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A B S T R A C T   

Semantic segmentation using convolutional neural networks (CNNs) achieves higher accuracy than traditional 
methods, but it fails to yield satisfactory results under illumination variants when the training set is limited. In 
this paper we present a new data set containing both real and rendered images and a novel cascade network to 
study semantic segmentation in low-light indoor environments. Specifically, the network decomposes a low-light 
image into illumination and reflectance components, and then a multi-tasking learning scheme is built. One 
branch learns to reduce noise and restore information on the reflectance (reflectance restoration branch). 
Another branch learns to segment the reflectance map (semantic segmentation branch). The CNN features from 
two tasks are concatenated together so as to improve the segmentation accuracy by embedding the illumination- 
invariant features. We compare our approach with other CNN-based segmentation frameworks, including the 
state-of-the-art DeepLab v3+, on the proposed real data set, and our approach achieves the highest mIoU 
(47.6%). The experimental results also show that the semantic information supports the restoration of a sharper 
reflectance map, thus further improving the segmentation. Besides, we pre-train a model with the proposed 
large-scale rendered images and then fine-tune it on the real images. The pre-training results in an improvement 
of mIoU by 7.2%. Our models and data set are publicly available for research. This research is part of the EU 
project INGENIOUS1. Our data sets and models are available on our website2.   

1. Introduction 

Semantic segmentation is a basic task of computer vision and aims at 
classifying each pixel of an image. Compared with the original RGB 
image a segmentation map presents the scene in a more intuitive way, 
and it is useful in many fields, such as remote sensing (Kemker et al., 
2018), autonomous driving (Neuhold et al., 2017), and vision-based 
indoor navigation of robots or unmanned aerial vehicles (UAVs) (Ada
chi et al., 2019; Gupta et al., 2020; Lu et al., 2018). In the EU project 
INGENIOUS we aim at increasing first responders’ situational awareness 
in rescue operations. Specifically, first responders need to look inside 
buildings to search for trapped people or verify the presence of possible 
dangers. Therefore, we focus on developing semantic segmentation al
gorithms integrated with UAVs to be used in indoor environments. 
Thanks to many open source annotated data sets such as NYU-depth v2 
(Silberman et al., 2012), SUN RGBD (Song et al., 2015), and SceneNet 
(Handa et al., 2016), semantic segmentation using convolutional neural 

networks (CNNs) has dominated and achieved better performance than 
traditional methods (Garcia-Garcia et al., 2017). However, CNN-based 
models are limited by the distribution of training sets, hence they are 
not robust to illumination changes. When indoor robots or small UAVs 
explore the rooms without electricity after a disaster, they usually illu
minate the scene with LED lights (Özaslan et al., 2015; Lau and Ko, 
2007). Therefore, an object will display different colors and textures 
when camera views change, and there may be shadows on the surface of 
the object, which makes the network trained on a limited training set 
unable to predict correct semantic labels. It is important to study how to 
make CNNs more robust to illumination changes when it is unrealistic to 
obtain a complete enough data set for training. Some researchers used 
preprocessing steps on the original images and obtain illumination- 
invariant images to overcome the adverse impact of illumination 
changes (Alshammari et al., 2018; Maddern et al., 2014; Upcroft et al., 
2014). Nevertheless, these methods sometimes fail because they are 
sensitive to the saturation of images (Upcroft et al., 2014). 
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This paper attempts to simulate a UAV with LED to explore a dark 
room. We focus on semantic segmentation in real low-light indoor 
scenes, and use illumination-invariant CNN features to improve the 
accuracy of segmentation. Retinex theory proposed by Land and 
McCann (1971) studied color constancy and was further developed to 
solve the intrinsic image decomposition problem. An image can be 
decomposed as the product of an illumination component and a reflec
tance component. The reflectance component represents the intrinsic 
property of an object like true colors and textures and is unchanged with 
illumination variants. Therefore, the reflectance component of an image 
favors the semantic segmentation task. In this paper, we propose a novel 
cascade framework LISU, for Low-light Indoor Scene Understanding. As 
shown in Fig. 1, the proposed framework consists of two parts, one is an 
unsupervised decomposition network LISU-decomp that decomposes 
RGB images into corresponding illumination maps and coarse reflec
tance maps. And the other is an encoder-decoder network LISU-joint to 
learn reflectance restoration and semantic segmentation in a multi- 
tasking way. We fuse the feature maps from two tasks together for 
tighter joint learning. The contributions of this paper can be summarized 
as follows: 

• We propose a novel cascade framework LISU to improve the seg
mentation accuracy of low-light indoor scenes by joint learning of 
semantic segmentation and reflectance restoration.  

• To study the specific segmentation task under low-light, we present 
the first low-light indoor scene understanding data set. The data set 
consists of a large-scale realistic rendered data set and a small-scale 
real data set. In the data set pixel-wise annotations and depth maps 
are provided. We hope that this data set can make researchers pay 
more attention to the task of low-light indoor scene understanding.  

• The experimental results show that both reflectance restoration and 
semantic segmentation tasks benefit from the joint learning. The 
illumination-invariant features help the segmentation task. Mean
while, the semantic information also supports the restoration of a 
sharper reflectance map, thus further improving the segmentation. 
Our model and data set will be available online for research. 

The remainder of the paper is organized as follows. Relevant recent 
research is summarized in Section 2. The structure of the proposed LISU 
framework is presented in Section 3. Section 4 introduces our data set in 
detail. Section 5 introduces the evaluation metrics and implementation 
details. The experimental results and discussion are elaborated in Sec
tion 6. We conclude this paper in Section 7. 

