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ABSTRACT
Multiple aspect trajectories (MATs) is an emerging concept in the
domain of Geographical Information Systems, where the basic view
of semantic trajectories is enhanced with the notion of multiple
heterogeneous aspects, characterizing different semantic dimen-
sions related to the pure movement data. Many applications benefit
from the analysis of multiple aspects trajectories, ranging from the
analysis of people trajectories and the extraction of daily habits to
the monitoring of vessel trajectories and the detection of outlying
behaviors. This work proposes a novel MAT similarity measure as
the core component in a hierarchical clustering algorithm. Despite
the many clustering methods in the literature and the recent works
on MAT similarity, there are still no works that dig deeper into
the MAT clustering task. The current article copes with this issue
by introducing TraFoS, a new similarity measure that defines a
novel method for comparing MATs. TraFos includes a multi-vector
representation of MATs that improves their similarity comparison.
TraFos allows us to compare MATs across each aspect and then
combine similarities in a single measure. We compared TraFos with
other state of the art similarity metrics in Agglomerative cluster-
ing. The experimental results show that TraFos outperforms other

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC ’21, March 22–26, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8104-8/21/03. . . $15.00
https://doi.org/10.1145/3412841.3441935

similarities metrics in terms of internal, external clustering metrics
and training time.
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1 INTRODUCTION
Trajectory clustering is an important data mining method that can
be useful in several application fields like object tracking in video
sequences, airspace monitoring or the detection of common and
outlying behaviors in vessel routes. The main purpose of trajectory
clustering algorithms is to group similar trajectories or moving
objects together and thus provide a better understanding of com-
monalities that exist between the trajectories of different objects,
or of the same object at different moments. Trajectory clustering
allows us to extract patterns [17] and detect common and outlying
moving objects behaviors [16].

The successful application of clustering techniques strongly de-
pends on the appropriate similarity metric. Regarding trajectory
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Figure 1: An example of three trajectories with their multiple aspects.

clustering, similarity criteria usually assume that trajectories are
sequences of points in the 2D or 3D space with timestamp, and
mainly rely on the spatial distance (e.g. Euclidean, Mahalanobis,
great circle distance etc.) of the respective points. Difference in
length is a specific problem when comparing two trajectories and
therefore there is a need for a trajectory alignment pre-processing
step, where dynamic time warping, subsequence matching, or edit
distance [25] may assist.

MATs might include trajectory related features, such as speed,
direction and duration. They may also contain contextual informa-
tion that is extracted from different external sources like weather or
air pollution, the moving object status (e.g. heart rate), etc. During
their daily routines, users commutes to work every day, visit the
same gym, go to restaurants, and malls, but not always to the same
ones and in the same order. Their GPS traces provide only part of
the information, which mainly refers to the spatial attributes of
each stop and each transition, ignoring all other semantics: the time
spent at each place, the means of transportation and the duration of
each move, the weather conditions that held at each segment, etc.
The spatial dimension is only one of the several aspects of these
MATs, which may contain more aspects that can be described by a
number of different attributes (e.g. a POI is described by its category,
the time that the user spends there and the weather conditions at
that time). We call these cases multiple-attribute aspects.

In the motivating example of Figure 1, three trajectories 𝑇1, 𝑇2,
and 𝑇3 that begin from a user’s home and have a total duration of
12 hours are depicted. It is worth noting that the spatial aspect of
POIs is ignored since we assume that the semantics of stops and
moves are more relevant for MATs clustering. Each trajectory has
6 stops (𝑝0 to 𝑝5, with 𝑝0 being at home) and 5 moves (𝑝0 → 𝑝1, ...,
𝑝4 → 𝑝5). Each stop has 3 different aspects: i) the weather condition
that can be either sunny, cloudy or rainy, ii) the stop type (or POI
type) that can be one of home, gym, shopping, work or restaurant
and the hours spent there that is a multiple of 0.5 hours. Similarly,
the moves have three aspects: i) the means of transportation (walk,

bus, taxi, bicycle), ii) the duration that is again a multiple of 0.5
hours, iii) the weather condition that, for the sake of simplicity, we
assume that is the same during the whole move.

