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Abstract— A new method to recognize the intention of a
human worker while performing a collaborative task with a
robot is proposed. For this purpose, two recurrent neural
network (RNN) architectures capable of predicting the worker’s
target were developed. The first uses marker-based tracking
of hand positions and the second RGB-D videos of human
motion. The system was implemented to perform a collaborative
assembly task. The results show high intention prediction
accuracy for both networks, with accuracy increasing once a
larger portion of human motion has been observed, making
the proposed method viable for efficient and dynamic human-
robot collaboration. Furthermore, we developed a framework
that enables online adaptation of robot trajectories based on
estimated human intentions.

I. INTRODUCTION

Human-robot collaboration is moving from laboratories
to factory floors, where humans and robots share their
workspace to effectively accomplish tasks that may be too
complex for robots alone. It is essential in such environments
that robot and human workers can dynamically share their
tasks, i.e., a human can help a robot to perform a task
when appropriate. This trend is driven by the rising number
of affordable collaborative robots on the market. For the
successful implementation of human-robot collaboration, a
number of new software tools and algorithms need to be
developed. It is important that they are not tailored only
to a specific application but generally applicable. Only in
this way can we shorten the deployment effort of new
solutions and further increase the viability of collaborative
systems in industrial settings. One of the problems that needs
an adequate solution is the recognition and anticipation of
human worker motion.

Recurrent neural networks (RNNs) are a promising tech-
nology for collaborative tasks that require anticipation of
an agent’s motion since they can take advantage of long
short-term memory (LSTM) units to analyze time-dependent
processes [1]. This allows for predictions of future states
based on the previous ones. For example, RNNs are capable
of predicting future body poses based on measurements of
past poses [2] and labeling of human actions [3].

In this paper, we propose an end-to-end recurrent neu-
ral network design to analyze variable-length motions of
a human worker’s arm and perform classification into a
limited set of possible intentions. An additional objective
was to develop cost-effective solutions without sacrificing
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Fig. 1. Collaborative task used for evaluation. The human worker inserts a
copper ring into one of the four designated slots, while a robot does the same
from the opposite side. To enable dynamic and simultaneous performance
of the task, our proposed method can predict the worker’s intention and
adjust the robot’s motion to enable effective use of the shared workspace.

performance, i.e., using off-the-shelf RGB-D cameras. The
predictions are used to control and adjust the motion of a
collaborative robot sharing workspace with a human worker.
The proposed RNN can output the predicted worker intention
every time a new sensor measurement has been processed.
Based on these results, the robot can change its motion and
perform a different operation. To enable smooth transitions
between different motions, the robot trajectories are encoded
using dynamic movement primitives (DMPs) [4]. We devel-
oped and compared two neural networks based on data from
two different sensors: a marker-based tracking system and
an RGB-D camera. In the first case, the input to the RNN
was the operator’s hand trajectory, and in the second case,
an RGB-D video of the task. The output is in both cases
the worker’s intention. With this comparison, we wanted to
verify that comparable results could be obtained using a more
general and affordable solution.

The viability of the proposed approach was shown in a
real-life industrial setting (see Fig. 1). In this setup, both
the robot and the human collaborated to insert a copper ring
into the model for casting car parts. Predictions of human
intention were used online to adjust the robot’s motion, thus
preventing possible conflicts and increasing the efficiency of
the task.

II. RELATED WORK

Human-robot collaboration (HRC) has been increasingly
studied over the past decade due to growing requirements
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for service robot applications in home and industrial envi-
ronments [5], where humans and robots form a system to
accomplish a task. Research is focusing on increasing task
performance, enabling effective robot learning through phys-
ical interaction [6], [7], as well as ensuring task fluency [8].
The development of interfaces for improved perception of the
collaborative environment aims to improve such cooperation.

Intention recognition is a vital part of HRC, enabling the
robot to recognize and anticipate human actions. In [9] a
neural network was used for the active leading of robot
end-effector by estimating human intention based on current
force, position, and velocity measurements. Methods for
RNN-based activity recognition and description have also
been developed [10], where a description label is predicted
from input RGB-D videos. Similar approaches use human
skeleton motions as input data to predict either future
poses [11], [12] or action probability distribution [13]. In
order to recognize whether a handover should take place,
authors in [14] have employed support vector machines
to distinguish between handover and non-handover motions
based on the giver’s kinematic behaviors. Another frame-
work learns motion models using probabilistic principal
component analysis for motion onset detection and intent
estimation [15].