2. Related work 

This section reviews some recent related work, particularly the 
intrinsic image decomposition, indoor semantic segmentation and 
multi-task learning. 

2.1. Intrinsic image decomposition 

Intrinsic image decomposition reconstructs an image I in the form of 
a product of a reflectance map R(I) and an illumination map S(I): 

I = R(I)⋅S(I). (1)  

A perfect decomposition enables us to obtain the reflection map con
taining the inherent colors and textures of the scene. However, the 
decomposition task is ill-posed because there are countless combinations 
of reflectance and illumination maps that can reconstruct the same 
image. To address this problem researchers have explored to impose 
additional constraints on decomposed components. The pioneering 
Retinex theory (Land and McCann, 1971) assumes that the illumination 
component is smooth and only yields small gradients. Some subsequent 
studies also proposed different priors to guide the decomposition. 
Rother et al. (2011) achieved competitive decomposition results by 
modelling the reflectance component using basic colors and integrating 
additional edge information. Shen et al. (2008) designed a texture prior 
to the reflection, so that the reflection values with the same textures are 
continuous. Tappen et al. (2005) trained a classifier to classify image 
derivatives into shading or reflectance according to color and gray-scale 
information. With the rise of convolutional neural networks (CNNs) in 
recent years, many supervised methods have been proposed to decom
pose images in synthetic data sets (Fan et al., 2018; Li and Snavely, 
2018; Narihira et al., 2015). Since it is quite difficult to annotate real 
images for decomposition tasks, some researchers tried unsupervised 
learning. Janner et al. first decomposed an input image, and then used a 
trained shading model to reconstruct the image using decomposed 
components. Therefore, they can minimize an unsupervised recon
struction error to update the decomposition network (Janner et al., 
2017). Liu et al. (2020) proposed to use physical and domain constraints 
to train an unsupervised decomposition network from uncorrelated 
data. 

The decomposed reflectance and illumination can be further pro
cessed and used for other specific application such as low-light image 
enhancement. Guo et al. (2016) estimated and refined the illumination 
map by applying a structure prior. Wei et al. (2018) trained a CNN-based 
Retinex-Net to decompose low/normal-light image pairs into a shared 
reflectance map and enhance the illumination map of the low-light 
image. Similarly, (Zhang et al., 2019) also used image pairs for 
training, but additionally explored to use normal-light images to restore 
the reflectance maps of low-light images. Zhu et al. (2020) designed a 
novel loss function to remove noise from the reflectance map. What 
these low-light enhancement papers have in common is that they use the 
intrinsic image decomposition model to obtain intermediate decompo
sition of a low-light image, and then refine the degraded reflectance and 
adjust the illumination map. In this paper, our focus is not to enhance 
the low-light images, but to use the decomposed components for a joint 
learning of semantic segmentation and reflectance restoration. 

Fig. 1. The cascade architecture of our LISU network, which consists of LISU-decomp and LISU-joint. For training the input is a pair of low-light and normal-light 
images. LISU-decomp learns the decomposition of each input image, and LISU-joint jointly learns the reflectance restoration and semantic segmentation. Each cube 
represents the feature map generated by a convolution layer. 
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2.2. Semantic segmentation 

CNN-based semantic segmentation has achieved great success since 
Long et al. proposed a fully convolutional network (FCN) for pixel-wise 
classification (Long et al., 2015). Since then, most CNN-based semantic 
segmentation networks have adopted the basic idea of FCN, but put 
forward different strategies to improve the accuracy of segmentation. 
SegNet used an encoder-decoder structure and introduced pooling 
indices for nonlinear up-sampling (Badrinarayanan et al., 2017). U-Net 
(Ronneberger et al., 2015) links the shallow features from the encoder to 
corresponding decoder layers and achieved good results in medical 
image segmentation. Refine-Net presented by Lin et al. (2017) aggre
gated multi-level features and obtained great improvement in segmen
tation accuracy. Some work utilized depth maps as additional geometry 
information to augment the indoor semantic segmentation (Cheng et al., 
2017a; Park et al., 2017). Cheng et al. (2017a) proposed a gated fusion 
layer to fuse the geometric information and refined boundary segmen
tation using a deconvolution structure. Park et al. (2017) introduced a 
novel fusion block to study an optimal fusion of RGB and depth features. 
Researchers have created many dedicated real data sets for indoor scene 
understanding, such as NYU-Dv2 (Silberman et al., 2012) and SUN 
RGBD (Song et al., 2015). However, collecting and labeling large-scale 
real images for training is laborious. Owing to the development of 
computer graphics, synthetic data sets have been created to pre-train 
CNNs (Handa et al., 2016; McCormac et al., 2017). To our knowledge, 
these data sets only focus on normal-light scenes. 

2.3. Semantic segmentation of low-light images 

This is a relatively new and challenging computer vision task, one 
that has gradually attracted public attention in vision-based autono
mous driving at night. To address this problem some work adapted the 
model trained on off the shelf normal-light data sets to low-light scenes. 
Dai and Van Gool, (2018) proposed to leverage transfer learning to 
adapt a model trained on daytime scenes to nighttime scenes. Sakaridis 
et al. (2019) adapted the model progressively and they did not use any 
nighttime annotations. Sun et al. (2019) used a generative adversarial 
network (GAN) to convert nighttime images to daytime images, hence 
they could make use of the existing models trained on daytime images. 
This similar method was also used by Cho et al. (2020) who proposed a 
modified CycleGAN to translate low-light images for road scene seg
mentation. However, it is not easy to train an adversarial network if two 
domains have great gaps. Other work explored transforming RGB im
ages into illumination-invariant images for more robust semantic seg
mentation (Alshammari et al., 2018; Maddern et al., 2014; Upcroft et al., 
2014). Xu et al. (2019) designed a system to assist visually impaired 
people and they pre-processed the training set in a similar way as 
described above. 