Clustering of MATs poses new challenges since aspects can com-
prise multiple heterogeneous attributes with dependency relations
among themselves. Thus, clustering algorithms for MATs, must
adopt multidimensional similarity metrics that capture such se-
mantics [8]. Furthermore, MATs are affected by the curse of di-
mensionality due to their high dimensional nature. The sparsity
of the attribute space, makes ineffective most of the commonly
used similarity metrics. The more complex and heterogeneous the
aspects are, the more flexible the similarity measure should be. A
totally rigid measure that requires the perfect match on each as-
pect, for each point, will be too strict and would not capture the
inherent heterogeneity of the human movements. On the other
hand, a very flexible measure would not capture the implicit simi-
larity among different users. It is, therefore, challenging to define a
suitable trade-off between the two extremes.

Regarding the selection of the clustering algorithm, centroid-
based clustering algorithms, such as k-Means, are very fast and
perform well, but can only find globular shaped clusters. Spectral
clustering cannot successfully cluster data that contain structures
at different scales of size and density [18]. Single and average link-
age agglomerative clustering algorithms are based on the pairwise
comparison of MATs and does not require apriori knowledge of the
number of clusters.

In this paper, we perform a study and comparison of state-of-the-
art similarity measures for MATs applied to the clustering task. We
also introduce a novel MAT similarity measure, called Trajectory
Forest Similarity (TraFoS)1, with the objective of overcoming the
limitations of existing measures and providing a smooth integration
with available clustering algorithms.

In summary, the contributions of this work include:
1The term ’Forest’ comes from isolation trees and is irrelevant to the Random Forest
classification algorithm.
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• a comprehensive analysis of representationmodels for MATs,
the similaritymeasures that can be used for their comparison,
and their application in agglomerative clustering;

• a new vector representation model for semantic trajectories
that captures the frequency of semantic information across
the trajectory points and allows fast similarity comparisons;

• a tree-based similarity measure for trajectories (TraFoS) that
employs the novel representation and a hierarchical parti-
tioning of the initial set of trajectories. TraFoS has lower time
and memory requirements than other state-of-the-art trajec-
tory similarity measures for semantic trajectories, compares
to their performance, and outperforms traditional geograph-
ical distance and edit distance measures.

In Section 2 that follows, we summarize related works in the field
of similarity measures, with emphasis on the clustering of semantic
trajectories. Section 3 discusses the notion of MAT and cluster-
ing. Section 4 provides the details of the MAT representation and
the proposed TraFoS similarity measure. Section 5 describes the
experimental evaluation of the proposed solution, its algorithmic
implementation and discusses the results. Finally, Section 7, con-
cludes the paper and highlights the next steps of our work.

2 RELATEDWORK
The interest of the research community for trajectory analysis, sim-
ilarity and clustering is high due to the abundance of positioning
equipment and location tracing devices, enabling the track of mov-
ing objects that range from vehicles, vessels, and planes to humans
and animals. However, the majority of works have mainly consid-
ered the spatio-temporal properties and derivative measures from
these dimensions [3, 12, 19] with little attention to the semantic
dimensions.

The first works that go beyond their geometric properties, and
consider their semantic dimensions, appeared since 2007 [1, 2, 22].
In these works, semantics are assigned to special parts of a trajec-
tory, also called sub-trajectories, such as the stops and the moves
between them. More recently, we have seen the emergence of the
concept of MATs [6, 15], which introduces the enrichment of each
trajectory point with several layers of semantic information, called
aspects. Semantic information ranges from the characteristics of a
visited place (e.g. opening hours, price, rating, etc) to the relation-
ships of a moving object with other objects [15], like the encounters
between moving objects, this last one also became an important
topic in the scenario of the COVID-19 pandemic.

The problem of MATs clustering has not yet been tackled in-
depth in the literature. Many algorithms exist for clustering moving
object trajectories however they use spatio-temporal information
only [28]. It is worth noting that MATs contain rich information
about the trajectory context, the semantics of movement, the sur-
rounding elements, and many aspects related to the moving ob-
ject [8]. Therefore it is important to create similarity measures
that capture the heterogeneous aspects, the different nature, scale,
and dimensionality of MATs various features. A recently proposed
method called evolving clusters algorithm [23] is one of the few
methods dealing with semantic information for trajectory clus-
tering. It employs the spatial distance of trajectory points, graph

mining algorithms (Clique and Maximal Connected Subgraph de-
tection) and trajectories extended with a few semantic annotations.
The algorithm has been evaluated in discovering unified group
behaviour of moving objects (e.g. flocks or convoys), but has not
been tested in detecting very similar or repeating MATs.

