
Closing the Performance Gap Between Lisp and C
Marco Heisig

Chair for System Simulation

FAU Erlangen-Nürnberg

Erlangen, Germany

marco.heisig@fau.de

Harald Köstler

Chair for System Simulation

FAU Erlangen-Nürnberg

Erlangen, Germany

harald.koestler@fau.de

ABSTRACT
Lisp is the second oldest programming language, and the first one

to value productivity more than raw execution speed. This initial

disregard for performance has indeed led to some mind-bogglingly

slow implementations, especially in the early days, but modern Lisp

compilers such as SBCL have almost fully closed the performance

gap to the fastest imperative programming languages. Almost, but

not quite: Until now,many loop optimizations and support for single

instruction, multiple data (SIMD) programming are still missing in

Lisp.

We correct this deficiency with two libraries: The first one is

sb-simd, an SBCL-specific library that provides convenient bindings

for various SIMD instructions sets. The second one is Loopus, a

portable loop optimization framework that works via macros and

source to source transformations. The most prominent features of

Loopus are its optimization of array accesses and that, on SBCL, it

automatically applies SIMD vectorization to certain loops.

We conclude with a performance evaluation for several example

programs, and show that Lisp code using our libraries can achieve

up to 94% of the performance of highly optimized C code.

ACM Reference Format:
Marco Heisig and Harald Köstler. 2022. Closing the Performance Gap Be-

tween Lisp and C. In Proceedings of the 15th European Lisp Symposium
(ELS’22). ACM, New York, NY, USA, 7 pages. https://doi.org/10.5281/zenodo.

6335627

1 INTRODUCTION
A common misconception about Moore’s law is that it promises

a doubling of the performance of our computers roughly every

two years. In fact, Gordon Moore was predicting that the num-

ber of transistors in an integrated circuit would double roughly

every two years. This fine distinction between performance and

number of transistors was hardly relevant for a long time, where

hardware manufacturers managed to translate more transistors di-

rectly into more performance. Unfortunately, the last two decades

show that this particular free lunch is now over, and that additional

performance can only be gained in combination with additional

complexity. We see chips having multiple cores, multiple levels of

caches, and larger, more specialized instruction sets.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ELS’22, March 21–22, 2022, Porto, Portugal
© 2022 Copyright held by the owner/author(s).

https://doi.org/10.5281/zenodo.6335627

In terms of programming models for multiple cores, pretty much

all programming languages are sitting in the same boat. Program-

mers are compelled to use multiple threads, and some of the dozens

of possible synchronization and communication primitives for dis-

tributing and coordinating work. The more interesting challenge is

to increase the performance of a single core. In that case, and assum-

ing memory bandwidth and latency is not an issue, the performance

can only be improved by using more powerful instructions. The

most important ones for doing so are SIMD instructions, where a

single instruction can perform an operation simultaneously on all

elements of a small, specialized vector. This paper is about using

SIMD instructions in Common Lisp.

There are two challenges when incorporating SIMD instructions

into a programming language. The first challenge is to seamlessly

integrate the low-level functionality for manipulating the 128 bit,

256 bit, or even 512 bit wide SIMD packs offered by the hardware.

The second challenge is to provide the programmer with tools

that can automatically convert scalar code to efficient SIMD code,

at least for the most frequently occurring cases. Without such a

tool for automatic conversion, SIMD programming is unnecessarily

error-prone and cumbersome, and will likely only be used by a

small group of extremely dedicated programmers.

In this paper we present two libraries. The first one is sb-simd
1
, a

SBCL-specific library that provides convenient bindings for various

SIMD instructions sets. The second one is Loopus
2
, a portable loop

optimization framework that works via macros and source to source

transformations, and that automatically turns many kinds of scalar

loops into more efficient versions using SIMD instructions. We

conclude with a performance comparison of Common Lisp code

using Loopus, and C code using the most recent version of GCC.