With the development of small indoor UAVs or robots, they have 
been used for indoor inspection (Giernacki et al., 2017; Li et al., 2018; 
Kwon et al., 2008). These devices are also helpful in post-disaster indoor 
rescue missions. They can explore low-light indoor environments 
without a power supply by using LED lights and cameras, and auto
matically navigate using semantic information of scenes if integrated 
with advanced scene understanding algorithms. However, aforemen
tioned works focused on outdoor scene semantic segmentation for 
autonomous driving field, but there is little research on low-light indoor 
scene semantic segmentation. In this paper we try to fill the research gap 
of low-light indoor scene understanding. 

2.4. Multi-task learning (MTL) 

MTL learns two or more closely related tasks and optimizes the 
model together. Zhang and Yang (2021) pointed out that MTL helps 
knowledge flow in different task branches, so it can build a more robust 
deep network. Much CNN-based work benefited from utilizing relevant 

features from different tasks and achieved better results. Dai et al. 
(2016) proposed to simultaneously learn instance segmentation, mask 
segmentation, and bounding box regression. All three tasks are related 
to extracting semantic information, so the introduction of MTL can make 
the network have stronger semantic representation ability. Baslamisli 
et al. (2018) created a synthetic data set of daytime natural environ
ments, and jointly trained a supervision network for semantic segmen
tation and intrinsic image decomposition. Jiao et al. (2019) used an 
encoder to learn the shared features of depth estimation and indoor 
semantic segmentation, and then utilized the distilled geometry infor
mation to guide the segmentation task. SegFlow (Cheng et al., 2017b) 
learned segmentation and optical flow jointly by propagating features of 
these two tasks between two branches, and achieved better results for 
both tasks. (Zeng et al., 2019) used a similar approach to jointly learn 
saliency detection and semantic segmentation. This paper adopts the 
idea of MTL and we restore the degraded reflectance maps and segment 
the scenes simultaneously. 

3. LISU: a new framework for low-light indoor semantic 
segmentation 

In this section the proposed LISU framework for low-light indoor 
scene understanding is illustrated in detail. As shown in Fig. 1 it is a 
cascade network and consists of two sub-networks. A low-light image is 
first fed into the first network LISU-decomp and decomposed into a 
reflectance map and an illumination map. Then, they are inserted into 
the second network, LISU-joint, for a multi-task learning, which is joint 
learning of semantic segmentation and reflectance restoration. In the 
training phase LISU-decomp takes paired low-/normal-light images as 
input and decomposes images in an unsupervised way, i.e., it does not 
use the ground-truth of reflectance or illumination, but uses the inherent 
attributes of images for training. We introduce the details of the unsu
pervised training in Section 3.1. In the testing phase only low-light 
images are needed. 

Baslamisli et al. (2018) proposed a fully supervised framework to 
learn intrinsic images and semantic segmentation simultaneously, and 
they used synthetic daytime outdoor garden images for training. How
ever, we cannot use their method because we focus on inspection and 
rescue missions in real low-light indoor scenes (with LED lighting), and 
we do not have the ground-truth of reflectance and illumination of real 
images for training. Therefore, we design this novel cascade framework 
to deal with the real-world low-light indoor semantic segmentation task. 

In the following sub-sections we present the detailed structures and 
loss functions of LISU-decomp and LISU-joint. 

3.1. LISU-decomp: intrinsic image decomposition 

Our decomposition network takes a three-channel RGB image as 
input, and outputs a three-channel reflectance map and a one-channel 
illumination map. It uses long skip connection to bridge the features 
from encoder layers to decoder layers. Since this connection strategy can 
preserve low-level information and yield sharper features, it has been 
used both in semantic segmentation (Ronneberger et al., 2015; Wu et al., 
2018) and intrinsic image decomposition (Dai et al., 2016; Rematas 
et al., 2016). 

Since we are not able to get the ground-truth of intrinsic image 
decomposition of real images, we follow the unsupervised decomposi
tion approach proposed by Zhang et al. (2019) and we input paired low- 
light and normal-light images of a same scene [Il, In]. LISU-decomp de
composes them into reflectance maps and illumination maps, namely 
[R(Il), S(Il)] and [R(In),S(In)], respectively. We define the first part of the 
reconstruction loss according to Eq. 1: 

Lrecon1 =‖ Il − R(Il)⋅S(Il)‖1 + ‖ In − R(In)⋅S(In)‖1, (2)  

where ‖ ⋅‖1 denotes the l1 norm. According to the definition of reflec
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tance, the reflectance maps of two images taken under different lighting 
conditions in the same scene should be equal. Thereby, an ideal 
decomposition network enable us to reconstruct the normal-light image 
using the illumination map of the normal-light image and the reflectance 
map of the low-light image, and vice versa. The second part of the 
reconstruction loss can be defined as follows: 

Lrecon2 =‖ Il − R(In)⋅S(Il)‖1 + ‖ In − R(Il)⋅S(In)‖1. (3)  

Some Retinex-based decomposition methods extract the maximum 
value in three channels of RGB image as a preliminary illumination map 
(Guo et al., 2016; Handa et al., 2016; Land and McCann, 1971). We 

Fig. 2. Comparison of reflectance maps of low/normal-light images output by LISU-decomp. Degradation and noise are more obvious in the reflectance map of the 
low-light image. 

