
Digital Object Identifier

A Deep Learning Approach for IoT Traffic
Multi-Classification in a Smart-City
Scenario
AROOSA HAMEED1, JOHN VIOLOS 1, AND ARIS LEIVADEAS1 (Senior Member, IEEE)
1Department of Software and Information Technology Engineering, École de Technologie Supérieure, Montréal, H3C 1K3, Canada (e-mail:
aroosa.hameed.1@ens.etsmtl.ca, ioannis.violos.1@ens.etsmtl.ca, aris.leivadeas@etsmtl.ca)

Corresponding author: Aris Leivadeas (e-mail: aris.leivadeas@etsmtl.ca).

This work was supported in part by the CHIST-ERA-2018-DRUID-NET project "Edge Computing Resource Allocation for Dynamic
Networks".

ABSTRACT As the number of Internet of Things (IoT) devices and applications increases, the capacity
of the IoT access networks is considerably stressed. This can create significant performance bottlenecks in
various layers of an end-to-end communication path, including the scheduling of the spectrum, the resource
requirements for processing the IoT data at the Edge and/or Cloud, and the attainable delay for critical
emergency scenarios. Thus, a proper classification or prediction of the time varying traffic characteristics
of the IoT devices is required. However, this classification remains at large an open challenge. Most of the
existing solutions are based on machine learning techniques, which nonetheless present high computational
cost, whereas they are not considering the fine-grained flow characteristics of the traffic. To this end, this
paper introduces the following four contributions. Firstly, we provide an extended feature set including,
flow, packet and device level features to characterize the IoT devices in the context of a smart environment.
Secondly, we propose a custom weighting based preprocessing algorithm to determine the importance of the
data values. Thirdly, we present insights into traffic characteristics using feature selection and correlation
mechanisms. Finally, we develop a two-stage learning algorithm and we demonstrate its ability to accurately
categorize the IoT devices in two different datasets. The evaluation results show that the proposed learning
framework achieves 99.9% accuracy for the first dataset and 99.8% accuracy for the second. Additionally,
for the first dataset we achieve a precision and recall performance of 99.6% and 99.5%, while for the second
dataset the precission and recall attained is of 99.6% and 99.7% respectively. These results show that our
approach clearly outperforms other well-known machine learning methods. Hence, this work provides a
useful model deployed in a realistic IoT scenario, where IoT traffic and devices’ profiles are predicted and
classified, while facilitating the data processing in the upper layers of an end-to-end communication model.

INDEX TERMS Deep Learning, Edge Computing, Internet of Things, Machine Learning, Neural networks,
Traffic classification.

I. INTRODUCTION

INTERNET of Things (IoT) allows tens of billion devices
to be connected over the Internet. Nonetheless, the rapid

increase of IoT devices has also resulted in a colossal increase
of the data generated by IoT devices. Specifically, the total
data has quadrupled in just five years from 145 ZB in 2015 to
600 ZB in 2020 [1]. Furthermore, IoT not only enables new
applications, but introduces new types of devices as well. For
example, in the context of a smart environment, thousands
of non-traditional Internet devices are used including smart

sensors, alarms, traffic lights, cameras, weather stations, etc.
generating an unprecedented volume of data for a variety
of smart applications such as healthcare, industrial control,
transportation and so on. However, these IoT devices are
usually of limited computational abilities [2] and cannot
manipulate locally the data generated.

This often urges the offloading of computational hefty
IoT tasks to a remote infrastructure, a process called task
offloading [3]. Edge Computing [4] is a viable solution
for the task offloading as it allows to offer the necessary

VOLUME 4, 2016 1



Author et al.:

networking and computational resources at the edge of the
network enabling at the same time the real time processing
of the IoT data. However, as explained in [5], it is extremely
difficult to estimate the edge resources needed due to the fact
that (i) the IoT data are randomly generated, as a consequence
of the different types of devices and their dynamic cycle
activity; and (ii) when there is a large number of IoT devices,
the total communication delay may be affected on account of
the constrained nature of the IoT access networks.