2 RELATEDWORK
Programs written in Common Lisp are frequently among the fastest

in scenarios that benefit from extensive metaprogramming, or from

incremental compilation. Examples of this are Paul Graham’s macro

for generating Bézier curves[2], Breanndán Ó Nualláin’s DSL for

graph algorithms[5], or Børge Svingen’s use of on-the-fly compi-

lation for genetic programming[3]. These projects achieve high

performance by exploiting cases where Lisp has an inherent advan-

tage. Our work differs from this in that we want to achieve high

performance in cases where Lisp has no inherent advantage, such

as image processing or number crunching.

The most recent publication comparing the performance of Lisp

and C for a case where Lisp has no inherent advantage is fromDidier

Verna and was published in 2006[4]. In that paper, the author shows

how Lisp can reach and sometimes even exceed the performance of

1
https://github.com/marcoheisig/sb-simd

2
https://github.com/marcoheisig/Loopus

https://orcid.org/0000-0003-2285-179X
https://orcid.org/0000-0002-6992-2690
https://doi.org/10.5281/zenodo.6335627
https://doi.org/10.5281/zenodo.6335627
https://doi.org/10.5281/zenodo.6335627
https://github.com/marcoheisig/sb-simd
https://github.com/marcoheisig/Loopus


ELS’22, March 21–22, 2022, Porto, Portugal Marco Heisig and Harald Köstler

C for several simple image manipulation tasks. However, neither

the C code nor the Lisp code in that paper use SIMD instructions.

All recent C compilers will use SIMD instructions for such tasks,

so the only way to catch up once more is to use SIMD instructions

in Lisp, too.

Apart from the paper of Verna, there is also the seminal, although

somewhat dated, book about the performance and evaluation of Lisp

Systems by Richard P. Gabriel[1], that discusses the performance of

various Lisp implementations in general. From today’s perspective,

the most important information therein is the discussion of the

various tradeoffs being made when implementing Lisp and their

implications for performance.

3 SB-SIMD
The library sb-simd allows Common Lisp code to utilize SIMD

instructions. In contrast to most other SIMD interfaces, e.g., C in-

trinsics, sb-simd incorporates the usual conveniences of Common

Lisp. Each instruction set has its own package, and instruction set

inheritance is modeled by re-exporting the symbols of each parent

instruction set. All SIMD data types have their own built-in classes

that can be queried and specialized upon. All functions automati-

cally coerce all supplied arguments to the correct type, broadcast

them to the correct SIMDwidth, and, when the underlying operator

allows it, accept any number of arguments.

Luckily, we didn’t have to trade convenience against speed when

designing the public interface of sb-simd. SBCL’s type inference and

compiler are powerful enough to eliminate the overhead of dynamic

typing, implicit conversions, broadcasts, and variadic arguments

where necessary. Most calls to functions in sb-simd are compiled

to a single machine instruction.

3.1 Software Architecture
The biggest challenge in writing this library was the sheer number

of SIMD instructions available on a modern machine. The AVX

instruction set alone provides almost 1000 instructions, and more

than the number of functions in the CL package!

The solution we came up with is, perhaps unsurprisingly, Lisp

macros. We first create a table of metadata for each instruction

set, which contains information about all data types, functions,

corresponding mnemonics, mathematical properties, and so forth.

Then we use the data in these tables to generate all the types,

declarations, compiler transformations, machine code emitters, and

functions, that are specified in each table. Not a single line of the

code that is invoked when calling a function in sb-simd is written

by hand. This is not just an eccentricity. By generating all code, we

ensure that each bug breaks all functions simultaneously, which is

much easier to detect and to fix.

All of the tables that are used to generate the functions and data

structures in sb-simd can also be queried at run time. This makes

it possible to look up the supported instruction sets, the functions

exported by each instruction set, the arguments and return types

of each function and much more. Our loop optimization library

Loopus uses this metadata to perform automatic vectorization.

Something we didn’t manage, unfortunately, is to make our

SIMD interface portable across multiple Lisp implementations. The

𝑘 × 𝑛 interactions in code that runs on 𝑘 implementations and 𝑛

architectures turned out to be too big of a headache. At some point

we decided that it is better to have a high-quality SIMD interface

for one Lisp implementation, than a mediocre one that is portable.