Fig. 3. The detailed structure of the joint learning network LISU-joint.  
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follow this and define a loss function constraining the illumination map: 

Linit =‖ S
(

Il

)

− max
c∈{R,G,B}

Ic
l ‖1 + ‖ S

(

In

)

− max
c∈{R,G,B}

Ic
n‖1. (4)  

Inspired by Wei et al. (2018) we also define a structure-awareness 
smoothness loss on the illumination map: 

Lsmooth =‖ ∇S
(
Il
)
⋅exp

(
− λg∇Il

)
‖1 + ‖ ∇S

(
In
)
⋅exp

(
− λg∇In

)
‖1, (5)  

where ∇ computes the first-order derivative of horizontal and vertical 
directions. λg is set to 10 as in Wei et al. (2018) to work as weighing the 
smooth continuity. Different from Wei et al. who used reflectance as a 
weight term, we try to find clues from the input low-light images 
because the reflectance map obtained at this stage is too noisy to guide a 
satisfactory decomposition. The combined loss function to train the 
decomposition network can be expressed as: 

Ldecomp = Lrecon1 + λ1Lrecon2 + λ2Linit + λ3Lsmooth, (6)  

where λ1, λ2 and λ3 are weight factors. We study and discuss different 
weights combinations in Section 6.4. 

3.2. LISU-joint: joint learning of reflectance restoration and semantic 
segmentation 

Since reflectance maps are invariant to illumination changes, the 
natural idea is to use the reflectance map obtained at the first stage as the 
input to the segmentation network. However, as shown in Fig. 2, the 
unsupervised decomposition of a low-light image generates very poor 

quality reflectance maps and a lot of information is lost. Inspired by 
Zhang et al. (2019) who restored the degraded reflectance map with the 
reflectance map of the normal-light image, we extend the single seg
mentation network to a multi-task network by adding another branch to 
restore the reflectance. Although the reflectance map of a normal-light 
image also has noise, we use it as the ground-truth because its degra
dation is much lighter. Hence, this restoration branch learns to reduce 
noise and restore the lost information from the reflectance map of the 
corresponding normal-light image. 

Fig. 3 shows the detailed structure of our joint learning network. 
Similar to LISU-decomp, LISU-joint is also a U-shaped structure, and it 
has more convolutional layers to extract features. Specifically, LISU- 
joint takes the three-channel reflectance map and one-channel illumi
nation map generated by LISU-decomp as input, then a shared five-layer 
encoder extracts representative features. The feature maps are decoded 
by two decoders and output segmentation map and restored reflectance 
map, respectively. The two decoders are not isolated because we 
concatenate the features of decoder layers together. The purpose is to 
enable the network to make use of the features across different tasks so 
as to promote a close joint learning of reflectance restoration and se
mantic segmentation. This is a typical multi-task learning structure used 
in many papers (Baslamisli et al., 2018; Jiao et al., 2019; Cheng et al., 
2017b; Zeng et al., 2019). As the training progresses, the semantic 
segmentation task benefits from the gradually restored illumination- 
invariant features. At the same time the segmentation branch also pro
vides semantic information to the restoration branch, and prompts it to 
produce better restoration at boundaries. 

Although we do not have the ground-truth of reflectance maps for 

Fig. 4. Sample images from the proposed LLRGBD data sets. The images in the first two rows are synthetic, and the last two rows are real images.  
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the restoration task, we can use the reflectance map of the normal-light 
image as a guide because it is less affected by degradation and it has 
better quality and more details. We follow (Zhang et al., 2019) and use 
the following loss function to guide the restoration of reflectance maps: 

Lrestore =‖ R
(
Il
)
− R
(
In
)
‖

2
2 − SSIM

(
R
(
Il
)
,R
(
In
))

+ ‖ ∇R
(
Il
)
− ∇R

(
In
)
‖

2
2,

(7)  

where R(Il) denotes the restored reflectance map, and ‖ ⋅‖2
2 is mean 

square error (MSE reconstruction loss). SSIM(⋅, ⋅) compares the struc
tural similarity (Wang et al., 2004) of two reflectance components. 
Optimizing the last term reduces the texture differences between the 
restored reflectance map and the reflectance map of the normal-light 
image. The cross-entropy loss is used to train the segmentation branch: 

Lce = −
1
n
∑

i

∑

c∈M
log

(

pc
i

)

, (8)  

where pc
i represents the probability of predicting a pixel i belonging to 

category c, and M is the defined class set. The combined loss function for 
LISU-joint is: 

Ljoint = Lrestore + Lce. (9)  

4. A new data set to study low-light indoor scenes 

To study the specific segmentation task in low-light indoor scenes, 
we present the newly collected data set, which is called LLRGBD. It 
consists of one large-scale synthetic data set LLRGBD-synthetic and one 
small-scale real data set called LLRGBD-real. We also provide the cor
responding depth maps for investigating other potential computer vision 
tasks. Fig. 4 shows some sample images in LLRGBD. 

4.1. LLRGBD-synthetic 

LLRGBD-synthetic contains photo-realistic low-/normal-light image 
pairs, and these images are rendered using the Opposite Renderer 
(Pedersen, 2013), which was developed based upon the Nvidia OptiX 
ray-tracing engine. Any rendering engine can be used for scene 
rendering, such as Blender or UNREAL engine. We choose Opposite 
Renderer in this paper because it is easy to use, and McCormac et al. 
(2017) also used this engine and provided some useful learning docu
ments. We modify the source code of the rendering tool so that we can 

put a white luminous sphere on the camera, and it is the only light source 
to illuminate scenes. In this way we are able to simulate low-light indoor 
environments. 