Among the state-of-the-art similarity measures for trajectories,
stands the Uncertain Movement Similarity (UMS) [7]. UMS has
outperformed a number of previous measures developed for spatio-
temporal trajectories, but it is limited to the spatial dimension. If we
also consider the semantic information, thenwe have tomention the
Stops and Moves Similarity Measure (SMSM) [13], which considers
both spatial and semantic features, but it is limited to trajectories
represented as sequences of stops and moves.

Longest Common Subsequence (LCSS) was originally introduced
for sequence comparison and employed as a robust similarity mea-
sure for raw trajectories in [24]. LCSS considers all aspects equally
important and relevant, and requires a strict match for all aspects
of each stop or move to consider them as similar. Edit Distance on
Real sequence (EDR) [4] is a similarity measure based on the Edit
Distance, a popular metric for comparing strings. EDR measures
the minimum number of inserts, deletes, and replacements of points
(stops or moves in our case) needed to transform one trajectory to
the other is counted. Although EDR assigns penalties (increases the
distance) according to the gap (mismatch) length, it still requires an
exact match in all aspects. The result is that EDR and LCSS are too
restrictive for measuring similarities in multiple-aspect trajectories,
such as the daily user routines.

Multidimensional similarity measure (MSM) [8] overcomes some
limitations of previous measures by explicitly including the seman-
tic dimension of trajectories in addition to space and time. MSM
examines every aspect separately and supports different weights for
each aspect, which assign more or less importance to each aspect
based on the application needs. When comparing the stops in two
trajectories, MSM seeks for every stop in the first trajectory the
best match in the second. However, MSM disregards any relation-
ships that might exist between aspects or attributes (e.g. type of
stop and weather conditions), making it less robust for the case of
multiple-aspect trajectories.

MUltIple-aspect TrAjectory Similarity (MUITAS) [20] overcomes
the limitations of MSM by supporting composite aspects (e.g. POI
type and price), which aggregate multiple attributes and provide
a more comprehensive trajectory comparison. The multi-attribute
aspects (also called composite-aspects) consider the semantic re-
lationship between the attributes of a trajectory. In addition it
supports the use of thresholds in each aspect value of the multi-
attribute aspects, and the use of different weights across aspects,
thus increasing the flexibility of the trajectory similarity metric.

The improved performance of MUITAS, compared to other mea-
sures, is due to the fact that trajectories are considered as sets of
points, rather than sequences. However, a limitation of this mea-
sure is that the popularity of attributes shared by multiple points or
the frequency of occurrence of points themselves are not explicitly
considered. Moreover, the computational cost of the algorithm is
very high due to the pairwise trajectory similarity measure, which
is quadratic to the number of points and aspects.

The aforementioned similarity measures either assume that as-
pects are totally unrelated to each other, or they indiscriminately
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combine all attributes, even those that do not relate to others. They
are also limited to the order of stops and/or moves, and seek for
shorter or lengthier sub-trajectories. In addition, they are not con-
sidering the frequency of occurrence of each aspect value in the
trajectory. Last but not least, their complexity is dependent on the
trajectory length and the number of aspects, since they compare
all points of each trajectory to all the points in other trajectories,
and they do this for all aspects.

To address these limitations we introduce a novel measure that
we call TraFoS, which takes into account the frequency of values in
the trajectory aspects, generates a representation of all trajectories
in the same vector space and considers the whole set of trajectories
before comparing them in a pair-wise level. This results in a much
faster and more fair calculation of trajectories similarity, which
accounts for the information contained in the whole set. The mea-
sure first creates a cluster hierarchy for each aspect, using a vector
representation and a vector space similarity, and then combines the
hierarchies in order to provide a multiple-aspect similarity measure.

3 CLUSTERING OF MULTIPLE-ASPECT
TRAJECTORIES

The clustering of multiple-aspect trajectories is an unsupervised
process that may extract useful patterns or detect interesting out-
liers. In the same time, it is a complex task that must consider:
(1) the similarity of trajectories, which includes how trajectory in-
formation is represented and compared, (2) the clustering algorithm
to use. The trajectory similarity measure has to take into account
many dimensions, such as i) the similarity between individual com-
ponents of the trajectories (e.g. points, stops, or movements), ii) the
order in which these components occur in each trajectory, and iii)
their frequency of occurrence. The trajectory clustering algorithm
accounts for the nature of the clustering task at hand, as well as
the underlying cluster model and the properties of the produced
clustering scheme.