3.2 Data Types
The central data type in sb-simd is the SIMD pack. A SIMD pack is

very similar to a specialized vector, except that its length must be a

particular power of two that depends on its element type and the

underlying hardware. The set of element types that are supported

for SIMD packs is similar to that of SBCL’s specialized array element

types, except that there is currently no support for SIMD packs of

complex numbers or characters.

The list of supported scalar types is shown in Figure 1. For each

scalar data type X, there exists one or more SIMD data type X.Y
with Y elements. For example, in AVX there are two supported

SIMD data types with element type f64, namely f64.2 (128bit) and
f64.4 (256bit).

sb-simd Common Lisp

f32 single-float

f64 double-float

s𝑁 (signed-byte 𝑁 )

u𝑁 (unsigned-byte 𝑁 )

𝑁 ∈ {8, 16, 32, 64}

Figure 1: Scalar data types in sb-simd and their correspond-
ing Common Lisp type specifiers.

SIMD packs are regular Common Lisp objects that have a type, a

class, and can be passed as function arguments. The price for this is

that SIMD packs have both a boxed and an unboxed representation.

The unboxed representation of a SIMD pack has zero overhead and

fits into a CPU register, but can only be used within a function

and when the compiler can statically determine the SIMD pack’s

type. Otherwise, the SIMD pack is boxed, i.e., spilled to the heap

together with its type information. In practice, boxing of SIMD

packs can usually be avoided via inlining, or by writing their values

to specialized arrays (see section 3.11) instead of passing them

around as function arguments.

3.3 Casts
For each scalar data type X, there is a function named X that is

equivalent to (lambda (v) (coerce v ’X)). For each SIMD

data type X.Y, there is a function named X.Y that ensures that its
argument is of type X.Y, or, if the argument is a number, calls the

cast function of X and broadcasts the result.

All functions provided by sb-simd (apart from the casts them-

selves) implicitly cast each argument to its expected type. So to

add the number five to each single float in a SIMD pack x of type
f32.8, it is sufficient to write (f32.8+ x 5). We don’t mention

this implicit conversion explicitly in the following sections, so if

any function description states that an argument must be of type

X.Y, the argument can actually be of any type that is a suitable

argument of the cast function named X.Y.



Closing the Performance Gap Between Lisp and C ELS’22, March 21–22, 2022, Porto, Portugal

3.4 Constructors
For each SIMDdata type X.Y, there is a constructor named make-X.Y
that takes Y arguments of type X and returns a SIMD pack whose

elements are the supplied values.

3.5 Unpackers
For each SIMD data type X.Y, there is a function named X.Y-values
that returns, as Ymultiple values, the elements of the supplied SIMD

pack of type X.Y.

3.6 Reinterpret Casts
For each SIMD data type X.Y, there is a function named X.Y! that

takes any SIMD pack or scalar datum and interprets its bits as a

SIMD pack of type X.Y. If the supplied datum has more bits than

the resulting value, the excess bits are discarded. If the supplied

datum has less bits than the resulting value, the missing bits are

assumed to be zero.

3.7 Associatives
For each associative binary function, e.g., two-arg-X.Y-OP, there
is a function X.Y-OP that takes any number of arguments and

combines them with this binary function in a tree-like fashion. If

the binary function has an identity element, it is possible to call the

function with zero arguments, in which case the identity element is

returned. If there is no identity element, the function must receive

at least one argument.

Examples of associative functions are f32.8+, for summing any

number of 256 bit packs of single floats, and u8.32-max, for com-

puting the element-wise maximum of one or more 256 bit packs of

8 bit integers.

3.8 Reducers
For binary functions two-arg-X.Y-OP that are not associative, but

that have a neutral element, we provide functions X.Y-OP that take
any positive number of arguments and return the reduction of

all arguments with the binary function. In the special case of a

single supplied argument, the binary function is invoked on the

neutral element and that argument. Reducers have been introduced

to generate Lisp-style subtraction and division functions.