When rendering starts, the rendering engine first randomly selects 
one of 57 pre-defined layouts including bedroom, kitchen, bathroom, 
living room, and office. Random kinds of objects related to the scene are 
loaded from the ShapeNet library (Chang et al., 2015), scaled to random 
sizes and placed at random positions in the scene. We build a high- 
definition texture library, and random texture maps are assigned to 
the objects according to their categories. The engine is developed based 
on real physical rules, hence it can avoid objects from appearing in 
inappropriate positions. Then the camera moves in the generated scene, 
and we save the random motion trajectory. Once all parameters related 
to the scene are determined we set an orb on the camera as a point light 
source, and control its intensity and radius to render low-light and 
normal-light RGB images. Besides, we obtain the corresponding depth 
map via the z-buffer of OpenGL. We annotate the RGB images with 13 
classes (Couprie et al., 2013). 

We use a Nvidia Titan XP graphical card and each rendering takes 
two to three minutes. A total of 29K × 2 images with a resolution 640 ×

480 are rendered. We randomly divide LLRGBD-synthetic into training 
set and test set according to the proportion of 90%-10%. 

4.2. LLRGBD-real 

We collect real images with an Intel RealSense D435i depth camera, 
a portable RGB-D camera. The traditional method collected low-light 
images by changing the shutter speed and ISO (Chen et al., 2018; Guo 
et al., 2016; Wei et al., 2018). However, this method can not simulate 
the dark scene illuminated by a point light source. When we take low- 
light images, we turn off all indoor lights to ensure that the room is 
completely dark and only use one LED light for illumination. Our pur
pose is to simulate the lighting that UAVs use to explore real dark en
vironments. The LED light we use has a color temperature of 5500 ±
200 K, and illuminance of about 800 lm. We take normal-light images by 
turning on all white lights in the room. 

We take images in 32 indoor scenes, including bedroom, kitchen, 
bathroom, living room, and office. Finally, 515 pairs of low-/normal- 
light images at 640 × 480 resolution are captured, and we manually 
annotate them using the same 13 classes mentioned above. When we 
take RGB images, the corresponding depth maps are also collected and 
aligned to the RGB images using the script provided by the RealSense 

Fig. 5. The categories distribution of LLRGBD-real training and test sets. Horizon axis shows the semantic labels, and vertical axis shows the corresponding pro
portion of pixels. 
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D435i Development Kit. The depth maps are then post-processed for 
better smoothness using the algorithm proposed by Levin et al. (2004). 

To split the data set we put all the images belonging to the same 
layout class (kitchen, bedroom, living room, etc.) in the same folder. 
Then, we randomly select images for training and testing from each 
folder. Our data sampling strategy ensures that the class distribution of 
each test set is similar to the class distribution of the corresponding 
training set. We use 415 image pairs as the training set and 100 image 
pairs as the test set. Fig. 5 shows the categories distribution of training 
and test sets on LLRGBD-real. 

We compare LLRGBD with some representative RGB-D indoor data 
sets and low-light image data sets in Table 1. There is a recent data set 
“See-In-Dark” (Chen et al., 2018) that also provides pairs of low/normal- 
light data. We do not include it in this table because that data set is 
focused on enhancing raw sensor data. We can find that the available 
low-light image data sets are still insufficient, hence our data set plays a 
role to study semantic segmentation in low-light indoor scenes. 

5. Evaluation metrics and implementation 

5.1. Metrics 

To compare the proposed LISU with other methods we use three 
metrics to evaluate the segmentation.  

• Overall Accuracy (OA) computes the proportion of pixels that have 
been correctly classified, and it is defined as: 

OA =

∑C− 1

i=0
pii

∑C− 1

i=0

∑C− 1

j=0
pij

, (10)  

where C is the number of predefined categories, including back
ground class. Pii denotes the pixels being predicted correctly. Pij are 
the pixels belonging to class i but being classified as class j.  

• Mean accuracy (mAcc.) computes the average of all pixel accuracy 
over all the categories. It is defined as: 

mAcc. =
1
C

∑C− 1

i=0

pii

∑C− 1

j=0
pij

. (11)    

• Mean intersection over Union (mIoU) calculates the average of all 
the IoUs over all the categories. IoU is the intersecting part between 
the predicted pixels and the true labels divided by the union between 
the predicted pixels and the true labels. It is defined as: 

mIoU =
1
C
∑C− 1

i=0

pii

∑C− 1

j=0
pij +

∑C− 1

j=0
pji − pii

. (12)   

This paper studies the semantic segmentation task, but we also want 
to evaluate if the joint learning improves the task of reflectance resto
ration. We use the structural similarity index measure (SSIM) (Wang 
et al., 2004) as metric. We first use Gamma transformation to adjust the 
illumination map of a low-light image: 

S(Il) = S(Il)
γ
, (13)  

where γ is pre-defined and is set to 0.1. Then we obtain the enhanced 
image: 

Il = R(Il)⋅S(Il). (14) 
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We compute SSIM(Il, In), and a higher value means that the restored 
reflectance is closer to the reflectance map of the normal-light image. 

5.2. Implementation details 

We develop the proposed LISU framework using PyTorch on a Linux 
system with Nvidia Titan XP GPU as the graphics card. In the training 
phase, we resize all the images to 320 × 240 and we do not apply any 
data augmentation. The batch size is set to 12, and the optimizer is Adam 
solver with (β1, β2) = (0.95, 0.999). We set the initial learning rate to 
0.001 with polynomial decay with power p = 0.9. We train 50 epochs on 
LLRGBD-synthetic and 200 epochs on LLRGBD-real. The weights in Eq. 6 
are set as λ1 = 0.01, λ2 = 0.1 and λ3 = 0.5. We study the influence of 
different combinations of weights on segmentation results and we pre
sent this part in Section 6.4. 

