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Coherent Optical Transmitter

Transmitter Nonlinearity
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Volterra series-based DPD

Nonlinear system

with memory z|n]

x[n]

z[n] = H x|n]; H =Volterra kernels

My M, D,
z[n] = hy + Z hy[te]x[n — 7] + Z z hy[1, dy]x[n — T2]x[n — 1, — dy] +

T1=—M1 T2=—M2 d2=0

* Volterra series direct extension of the impulse response concept.

Interpretable - Volterra series

[4] T. Ogunfunmi, “Adaptive nonlinear system identification: The Volterra and Wiener model approaches”. Springer Science & Business Media, 2007.

...higher order terms ...



Training of DPDs

Nonlinear system - Nonlinear system
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e Simpler [5, 6] * No Noise offset

* Noise offset [7] * Requires an auxiliary model (differentiable)

* Nonlinear operations are not commutative [7]

Accurate DPD - Direct learning
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Training
Direct learning

* Nonlinear Filtered x-LMS ot & Noilinear systein
. . . . Predistortion }—kb{ Tx l_.[ Rx H_:_,Output
* Predistortion and Auxiliary model: Volterra series-based z i :

* Back-propagation to update pre-distortion model is difficult. ; 3 ;
Ry

Iterative t

Direct learning architecture (DLA)
* Direct learning - NN-based.

* Modular, back-propagation is easier.

* But NN-based DPDs are kind of black box. Very difficult to interpret.

Simpler direct learning - NN as auxiliary model
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Proposed Volterra-DLA DPD

* Direct learning of Volterra DPD by using neural networks Nonlinear system
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Simulation setup
64 GBaud, back-to-back conf.
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Training Volterra-DLA DPD

Symbol detection




Training Volterra-DLA DPD
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Results
Varying DA nonlinearity
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Results

GMI and histograms

—a— [inear —— Volterra ILA —e— Volterra DLA

——B0O=3dB--- BO=5dB

BO=7dB

17 18 19
SNR [dB]

20

21

7 -5 -3 -1 1 3 5 7

Histograms of the real part of
received signal

Volterra- ILA

Volterra- DLA



Conclusion

* NNs have nice properties to be an auxiliary model

* Modular, easier back-propagation.

* We proposed an efficient direct learning of Volterra series-based DPD by leveraging advantages of
NNs.

* We compared the performance of proposed Volterra-DLA DPD with a Volterra-ILA and a linear
DPD for varying nonlinearity condition in simulations.

* The proposed method can be used for training other DPDs like memory polynomials as well.
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