Examples of reducers are f32.8/, for successively dividing a

pack of 32 bit single floats by all further supplied packs of 32 bit

single floats, or u32.8- for subtracting any number of supplied

packs of 32 bit unsigned integers from the first supplied one, except

in the case of a single argument, where u32.8- simply negates all

values in the pack.

3.9 Comparisons
For each SIMD data type X.Y, there exist conversion functions X.Y<,
X.Y<=, X.Y>, X.Y>=, and X.Y= that check whether the supplied

arguments are strictly monotonically increasing, monotonically

increasing, strictly monotonically decreasing, monotonically de-

creasing, equal, or nowhere equal, respectively. In contrast to the

Common Lisp functions <, <=, >, >=, =, and /= the SIMD compari-

son functions don’t return a generalized boolean, but a SIMD pack

of unsigned integers with Y elements. The bits of each unsigned

integer are either all one, if the values of the arguments at that

position satisfy the test, or all zero, if they don’t. We call a SIMD

packs of such unsigned integers a mask.

3.10 Conditionals
The SIMD paradigm is inherently incompatible with fine-grained

control flow. A piece of code containing an if special form cannot be

vectorized in a straightforward way, because doing so would require

asmany instruction pointers and processor states as there are values

in the desired SIMD data type. Instead, most SIMD instruction sets

provide an operator for selecting values from one of two supplied

SIMD packs based on a mask. The mask is a SIMD pack with as

many elements as the other two arguments, but whose elements

are unsigned integers whose bits must be either all zeros or all ones.

This selection mechanism can be used to emulate the effect of an if
special form, at the price that both operands have to be computed

each time.

In sb-simd, all conditional operations and comparisons emit

suitable mask fields, and there is a X.Y-if function for each SIMD

data type with element type X and number of elements Y whose

first arguments must be a suitable mask, whose second and third

argument must be objects that can be converted to the SIMD data

type X.Y, and that returns a value of type X.Y where each element

is from the second operand if the corresponding mask bits are set,

and from the third operand if the corresponding mask bits are not

set. An example of masks and conditionals is given in Figure 3.

3.11 Loads and Stores
In practice, a SIMD pack X.Y is usually not constructed by call-

ing its constructor, but by loading Y consecutive elements from

a specialized array with element type X. The functions for do-

ing so are called X.Y-aref and X.Y-row-major-aref, and have

similar semantics as Common Lisp’s aref and row-major-aref.
In addition to that, some instruction sets provide the functions

X.Y-non-temporal-aref and X.Y-non-temporal-row-major-aref,
for accessing a memory location without loading the referenced

values into the CPU’s cache.

For each function X.Y-foo for loading SIMD packs from an array,

there also exists a corresponding function (setf X.Y-foo) for

storing a SIMD pack in the specifiedmemory location. An exception

to this rule is that some instruction sets (e.g., SSE) only provide

functions for non-temporal stores, but not for the corresponding

non-temporal loads.

One difficulty when treating the data of a Common Lisp array as

a SIMD pack is that some hardware instructions require a particular

alignment of the address being referenced. Luckily, most architec-

tures provide instructions for unaligned loads and stores that are,

at least on modern CPUs, not slower than their aligned equivalents.

So by default we translate all array references as unaligned loads

and stores. An exception are the instructions for non-temporal

loads and stores, that always require a certain alignment. We do

not handle this case specially, so without special handling by the

user, non-temporal loads and stores will only work on certain array

indices that depend on the actual placement of that array in mem-

ory. We’d be grateful if someone could point us to a mechanism for

constraining the alignment of Common Lisp arrays in memory.



ELS’22, March 21–22, 2022, Porto, Portugal Marco Heisig and Harald Köstler

3.12 Specialized Scalar Operations
Finally, for each SIMD function X.Y-OP that applies a certain opera-

tion OP element-wise to the Y elements of type X, there exists also a
functions X-OP for applying that operation only to a single element.

