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Abstract

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its
zeros only at the negative even integers and complex numbers with real part 1

2 . In 2011, Solé and
and Planat stated that the Riemann hypothesis is true if and only if the inequality

∏
q≤qn

(
1 + 1

q

)
>

eγ
ζ(2) × log θ(qn) is satisfied for all primes qn > 3, where θ(x) is the Chebyshev function, γ ≈
0.57721 is the Euler-Mascheroni constant and ζ(x) is the Riemann zeta function. We call this
inequality as the Dedekind inequality. We can deduce from that paper, if the Riemann hypothesis
is false, then the Dedekind inequality is not satisfied for infinitely many prime numbers qn. Using
this argument, we prove the Riemann hypothesis is true when θ(qn)1+ 1

qn ≥ θ(qn+1) holds for
a sufficiently large prime number qn. We show this is equivalent to show that the Riemann

hypothesis is true when (1 − 0.15
log3 x

)
1
x × x

1
x ≥ 1 +

log(1− 0.15
log3 x

)+log x

x is always satisfied for every
sufficiently large positive number x. Using the Puiseux series, we check by computer that (1 −
0.15

log3 x
)

1
x × x

1
x is 1 +

log(1− 0.15
log3 x

)+log x

x + O
((

1
x

)2
)

in the series expansion at x = ∞.
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1. Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only
at the negative even integers and complex numbers with real part 1

2 [1]. In mathematics, the
Chebyshev function θ(x) is given by

θ(x) =
∑
p≤x

log p

with the sum extending over all prime numbers p that are less than or equal to x [2]. We know
the following properties for the Chebyshev function:

Theorem 1.1. For all n ≥ 2, we have [3]:

n × (1 −
1

log n
+

log log n

4 × log2 n
) ≤

θ(qn)
log qn+1

.
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Theorem 1.2. For every x ≥ 19035709163, we have [4]:

θ(x) > (1 −
0.15

log3 x
) × x.

Besides, we define the prime counting function π(x) as

π(x) =
∑
p≤x

1.

We also know this property for the prime counting function:

Theorem 1.3. [5]. For x ≥ 599:

π(x) > (1 +
1

log x
) ×

x
log x

.

In mathematics, Ψ = n ×
∏

q|n

(
1 + 1

q

)
is called the Dedekind Ψ function, where q | n means

the prime q divides n. Say Dedekind(qn) holds provided∏
q≤qn

(
1 +

1
q

)
>

eγ

ζ(2)
× log θ(qn).

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, log is the natural logarithm and ζ(x)
is the Riemann zeta function. The importance of this inequality is:

Theorem 1.4. Dedekind(qn) holds for all prime numbers qn > 3 if and only if the Riemann
hypothesis is true [6].

We define H = γ − B such that B ≈ 0.2614972128 is the Meissel-Mertens constant [7]. We
know from the constant H, the following formula:

Theorem 1.5. [8]. ∑
q

(
log(

q
q − 1

) −
1
q

)
= γ − B = H.

We know this value of the Riemann zeta function:

Theorem 1.6. [9].

ζ(2) =
∞∏

k=1

1
1 − 1

q2
k

=

∞∏
k=1

q2
k

q2
k − 1

=
π2

6
.

We check the following result from the web site https://www.wolframalpha.com/input:

Theorem 1.7. Using the Puiseux series, we have that (1 − 0.15
log3 x

)
1
x × x

1
x is 1 +

log(1− 0.15
log3 x

)+log x

x +

O
((

1
x

)2
)

in the series expansion at x = ∞ [10].

Putting all together yields another evidence for the Riemann hypothesis using the Chebyshev
function.
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2. Results

Theorem 2.1. If the Riemann hypothesis is false, then there are infinitely many prime numbers
qn for which Dedekind(qn) do not hold.

Proof. If the Riemann hypothesis is false, then we consider the function [6]:

g(x) =
eγ

ζ(2)
× log θ(x) ×

∏
q≤x

(
1 +

1
q

)−1

.

We know the Riemann hypothesis is false, if there exists some x0 such that g(x0) > 1 or equivalent
log g(x0) > 0 [6]. We know the bound [6]:

log g(x) ≥ log f (x) −
2
x

where f is introduced in the Nicolas paper [2]:

f (x) = eγ × log θ(x) ×
∏
q≤x

(
1 −

1
q

)
.

From the same paper [2], we know when the Riemann hypothesis is false, then there is a 0 <
b < 1 such that lim sup x−b × f (x) > 0 and hence lim sup log f (x) ≫ log x, where the symbol
≫ means “much greater than” [6]. In this way, if the Riemann hypothesis is false, then there
are infinitely many natural numbers x such that log f (x) ≥ log x [2], [6]. Since 2

x = o(log x), the
result follows because there would be infinitely many x0 such that log g(x0) > 0 [6].

The following is a key theorem.

Theorem 2.2. ∑
q

(
1
q
− log(1 +

1
q

)
)
= log(ζ(2)) − H.

