Meff = Mcrg/6 = M/12, the experimental temperature is assumed T = 30oC =

303.15K, the frequency [νCVM ] is expressed in THz and the reduced mass [Meff ] is expressed

in KDa. For R-PE the observed peak of lowest frequency is at [νCVM ] = 0.71 × 10−1 and

[Meff ] ' 20, so that the amplitude of the oscillation is σ∆x ≈ 2.5×10−1Å. For BSA, the

observed collective vibrational mode is [νCVM ] = 3.14 × 10−1 and the characteristic mass

[Meff ] ' 5.5 so that the expected relative distance between the charge barycenters is σ∆x ≈

1.85×10−2Å.

The R-PE has a strong absorption at λAB,RPE ' 488n m and the emission peak is around

λEM,RPE ' 580n m: it follows that for a number nflc of fluorochromes the quantity of energy

absorbed is

∆ERPE < η nflchc(λ
−1
AB,RPE − λ

−1
EM,RPE) '

' η nflc × 15.4× (kB 303.15K) ' η nflc × 6.457×10−13erg ,
(46)

where η is the efficiency of the energy transfer from the fluorochrome to mechanical vibrational

(phonon) modes of the biomolecule. The description of the details of such a process goes far

beyond the purpose of this paper, but an efficiency around 10% can be expected (for further de-

tails on a possible mechanism describing the conversion of electronic excitation into mechanical

excitation see Ref.[55] of Main text). It follows that the maximum extension amplitude for the



oscillating molecules is estimated to be:

σ∆x,Fc =
√
〈(∆x)2〉 < 1

2πνCVM

√
η(nflc × 15.4)× kBT

Meff

' √η nflc × 5.6×10−1Å (47)

assuming for R-PA nflc = 38 and η = 0.1 we obtain σ∆x,Fc ≈ 1.08Å. The activation of a

coherent excitation due to Fröhlich-like condensation is represented in the simple model here

considered as a phase-defined oscillation maintained for a coherence time τcohr � ν−1
CVM . So

we can assume that the time evolution of the distance between the charge barycenters is given

by

xi(t) = x0,i +
1

2
{xω,i exp[−i(ωCVM t+ φi)] + c.c} , (48)

where xω0,i =
√

2σ∆x and ωCVM is the angular frequency of oscillation of the single molecule

in the limit of high dilution. In real experiments with R-PE, the Q-factor of the absorption peak

at the resonant frequency has been measured to be in the range 50÷90, therefore it is not out of

place to comment about such large values which are at odds with the much smaller values com-

monly reported in the literature for low frequency vibrational modes, but importantly, at thermal

equilibrium and for non-interacting molecules. In the present work we deal with systems com-

posed of molecules kept far from thermal equilibrium and interacting through electrodynamic

forces. This last fact is crucial, in fact these mutual interactions affect the frequency of the

intramolecular collective vibrations (as is shown in what follows), consequently we can hy-

pothesize that these mutual interactions can also affect the oscillation phases of the molecules

producing a synchronized oscillation of many molecules, thus making all of them - loosely

speaking - more resistant against viscous damping due to the surrounding water molecules.

This is a working hypothesis based on the results on synchronization phenomena reported in

Ref.[26] of Main text. With the above given Q-values the coherence time can be estimated



through:

τcohrνCVM ≈
Q

π
≈ 16÷ 30⇒ τcohr ≈

Q

πνCVM
≈ 2.2÷ 4.0×10−1nsec (49)

Considering the largest experimentally measured diffusion coefficient of R-PED0 ≈ 250µm2s−1

the displacement of the particle during the interval of coherent oscillations is of the order

√
〈|∆ri|2〉 ≈

√
6D0τcohr ≈ 5.8÷ 8 Å (50)

which is much less than the intermolecular average distance and the characteristic dimension of

the protein.

In this limit we can consider the positions and the orientations of the molecules as fixed for

a time tint such that τcohr ≥ tint � ν−1
CVM . We can assume that the electric dipole of a single

molecule in a reference frame attached to the molecule takes the form

pi(t) ' pstat,i + pdyn,i(t) =
{
p0 +

pω
2

exp [−i(ωt+ φi)] + c.c.
}
p̂i

= Zeffe
{
x0 +

xω
2

exp [−i(ωt+ φi)] + c.c.
}
p̂ x0, xω ∈ R+ (51)

where p̂ is the normal vector that indicates the direction of the dipole, Zeff can be defined as

the equivalent charge of a symmetric dipole, i.e.

Zeff = Z+ −
ZTot

2
= Z− +

ZTot
2

(52)

and the relative position x of the charge barycenters is defined by

p(t) = Z+r+(t) + Z−r−(t) = Zeffx(t) . (53)

If the value of the effective separated charge is Zeff e then the electric dynamic dipole has the



following maximum

pωCV M
= Zeff e σ∆x < Zeff ×

√
ηnflc × 2.69 D . (54)

It is known that the charge barycenters of biomolecules are separated by a distance of 3÷ 10 Å

(Ref.[56] of Main text), one order of magnitude larger than the estimated xωCV M
. However,

we can argue that in an electrolytic solution with a Debye length comparable to that of living

cells, that is λD ≈ 10Å, the interaction due to the electrostatic charge distribution is negligible

with respect to the electrodynamic interactions between the dynamical parts pdyn,i(t) of the

oscillating dipoles of two distinct molecules.