For example, the SIMD function f64.4+ has a corresponding func-

tion f64+ that differs from cl:+ in that it only accepts arguments

of type double float, and that it adds its supplied arguments in a

fixed order that is the same as the one used by f64.4.
There are good reasons for exporting scalar functions from a

SIMD library, too. The most obvious one is that they obey the same

naming convention and hence make it easier to locate the correct

functions. Another benefit is that the semantics of each scalar op-

eration is precisely the same as that of the corresponding SIMD

function, so they can be used to write reference implementations

for testing. A final reason is that scalar functions can be used to

simplify the life of tools for automatic vectorization.

3.13 Instruction Set Dispatch
One challenge that is unique to image-based programming sys-

tems such as Lisp is that a program can run on one machine, be

dumped as an image, and then resumed on another machine. While

nobody expects this feature to work across machines with different

architectures, it is quite likely that the machine where the image is

dumped and the one where execution is resumed provide different

instruction set extensions.

As a practical example, consider a game developer that develops

software on an x86-64 machine with all SIMD extensions up to

AVX2, but then dumps it as an image and ships it to a customer

whose machine only supports SIMD extensions up to SSE2. Ideally,

the image should contain multiple optimized versions of all crucial

functions, and dynamically select the most appropriate version

based on the instruction set extensions that are actually available.

This kind of run time instruction set dispatch is explicitly sup-

ported by means of the instruction-set-case macro. The code

resulting from an invocation of this macro compiles to an efficient

jump table whose index is recomputed on each startup of the Lisp

image. An simple example of such an instruction set dispatch is

given in Figure 2.

4 LOOPUS
Even though the interface provided by sb-simdis relatively con-

venient — at least when comparing it to similar libraries in other

programming languages — there are certain repetitive patterns

when writing vectorized code that almost beg for another layer of

abstraction via macros. The most frequent repetitive pattern is that

of using two loops to process a range of data: One with a step size

that is the vectorization width, and one with a step size of one for

handling the remainder. Figure 3 gives an example for this pattern.

Further repetitive patterns are that of rewriting calls to aref as

uses of row-major-aref, and hoisting all the loop invariant part

of the index calculation outside of the loop.

After writing a variety of prototypes, we decided to create a

portable loop optimization library for Common Lisp that can be

used via macros. The library is invoked by using the loopus:for
macro for looping over a range of integers. Once that macro is

encountered, the whole form is turned into a tree of loops, where

(defpackage #:sb-simd-user1

(:use #:common-lisp #:sb-simd)2

(:local-nicknames3

(#:sse2 #:sb-simd-sse2)4

(#:avx #:sb-simd-avx2)))5

6

(in-package #:sb-simd-user)7

8

(defun quadruple4 (array)9

(declare (type (simple-array f64 (4)) array))10

(declare (optimize (speed 3) (safety 0)))11

(prog1 array12

(instruction-set-case13

(:avx14

(setf (avx:f64.4-aref array 0)15

(avx:f64.4*16

(avx:f64.4-aref array 0)17

4)))18

(:sse219

(setf (sse2:f64.2-aref array 0)20

(sse2:f64.2*21

(sse2:f64.2-aref array 0)22

4)23

(sse2:f64.2-aref array 2)24

(sse2:f64.2*25

(sse2:f64.2-aref array 2)26

4))))))27

28

Figure 2: A simple example for selecting the best available
instruction set at run time: The eight elements of a supplied
vector of double floats are quadrupled, using either AVX in-
structions, or, if those aren’t available, SSE2 instructions.

each loop contains zero or more data flow graphs whose nodes

are function calls, and whose roots are array store instructions

or reduction statements. Each data flow graph may also reference

nodes from any of the graphs of the surrounding loops. The leaves of

each data flow graph are either constants or array load instructions.

Only a small subset of Common Lisp is allowed in the body of

a loopus:for macro: functions, macros, and the special operators

let, let*, locally, and progn. For now, this subset strikes the
right balance between expressiveness and ease of optimization, but

we may add support for further special operators in the future.