Dynamic Movement Primitives (DMPs) [4] have been
used in the context of HRC to provide smooth robot tra-
jectories, since they can smoothly pull the robot towards the
desired goal position while following the desired trajectory,
even when switching from one desired motion to another.
This can be especially useful in dynamic and uncertain tasks
that often arise in HRC. To estimate the location of object
handover based on hand position measurements, Widmann et
al. [16] employed an extended Kalman filter for prediction
of DMP parameters to encode the possible giver trajectories.
An alternative method for trajectory representation, proba-
bilistic movement primitives [17], has been used to predict
the observed motion trajectories in order to coordinate the
motions during the object handover task. DMPs have also
been employed in image-to-motion translation tasks [18]. A
method for optimized backpropagation when training neural
networks to predict DMPs has also been developed [19].

The benefit of our method is that it doesn’t require
specialized body motion trackers and is capable of processing
variable-length RGB-D videos. The approach most similar to
ours is presented in [10] but uses constant-length videos.
In addition, in this paper we explain how to apply the
output of the neural network in the context of human-robot
collaboration.

III. INTENTION RECOGNITION METHOD

The proposed method aims to predict the human worker’s
intention in an assembly task to achieve a dynamic human-
robot collaboration in a shared workspace. We assume that
a robot and a human perform a limited set of repetitive
tasks. For successful cooperation, we need a system that
can recognize the intended version of the task the human
is performing and adjust the robot motion accordingly if

Fig. 2. Structure of an LSTM cell. The cell inputs are the hidden state
ht−1 and cell state ct−1 from the previous time step, as well as the current
input data xt . New cell state ct and new hidden state ht are defined by the
inputs and the trainable parameters of the LSTM unit, with it , ft and ot
representing outputs of input, forget and output gates.

needed, i.e., if a conflict would arise in the shared workspace.
We applied two different neural network architectures that
can predict the intention of the human worker; the first,
called OptiNet, uses hand position measurements as input,
while the second, denoted as HandNet, makes predictions
directly from RGB-D videos of the worker’s motion. The
latter approach allows for the use of accessible off-the-shelf
cameras and does not require a motion tracker system to
obtain hand positions.

A. LSTM recurrent neural networks

As previously explained, recurrent neural networks are
especially useful for the task of intention recognition from
a sequence of input data (in our case, hand positions and
RGB-D frames) due to their structure, consisting of memory
units that allow storing information dependant on inputs
from previous states. However, classic RNNs can suffer from
vanishing or exploding gradients [20], which instigated the
development of LSTM networks [1]. LSTM memory units
are composed of a cell, an input gate, an output gate and
a forget gate (Fig. 2). The cell memorizes values over an
arbitrary number of time intervals, where the three gates
regulate the flow of information into and out of the cell.
During training, errors flow backwards through a number of
virtual layers unfolded through time, and the LSTM can thus
learn tasks that require memories of events from several time
steps earlier [21].

B. Proposed neural network architectures

The structures of the proposed networks are shown in
Fig. 3. OptiNet consists of fully connected, dropout, LSTM,
and softmax layers, while HandNet has additional input
convolutional layers combined with group normalization,
non-linear and max-pooling layers. The LSTM layers enable
processing sequences of input data and make predictions
even after a single input sample is processed. This property
enables us to recognize the human’s intention before the
entire motion sequence is available to the network. The
inputs to OptiNet are sequences of Cartesian space hand
position measurements y(t)∈R3 while the inputs to HandNet
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Fig. 3. The proposed recurrent neural network architectures. The structure of both HandNet and OptiNet is similar but they differ in the input layers.
HandNet processes RGB-D videos using convolutional layers, while OptiNet infers directly from the measured Cartesian positions of the worker’s hand.
The outputs u are sent through a softmax layer to obtain task version probabilities p. For implementation of our use case, we set the input RGB-D frame
size to 160×120×4 and the number of output probabilities – corresponding to the target slots – to 4.

are sequences of frames F(t) ∈ RW×H×4. Frame F is an
RGB-D image of W ×H × 4 pixels, where W and H are
the width and height of input camera frames. Each input
sequence is labeled with the ground-truth version of the task
k∈N, k∈ {1, . . . ,m}, e.g., target slot for placing of an object,
where m is the number of possible targets.