3.1.1 The electrodynamic interactions among the oscillating dipoles

According to Ref.[12] of Main text, the large dipole oscillations induced by energy injec-

tion and subsequent Fröhlich condensation are responsible for long-range interactions between

biomolecules. Let us consider a system of N identical molecules, such that each molecule has

a total mass M and a net charge Znet and can be represented as a system of two lumps of mass

Meff = M/2 and connected by an harmonic spring of elastic constant k = Meff ω
2
CVM . The

dynamical variables are the distances among the charge barycenters, xi(t) = x0,i + xdyn,i(t) so

that the dipole moment can be written pi(t) = Zeffx(t)ep̂i. As the measured frequency shift

due to the interactions is expected to be a perturbation we can assume that the vibrational mode

with an angular frequency very close to ωCVM has been activated, i.e.

xi(ω) 6= 0 only if |ω ± ωCVM| < εωCVM for ε� 1 (55)

If we consider the systems on a characteristic time scale τint such that τcohr ≥ τint � ν−1
CVM ,

we can ignore the dissipation in the oscillation of the dipoles, and the total energy of the system



for the vibrational degrees of freedom can be written as

HdipOs(P i(t),xi(t)) =
N∑
i=1

[
P 2
i (t)

2Meff

+
1

2
Meff ω

2
CVM(xi(t)− x0,i)

2+

− 1

2

N∑
j=1
j 6=i

Zeff,iexi(t)p̂i · Ej(ri, t)

] (56)

where x0,i is the distance between charge barycenters, Pi = Meff ẋi(t) is the conjugate variable

of the charge barycenter distance xi and Ej(ri, t) is the electric field generated by the j-th

particle at the point ri at the time t. In order to derive the equations of motion for the system

of coupled dipoles we need to express the electromagnetic field generated by the j-th molecule

in terms of the charge barycenter separation xj . According to Eq.(50) we can consider as fixed

the positions and the orientations of the dipoles.

The electric field Ei(r, t) splits into a static and a dynamic component, i.e.

Ei(r, t) = Estat,i(r) + Edyn,i(r, t) = Estat,i(r) +

∫
R\{0}

Edyn,i(r, ω) exp(−iωt) dω =

= Estat,i(r) +

∫
R+\{0}

2|Edyn,i(r, ω)| cos [ωt− θE(ω)] dω (57)

where the polar representation of the Fourier coefficients of the electromagnetic field has been

used; Estat,i(r) is the static component of the electromagnetic field while Edyn,i(r, ω) is the

dynamical electric field generated by dipole oscillations. The electric fields generated by static

charge distributions are subjected to Debye-Hückel screening due to the freely moving ions on

a characteristic length scale λD

λD =

(∑
i ρ∞,ie

2z2
i

ε0εWkBT

)−1/2

(58)

where ρ∞,i is the concentration of the i-th electrolyte species and T is the temperature of the



solution. In the experiment mimicking biological conditions, the ionic strength of the NaCl

solution is 200mM, which results in a Debye length λD ≈ 9.74Å. In this condition, the electro-

static field Estat,i(r) generated by the i-th charge distribution located at ri and characterized by

a total charge ZNet and electric dipole pi = p0,ip̂i is given by (Ref.[57] of Main text)

Estat,i(r) =
exp[−|r− ri|/λD]

4πε0εW (0)

{
ZNet,ie

|r− ri|

(
1

|r− ri|
+

1

λD

)
n̂rir + (59)

+ p0,i

[(
3

|r− ri|3
+

3

λD|r− ri|2
+

1

λ2
D|r− ri|

)
(n̂rir · p̂i)n̂rir −

(
1

|r− ri|3
− 1

λD|r− ri|2

)
p̂i

]}

where n̂rri = (r − ri)/|r − ri| is the unit vector along the direction joining the dipole and the

point r. The minimal intermolecular average distance among biomolecules considered in THz

spectroscopy experiments was 〈r〉 ≈ 600Å, so that in the electrostatic potential the leading term

is

Estat,i(r) ≈
exp[−|r− ri|/λD]

4πε0εW (0)λD|r− ri|

[
ZNete+

p0,i

λD
(n̂rir · p̂i)

]
n̂rir = Estat,i(r)n̂rir (60)

The dynamics of the electromagnetic field is described by D’Alembert equation in Lorenz

gauge reading [
|k|2 − ω2

v2
c (ω)

]
Ai(k, ω) = µ(ω)Ji(k, ω) (61)

where v2
c (ω) = c2/[εW (ω)µW (ω)] = [ε0εW (ω)µ0µW (ω)]−1 represent the (complex) speed of

propagation of light. In our case we can safely assume that the relative magnetic permittivity is

1, i.e. µW (ω) = 1 and the solution in real space is given by

Ai(r, ω) = µ0

∫
R3

Ji(k, ω)

|k|2 − k2
0(ω)

exp[+ik · r] d3k (62)

where k2
0(ω) = ω2/v2

c (ω) ∈ C. The Fourier components of the current associated to the



oscillation of the i-th dipole are

Ji(k, ω) =
1

(2π)4

∫
R3

d3k

∫
R

dω Ji(r, t) exp[−i(k · r− ωt)] =
pi(ω)p̂i
(2π)3

(−iω) exp(−ik · ri)

(63)

where

Ji(r, t) = Zeffe [ṙi,+δ(r− ri,+)− ṙi,−δ(r− ri,−)] p̂i =
Zeffe p̂i

(2π)3

∫
R3

[
ṙi,+ exp (−ik ·∆ri,+) +

−ṙi,− exp (−ik ·∆ri,−)
]

exp [−ik · (r− ri)] d3k ≈ Zeffeẋi p̂i
(2π)3

∫
R3

exp [−i(r− ri)] d3k =

=
ṗi p̂i
(2π)3

∫
R3

exp [−ik · (r− ri)] d3k = δ(r− ri)
dpdyn,i

dt
(64)

where we have introduced the distance ∆r±,i = r± − ri of the positive and negative charge

barycenters from the center of net charges, and the dipole approximation has been considered,

i.e. k · ∆r±,i � 1. Moreover, it has been assumed that the orientation of the dipoles is fixed

( ˙̂pi = 0). Under these assumptions it follows that the only source of the electromagnetic field

are the oscillating dipoles.