When defining the similarity between twomultiple-aspect trajec-
tories, the semantics of each aspect and the relationships between
aspects could be more important than the order of stops and moves,
their spatial or temporal relations, as well as the exact match in all
attributes. Also, the frequency of each stop or move, and the fre-
quency of the respective aspect values in each trajectory is of equal
importance. The user may visit places of the same type (e.g. restau-
rants), which may be located far away from each other, and may
spend the same time (e.g. 1 hour), but in completely different mo-
ments of the day. In the example presented in Figure 1, for instance,
even though trajectory 𝑇1 has many aspect values in common with
𝑇3, they still have many differences that make them semantically
different.

One of the motivations behind developing a new measure for
comparing multiple-aspect trajectories is that the current state of
the art measures, such as MUITAS and MSM, do not take into ac-
count the frequency of aspect values during comparisons. They
also have a high computational complexity, which limits their appli-
cability in the comparison of long trajectories or in the clustering
of large trajectory datasets.

4 TRAFOS: A NEW SIMILARITY MEASURE
FOR MATS

TraFoS is based on the creation of a hierarchical tree for each aspect
that is being used to measure the similarity of trajectories along
that aspect. This tree results from a repetitive partitioning of the
full set of trajectories using a binary partitioning algorithm. The
binary partitioning algorithm splits the set of trajectories into two
subsets at each step, until the resulting clusters contain only a
few trajectories each. However, any other binary or multiple-way
partitioning algorithm could be employed alternatively.

The hierarchical trees of TraFoS have an interesting property:
very similar trajectories are in neighboring hierarchy nodes, whereas
very dissimilar trajectories belong to distant nodes. As we will see
in the next subsections, using this property, we define a new simi-
larity/distance measure for multiple-aspect trajectories, which is
based on the distance of trajectories in such a hierarchy.

Figure 2: The steps of TraFoS similarity for MATs.

4.1 Trajectory representation
A fundamental step of the TraFoS clustering method is to transform
multiple aspect trajectories into frequency vectors representing
the number of occurrences of each value of a given aspect. In this
representation, trajectories are therefore bag-of-points counting
the number of points that share that aspect value. Trajectory points
may correspond to stops or moves.

Let us better introduce this idea by using the example of Figure
1. Trajectory𝑇1, regarding the weather aspect on points, contains 3
cloudy and 3 rainy stops (and no sunny stops). Therefore, the rep-
resentation in the 3-Dimensional space < 𝑐𝑙𝑜𝑢𝑑𝑦, 𝑟𝑎𝑖𝑛𝑦, 𝑠𝑢𝑛𝑛𝑦 >

of the weather values for stops will be < 3, 3, 0 >. The respective
vectors for 𝑇2 and 𝑇3 will be < 3, 3, 0 > and < 1, 2, 3 >. Similarly,
the vectors for weather conditions during moves are < 3, 2, 0 >,
< 3, 2, 0 > and < 2, 1, 2 > for 𝑇1, 𝑇2 and 𝑇3 respectively. Although
nominal attributes are used in all examples of this study for simplic-
ity, the method can also handle numeric attributes with continuous
values. Apart from the k-means clustering that is actually used,
any other unsupervised discretization technique [5] (e.g. multiple
correlation clustering) can be employed.

Without loss of generality, when the compared trajectories differ
substantially in length, we can normalize the absolute frequency
described above by dividing it by the trajectory length. Afterwards,
we can easily define the single-aspect similarity of two trajectories,
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e.g. using cosine similarity or any other similarity measure defined
in a vector space. Similarly, Manhattan, Euclidean or any other
Minkowski distance can also be used.

A vector-based representation measures the similarity of trajec-
tories, ignoring the order of points that contribute to each value. It
is important to clarify here that since trajectories are represented
using frequency (absolute or relative) vectors, which are built on
the values of an aspect, the vector dimensions are all the possible
values that the aspect can take.

4.2 Single-aspect tree-based trajectory
similarity

Given a set of multiple-aspect trajectories, their single-aspect vector
(SAV) representations, and their pair-wise vector similarity, the next
step for TraFoS is to construct one hierarchical partitioning tree for
each aspect. In a single-aspect tree (SAT), trajectories that are very
similar in this aspect are expected to be in the same partition for
many levels, whereas very dissimilar trajectories will be separated
in the top levels of the respective tree.