The outputs u ∈Rm of both architectures are sent through
a softmax layer in order to represent a probability distribution
p ∈ Rm across the m possible classes. Thanks to LSTM
layers, the variations of the task can be predicted after an
arbitrary number of input positions or images have passed
through the network. The prediction accuracy typically in-
creases as more input samples are obtained during the task
execution. The data pairs used for training the OptiNet are
thus defined as

Do = {{yi j}L j
i=1, k j}M

j=1, (1)

while the data pairs for training the HandNet are

Dh = {{Fi j}L j
i=1, k j}M

j=1, (2)

with M being the number of training samples and L j denoting
the length of the j-th input sequence.

C. Cross-entropy loss
To implement the loss function during training of OptiNet

and HandNet architectures, cross entropy minimization is
employed. The softmax layer ensures that the output values
u = (u1,u2, . . . ,um) are normalized into a probability distri-
bution p = (p1, p2, . . . , pm) over m possible versions of the
task:

pi =
eui

∑m
j=1 eu j

, i = 1, . . . ,m. (3)

The sum of probabilities in p thus equals 1, i.e., ∑m
i=1 pi = 1.

Negative log likelihood loss is calculated afterwards. Given

a predicted probability distribution pn in time step n and a
correct target class k, the loss is therefore defined as

Ln(pn,k) =− log(pn,k), (4)

where pn,k represents the predicted probability of target class
k in time step n.

The losses are calculated for each time step. A weighted
sum is used to decrease the significance of early input values
(camera frames or pose measurements) and increase the
significance of later values. For each input sequence of length
L, the total loss is defined as

L =
1
L

L

∑
n=1

γnLn, (5)

where γn represents the weight for the n-th input, computed
using a logistic function as

γn =
1

1+ e−5 n−1
L−1+0.5

. (6)

1) Training method: The HandNet and OptiNet architec-
tures were implemented using PyTorch [22] and a NVIDIA
GeForce GTX 1080 graphics processing unit. Both archi-
tectures were trained using the RMSprop optimization algo-
rithm [23] with a learning rate of 0.0001 and a batch size
of 20, where the training was stopped after 40 consecutive
epochs of no mean accuracy improvement on the validation
set.

D. Dynamic movement primitives

Each task from the set of the robot collaborative tasks is
encoded as a DMP. The choice of DMPs makes it possible to
provide a smooth transition when switching among different
trajectories. The RNN networks in Fig. 3 give outputs after
each new input sample (position measurement or RGB-D



image). Thus, the predicted intention of the human worker
may change during the collaborative task. Generally, the
prediction accuracy is improving as more inputs are avail-
able. This requires that the robot is capable of adapting its
trajectory while carrying out the assembly task, which can
be effectively achieved by utilizing DMPs.

The trajectories of the controlled robot with d degrees
of freedom are defined as y(t) = [c(t)T,q(t)T]T, y(t) ∈ Rd ,
and consist of Cartesian space positions c(t) ∈ R3 and
orientations q(t) ∈ R4. Using DMPs [4], a robot trajectory
can be described with the following system of differential
equations:

τz = αz(βz(g−y)− z)+diag(g−y0) f(x), (7)
τ ẏ = z. (8)

Here y0 ∈ Rd represents the initial position of the desired
trajectory and g ∈ Rd is the final position or goal of the
trajectory. The auxiliary parameter z ∈ Rd is the scaled
velocity of motion, obtained with the temporal scaling term
τ , and f(x) ∈ Rd denotes a nonlinear forcing term, where
x ∈ R is the phase defined by

τ ẋ =−αx x. (9)

The introduction of the phase removes the direct time de-
pendence of the DMP. The forcing term f(x) is a linear
combination of normalized radial basis functions (RBFs),
defined with weights, and can thus be used to approximate
an arbitrary function. In this way, the dynamic system can
reproduce any smooth motion between the initial and final
robot position.

To compute the next position, velocity, and acceleration
from the previous ones, the system of equations (7) – (9)
must be solved. Parameters αx, αz and βz are usually set to
fixed values to ensure critical damping and convergence of
y and z to a unique attractor point at y = g, z = 0.