Substituting Eq.(63) in Eq.(62) we obtain

Ai(r, ω) =
µ0(−iω)pi(ω)p̂i

(2π)3

∫
R3

exp[ik · (r− ri)]

|k|2 − k2
0

d3k =

=
µ0(−iω)pi(ω)p̂i

4π|r− ri|
exp[ς i k0(ω)|r− ri|] =

=
µ0(−iω)pi(ω)p̂i

4π|r− ri|
exp[ς i Re(k0)|r− ri|] exp[−|Im(k0)||r− ri|] (65)

where k0 =
√
k0(ω)2 ∈ C and ς = sgn[Im(k0)]. According to the conventions adopted in

Appendix A for the dielectric constant of water ς = sgn(ω). Using Maxwell equations, the



expressions of the magnetic field is

Hi(r, ω) =
rotAi(r, ω)

µ0µW (ω)
= (n̂rri × p̂i)

ςωk0(ω)pi(ω)

4π|r− ri|

(
1− 1

iςk0(ω)|r− ri|

)
exp[ς i k0(ω)|r− ri|]

(66)

and of the electric field is

Ei(r, ω) =
1

(−iω)ε0εW (ω)
[rotHi(r, ω)− µW (ω)Ji(r, ω)] . (67)

The Fourier transform in frequency domain of the dynamical part of the electric field generated

by the i-th dipole for r 6= ri reads

Edyn,i(r, ω) =
pi(ω)

4πε0εW (ω)

{
k2

0(ω)

|r− ri|
(n̂rri × p̂i)× n̂rri +

+

(
1

|r− ri|3
− iςk0(ω)

|r− ri|2

)
[3(n̂rri · p̂i)n̂rri − p̂i]

}
exp[iςk0(ω)|r− ri|] .(68)

The attenuation range (by a factor e) of the field is given by λatt(ω) = Im−1[k0(ω)] while the

field wavelength is given by λ(ω) = 2πRe−1[k0(ω)]. In the NaCl water solution condition

used in experiments, and in the range of (angular) frequencies ω attributed to the collective

oscillations (CVM) of the biomolecules under consideration (R-PA and BSA) it is λ(ω) &

10λatt(ω). It follows that the retardation effects can be neglected, leading to

Edyn,i(r, ω) =
pi(ω)

4πε0εW (ω)|r− ri|3
[3(n̂rri · p̂i)n̂rri − p̂i] . (69)



So, the real electric field can be rewritten as

Edyn,i(r, t) =

∫
R+/{0}

pi(ω)

4πε0εW (ω)|r− ri|3
[3(n̂rri · p̂i)n̂rri − p̂i] exp(−iωt)dω =

=
[3(n̂rri · p̂i)n̂rri − p̂i]

4πε0|r− ri|3

∫
R+/{0}

pi(ω) exp(−iφεW(ω)) exp(−iωt)

|εW (ω)|
dω (70)

where we have used εW (ω) = |εW (ω)| exp[+iφεW(ω)]. Using the reality condition on the time

dependent dielectric constant εW (t), i.e. φεW (−ω) = −φεW (ω), we obtain

Edyn,i(r, t) =
[3(n̂rri · p̂i)− p̂i]

4πε0|r− ri|3
Pi(t) , (71)

where the effective generating dipole Pi(t) is defined as

Pi(t) =

∫
R+/{0}

2|pi(ω)| cos [ωt− φi(ω)− φεW (ω)]

|εW (ω)|2
dω =

∫ t

−∞
χ(t− t′)pi(t′) dt′ , (72)

and the response function χ(t − t′) depends on the dielectric properties of the water solution.

The interaction energy between the i-th dipole and the electric field generated by the j-th dipole

Pj is given by

Vdyn,ij =
p̂i · p̂j − 3(p̂i · n̂rirj)(p̂i · n̂rirj)

4πε0|ri − rj|3
Pj(t)pi(t) =

=
p̂i · p̂j − 3(p̂i · n̂rirj)(p̂i · n̂rirj)

4πε0|ri − rj|3

∫ t

−∞
dt′ χ(t− t′)pj(t′)pi(t) . (73)

The dispersion effects do not allow to provide a straightforward Hamiltonian formulation of the

dynamics of the oscillating dipoles; for this reason we introduce an effective dipole P̃i(t) =

Cpi(t) with no phase mismatch effects due to the dispersion properties of the aqueous solution,

i.e. √
〈P2〉[0,+∞) =

√
〈P̃2〉[0,+∞) (74)



where 〈·〉[0,T ] stands for the time average on the interval [0, T ]. The condition in Eq.(74) can be

rewritten as √∫ +∞

0

2|pi(ω)|2
|εW (ω)|2

dω = C

√∫ +∞

0

2|pi(ω)|2 dω (75)

and assuming that the modulus of the complex dielectric constant is almost constant on the

support of |pi(ω)|, centered around ωCVM , we obtain

C =
1

|εW (ωCVM)|
. (76)