Hence, the importance to predict the time varying char-
acteristics of the IoT devices (such as activity patterns, sig-
naling patterns etc.) becomes evident. Furthermore, the clas-
sification of similar devices facilitates the estimation of the
generated workload and can better guarantee a specific level
of Quality of Service (QoS). Therefore, by classifying the
IoT devices into different categories, the prediction of traffic
characteristics can be more efficiently done. Additionally, a
more accurate prediction of the resource requirements at the
IoT access network (i.e. spectrum) and Edge infrastructures
(i.e. computational and communication resources), can be
achieved.

However, such an IoT device classification, often called
device fingerprinting [6], presents several challenges. In par-
ticular, the existing IoT classification techniques do not con-
sider the fine-grained characterization of IoT traffic, while
they suffer from high computational cost for the data ex-
traction and processing, and are often affected by high di-
mensional data and complexity. Accordingly, in this paper,
we propose a two-stage based deep learning architecture
in order to classify the IoT devices by considering a fine-
grained set of network characteristics (features). To do so,
firstly, we propose a two-step preprocessing algorithm while
employing a feature selection and prioritization technique for
the feature set under consideration. Our approach, facilitates
the distribution of the features in the two stages avoiding the
high dimensionality and overfitting problems of the training
data.

The novelty of this paper lies in proposing a very accurate
but considerably more lightweighted approach than the exist-
ing ones. Furthermore, the feature selection and prioritazion
along with the combination of a deep learning model creates
a unique and innovative approach for the problem of the
IoT device classification. The novelty of our approach is
strengthened by the fact that it can be generalized and applied
in different datasets without losing any accuracy. Thus, the
reproducability of the results and the stability of our approach
in different IoT contexts fortify the originality introduced.

In particular, the major contributions and novelty of this
paper can be summarized as follows:

1) In order to perform a classification of the IoT devices,
we have suggested an extended feature set comprising
of flow, device, and packet level features. This ap-
proach provides a fine grained characterization of the
traffic flow with less computational complexity for the
classification.

2) A two step preprocessing algorithm is proposed that
assigns relevance weights to the nominal (representing
the qualitative data with numeric codes) features and
provides scaling of the dataset using a MinMaxScaler
method.

3) A statistical feature selection technique is employed
to select the features with regard to their contribution
to the classification of IoT devices. Furthermore, an
investigation of correlated features at each level is
provided using the Pearson correlation coefficient.

4) A two stage learning framework is presented with
99.9% accuracy for the first dataset under consider-
ation and 99.8% for the second one, which proves
the generalization of our approach. To determine the
IoT device classification, we compute the classes for
certain nominal and multivalued attributes at learning
stage 0 using logistic regression. Following, we per-
form the final classification for numerical and single-
valued features at stage 1 using a multilayer perceptron
(MLP) neural network. The MLP network takes as
an input a feature subset at each time and classifies
IoT devices in a context of a smart environment.
Furthermore, to achieve the optimal or near optimal
MLP architecture, a random search based keras tuner
is employed.

The rest of the paper is structured as follows: Section II
highlights the related work in traffic classification, covering
the most important methods and technologies applied in the
IoT traffic classification domain. Section III provides the sys-
tem model and necessary preliminaries for comprehending
the classification problem in the context of the IoT domain.
Additionally, this Section covers the description of the fea-
ture sets, their statistical characteristics and feature correla-
tion, information that is necessary for the domain of data
analysis that our paper touches upon. Section IV presents the
two-stage proposed learning framework for the IoT device
classification problem. Section V explains the algorithmic
form of proposed preprocessing and learning model along
with their asymptotic analysis. Sections IV and V fall under
the domains of deep learning, machine learning and problem
complexity, presenting all the necessary technical details.
Section VI provides the performance evaluation results for
both datasets under consideration. The conclusions and the
future directions of this work are presented in Section VII.
Finally, Table 1 presents the set of abbreviations used in this
paper.