Figure 3: A sample single-aspect tree created using hierar-
chical partitioning.

For example, if we partition a set of 100 trajectories using the
weather aspect the result will be similar to the one depicted in
Figure 3. In this hierarchical partitioning process we assume that
all trajectories belong to the same node (i.e. cluster or partition) in
the root of the tree, and, as we move towards the leaf level, fewer
and fewer trajectories will be on each node due to the recursive
binary partitioning of the trajectory sets. All trajectories will be
assigned to some leaf, where each leaf represents a small group of
very similar trajectories. Trajectories from neighboring leaf clusters
will be more similar than trajectories from distant leaf clusters.

The node partitioning process may continue until each leaf con-
tains only one trajectory. In order to avoid this extreme partitioning
of the dataset, we can set an early stop criterion, or apply post-
pruning to the resulting tree. The partitioning of nodes can be done
using any function that splits the initial set of trajectories in two
subsets.

The single-aspect tree created for each aspect, using the process
explained above, is the basis for the single-aspect similarity mea-
sure of TraFoS, which has an interesting property, compared to
flat partitioning schemes. With flat partitioning, in general, we can
easily infer that trajectories that end-up in the same partition are
similar. However, it is not straightforward to define the similarity
of trajectories lying in different partitions. With hierarchical parti-
tioning schemes, we can use path distance measures to compare
trajectories that fall in different, neighboring, or distant leaves. For
this purpose, we employ the Wu and Palmer similarity measure

for hierarchies [26], which is based on the depth of two items (that
are trajectories in our case) in the tree and the depth of their least
common ancestor (LCA), which is, in our case, the deepest partition
in the tree that contains them both.

Equation 1, defines the Wu and Palmer similarity for two trajec-
tories𝑇𝑖 and𝑇𝑗 , LCA(𝑇𝑖 ,𝑇𝑗 ) is the deepest cluster that contains both
trajectories, L(𝑇𝑥 ) is the leaf cluster that contains trajectory 𝑇𝑥 and
𝑑 (𝑐) function returns the depth of a cluster 𝑐 .

𝑆𝑖𝑚𝑤𝑢𝑝 (𝑇𝑖 ,𝑇𝑗 ) =
2 ∗ 𝑑 (𝐿𝐶𝐴(𝑇𝑖 ,𝑇𝑗 ))

𝑑 (𝐿(𝑇𝑖 )) + 𝑑 (𝐿(𝑇𝑗 )) + 2 ∗ 𝑑 (𝐿𝐶𝐴(𝑇𝑖 ,𝑇𝑗 ))
(1)

The creation of the single-aspect tree and the definition of the
tree-based similarity for trajectories (based on the Wu & Palmer
similarity measure) provides a relaxed comparison for trajecto-
ries, which allows “birds of a feather to flock together” and in the
same time allows to define multi-aspect trajectory similarity as it
is explained in the following section.

From a semantic point of view, two trajectories are similar in
an aspect when they express highly similar frequencies of this
aspect. Since the focus is on frequencies, the chronological order
of values in the trajectory is inherently ignored. However, the
proposed method allows the definition of aspects that examine
short sequence of values (e.g. pairs or triples) in analogy to word n-
grams in text sequences, which can capture short-term ordering on
aspects of interest. Similarly, it can support composite aspects that
examine the duration of stops or moves of each type and allow the
comparison of temporarily annotated trajectories [9] as explained
in the following subsection.

4.3 Multiple-aspect trajectory similarity
The set of all single-aspect trees created using the above process
constitutes the multiple-aspect trajectory forest, which can provide
a multi-aspect trajectory similarity measure. The similarity of the
two trajectories can be the (weighted) sum of single-aspect simi-
larities as we can see in Figure 2. Trajectories that are very similar,
will expose high similarity in multiple aspects and thus they will be
in the same of neighboring leaves in multiple trees, which means
that their (weighted) average similarity will be high.

Figure 4 presents an illustrative multiple-aspect trajectory forest,
constructed on two basic aspects (i.e. stop duration, POI type) and a
composite aspect (i.e. stop duration and POI type), of a dataset with
100 trajectories. The forest comprises one tree for each stop aspect,
and an extra tree for the composite aspect. As depicted in the figure,
the set of 100 trajectories is likely to be partitioned differently by
each tree and two trajectories may be in neighboring or in the same
leaf in one tree, which denotes high similarity in one aspect and in
distant leaves in another tree, denoting high dissimilarity.