We verify that, in the case of study, we can effectively expect that the variation of the modulus

of the dielectric constant is negligible. According to what is reported in Appendix A about

the dielectric properties of salty water, we can expect that in conditions analogous to the ex-

perimental ones the maximum variation of the modulus of the (complex) dielectric constant is

given by

∆|ε(ω)| ≈
∣∣∣∣d|ε(ωCVM)|

dω
(∆ω)FS

∣∣∣∣ (77)

where (∆ω)FS is the maximum of the experimentally measured frequency shift of the absorp-

tion peak in the THz spectrum of a protein. For R-PE d|ε(ωCVM)|/dω = −43.610−12sec

and (∆ω)FS ≈ 2.6 × 10−3THz, from which it follows that (∆|ε(ω)|)RPE ≈ 1.2 × 10−1

and (∆|ε(ω)|)RPE/|ε(ωCVM)| ≈ 5.1 × 10−3. This means that at the level of accuracy ex-

pected by the current theoretical interpretation of the experimental results, the approximation

of a constant absolute value of the dielectric constant is a good one. In the case of BSA

we have that d|ε(ωCVM)|/dω = −1.9110−12sec and (∆ω)FS ≈ 0.81 × 10−1THz; accord-

ing to Eq.(77) the estimated variation of the modulus of the relative dielectric constant is

(∆|ε(ω)|)RPE ≈ 1.6× 10−1, whence (∆|ε(ω)|)RPE/|ε(ωCVM)| ≈ 2.1× 10−2.

From the above considerations, it follows that the potential between oscillating dipoles can



be rewritten as

Vdyn,ij(t) =
p̂i · p̂j − 3(p̂i · n̂rirj)(p̂i · n̂rirj)

4πε0|εW (ωCVM)||ri − rj|3
pj(t)pi(t) =

= ZiZje
2 p̂i · p̂j − 3(p̂i · n̂rirj)(p̂i · n̂rirj)

4πε0|εW (ωCVM)||ri − rj|3
xi(t)xj(t) . (78)

This is the electrodynamic potential between two biomolecules when collective giant dipole

oscillation are activated by an external source of energy.

We are now able to describe the dynamics of the hamiltonian system of dipole oscillators.

Let us introduce the variables xdyn expressing the dynamical part of the separation between the

barycenters of charge , i.e.

xi(t) = xeq,i + xdyn,i(t) = xeq,i +

∫
R/{0}

2xi(ω) cos[ωt+ φi(ω)] dω (79)

where xeq,i is the static equilibrium elongation of the dipole associated with the i-th molecule,

i.e.

∂xdyn,iH
∣∣
xdyn=0

= 0 ∀i = 1, ..., N . (80)

From Eq.(79) it follows that the canonical conjugate momenta associated to the variables xdyn,i(t)

remain unchanged with respect to the momenta Pi associated to the variables xi.

According to Eqs.(60) and (71), we can rewrite the electric field generated by the i-th

molecule using the variables introduced in Eq.(79)

Ei(r, t) = χ(s)(r; ri, p̂i)p0,i + χ(d)(r; ri, p̂i)pdyn,i(t) (81)



where

χ(s)(r; ri, p̂i) =
exp[−|r− ri|/λD]

4πε0εW (0)λD|r− ri|
n̂rir

λD
(n̂rir · p̂i) (82)

χ(d)(r; ri, p̂i) =
[3(n̂rri · p̂i)− p̂i]

4πε0εW (ωCVM)|r− ri|3
. (83)

With the notations introduced in Eqs.(79) and (82) the equations of motions become

ẋi =
Pi
Meff

Ṗi = −Meffω
2
CVMxdyn,i +

Zeff,iZeff,je
2

2
× (84)

×
j=1...N∑
j 6=i

[
peq,j

(
p̂i · χ(s)(ri; rj, p̂j) + p̂j · χ(d)(rj; ri, p̂i)

)
+ 2pdyn,jp̂i · χ(d)(ri; rj, p̂j)

]
where we have used p̂i · χ(d)(ri; rj, p̂j) = p̂j · χ(d)(rj; ri, p̂i). As we are interested in the

long range behaviour when |ri − rj| � λD we can neglect terms containing χs in Eq.(84).

Introducing the geometric coupling parameter ζij = −p̂i · χ(d)(ri; rj, p̂j) we can rewrite the

equations of motion for xdyn,i in terms of its Fourier components yielding

∫
R/{0}

{
[−ω2 + ω2

CVM ]xω,i cos(ωt+ φi,ω) +

j=1...N∑
j 6=i

Zeff,iZeff,jζij
Meff

xω,j cos(ωt+ φj,ω)

}
dω +

+ ω2
CVM(xeq,i − x0,i) +

j=1...N∑
j 6=i

Zeff,iZeff,je
2ζij

Meff

xeq,j = 0 (85)

The condition for xeq,i can be rewritten as

Mijxeq,j = x0,i with Mij = δij +
Zeff,iZeff,je

2ζij
Meffω2

CVM

(1− δij) (86)

while the condition for the solutions of the dynamics can be rewritten as a set of equations for



the normal modes of the system, i.e.

(Mij − ω̃2δij)xω,j = 0 (87)

where ω̃ = ω/ωCVM . The set of eigenvalues of the matrix M defines the square of the angular

frequencies of the normal modes {ω̃A}A=1,...,N . The eigenfrequencies are well defined as ω̃2
A >

0 for all A = 1, ..., N in the perturbative regime, i.e.