II. RELATED WORK
For the IoT device classification, significant emphasis has
been given into aggregated traffic models, fingerprinting,
and machine learning based solutions. The aggregated traffic
models resort to mathematical and statistical distribution-
based methods, which involve several probability distribu-
tions and mathematical techniques like stochastic processes
to model the traffic. Following, the fingerprinting methods
are used to identify the IoT devices leveraging information

2 VOLUME 4, 2016



Author et al.:

TABLE 1: List of abbreviations

Abbreviations Meaning
AdaGrad Adaptive Gradient
Adam Adaptive Moment Estimation
ANOVA Analysis of Variance
BoW Bag-of-Word
CMMPP Coupled Markov Modulated Poisson Processes
DF Do not Fragment Flag
DT Decision Tree
FC Fully Connected
FNR False Negative Rate
FPR False Positive Rate
GB Gradient Boosting
IaT Interarrival Time
IoT Internet of Things
IP Internet Protocol
KNN K Nearest Neighbor
LR Logistic Regression
LSTM Long short-term memory
ML Machine Learning
MLP-ANN Multi-Layer Perceptron Artificial Neural Network
MSS Maximum Segment Size
M2M Machine-to-Machine
NB Naive Bayes
NOP No Option
OP Output Layer
PDR Packet Drop Rate
QoS Quality of Service
RF Random Forest
ReLU Rectified Linear Units
RFE Recursive Feature Elimination
SVM Support Vector Machine
TTL Time-to-Live
TCP Transport Control Protocol
WS Window Size
WSO Window Size Option

from network traces in order to correlate datasets. In partic-
ular, this category of classification identifies a device using
information from the network packets during the communi-
cation over the network.

Regarding the Machine Learning (ML) based schemes,
they utilize existing algorithms to automatically learn com-
plex patterns from the IoT traffic data. The algorithms used
in these schemes are classified according to how the learning
process is conducted. Four main classes are used to group
ML algorithms: supervised learning, unsupervised learning,
semi-supervised learning, and reinforcement learning. How-
ever, in the current literature, mostly supervised learning,
unsupervised learning or a combination of these two are
utilized in order to analyze, predict and model the IoT traffic
and device characteristics.

With respect to aggregated traffic models, Laner et al. [7]
proposed a Coupled Markov Modulated Poisson Processes
(CMMPP) framework to capture the traffic behavior of a
single machine-type communication along with the collective
behavior of tens of thousands of devices. In [8] a classifi-
cation strategy is designed for a fleet management use case
incorporating three classes of M2M traffic states, namely
periodic update, event-driven, and payload exchange. The au-
thors in [9] proposed a model that estimates the M2M traffic
volume generated in a wireless network-enabled connected

home. However, the above works do not consider the fine-
grained characterization of the IoT traffic, whereas the com-
plexity of such methods grows linearly with the number of
the devices. Furthermore, common communication patterns
identified can be attributed to any sensing device under a
specific use case (limitation 1).

There is also a significant effort to identify the type of the
IoT devices using the fingerprinting method. For example,
“IoT Sentinel” [10] is a classification system that can rec-
ognize and identify the IoT devices immediately after they
are connected to a network using a single attribute vector
with 276 network features. The “IoT Sentinel” framework
can be further improved by extracting additional network
features such as payload entropy, TCP payload length, and
TCP window size [11]. Similarly, in [12] almost 300 network
attributes are used from each TCP traffic session to classify
the devices, using a majority voting for every 20 consecutive
sessions.

The work in [13] utilized a deep learning approach in
order to perform the device fingerprinting using the packet
interarrival time. However, this approach is computationally
intensive as all packet level information is utilized without
any selection strategy. In [14], the traffic patterns of en-
crypted network flows are used to reveal the existence of a
specific device inside a home network. However, obtaining
such a great number of features require specialized hardware
accelerators, thus resulting in high computational cost, longer
classification duration and limited scalability due to the need
of a deep packet inspection functionality (limitation 2).