As previously explained, new RNN predictions may re-
quire for the robot to switch between different tasks, each
described with a unique set of DMP parameters. The smooth
switching is provided in the following way. We denote the
current DMP integration state as yc,zc, the temporal scaling
factor of the current trajectory as τc, and the temporal scaling
factor of the desired new trajectory as τn. In order to ensure
that the position and velocity of the robot remain smooth
during switching, we initialize the next DMP integration
states yn and zn as

yn = yc, (10)

zn =
τn

τc
zc. (11)

Starting with values (10) – (11), we can continue the integra-
tion from current phase x using the DMP parameters of the
new trajectory. The initialization values are not guaranteed
to lie on the new desired trajectory. However, since DMPs
define a control policy, the integration converges to the new
desired motion.
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Fig. 4. Example trajectories of hand motion for all four versions of the task,
recorded using the OptiTrack motion capture system. Each path belongs to
a different task variation, i.e., goal slot label k.

IV. EXPERIMENTS

The aim of the experiments was to validate the OptiNet
and HandNet intention recognition architectures. Our goal
was to evaluate the accuracy of the prediction of the collab-
orative task performed (Fig. 1) using both networks. The
networks were trained using training and validation sets,
detailed in Sections IV-A and IV-B, while their accuracy
was calculated on the test dataset.

A. Experimental setup and data acquisition

The experimental setup is presented in Fig. 1. It mimics a
real-life industrial scenario from production of car starters.
The tasks of the robot and the human were the same, i.e., to
insert copper rings into the casting model, and the tasks are
executed simultaneously. During collaboration, the human
may attempt to insert the ring into the same slot as the robot.
Based on the information obtained from hand positions or the
video, the robot adapts its work plan to the human operation.

The casting model is composed of four insertion slots,
where the robot and the human can access all slots. The
challenge is to identify the slot where the human operator
intends to place the copper ring as early as possible and mod-
ify the robot plan accordingly to prevent possible conflicts
in the shared workspace.

During data acquisition the human subject was instructed
to place an object from a starting point on one end of
the table into one of the four available slots on the other
end, while wearing OptiTrack motion capture markers on
the hand. The human carried out diverse motions, with an
attempt to mimic semi-constrained production environments,
where the workers typically execute fluent and non-random
motions. Examples of four recorded trajectories, with each
leading to a different target slot, are shown in Fig. 4. At
the start of the motion, the subject signalled the beginning
of video recording and hand pose capturing at a rate of
30 Hz, performed by Intel RealSense Depth Camera D435
and OptiTrack V120:Trio camera system, respectively. When
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Fig. 5. Example predictions of probability distributions across four goal slots during a task. Each group of four rows belongs to the same motion sample,
where the second row of each group are HandNet predictions based on camera frames from first row, and the fourth row are OptiNet predictions based
on position measurements in the third row. Green bars represent the probability of the correct goal slot and typically increase as motion progresses. For
simplicity, the depth camera frames are not shown, and the trajectories are only shown in the X-Y plane, since Z coordinates are less informative.

the worker reached one of the object slots, the recording
was stopped. In this way, a database of 1200 samples was
obtained, consisting of RGB-D videos, pose measurements y
and task version labels k in the form of a number from 1 to
4, representing the slot, where the worker placed the object.
A subset of 100 motion samples was used as test data, while
the rest was used for training and validation and underwent
additional processing (see Section IV-B).

B. Data processing

In order to compensate for the low number of video
samples in the train/validation database, randomization was
implemented to increase the database size. By introducing
randomization, we also aimed to improve the networks’
capability to successfully generalize to previously unseen
data.

The training and validation samples were randomly pro-
cessed multiple times. Temporal randomization was applied,
where a random amount (4 to 16) of RGB-D videos and hand
position measurements was extracted. This way, variation of
motion lengths was increased. During this process, a larger
part of RGB-D videos was transformed with medium ran-
domization (rotations, contrast, saturation and hue changes,
noise), while a portion underwent heavy randomization (ad-
ditional random cropping and resizing, perspective transfor-
mations and noise). Validation videos were processed with

minimal variations. Test data was temporally subsampled by
extracting every 7th sample and no video randomization was
applied. During this process, camera frames were resized
from the original size of 640× 480 pixels to the HandNet
input size of 160×120 pixels.

The final number of training, validation and test motion
samples was 3200, 200 and 100, respectively.

C. Results

The OptiNet and HandNet networks were evaluated on
the test database of 100 motion samples, which were not
used during the training phase. The input samples (either
sequences of position measurements y or sequences of RGB-
D camera frames F) were passed through the OptiNet and
HandNet architectures to obtain the predicted intention of
the human worker, i.e., the label of the target slot, where the
worker is moving the object.