Proof. If we add H to ∑
q

(
1
q
− log(1 +

1
q

)
)
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then we obtain that

H +
∑

q

(
1
q
− log(1 +

1
q

)
)
= H +

∑
q

(
1
q
− log(

q + 1
q

)
)

=
∑

q

(
log(

q
q − 1

) −
1
q

)
+

∑
q

(
1
q
− log(

q + 1
q

)
)

=
∑

q

(
log(

q
q − 1

) − log(
q + 1

q
)
)

=
∑

q

(
log(

q
q − 1

) + log(
q

q + 1
)
)

=
∑

q

(
log(

q2

(q − 1) × (q + 1)
)
)

=
∑

q

(
log(

q2

(q2 − 1)
)
)

= log(
π2

6
)

= log(ζ(2))

according to the theorems 1.5 and 1.6. Therefore, the proof is done.

This is the main insight.

Theorem 2.3. Dedekind(qn) holds for all prime numbers qn > 3 if and only if the inequality∑
q

1
q
> B +

∑
q>qn

log(1 +
1
q

) + log log θ(qn)

is satisfied for all prime numbers qn > 3.

Proof. We start from the inequality:∏
q≤qn

(
1 +

1
q

)
>

eγ

ζ(2)
× log θ(qn).

If we apply the logarithm to the both sides of the inequality, then

log(ζ(2)) +
∑
q≤qn

log(1 +
1
q

) > γ + log log θ(qn).

This is the same as

log(ζ(2)) − H +
∑
q≤qn

log(1 +
1
q

) > B + log log θ(qn)

which is ∑
q

(
1
q
− log(1 +

1
q

)
)
+

∑
q≤qn

log(1 +
1
q

) > B + log log θ(qn)
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according to the theorem 2.2. Let’s distribute the elements of the inequality to obtain that∑
q

1
q
> B +

∑
q>qn

log(1 +
1
q

) + log log θ(qn)

when Dedekind(qn) holds. The same happens in the reverse implication.

This is a new criterion based on the Dedekind inequality.

Theorem 2.4. The Riemann hypothesis is true if the inequality

θ(qn)1+ 1
qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn.

Proof. The inequality ∑
q

1
q
> B +

∑
q>qn

log(1 +
1
q

) + log log θ(qn)

is satisfied when ∑
q

1
q
> B +

∑
q≥qn

log(1 +
1
q

) + log log θ(qn)

is also satisfied. Since in the inequality∑
q

1
q
> B +

∑
q≥qn

log(1 +
1
q

) + log log θ(qn)

only changes the value of ∑
q≥qn

log(1 +
1
q

) + log log θ(qn).

Hence, it is enough to show that

log(1 +
1
qn

) + log log θ(qn) ≥ log log θ(qn+1)

for all sufficiently large prime numbers qn according to the theorems 2.1 and 2.4. Certainly, if
the inequality

log(1 +
1
qn

) + log log θ(qn) ≥ log log θ(qn+1)

is satisfied for all sufficiently large prime numbers qn, then it cannot exist infinitely many prime
numbers qn for which Dedekind(qn) do not hold. By contraposition, we know that the Riemann
hypothesis should be true. This is the same as

log
(
(1 +

1
qn

) × log θ(qn)
)
≥ log log θ(qn+1).

That is equivalent to
log log θ(qn)1+ 1

qn ≥ log log θ(qn+1).
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Therefore, the Riemann hypothesis is true when

θ(qn)1+ 1
qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn.

Theorem 2.5. The Riemann hypothesis is true when (1 − 0.15
log3 x

)
1
x × x

1
x ≥ 1 +

log(1− 0.15
log3 x

)+log x

x is
satisfied for all sufficiently large positive numbers x.

Proof. Because of the theorem 2.4, we know that the Riemann hypothesis is true when

θ(qn)1+ 1
qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn. This is the same as

θ(qn)1+ 1
qn ≥ θ(qn) + log(qn+1)

which is
θ(qn)

1
qn ≥ 1 +

log(qn+1)
θ(qn)

.

We use the theorem 1.2 to show that

θ(qn)
1

qn > (1 −
0.15

log3 qn
)

1
qn × q

1
qn
n

for a sufficiently large prime number qn. Under our assumption in this theorem, we have that

(1 −
0.15

log3 qn
)

1
qn × q

1
qn
n ≥ 1 +

log(1 − 0.15
log3 qn

) + log qn

qn
.

Using the theorems 1.1 and 1.3, we only need to show that

θ(qn)
log qn+1

≥ n × (1 −
1

log n
+

log log n

4 × log2 n
)

> n × (1 −
1

log n
)

> (1 +
1

log qn
) ×

qn

log qn
× (1 −

1
log n

)

>
qn

log qn + log(1 − 0.15
log3 qn

)

for a sufficiently large prime number qn. However, this implies that

log(1 − 0.15
log3 qn

) + log qn

qn
>

log(qn+1)
θ(qn)

which is equal to

1 +
log(1 − 0.15

log3 qn
) + log qn

qn
> 1 +

log(qn+1)
θ(qn)

and finally, the proof is complete.
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