6. Experiments and discussion 

6.1. Segmentation with the baseline model: LISU-seg 

We use the segmentation branch of LISU-joint as the baseline model 
LISU-seg. Particularly, it only has one decoder to output the segmen
tation map, and it does not have the reflectance restoration features. The 
baseline model takes low-light images as input. We compare our base
line model with SegNet (Badrinarayanan et al., 2017) and U-Net (Ron
neberger et al., 2015), which are both encoder-decoder structures 
designed for semantic segmentation task. The results are shown in 
Table 2 and we can find our baseline model outperforms SegNet and U- 
Net on both synthetic and real data sets. SegNet uses max pooling layers 
to reduce the size of the feature map, but at the same time some spatial 
information is lost. U-Net adopts max pooling as well, but it also in
troduces the long-skip connection which helps to preserve the infor
mation from encoder layers. In the baseline model LISU-seg, we also use 
long-skip connection, but we do not use max pooling. Instead, we con
trol the strides of convolutional layers to reduce the sizes of feature 
maps. 

6.2. Segmentation using degraded reflectance maps 

The illumination-invariant reflectance maps of low-light images 
should be helpful to the segmentation task. In this experiment we 
explore if training on the degraded reflectance maps generated by LISU- 

decomp can improve the segmentation accuracy. We first use low-light 
images to train the unsupervised decomposition network LISU-decomp. 
Then, for each batch of low-light images the trained LISU-decomp 
output three-channel reflectance maps and one-channel illumination 
maps. We input these reflectance maps to train the segmentation net
works. As shown in Table 3, although the reflectance maps generated at 
this stage degrade heavily, they make all three networks achieve better 
accuracy than segmenting on the original low-light images. 

6.3. Segmentation with the proposed LISU framework 

In this experiment we evaluate the effectiveness of the proposed LISU 
framework, which contains two sub-networks, LISU-decomp and LISU- 
joint. Both sub-networks update their parameters independently. As 
shown in Table 4, compared with our baseline model LISU substantially 
improves the mIoU from 36.1 to 47.6 on the LLRGBD-real data set. When 
training on the small low-light data set, the semantic segmentation task 
benefits from the restored reflectance features. The improvement also 
reflects in our synthetic data set that the mIoU increases from 39.5 to 
43.4. The reason why the improvement is not as great as in the real data 

Table 2 
Comparison of accuracy of direct segmentation of low-light images. The results 
of the first three lines are both trained and tested on the synthetic images, while 
the results of the last three lines are trained and tested on the real images.  

Data set Method OA mAcc. mIoU 

LLRGBD-synthetic SegNet 73.4 33.0 25.6  
U-Net 77.8 43.1 33.2  

LISU-seg 82.3 49.0 39.5 
LLRGBD-real SegNet 42.8 34.2 22.4  

U-Net 54.6 47.4 32.8  
LISU-seg 59.0 50.0 36.1  

Table 3 
Comparison of segmentation accuracy of degraded reflectance maps.  

Data set Method OA mAcc. mIoU 

LLRGBD-synthetic SegNet 80.3 45.1 35.9  
U-Net 78.7 45.5 35.6  

LISU-seg 82.5 49.9 40.3 
LLRGBD-real SegNet 48.2 36.8 26.2  

U-Net 59.3 52.1 38.1  
LISU-seg 60.1 52.6 38.9  

Table 4 
Evaluation of LISU. We copy the results of the baseline model LISU-seg from 
Table 2 for easier comparison.  

Data set Method OA mAcc. mIoU 

LLRGBD-synthetic LISU-seg 82.3 49.0 39.5 
LISU 84.5 52.3 43.4 

LLRGBD-real LISU-seg 59.0 50.0 36.1 
LISU 67.3 61.2 47.6  

Table 5 
Results of ten repeated experiments. Both training and testing were performed 
on our real data.  

No. OA mAcc. mIoU  

1 67.3 61.2 47.6  
2 67.8 61.6 47.6  
3 64.8 60.4 47.2  
4 67.4 59.7 46.8  
5 66.0 65.9 46.0  
6 69.0 61.4 48.4  
7 65.9 58.4 45.7  
8 67.7 62.1 49.3  
9 66.1 60.1 46.6  
10 68.7 59.3 45.9  

mean 67.07 61.01 47.11  
standard deviation 1.34 2.06 1.15   

Fig. 6. Average values of metrics of 10 experiments with error bars.  
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set is that the synthetic data are rendered by a camera moving according 
to a trajectory at a fixed frame rate, i.e., when the camera view changes 
we can get the photos of the same object under different illumination. 
These large numbers of sequential images enable us to train a network 
that is robust to illumination changes. 

To further verify our approach’s generalization capability we repeat 
the training/testing a total of 10 times. For each training/testing, the 
whole data set is randomly split into a training set and a testing set as 
described in Section 4.2. The results of our ten experiments are shown in 
Table 5, and we show the average values of metrics of 10 experiments 
with error bars in Fig. 6. The results show that our framework has kept 
good generalization ability in 10 experiments. When there is not enough 
data, it is feasible to use small data sets to train a deep model. As shown 
by Zuo et al., a small data set can still allow to reliably train and test 
networks (Zuo and Drummond, 2017). Our experiments are repeated by 
reshuffling the samples and we always observed normal training curves, 
without any evidence of over-fitting. We finally chose experiment No.1 
and publish its corresponding training set and test set because each 
result of this experiment is closest to the average value of each evalua
tion metric. 