∣∣∣∣Zeff,iZeff,je2ζij
Meffω2

CVM

∣∣∣∣� 1 . (88)

Within this theoretical framework it is possible to provide an explanation for the observed fre-

quency shift as discussed in Subsection 3.1.2. The Hamiltonian of the system can be rewritten

as

HdipOs({Rij}ij) = Heq({Rij}ij) +
N∑
A=1

J̃Aω̃A({Rij}ij)ωCVM ≈
N∑
A=1

J̃Aω̃A({Rij}ij)ωCVM .

(89)

where Heq({Rij}ij) is the energy contribution of the static dipoles that we assume to be negli-

gible with respect to the other term representing the contribution of the dynamics of the coupled

oscillators. In order to define the interaction energy among dipoles as a function of their relative

positions Rij , the energy of the oscillators in the limit of infinite mutual distances is considered.

In fact, a parameter ε = min
ij
|Rij|−1 representing the inverse of a length scale can be introduced

such that Rij = R̃ij/ε where R̃ij ≥ 1. It follows that the Hamiltonian describing the energy of

the coupled oscillators depends on ε and that the case of decoupled oscillators can be obtained

in the limit

HfreeOs = lim
ε→0+

HdipOs(R̃ij/ε) =
∑
i=1

JiωCVM .



In this framework, the interaction energy is defined as

∆Uint =

∫ 1

0

dHdipOs

dε
dε . (90)

Assuming an adiabatic process ideally connecting the asymptotic state of non-interacting dipoles

ε = 0 and the state of interacting dipoles ε = 1, the action J is an adiabatic invariant, i.e.

Ji ≈ JA|ε=0. The interaction energy takes the form

∆Uint({Rij}ij) =
N∑
A=1

JA

∫ ω̃A

1

ωCVM dηA =
N∑
A=1

JAωCVM[ω̃A({Rij}ij)− 1] . (91)

This form of the interaction energy is the generalization to the case of N oscillating dipoles of

the results derived in Ref.[12] of Main text for a pair of oscillating resonant dipoles. In fact, the

frequency shift in a system of two coupled identical oscillating dipoles is given by

ω̃± = 1± Z2
effe

2

8πε0ε(ωCVM)|R12|3MeffωCVM

(92)

and, consequently, the interaction energy in that case scales as |R12|−3. In the general case of

N interacting dipoles, the frequency shift of each normal mode with respect to the reference

frequency ωCVM is a non trivial function depending on the position of all the particles in the

system. For such a reason we performed numerical simulations in order to provide a theoretical

explanation of the experimental outcomes.

3.1.2 Theoretical interpretation of the observed frequency shift of the absorption peak

in THz spectroscopy experiments

In THz absorption spectroscopy experiments, the external monochromatic reading THz field

Eread(t) = Eread(t)Êread couples with the system of mutually interacting excited oscillating



dipoles, i.e.

Uread = −Eread(t) · pTot = Eread(t)
N∑
i=1

Ziexi(t)
(
−p̂i · Êtest

)
= (93)

Eread(t)
N∑
i=1

N∑
A=1

(
−p̂i · Êtest

)
ZieOAi x̃0,A cos(θA + φA) = Eread(t)

N∑
A=1

Ccpl(ω̃A) cos
[
θ̃A(t) + φA

]

where we have used xi =
N∑
A=1

OAi x̃A =
N∑
A=1

OAi x̃0,A cos
[
θ̃A(t) + φA

]
.

We assume that the major contribution to THz absorption in experiments is due to the normal

mode maximally coupled with the external probing field, i.e.:

CMcpl({ri, p̂i}i) = max
A
|Ccpl(ω̃A)| = |Ccpl(ω̃Mcpl({ri, p̂i}i))| (94)

where ω̃Mcpl is the angular frequency of the collective mode with the largest absolute value of

dipole-field coupling constant.

In Eq.(94) we stressed that the mode with the maximal coupling constant depends on the

(fixed) positions and orientations of the molecules. In order to establish the value of the ampli-

tude of each normal mode x̃0,A we assume that x̃0,A ' x̃0,B ' x̃0. The value of the coefficients

x̃0,A has been chosen assuming that 〈(∆xi)2〉 =
x2
CVM

2
, where x2

CVM is the amplitude of the

oscillation of the barycenters of electric charge and 〈·〉 is the time average over a time much

larger than the ν−1
CVM . Under these hypotheses, we deduce that

〈(∆xi)2〉 =
∑
A,B

OAi OBi x̃0,Ax̃0,B〈cos(ω̃At+ φA) cos(ω̃Bt+ φB)〉 =
∑
A,B

OAi OBi x̃0,Ax̃0,B
δA,B

2
=

=
x̃2

0

2

∑
A

(OAi )2 =
x̃2

0

2
(95)

where we have used the properties of the orthogonal matrix
N∑
A=1

(OAi )2 = 1. From Eq.(95) it



follows that the total dipole associated to each normal mode is given by

Ccpl(ω̃A) =
∑
i

(−p̂i · Êread)ZieOAi
√

2σi =
∑
i

(−pA,i · Êread) (96)

where we have introduced the electric dipole moment

pA,i = ZieOAi
√

2σip̂i (97)

as the effective electric dipole amplitude at the frequency ω̃A of the i-th molecule. The (absolute

value) of the frequency shift can be defined as

‖∆ω‖ = ω̃Mcpl − ωCVM . (98)