The good news is that once a programmer obeys these restrictions,

the entire loop nest and all expressions therein are subject to the

following optimizations:

• Rewriting of multi-dimensional array references to refer-

ences using only a single row-major index.

• Symbolic optimization of polynomials, and especially of the

expressions for calculating array indices.

• Hoisting of loop invariant code.

• Automatic SIMD vectorization.



Closing the Performance Gap Between Lisp and C ELS’22, March 21–22, 2022, Porto, Portugal

One may wonder why we use macros and didn’t just add our

loop optimizations to SBCL directly. The reason is that implement-

ing loop optimizations for the entire Common Lisp language is a

daunting task. The many possible interactions of language features

would force us to be conservative in terms of optimization, or spend

much more time on the development that we can currently spare.

One advantage of providing optimizations as a macro, is that they

are automatically available to all Lisp implementations.

5 EXAMPLES
5.1 Sum of Positive Numbers
This first example illustrates the various features provided by sb-

simd. We deliberately don’t utilize Loopus for this example to give

a realistic impression of how programming with raw SIMD instruc-

tions looks like. The example problem is that of summing numbers

in a supplied vector, with the additional constraint that numbers less

than zero shall be ignored. The AVX2 vectorized code to perform

this task is given in Figure 3.

(in-package #:sb-simd-avx2)1

2

(defun sum-positive-numbers (vec)3

(declare (type (simple-array f64 (*)) vec))4

(let ((n (array-total-size vec))5

(i 0)6

(acc (f64.4 0))7

(result 0d0))8

(declare (f64.4 acc) (f64 result))9

(loop while (<= i (- n 4)) do10

(let ((v (f64.4-aref vec i)))11

(f64.4-incf acc12

(f64.4-if (f64.4> v 0) v 0))13

(incf i 4)))14

(f64-incf result (f64.4-hsum acc))15

(loop while (< i n) do16

(let ((v (f64-aref vec i)))17

(f64-incf result18

(f64-if (f64> v 0) v 0)))19

(incf i))20

result))21

22

Figure 3: Summing all positive numbers in a vector, using
AVX2 intrinsics. Two loops are needed to process any num-
ber of elements correctly: One vectorized loop with a step
size of four (lines 10–14), and another one for handling the
remainder (lines 16–20).

5.2 Jacobi
In this second example, we compare the performance of Common

Lisp and C for the problem of applying Jacobi’s method on a two-

dimensional domain. For the C code, we took the best implementa-

tion we could find (Figure 4) and compiled it with GCC 9.2 and with

highest optimization settings (-Ofast -march=native). For the
Lisp code in Figure 5 we used SBCL 2.2.0 and our loop optimization

framework Loopus. The most critical part of assembler code of both

versions is shown in Figures 6 and 7.

void jacobi(double* dst, double* src,1

unsigned int rows,2

unsigned int columns) {3

double *C = dst + columns + 1;4

double *N = src + 1;5

double *W = src + columns ;6

double *E = src + columns + 2;7

double *S = src + 2*columns + 1;8

9

for(size_t iy = 0; iy < rows - 2; ++iy) {10

for(size_t ix = 0; ix < columns - 2; ++ix) {11

size_t idx = iy * columns + ix;12

C[idx] = 0.25 * (N[idx]+ S[idx]+W[idx]+E[idx]);13

}14

}15

}16

17

Figure 4: An efficient C implementation of Jacobi’s method.

(defun jacobi (dst src)1

(declare (type (simple-array f64 2) dst src))2

(loopus:for (i 1 (1- (array-dimension dst 0)))3

(loopus:for (j 1 (1- (array-dimension dst 1)))4

(setf (f64-aref dst i j)5

(f64* 0.25d06

(f64+7

(f64-aref src i (1+ j))8

(f64-aref src i (1- j))9

(f64-aref src (1+ i) j)10

(f64-aref src (1- i) j)))))))11

12

Figure 5: A Common Lisp implementation of Jacobi’s
method.