The use of binary clustering trees allows us to quickly separate
similar trajectories from dissimilar ones and provides a fast, but
comprehensive, representation of the value space of each aspect. It
also allows bi-aspect or multiple-aspect trees to be created, using
composite aspects and values as input. For example, trajectories
of the form (morning, sunny), (noon, cloudy), (afternoon, sunny),
(night, cloudy), ..., (night, rainy) can simply be represented as vectors
in a high-dimensional space.
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Figure 4: A sample set of single- and multiple-aspect trees
that constitute the multiple-aspect forest.

5 EXPERIMENTAL EVALUATION
The experimental evaluation assesses the performance of different
similarity measures in the multiple-aspect trajectories clustering of
several users in a way that the trajectories of the same user cluster
together. All experiments were run on a DELL Inspiron laptop, with
an Intel Core i7 processor and 16 GB RAM, running Windows.

Dataset:We use a real-world dataset containing trajectories of
Foursquare users enriched with semantic aspects. The dataset, also
used in [20], is based on the dataset presented in [27], which was
enriched with the addition of semantic aspects related to venue
information and weather conditions. The venue information in-
cludes the spatial position, rating, and price tier, collected using the
Foursquare API2.

The dataset was pre-processed to remove noisy, duplicate and
incomplete information records. The trajectories were split to cre-
ate weekly trajectories for each user and labeled with the user id
in order to provide a weak supervised ground-truth for clustering
evaluation. This ground-truth assumes high self-similarity among
the weekly trajectories of each user and dissimilarity to the trajec-
tories of other users. Trajectories with less than 10 check-ins and
users with less than 10 trajectories were removed from the dataset.
The final dataset contains a total of 66,962 check-ins distributed
in 3,079 weekly trajectories of 193 different users, with an average
length of approximately 22 check-ins per trajectory and an average
of approximately 16 trajectories per user [20].

For each check-in in the user trajectory, we keep the following
features, which are later used to compose the trajectory aspects:
i) latitude (numeric), ii) longitude (numeric), iii) time of the day
(numeric), iv) day of the week (nominal), v) check-in type (nominal),
vi) check-in category (nominal, broader than type), vii) price level
(ordinal), viii) rating level (ordinal), ix) weather (nominal). The time
of the day has been converted to a nominal features by using a
discretization to 24 bins of equal frequency and another one using
24 equi-width bins (1 hour each).

2https://developer.foursquare.com/. The weather information has been collected for
each check-in, via the Weather Wunderground API3

Clustering algorithm:We employed agglomerative clustering
using single and average linkage. Both of these approaches are avail-
able through the Scikit-learn machine learning library4. To provide
a fair comparison for all similarity measures, we always employed
the default hyper parameters for the clustering algorithms and set
the number of clusters to be equal to the number of different users
(i.e. 193). We run every clustering algorithm 10 times and report on
the mean internal and external evaluation metrics.

Evaluation metrics: Clustering evaluation is a well-known is-
sue in the literature. This is due to the fact that clustering is an
unsupervised method and we don’t usually have a ground truth
to compare with. However, in the case of trajectory similarity, we
can assume that trajectories of the same user are likely to belong
to the same cluster, as indicated by [10] and already used in other
state-of-the-art works like [14]. Therefore, the external evaluation
of the clustering method is based on this ground truth. For the in-
ternal clustering validity metrics, we assume that the best clusters
are those that are well separated and compact, as described in [21].

Table 1: Agglomerative Clustering using Single Linkage

Sim. Meas. Homogen. Complet. V-measure Mut. Info Rand F.M. Silhouette C.H. D.B.
Mean TraFoS 0.08 0.72 0.14 0.14 0.00 0.08 -0.94 0.99 1.01
Max TraFoS 0.08 0.72 0.14 0.14 0.00 0.08 -0.94 0.99 1.01
W/Thr TraFoS 0.08 0.72 0.14 0.14 0.00 0.08 -0.94 0.99 1.01
MUITAS 0.06 0.58 0.11 0.11 0.00 0.07 -0.19 0.73 1.18
MSM 0.06 0.58 0.11 0.11 0.00 0.07 -0.13 0.70 1.22
EDR 0.08 0.72 0.14 0.14 0.00 0.08 -0.94 0.99 1.00
LCSS 0.08 0.72 0.14 0.14 0.00 0.08 -0.94 0.96 1.02