We can analytically estimate the frequency shift for a system of two oscillating dipoles repre-

senting two excited biomolecules with fixed positions and orientations

∆ω =
ZiZje

2

2Meffω0

[p̂i · p̂j − 3 (p̂i · r̂ij) (p̂i · r̂ij)]
4π|εW (ωCVM)|ε0r3

ij

. (99)

In THz spectroscopy experiments on R-PE, a relative frequency shift ‖∆ω(600Å)‖/ωRPE,CVM ≈

6×10−3 has been measured. Assuming |εW (ωRPE)| ≈ 22.7,Meff 'MRPE/12 ≈ 0.2×102kD,

the geometric factor |p̂i · p̂j − 3(p̂i · r̂ij)(p̂j · r̂ij)| ≈ 1, then the effective electric charge is es-

timated to be

Z ≈

√√√√8Meffω2
0ζπεW (ω0)ε0

(
600Å

)3

e2
= 1.3× 103 . (100)

The spatial power density of energy injection in THz spectroscopy experiments is much smaller

than the spatial power density of energy injection in FCCS experiments. In fact, if we assume

that the strength of the dynamic dipole (and consequently of the interaction) is proportional to



the amount of the energy injection rate into the protein, we can expect that the oscillating dipole

strength (and the strength of the interaction) is smaller in THz spectroscopy experiments than in

FCCS experiments. This is confirmed by the experimental observation that in THz spectroscopy

experiments no cluster was detected for intermolecular average distances 〈d〉 ≥ 600Å while in

FCCS experiments the clustering transition was observed for 〈d〉 . 900Å. This means that in

estimating the mean squared elongation of the dipole σ2
i we have to consider a smaller value

than the one estimated in (47). Assuming that σ∆x ∼ 0.5 × σ∆x,Fc ≈ 0.5Å as in the case of

R-PE, we derive a value of pω ≈ 5.3 × 103D to explain the frequency shift observed in THz

experiment.

This value of the estimated oscillating dipole strength seems to contradict the previous as-

sumption of a smaller dipole strength than the one we have evaluated for FCCS experiments

|p| ∼ 2900D. However, in the previous estimation of the frequency shift we have considered

only two oscillating dipoles: as the electrodynamic interactions among resonating oscillating

dipoles are supposed to be long-range (scaling as r−3), we are underestimating the effect of

long range dipole-dipole electrodynamic interactions in a many-body system. So we expect

that such a value of the dynamical electric dipole is an overestimation of the real value in ex-

periments.

In real spectroscopic experiments the situation is different with respect to the ideal two body

case because the number of R-PE molecules contained in the observation volume (≈ 1µL) is of

the order 1015−1018. So, numerical simulations have been performed in order to investigate how

the frequency shift of the absorption peak depends on the intermolecular average distance for a

system of interacting dipoles, with fixed positions and orientations, linearly coupled through a

quasi-static dipole-dipole potential.

We assume that the testing field of the experiments is linearly polarized along the ẑ direction,

so that the normal mode of the system that maximizes the coupling with the reading field is the



one having the largest polarization along the z-axis. It follows that the relative frequency shift

∆ω = ∆ω({p̂i, ri}i) associated to a given configuration for the position and orientations of the

system of dipoles is given by

∆ω({p̂i, ri}i) = 1−
√
ω2
max ω̃2

max = {ω̃2
A | |Ccpl(ω̃A)| = max

B=1,...,N
{|Ccpl(ω̃B|}} . (101)

In order to compare the result of numerical simulations with the outcomes of THz spectroscopy

experiments:

• the average over many configurations of the positions and the orientations of the dipoles

has to be considered in order to take into account the thermal and statistical fluctuations

of the orientations and positions;

• the average frequency shift for a fixed intermolecular average distance has to be calculated

for systems of different size and extrapolated for large N , as finite size effects affect

systems with long range interactions.

In the following section the protocol to calculate the average over the configurations and to

extrapolate the frequency shift for large N is discussed.

3.2 Algorithm for numerical simulations

The aim of the simulations is to estimate the frequency shift for an ensemble of N spherical

molecules of radius a in a cubic box of size L as a function of the intermolecular average

distance 〈d〉. The system of oscillating dipoles consists of three different sets of degrees of

freedom: the coordinates of the center of mass of each particle, the orientation of the main

dipole and the coordinate which describes the vibration of the dipole. For each fixed value of

the intermolecular average distance 〈d〉, nCMconf = 5 × 103 configurations of the ensemble of

molecules have been randomly chosen. The position of the center of each molecule has been
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randomly set with a uniform probability distribution inside the box, avoiding the overlaps. The

orientation of each dipole is described by a couple of polar angular coordinates (θ, φ) such

that θi ∈ [0, π) and φi = [0, 2π) for i = 1, ..., N . For each fixed configuration of the cen-

ters of mass of the molecules, the orientational degrees of freedom of the molecules have been

thermalized using a Monte Carlo-Metropolis scheme. All the trial configurations for the orien-

tations have been generated by adding to the angular coordinates of each particle a randomly

chosen number with a uniform distribution. The intervals are [−ηπ, ηπ] for the θi angles and

[−2ηπ, 2ηπ] for the φi angles. In the performed simulations the parameter that describes the

width of the interval has been set to η = 7.5 × 10−3. For each configuration of the centers

of mass, ntherm = 2 × 103 Monte Carlo steps have been performed to thermalize the orien-

tations of the dipoles of the system. Then, starting from the final configuration so obtained,

an average value of the frequency shift has been computed over nMCstep = 50 configurations

furtherly generated and interspersed with 10 Monte Carlo steps. The relative frequency shift

associated to each intermolecular average distance has been computed as the overall average on

a total number of ntotsamp = nMCstep × nCMconf = 2.5 × 105 different configurations of the

dipole orientations and of the positions of the centers of mass. The potential energy dependence

among different configurations has been calculated using the time average of Eq.(78) assuming

xi(t) = xCVM cos(ωCVMt).