6.4. Ablation study of the joint learning branches 

The decomposition network plays a vital role in our method, as we 
use its output for subsequent learning. In this experiment we evaluate 
the influence of weights in Eq. 6 on joint learning. At the same time we 
also explore how the linked features from two tasks affect the final 
results. 

Our study of weights is based on a grid search. However, we cannot 
traverse all the coefficient scales because there are infinite combina
tions. We observed training losses and found that when we set λ1,λ2, or 
λ3 to be greater than or close to 1, the decomposition network did not 
converge. Therefore, we selected three values of 0.01, 0.1, 0.5 for each 
weight and studied the influence of different combinations of weights. 
However, we do not need to run experiments 27 times. By fixing two of 
the weights and observing the influence of the third weight, we use 
seven weight combinations. For each combination we train two joint 
learning networks with different feature connections strategies. One is 
the default LISU-joint that the features from decoders of two tasks are 
concatenated together. The other is that the features from the segmen
tation branch are not linked to the reflectance restoration branch, that is, 
the LISU-joint structure in Fig. 3 but without copying the yellow features 
from the segmentation branch. We call this variant LISU-semi-joint. 

As shown in the first row to the third row of Table 6, larger λ1 yields 
worse segmentation. The larger λ1 forces the decomposition network to 
generate closer reflectance maps from paired images. Yet the degraded 
reflectance map of a low-light image has information loss, and simply 
increasing λ1 will make the decomposition network output a reflectance 
map without detailed textures. The λ2 controls the illumination map to 
be close to the maximum values of RGB channels of the original low- 
light image. Higher segmentation accuracy can be achieved when λ2 is 
0.1 or 0.01. We finally choose the first combination of weights as the 
final parameters (λ1 = 0.01,λ2 = 0.1,λ3 = 0.5), because this setting can 

achieve decent segmentation accuracy and the highest SSIM score. 
When we use the same weights setting, LISU with LISU-joint has higher 
segmentation accuracy and SSIM score than LISU with LISU-semi-joint. 
This demonstrates that semantic information helps to restore reflec
tance, and when we have better reflectance features, the segmentation 
accuracy is further improved. 

6.5. Pre-training on LLRGBD-synthetic 

In order to make up for the shortage of real data sets, some semantic 
segmentation models are pre-trained on synthetic data (Handa et al., 
2016; McCormac et al., 2017). In this experiment we also study if our 
rendered data set is helpful to improve the segmentation accuracy as 
pre-training data. We use LLRGBD-synthetic to pre-train LISU for 50 
epochs. Then, we freeze the encoders of LISU-decomp and LISU-joint, 
and fine-tune the model by training on LISU-real and updating the de
coders’ parameters. Table 7 shows that the pre-training improves the 
mIoU from 47.6 to 54.8, which means our synthetic low-light data set is 
photo-realistic, and it provides more training images to enhance the 
learning ability of the network when the real low-light data set is 
insufficient. 

6.6. Segmentation with DeepLab v3 + and its variants 

In this experiment we evaluate the performance of the state-of-the- 
art semantic segmentation network DeepLab v3+ (Chen et al., 2018) 
(DLv3p) on our real data set. It is shown in the yellow box (without 
green feature maps) in Fig. 7, and it is also an encoder-decoder structure 
and uses ResNet50 as the backbone (He et al., 2016). It uses the spatial 
pyramid pooling (SPP) module to capture multi-scale information. The 
feature maps from the encoder are up-sampled by 4 times and concat
enated with the feature maps from the second layers of the backbone. 

In addition, we have added an extra decoder to its original structure, 
so that it can restore reflectance maps. Like our LISU-joint, the yellow 
feature maps from segmentation branch and the green feature maps 
from reflectance restoration branch are concatenated together for joint 
learning, a variant we call DLv3p-joint. Similar to the experiment in 
Section 6.4 we also use another variant called DLv3p-semi-joint, in 
which the feature maps of the restoration branch are not copied to the 
segmentation branch. We train DLv3p and its variants on LLRGBD-real. 
Note that for the modified structures DLv3p-joint and DLv3p-semi-joint, 
we first train LISU-decomp for low-light image decomposition, and then 
we use the output of LISU-decomp to train the variants with joint 
learning. We come across an overfitting problem when training DLv3p, 
so we adopt early-stopping strategy. The reason is that the segmentation 
task on this data set is too simple for such a complex model with a large 

Table 6 
Study of the influence of weights of Eq. 6 and joint learning on segmentation and reflectance restoration. The best and the second best results are highlighted in bold 
and underlined, respectively.  

No. Weights of Eq. 6 LISU (with LISU-semi-joint) LISU (with LISU-joint) 
λ1  λ2  λ3  OA mAcc. mIoU SSIM OA mAcc. mIoU SSIM 

1 0.01 0.1 0.5 67.5 59.1 46.1 0.6846 67.3 61.2 47.6 0.6860 
2 0.1 0.1 0.5 65.6 58.6 44.9 0.6807 65.7 58.9 45.8 0.6816 
3 0.5 0.1 0.5 62.2 54.7 41.0 0.6717 64.1 55.8 42.3 0.6735 
4 0.01 0.5 0.5 64.9 56.5 43.0 0.6716 65.0 57.9 44.6 0.6746 
5 0.01 0.01 0.5 66.6 59.8 45.1 0.6654 68.7 60.0 47.5 0.6668 
6 0.01 0.01 0.1 66.6 57.9 44.5 0.6634 67.1 59.7 47.1 0.6658 
7 0.01 0.01 0.01 64.1 56.8 42.9 0.6557 65.2 55.9 43.1 0.6553  

Table 7 
Evaluation of the effectiveness of pre-training on LLRGBD-synthetic.  