Table 2: Agglomerative Clustering using Average Linkage

Sim. Meas. Homogen. Complet. V-measure Mut. Info Rand F.M. Silhouette C.H. D.B.
Mean TraFoS 0.24 0.32 0.27 0.27 0.00 0.01 -0.95 0.96 3.66
Max TraFoS 0.24 0.32 0.27 0.27 0.00 0.01 -0.95 0.96 3.67
W/Thr TraFoS 0.24 0.32 0.27 0.27 0.00 0.01 -0.95 0.96 3.67
MUITAS 0.08 0.56 0.13 0.13 0.00 0.07 -0.13 1.21 2.21
MSM 0.07 0.58 0.12 0.12 0.00 0.07 -0.07 1.63 1.83
EDR 0.17 0.28 0.21 0.21 0.00 0.02 -0.94 0.99 2.86
LCSS 0.19 0.30 0.23 0.23 0.00 0.02 -0.95 0.96 3.19

The external (supervised) and internal (unsupervised) clustering
validity metrics [11] employed, comprise: i) homogeneity score (ex-
ternal), ii) completeness score (external), iii) v-measure score (exter-
nal), iv) adjusted mutual info score (external), v) adjusted rand score
(external), vi) Fowlkes Mallows score (external), vii) silhouette score
(internal), viii) Calinski Harabaz score (internal), ix) Davies-Bouldin
Index (separation) (internal). In Tables 1 and 2 we use light gray
shading for the columns that depict external metrics and dark gray
shading for those reporting the internal metrics.

6 RESULTS AND DISCUSSION
TraFoS creates the trajectory forest, by constructing each binary
partitioning tree using the Spectral Clustering algorithm (with the
number of cluster = 2) and nominal or ordinal features and their
combinations only. Any other partitioning clustering algorithm
(e.g. k-means with k=2) could be used. The latitude and longitude
of check-ins were not used.

For the 3079 trajectories in the dataset, we construct 14 trees
in total, 8 for the different aspects, each one examined separately,
4https://scikit-learn.org/stable/

https://developer.foursquare.com/
https://scikit-learn.org/stable/
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and another 6 for binary or ternary aspect combinations of the
most strongly correlated aspect combinations: (i) check-in general
category, price and rating level, ii) weather, day of the week and
check-in general category). This correlation was intuitively chosen
based on the nature of the task (e.g. the cost of a service is usually
associated by users with the service quality). Of course, any other
data-driven inference technique (e.g. correlation analysis) can be
employed.

Each tree has on average 1740 nodes and 870 leaves and a max-
imum tree height between 14 and 18. The average construction
time for each partitioning tree, including the time to calculate all
the pairwise (Wu and Palmer, [26]) similarities for all trajectories
is 181 seconds. All experiments were run on a PC equipped with
an Intel i5 CPU and 8GB of Memory, running MS Windows. Using
the binary partitioning forest, we evaluate three different TraFoS
variations: i) the first considers the average Wu and Palmer [26]
similarity across all trees, ii) the second takes the maximum simi-
larity across trees and iii) the third sets a threshold on the average
similarity across all trees and filters out (i.e. sets to zero) the scores
that are lower than 0.65).

The time for pre-computing the pairwise similarity matrix for all
trajectories for the first TraFoS variation was less than 10 minutes
(590 seconds), 90 seconds for the second (i.e. max similarity across all
trees) and less than a second for the third (which simply thresholds
the first similarity matrix).

All the experiments were based on computing the pairwise simi-
larity matrix for all trajectories in the dataset. It is worth noting the
different execution time needed to compute the similarity matrix
for the above similarity measures. The execution time for EDR and
LCSS was the fastest among all, since it took less than 20 minutes to
compute all the pairwise similarities. The complexity of MSM and
MUITAS similarity measures is high due to the all-to-all compari-
son of all the stops, which for long trajectories may be extremely
demanding in resources. Running both MUITAS and MSM to com-
pute the pairwise similarity matrix took more than 4 hours. In the
case of TraFos, the construction of the 14 binary partition trees
took 42.5 minutes to complete. Adding the 10 minutes needed to
compute the similarity matrix from the trees, sums to less than one
hour, which is 4 times faster than MUITAS and MSM.

When the grouping of trajectories by user is employed as our
ground truth for (external) clustering evaluation, MUITAS andMSM
have their worst performance (e.g. the lowest V-measure scores).
This can be explained by the very low homogeneity score, which
means that a few large clusters dominate the clustering scheme.