3.3 Numerical results

The numerical simulations were performed for systems of different sizes and different values

of the dipole moment pi and of the effective charge Zi. The entries of the matrix Mij depend on

the value of the effective charge and only indirectly on the value of the modulus of the dipole

moment of each molecule. The value of the dynamic electric dipole of each molecule enters

in the calculation of the total interaction energy among the dipoles required by Monte Carlo-



Metropolis algorithm. The tested values of the effective charge were empirically chosen in order

to provide a relative frequency shift comparable with the one observed in the experiments. The

value of the amplitude of the dynamic dipole oscillations has been chosen heuristically in order

to reproduce the experimental data.

The average frequency shift for a fixed intermolecular average distance has been measured

for different sizes of the system. For each fixed number of molecules the relative frequency

shift ∆ν0/ν0 has been plotted as a function of the intermolecular average distance 〈d〉. The

data have been fitted with a power law of the form ∆ν0/ν0 = Ax−k and an inverse cubic law

∆ν0/ν0 = Bx−3.

In conclusion, the highly remarkable result of our computations is that the frequency shift

of the collective intramolecular oscillations of an ensemble of proteins interacting through a

dipole-dipole electrodynamic force, scales as 1/〈d〉3. By inversion, the experimental observa-

tion of this result proves that the molecules under investigation interact through the electrody-

namic dipole-dipole forces above discussed.

N A[106 Å3] k B[106 Å3]
50 2.04± 0.04 2.65± 0.05 1.79± 0.04

100 1.438± 0.014 2.90± 0.02 1.38± 0.10
200 1.17± 0.02 k = 3.03± 0.04 1.185± 0.005

Table S2: Table of the fitted parameters for the relative frequency shift. The fitted param-
eters are reported as a function of the intermolecular average distance 〈d〉 and different system
sizes (the number of molecules in the box is N ). The parameters {AN , kN}N correspond to the
fit ∆ν0/ν0 = ANx

−kN and {BN}N are the parameters characterizing the inverse cubic distri-
bution ∆ν0/ν0 = BNx

−3. The modulus of each dipole was chosen to be pi = 2100 D while
the effective charge of the dipole is Zi = 850. With these choices the amplitude of dipole
oscillation is xω0 ' 0.51Å.



Figure S18: Relative frequency shift as a function of the intermolecular average distance.
N = 50 (top), N = 100 (center) N = 200 (bottom). The coefficients AN and BN are expressed in
106Å3. The modulus of each dipole was chosen to be pi = 2100 D while the effective charge of
the dipole is Zi = 850. With these choices the amplitude of dipole oscillation is xω0 ' 0.51Å.

N A[106 Å3] k B[106 Å3]
50 1.55± 0.02 2.67± 0.04 1.37± 0.03

100 1.10± 0.010 2.95± 0.02 1.081± 0.005
200 0.907± 0.009 3.05± 0.02 9.27± 0.04

Table S3: Table of the fitted parameters for the relative frequency shift. The fitted param-
eters are reported as a function of the intermolecular average distance 〈d〉 and different system
sizes (the number of molecules in the box is N ). The parameters {AN , kN}N correspond to the
fit ∆ν0/ν0 = ANx

−kN and {BN}N are the parameters characterizing the inverse cubic distri-
bution ∆ν0/ν0 = BNx

−3. The modulus of each dipole was chosen to be pi = 1850 D while
the effective charge of the dipole is Zi = 750. With these choices the amplitude of dipole
oscillation is xω0 ' 0.51Å.



Figure S19: Relative frequency shift as a function of the intermolecular average distance.
N = 50 (top), N = 100 (center) N = 200 (bottom). The coefficients AN and BN are expressed in
106Å3. The modulus of each dipole was chosen to be pi = 1850 D while the effective charge of
the dipole is Zi = 750. With these choices the amplitude of dipole oscillation is xω0 ' 0.51Å.



4 Remark on possible activation mechanisms of electrody-

namic forces in vivo

The light-induced activation of electrodynamic forces has been adopted to warrant a well con-

trollable and reproducible in vitro methodology. Even though the R-PE protein is a natural light

harvesting protein, we might wonder which kind of activation mechanisms might be hypothe-

sised to take place in living cells. A comment on this point is not out of place because there is

no physical reason to consider the activation of electrodynamic forces limited to the creation of

”hot points” through the excitation of fluorophores. In fact, the theoretical modelling in Ref.[19]

of Main text requires an external source of energy injection into a macromolecule of absolutely

generic form.