One can see that the assembler code produced by GCC (Figure

6) and SBCL (Figure 7) is extremely similar. Both versions use three

256 bit vector additions and one 256 bit vector multiplication. The

only differences are that GCC’s assembler code combines two loads

directly with the subsequent addition, and manages to perform the

loop test entirely in registers. In SBCL, the nature of how operations

of its virtual machine are translated to assembler instructions makes

it very hard to combine loads with subsequent instructions. We

haven’t yet investigated why SBCL decided to reference the stack

for checking for termination of the innermost loop.

The reason that SIMD operations appear at all in the code by

SBCL is that Loopus has automatically rewritten the scalar loop



ELS’22, March 21–22, 2022, Porto, Portugal Marco Heisig and Harald Köstler

L1: vmovupd ymm5, [rbx+rax*1]1

vmovupd ymm6, [r11+rax*1]2

vaddpd ymm0, ymm5, [rcx+rax*1]3

vaddpd ymm1, ymm6, [r10+rax*1]4

vaddpd ymm0, ymm0, ymm15

vmulpd ymm0, ymm0, ymm36

vmovupd [rdx+rax*1], ymm07

add rax,0x208

cmp [rsp+0x20], rax9

jne L110

11

Figure 6: The assembler code of the innermost loop pro-
duced by GCC 9.2 for our C code.

L1: vmovupd ymm0, [rsi+rbx*4+8]1

vmovupd ymm1, [rsi+rbx*4-8]2

vmovupd ymm2, [r9+rbx*4]3

vmovupd ymm3, [r8+rbx*4]4

vaddpd ymm0, ymm0, ymm15

vaddpd ymm1, ymm2, ymm36

vaddpd ymm0, ymm0, ymm17

vmulpd ymm0, ymm4, ymm08

vmovupd [rcx+rbx*4], ymm09

add rbx, 810

cmp rbx, rdx11

jl L112

13

Figure 7: The assembler code of the innermost loop pro-
duced by SBCL 2.2 for our Lisp code.

from Figure 5 line 4–11 as two loops, where the first loop has a step

size of four and uses SIMD instructions and where the second loop

has a step size of one and handles the remainder in case the loop

length is not divisible by four. Furthermore, Loopus replaces each

access to a Common Lisp array by direct pointer arithmetic, and

hoists most of the loop index calculations outside of the innermost

loop. This way, each array access can be encoded as a single load

instruction whose address is the sum of two registers, where the

value of the second register is scaled by a power of two, plus a small

constant.

To compare the performance of our Lisp and C codes, we ran each

Jacobi implementation for several minutes on a problem that fits

well into the L1 cache of the target machine. In doing so, we ensure

that the computation is not limited by memory throughput and

thus accurately reflects how well the CPU can digest the generated

machine code. Our results for a variety of x86-64 CPUs are shown

in Figure 8.

CPU Lisp C Ratio
AMD EPYC 7451 “Naples” 8.1 8.6 0.94

AMD EPYC 7452 “Rome” 8.2 10.0 0.82

Intel Xeon “Skylake” Gold 6148 10.8 13.9 0.78

Intel Xeon “Cascade Lake” Gold 6248 7.2 9.3 0.77

AMD EPYC 7543 “Milan” 12.8 18.1 0.71

Intel Xeon “Haswell” E5-2695 v3 6.9 9.8 0.70

Intel Xeon “Icelake” Platinum 8360Y 11.3 16.1 0.70

Intel Xeon “Icelake” Platinum 8358 7.9 11.3 0.70

Intel Xeon “Broadwell” E5-2697 v4 5.0 7.5 0.67

Figure 8: Performance in GFlop/s for Jacobi’smethod on var-
ious CPU architectures, as well as the ratio of the porfor-
mance of the Lisp version and the C version.

6 CONCLUSIONS
We have narrowed the performance gap between Common Lisp

and C for number crunching to something between 6% and 33%,

depending on the target hardware. We achieved this by developing

a low-level SIMD library for SBCL, named sb-simd, and a portable

library for loop optimization and automatic vectorizaton, named

Loopus.