The performance of TraFoS using Hierarchical Agglomerative
Clustering (HAC) with single linkage between clusters (i.e. the sim-
ilarity between two clusters is the maximum pairwise similarity
between individual trajectories, one from each cluster) shows very
high completeness scores, compared to MUITAS or MSM, and sim-
ilar scores to EDR and LCSS. High completeness means that the
trajectories of the same user are clustered together. However, the
same cluster may contain trajectories from multiple users, which
results in a low homogeneity score. The results of TraFoS are also
good in terms of homogeneity and worse than other similarity

5The value has been chosen empirically after experimentation.

measures in terms of completeness, when full linkage (i.e. aver-
age pairwise similarity) is used, with MUITAS and MSM beign the
most stable in performance and TraFoS showing a better balance
between homogeneity and completeness. Low homogeneity scores
happen with all similarity measures, which is an indication of the
limit of the hierarchical clustering algorithms, which creates a few
large clusters and many smaller ones.

As far as it concerns the internal clustering validity metrics (i.e.
silhouette score, Calinski-Harabaz score, and Davies-Bouldin index),
there are several interesting facts that arise from the cluster analysis.
First, the silhouette coefficient that evaluates cluster compactness
versus separation is negative in all cases, and it is close to zero
only for MUITAS and MSM when hierarchical clustering (with full
linkage) is employed. This is mainly explained by the nature of full
linkage clustering, which aims for the maximum pairwise similarity
of the trajectories of each cluster when agglomerating clusters, and
thus leads to clusters of the highest possible compactness and lowest
possible separation.

TraFoS exploits a binary partition strategy for building hier-
archies of trajectory clusters, one hierarchy per aspect, and then
employs the tree-based similarities across all aspect hierarchies
in a combined multiple-aspect similarity score. Results show that
TraFoS: (1) outperforms the traditional geographical distance and
edit distance measures (LCSS, EDR); (2) performs much faster
than MUITAS, which has a higher execution cost; (3) outperforms
MUITAS using the Hierarchical Agglomerative Clustering algo-
rithm (HAC).

Figure 5: Summarizing evaluation results and execution
time.

Figure 5 illustrates the main results of the cluster similarity mea-
sures and the execution time. The maximum absolute scaler has
been applied in order to highlight the relative differences of the
experimental results. We can see that TraFoS surpasses the other
similarity measures in internal clustering metrics. MSM with ag-
glomerative average linkage clustering has the best results in the
external evaluation metric but it takes approximately ten times
longer for execution than TraFoS. We conclude that TraFoS is the
best option based on the internal evaluation metrics and it pro-
vides results with a very good tradeoff between external evaluation
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Figure 6: Pairwise agreement scores (Adjusted Rand In-
dex) of the clustering schemes (Single linkage-left, Average
linkage-right) using the different similarity metrics.

metrics and execution time. Finally, Figure 6 depicts the pairwise
agreement for the two HAC versions. The metrics demonstrate low
agreement, with the exception of MSM-MUITAS, and LCSS-EDR
which have commonalities in the definition of similarities.

7 CONCLUSIONS
The main contribution of this work is the TraFoS method for com-
puting multi-aspect trajectory similarity, which is combined with
agglomerative clustering algorithm for MATs clustering. The main
advantage of the proposed method is that it supports a more relaxed
MAT comparison, either at a single-aspect and at multiple-aspect
level. It is also more flexible with respect to the order (which is
ignored) and the frequency of occurrence (which is accounted) of
matching stops and moves in the compared trajectories. So the MAT
comparison is based on a trajectory representation with frequency
vectors, and a tree-based similarity measure computed over a set
of binary trees (or isolation trees), each one build for each aspect.

The evaluation of TraFoS in a trajectory clustering task is per-
formed against traditional trajectory similarity measures like LCSS
and EDR, and state-of-the-art similarity measures for multi-aspect
trajectories like MUITAS and MSM. Results show that TraFoS out-
performs the other similarity measures in terms of internal, external
evaluation metrics and training time.

Since the potential of the clustering forest is not fully exploited
in this work, it is among our next steps to examine supervised tech-
niques that will allow our algorithm to learn on which aspects and
aspect combinations to rely. Future work include the inference of
the weight using a supervised learning task. In the assumption that
the cluster should correspond to users, we can label the trajectories
with the user label in the training set and learn the weights.
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