After each element of the input sample is processed, the
networks output a probability distribution across four target
slots. With each new position measurement or camera frame,
the predicted probabilities are updated, thus allowing online
acquisition of the worker’s intention as the motion is being
carried out. Fig. 5 shows example outputs of both networks
for two different motion samples.

To assess and compare the intention recognition accuracy,
classification confusion matrices were calculated. Fig. 6



1 2 3 4

1
2

3
4

A
ct

ua
l t

ar
ge

t s
lo

t

85.2% 7.4% 0.0% 7.4%

0.0% 78.3% 0.0% 21.7%

0.0% 70.6% 0.0% 29.4%

3.0% 30.3% 0.0% 66.7%

After 25 % of motion

1 2 3 4

1
2

3
4

100.0% 0.0% 0.0% 0.0%

8.7% 87.0% 4.3% 0.0%

5.9% 17.6% 70.6% 5.9%

0.0% 3.0% 60.6% 36.4%

After 50 % of motion

1 2 3 4

1
2

3
4

100.0% 0.0% 0.0% 0.0%

0.0% 82.6% 17.4% 0.0%

0.0% 11.8% 76.5% 11.8%

0.0% 0.0% 15.2% 84.8%

After 75 % of motion

1 2 3 4

1
2

3
4

100.0% 0.0% 0.0% 0.0%

0.0% 95.7% 4.3% 0.0%

0.0% 0.0% 100.0% 0.0%

0.0% 0.0% 0.0% 100.0%

After 100 % of motion

1 2 3 4

Predicted target slot

1
2

3
4

A
ct

ua
l t

ar
ge

t s
lo

t

81.5% 18.5% 0.0% 0.0%

13.0% 82.6% 4.3% 0.0%

23.5% 64.7% 0.0% 11.8%

6.1% 69.7% 12.1% 12.1%

1 2 3 4

Predicted target slot

1
2

3
4

100.0% 0.0% 0.0% 0.0%

0.0% 91.3% 8.7% 0.0%

11.8% 17.6% 64.7% 5.9%

0.0% 9.1% 24.2% 66.7%

1 2 3 4

Predicted target slot

1
2

3
4

100.0% 0.0% 0.0% 0.0%

0.0% 100.0% 0.0% 0.0%

0.0% 0.0% 94.1% 5.9%

0.0% 0.0% 3.0% 97.0%

1 2 3 4

Predicted target slot

1
2

3
4

100.0% 0.0% 0.0% 0.0%

0.0% 100.0% 0.0% 0.0%

0.0% 0.0% 88.2% 11.8%

0.0% 0.0% 0.0% 100.0%

OptiNet

HandNet

Fig. 6. Confusion classification matrices showing the ratios of correct target slot predictions for the test dataset. Accuracy is shown after processing 25%,
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were classified as the slot b (the sum of each row is therefore 100%). The matrices show a significant increase in prediction accuracy as a larger part of
the motion is processed, with HandNet accuracy being somewhat lower than OptiNet accuracy.

shows confusion matrices for both networks after processing
25%, 50%, 75% and 100% of motions. The values represent
the percentages of a certain row slot, that was classified as a
corresponding column slot. It is evident that the accuracy is
higher when a larger part of the input motion is available to
the network. A large portion of samples at 25% of motion
are classified as slot k = 2, which can be attributed to similar
initial parts of trajectories, where the network does not have
enough information to determine the goal. OptiNet exhibits
slightly better performance overall (above 94% after 75% of
motion), with HandNet reaching at least 76% accuracy at
75% of motion, while both networks achieve nearly 100%
accuracy after an entire motion. Additionally, the confusion
matrices show that the wrongly predicted slots are often the
slots that are adjacent to the correct one, except with very
early predictions. This can still enable an adequate robot
response in certain cases.

A more detailed graph, showing recognition accuracy of
the networks in relation to the percentage of the input motion
processed, is depicted on Fig. 7. At the start of the motion,
the accuracy is lower, since the trajectories to different goal
slots are very similar in the initial part. A gradual increase
can be observed for both networks as a larger part of the input
motion, in the form of Cartesian positions or camera frames,
is processed. HandNet predictions show a significantly higher
classification accuracy in early predictions, which may indi-
cate that the RGB-D frames contain additional information,
such as human body posture and location, and can thus be
utilized to infer the target slot from multiple input features,
not entirely from hand positions.