Data set Method OA mAcc. mIoU 

LLRGBD-real LISU (pre-trained) 72.3 68.2 54.8  
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amount of parameters. It can perfectly fit the data in the training set, but 
it loses its generalization ability in the test set. The results shown in 
Table 8 demonstrate that our proposed approach can be easily inte
grated with the encoder-decoder structure and achieves better results. 
Compared with DLv3p-semi-joint, the strategy of combining features 
from both encoders (DLv3p-joint) improves the accuracy by 2.0% (for 
mIoU 49.2 versus 47.2). Note that only one decoder layer is involved in 
the feature concatenation, which once again proves the validity of our 
method. We list the detailed quantitative comparison of some networks 
in Table 9. We do not include any comparisons of traditional methods 
(Alshammari et al., 2018; Maddern et al., 2014; Upcroft et al., 2014) 
because only (Maddern et al., 2014) provides the source code. However, 
this method needs to know the peak spectral response of the RGB sensor, 
which is not provided by Intel RealSense D435i. Fig. 8 shows the qual
itative results. Although normal-light images are not needed when 
inferring the model, they are still shown here for better visual 
comparison. 

6.7. Discussion on failure cases 

When taking low-light images, some materials such as glass and 
ceramic tiles will reflect LED light and produce white spots, as shown in 
the first row of Fig. 9. These spots can be seen as overexposure and in
formation is lost. Therefore, they bring challenges to the decomposition 
network and affect the final segmentation results. Although these spots 
account for only a small part of the data set, it is still useful if future work 
attempts to design a better image decomposition network to eliminate 
the influence of these white spots. Besides, increasing the accuracy on 
boundaries will be the focus of future work. As shown in the second row 
of Fig. 9, the boundary between the flowerpot and the sofa is wrongly 
segmented due to the similar colors and textures. Since we also provide 
depth map in our data sets, future work can utilize geometric informa
tion to improve the segmentation on boundaries. 

7. Conclusion 

In this paper, we have studied semantic segmentation in low-light 
indoor environments. We find that existing CNN-based networks, even 
the state-of-the-art DeepLab v3+ (Chen et al., 2018), cannot deal with 
illumination changes effectively. Hence, we present a novel end-to-end 
trainable CNN framework that takes advantage of the illumination- 
invariant features for low-light indoor scene segmentation. We show 
that the joint learning of reflectance restoration and semantic segmen
tation benefits both tasks, and the segmentation task benefits most from 

Fig. 7. A modified DeepLab v3 + that jointly learns to restore reflectance.  

Table 8 
Comparison of segmentation accuracy using DeepLab v3 + and its variants.  

Method OA mAcc. mIoU 

DLv3p (Chen et al., 2018) 54.9 46.9 33.4 
Dlv3p-semi-joint 67.2 60.4 47.2 

DLv3p-joint 68.4 62.0 49.2  

Table 9 
Quantitative comparison on each class of the LLRGBD-real data set. The IoUs are shown for evaluation, and the best results are highlighted in bold.  

Method bed books ceiling chair floor furniture objects painting sofa table tv wall window mAcc. mIoU  

LISU-seg (baseline) 46.5 12.3 7.8 24.1 45.5 34.4 33.6 41.1 35.2 32.1 62.6 60.4 33.7 59.0 50.0 36.1 
DLv3p (Chen et al., 

2018) 
46.4 29.1 12.5 20.5 42.4 30.0 27.0 37.5 18.9 26.0 56.8 55.6 31.3 54.9 46.9 33.4 

LISU 57.8 45.1 29.6 34.3 52.0 41.6 39.8 47.3 44.3 36.5 70.6 70.7 48.6 67.3 61.2 47.6 
DLv3p-joint 64.8 55.6 22.6 31.0 54.0 39.2 41.5 56.9 42.0 40.3 71.4 70.1 50.8 68.4 62.0 49.2 

LISU (pre-trained) 62.2 63.0 42.8 36.3 59.0 48.8 47.2 58.8 56.1 36.0 71.8 74.9 55.2 72.3 68.2 54.8  
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Fig. 8. Qualitative results on LLRGBD-real. (a) is the input low-light images, and (b) shows the corresponding normal-light images; (c): DLv3p (Chen et al., 2018); 
(d): LISU-seg; (e) LISU; (f) LISU (pre-trained on LLRGBD-synthetic); (g) Ground-truth. 

Fig. 9. Failure cases. The first row shows the white spot caused by reflective materials. The second row shows the failure segmentation on boundaries. (a) is the input 
low-light image; (b) is the reflectance map output by LISU-decomp; (c) and (d) are the restored reflectance and segmentation map output by LISU-joint, respectively; 
(e) is the segmentation ground-truth. Red rectangles denote the regions of interest. 
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the joint learning network. The illumination-invariant features of 
reflectance restoration branch are helpful for segmentation. Also, the 
semantic information helps to generate sharper reflectance maps, and 
then better reflectance features further improve the segmentation re
sults. Besides, the proposed photo-realistic synthetic data set and real 
data set are complementary to the research of indoor scene under
standing, especially in low-light environments. Experimental results 
demonstrate that our approach achieves favorable segmentation per
formance. The potential applications of this research include UAVs or 
ground robots understanding low-light scenes and navigating autono
mously in them. As part of the INGENIOUS project we will extend our 
algorithm and segment low-light scenes partially damaged by earth
quakes, so as to improve first responders’ situational awareness at the 
disaster sites. 
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