Actually, in vivo the external energy supply for the activation of electrodynamic attractive

forces between cognate partners could be well provided by the cellular machinery itself as en-

ergy released by adenosine triphosphate (ATP) or guanosine triphosphate (GTP) hydrolysis by

specific enzymes. In fact, the typical intracellular concentration of ATP molecules is given

around 1 mM implying that a protein molecule in the cell undergoes around 106 collisions

with ATP molecules per second (Ref.[58] of Main text). Given the standard free-energy ob-

tained from ATP hydrolysis estimated around 50 kJmol−1 = 8.306 · 10−13erg, we can assume

that 1% of the collisions with ATP will provide energy, which corresponds to a power sup-

ply of 8.306 · 10−9erg s−1 potentially available. Besides ATP hydrolysis, other possible forms

of energy supply should be considered in a cellular environment, for example, the energy re-

leased from mitochondria in the course of citric acid cycle with a power supply given around

10−7erg s−1. This source of energy might well be enough to excite long-range electrodynamic

forces as the corresponding power is around or larger than the power considered for ATP hy-

drolysis. Let us also mention the recent experimental evidence for thermally induced ”protein



quakes” to initiate enzymatic catalysis (Ref.[59] of Main text) through a solvent-dependent non

isotropic momentum transfer due to the collisions of water molecules or ions.

It is worth mentioning that, for a broad class of physical systems, long-living Quasi Sta-

tionary States (QSS) can be dynamically generated which keep a system out of thermodynamic

equilibrium. Among many other systems where QSS are produced (Ref.[60] of Main text)

let us mention a beam of fast particles interacting with the set of waves describing a physical

system a situation which is reminiscent, for example, of fast phosphate groups - produced by

ATP hydrolysis - colliding against suitable sites of a biomolecule to create ”hot points” yielding

”protein quakes”. In Ref.[19] of Main text, ”protein quakes” have been invoked to explain the

activation of collective oscillations through light irradiation of the BSA protein.

A Dielectric properties of solution of salt in water

From data reported in Ref.[61] of Main text we have interpolated the complex dielectric constant

of water solution of NaCl at 200m M at T = 30oC:

εW (ω) = εW,∞ +
εW (0)− εW,∞

1− iωτW
(102)

with εW,∞ = 5, εW (0) = 72.7 and τ = 7.0110−12sec. It follows that for R-PE (ωCVM =

2π × 71GHz = 0.446THz) the value of the electric dielectric constant is

εW (ωCVM) = 11.3 + i 19.6 (103)

so that the characteristic wavelength corresponding to the angular frequency of the CVM ob-

served for the R-PE is

k(ωCVM,RPE) = (6.13 + i 3.55)×10−7Å−1 (104)



assuming µW (ωCVM) = 1.

εW (ωCVM) |εW (ωCVM)| φεW (ωCVM) ε′W (ωCVM) |εW (ωCVM)|′ φ′ε(ωCVM)
R-PE 11.3 + i 19.6 22.6 1.050 −(25.5 + i35.8) −43.8 0.189
BSA 5.35 + i 4.87 7.24 0.738 −(0.35 + i 2.44) −1.91 −0.217

Table S4: Dielectric properties of water in the regime of frequency of the Collective Vi-
bration Mode (CVM) for R-PE and BSA. The Fourier transform of the relative dielectric
constant of water is expressed using polar form εW (ω) = |εW (ω)| exp[iφεW (ω)]. The deriva-
tives (primed quantities) of the different adimensional quantities with respect to ω are expressed
in 10−12sec = THz−1.

An analogous calculation for BSA (ωCVM ' 2π×0.314THz = 1.97THz) gives εW (ωCVM,BSA) =

5.35132− i 4.8655, and the wavenumber is

k(ωCVM,BSA) = (1.65− i 0.638)×10−6Å−1 (105)

For the biomolecules considered, BSA and R-PE, the characteristic attenuation length scale

κatt = [=(k)]−1 is smaller than both the wavelength λrad = [<(k)]−1 of the radiation and

the characteristic length scale of the observed systems in THz spectroscopy experiments, i.e.

lsys ≈ (1µL)1/3 = 107Å = 10−1cm.

ωCVM [THz] λrad(ωCVM)[×107Å] κatt(ωCVM)[×107Å] κ3
att[µL]

R-PE 0.447 1.02 0.281 0.022
BSA 1.97 0.606 0.156 0.0038

Table S5: Characteristic parameters of the BSA and R-PE proteins.

This means that the dissipative properties of the medium define the range of the interac-

tion: inside a volume of κ3
att the dynamical electric field can be considered quasi-static, i.e.

retardation and radiation terms in Eq.(68) can be neglected.



B Effective mass for two oscillating charge centers

Here we consider the inner dynamics of a unidimensional oscillator along a fixed axis.

Charge barycenters coordinates x± can be expressed in terms of the relative/center-of-mass

coordinates r = x+ − x− and R = (m+x+ −m−x−) /mTot, where mTot = m+ + m− is the

total mass of the oscillating dipole. The following assumptions have been made:

• the two charge barycenters are associated to the same effective mass m+ and m−;

• the equilibrium position of the system is supposed to correspond to the situation where

the two charge barycenters overlap, i.e. x+ = x− = 0

HintOsc =
1

2
mẋ2

+ +
1

2
mẋ2
− +

1

2
mω2(x+ −R)2 +

1

2
mω2(x− −R)2 (106)

After the change of coordinates x± = R± r/2, Eq.(106) reads:

HintOsc =
1

2
(2m)Ṙ2 +

1

2

m

2
ṙ2 +

1

2

m

2
ω2r2 =

=
1

2
mTotṘ

2 +
1

2
mredṙ

2 +
1

2
mredω

2r2 (107)

Ignoring the contribution to the total energy of the center of mass (R = 0, Ṙ = 0), we find

that the energy contribution deriving from oscillations reduces to

HintOsc =
1

2
mredṙ

2 +
1

2
mredω

2r2 . (108)

For the protein R-PE, we have that mTot ∼ 2.4 × 102 kDa, so that mred = m/2 = mTot/4 ≈

0.6× 102 kDa.
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