The interface provided by sb-simd is the most convenient way

of using SIMD intrinsics among all programming languages known

to us. It treats SIMD packs as regular, typed objects, allows the

development of SIMD codes at the REPL, and even provides an

introspection mechanism for querying the avaiable instructions and

data types at run time. We hope that the interface provided by sb-

simdwill eventually be supported bymultiple Lisp implementations

and turn into a de-facto standard similar to bordeaux-threads.

The loop optimization library Loopus is still in its infancy, but al-

ready powerful enough to vectorize inner loops written in a certain

subset of Common Lisp. This makes it possible to harness SIMD

instructions for a wide variety of loops using minimal effort. We

hope that this paper will attract further contributors, and that Loo-

pus will one day reach feature parity with the loop optimization

machinery in GCC and Clang.

What makes us particularly excited about these new libraries

is that they turn Common Lisp into a viable language for high

performance computing. Programmers in that domain can now

finally enjoy the convenience and flexibility of using Lisp, and,

most importantly, harness the power of Lisp macros to develop

lightweight, domain-specific optimizations. We are confident that

in many cases, such domain-specific optimizations can outperform

the general-purpose work that is normally done by a compiler. We

are looking forward to working on such optimizing Lisp macros in

the future.

7 ACKNOWLEGMENTS
This work wouldn’t have been possible without the support of

many other people and organizations. We express our heartfelt

gratitude to:

• KONWIHR, the Competence Network for Scientific High

Performance Computing in Bavaria, for funding the advance-

ment of SIMD instructions in SBCL and our work on sb-simd.



Closing the Performance Gap Between Lisp and C ELS’22, March 21–22, 2022, Porto, Portugal

• Paul Khuong, for writing the initial support for SIMD pro-

gramming in SBCL.

• Stas Boukarev, for adding the low-level machinery required

for AVX, AVX2, and FMA instructions to SBCL.

• All the other SBCL developers for kindly supporting this

work and providing feedback, especially Douglas Katzmann,

Charles Zhang, and Christophe Rhodes.

• Bela Pecsek for being an ardent user of sb-simd since the

first day, for porting various benchmarks from C to SIMD-

enhanced Lisp, and for his frequent feedback and bug reports.

• Nicolas Neuss, Hayley Patton, Michał Herda, Jan Münch, and

Shubhamkar Ayare, for some valuable discussions.

• The group from the Erlangen National High Performance

Computing Center (NHR@FAU) for giving us access to their

benchmark systems, and for insistently questioning the per-

formance of Lisp. The latter turned out to be a surprisingly

good motivation.

REFERENCES
[1] Gabriel, R. P. Performance and Evaluation of LISP Systems. The MIT Press, 08

1985.

[2] Graham, P. On LISP. Pearson, Upper Saddle River, NJ, Sept. 1993.
[3] Svingen, B. When lisp is faster than C. In Proceedings of the 8th Annual Conference

on Genetic and Evolutionary Computation (New York, NY, USA, 2006), GECCO ’06,

Association for Computing Machinery, p. 957–958.

[4] Verna, D. How to make lisp go faster than C. In Proceedings of the International
MultiConference of Engineers and Computer Scientists (Hong Kong, June 2006),

International Association of Engineers.

[5] Ó Nualláin, B. Executable pseudocode for graph algorithms. In Proceedings of
the 8th European Lisp Symposium (Apr. 2015), ELS2015.


	Abstract
	1 Introduction
	2 Related Work
	3 sb-simd
	3.1 Software Architecture
	3.2 Data Types
	3.3 Casts
	3.4 Constructors
	3.5 Unpackers
	3.6 Reinterpret Casts
	3.7 Associatives
	3.8 Reducers
	3.9 Comparisons
	3.10 Conditionals
	3.11 Loads and Stores
	3.12 Specialized Scalar Operations
	3.13 Instruction Set Dispatch

	4 Loopus
	5 Examples
	5.1 Sum of Positive Numbers
	5.2 Jacobi

	6 Conclusions
	7 Acknowlegments
	References