The OptiNet performance is evidently slightly higher than
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An increase of accuracy is apparent as a larger part of motion is available,
with the accuracy of both networks being above 60% after half of processed
motion and nearly 100% towards the end of motion.

that of HandNet, especially as a large part of motion is pro-
cessed. Nonetheless, the accuracy of HandNet architecture is
still viable for use in HRC tasks to increase the efficiency
of cooperation.

D. Implementation of a human-robot collaborative task

The proposed system for online intention recognition and
robot control was implemented on a human-robot collab-
orative task, where a human and a Franka Panda robot
worked simultaneously opposite each other to move an object



Fig. 8. An example of human-robot cooperation during the implemented
experiment. In this example, both human and the robot planned to insert the
object into slot k = 4. When HandNet recognized the human intention to
be the same as the robot’s, the trajectory of the robot was adjusted, leading
the robot towards the farthest slot k = 1.

into empty target slots, as seen in Fig. 1. To evaluate its
applicability, the HandNet architecture was used as intention
prediction method.

Robot Operating System (ROS) was employed to enable
communication between the Intel RealSense camera, Hand-
Net and the Panda robot. Four robot trajectories to each
target slot were first recorded using kinesthetic guiding and
encoded with DMP parameters (see Section III-D). The robot
was sent to place an object into one of the slots by executing
a recorded trajectory, while the human worker attempted the
same. After the worker’s motion started, the camera frames
were being sent in real time to a computer, running an
implementation of the HandNet architecture, where a forward
pass with the input RGB-D video was carried out. The
predicted probabilities of target slots p were then sent to the
robot control system. Slot k with the maximum probability
was selected as the intended target of the worker’s motion
and the robot reacted accordingly; if the predicted worker’s
target slot was the same or adjacent to the goal slot of the
robot, the robot would change the goal slot to the farthest
one possible (e.g., if the robot was moving towards slot
k = 2, and the worker’s intention was predicted as k = 1,
the robot would switch to slot k = 4). The adjusting of robot
motion in response to new predictions was implemented by
switching from one DMP trajectory representation to another
(as described in Section III-D).
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Fig. 9. Adjustment of the planned trajectory. The figure shows an example
case during evaluation, where the HandNet recognized the human intention
to be the same as the robot’s (k = 4). The robot’s goal slot was changed (to
k = 1) and the DMP switched. All three components of the positional part
of the robot’s end effector trajectory are shown. Solid blue line shows the
generated trajectory used on the robot, dashed lines denote demonstrated
trajectories for the two relevant slots, and the vertical black line marks the
time of the DMP switch.

An example of a collaborative task during the experiment
is depicted in Fig. 8, where a sequence of images shows
the process of human and robot motion and the adjustment
of the planned robot trajectory due to HandNet intention
predictions. The trajectory generated during this example can
be seen in Fig. 9, denoted with blue color. We can observe a
smooth and continuous transition between two demonstrated
movements.

V. CONCLUSION

In this paper we proposed and evaluated a method for hu-
man intention recognition in collaborative tasks. We acquired
a large database of human motions, consisting of marker-
based position measurements and RGB-D videos, and used it
to train two different networks to predict the final goal slot of
the worker; OptiNet making predictions from position mea-
surements and HandNet from RGB-D camera frames. Both
networks achieved high accuracy in recognizing the human’s
intention. While the overall accuracy of OptiNet was higher,
the implementation of HandNet in an industrial use case
showed its viability. The relatively high price and complex
setup associated with motion tracking systems, which are
needed for OptiNet, makes the application of HandNet,
which requires only an RGB-D camera, a convenient and
effective approach.

The proposed RNNs alone are not sufficient to ensure



completely safe sharing of workspace between humans
and robots. In industrial environments, an additional safety
system must be installed to guarantee that there are no
collisions or damage when the neural network predictions are
not accurate enough. Most collaborative robots are already
equipped with inherent limitations and sensors, which can
provide the necessary safety, making them especially suitable
for the presented approach.

An important enhancement to fully automate our approach
would be a system to detect the beginning and the end of
the human worker motion. For the recurrent neural network
to compute accurate predictions, the sequential inputs must
be similar to the training data, thus making it necessary for
the network to start predicting when the human motion is
initiated and stopping when it finishes. Further work could
also include obtaining a larger, more diverse video-trajectory
database of human motions with various objects for more
accurate predictions. Another improvement would be the
development of a high-level robot reasoning system to asses
various situations and select the appropriate network for
intention prediction.
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