Some related works also employed machine learning in
order to perform traffic and device classification. Lippmann
et al. [15] compared the K-nearest neighbor (KNN), Support
Vector Machine (SVM), Decision Tree (DT) and Multilayer
Perceptron (MLP), using the packet header information and
concluded that KNN and DT provide better results. Kotak
and Elovici [16] classified nine different device flows based
on the device type using artificial neuron network. Regarding
traffic classification, the authors in [17] predicted the QoS
behavior of five different IoT applications in a smart building
context, using several regression based ML approaches.

The work in [18] shows how to classify traffic and perform
device identification using random forest. The list of key
features used in the classification included the packet size,
volume of packets, inter-arrival time, duration, urgent and
push flags. Additionally, the authors in [19] performed a
prediction of the IoT network traffic using Long Term Short
Memory (LSTM). The features of dataset consisted of the
timestamp, bytes count, and the packet count. A more com-
parative approach, was introduced in [20], where the authors
presented a method to recognize the IoT devices using ran-
dom forest, decision tree, SVM, k-nearest neighbors, simple
neural network and naive bayes approaches.

Lopez-Martin et al. [21] classified the traffic applications
using a multi-class neural network, which is proven to be
effective in complex data structures. The authors in [22]
proposed an individual binary classification model for each

VOLUME 4, 2016 3



Author et al.:

TABLE 2: Comparison of related works

Category Ref. Technology Traffic source Features
Aggregated [7] Coupled Markov Modulated Simulated data for No. of devices, distribution, time period
Traffic Poisson Processes (CMMPP) 30000 devices
Models [8] Aggregated+SMM+CMMPP Fleet management time, packet size, direction, IP address, port no., APN
Fingerprinting [10] ML based model + SDN Collected 27 IoT link protocol, network protocol, transport protocol,

based traffic monitoring devices data IP options, IP address, port numbers
[11] Device Fingerprinting+DT, Collected data of Packet header features+ payload length, entropy, win.size

GBM and Majority voting 14 IoT devices
[12] Device white listing + RF 17 devices data time to live statistical information
[13] 4 DFP models+CNN IPhone/ipad data 636 and 608 IAT graphs of Apple devices used for CNN
[14] Separate and label streams, Collected data from IP addresses, TCP ports, DNS queries

examine traffic rate four smart devices
Machine [15] KNN, DT, MLP, SVM OS identification data WS, TTL, DF, MSS, WSO, port no., NOP
Learning [16] Single layer neural n/w Traffic data from [23] TCP payloads converted to grayscale images

[17] Regression approaches Real time IoT application data Node id, total messages transmitted and received,
timestamps, success rate, latency, PDR, throughput

[18] Random Forest Traffic data from [23] Packet size, packet volume, IaT, duration, URG & PSH
[19] LSTM Simulation data Timestamp, bytes count, and the packets count
[20] RF, DT, SVM, KNN, Generate data from packets sent, packets received, IaT between packets sent,

NN and NB four IoT devices IaT between packets received
[21] CNN+LSTM RedIRIS dataset source & dest. port, payload, WS, timestamp, direction
[22] GBM, RF, XGboost Network traffic data source IP, destination IP, port numbers
[23] NB+RF Collected data from port no., domain name, cipher suite, flow volume,

Classifier smart lab duration, rate, DNS interval, NTP interval
[24] LR+GBM Traffic data from [23] IP and MAC addresses, port no., TTL, protocol, IaT,

packet size, traffic rate, burstiness)

FIGURE 1: Overview of our previous work vs. proposed work contributions (shown in the purple boxes)

class in order to eliminate the complexity issue of multi-class
classification. Sivanathan et al. [23] utilized the statistical
attributes, signaling patterns and cipher suites along with
machine learning for IoT device classification.

Nonetheless, these ML approaches are affected by the high
data dimensionality, they are sensitive to the hyper-parameter
tuning and they require a large number of training data.
Moreover, the main constraint of the multi-class classifica-
tion is scalability, as the high number of classes makes the
classifier more complex and updating requires full retraining
(limitation 3). A summary of the papers reviewed in this
section is given in Table 2.

In our preliminary work [24], we tried to address some of
these limitations by relying on typical machine learning tech-

niques, such as logistic regression and gradient boosting. In
this paper, we extend our preliminary framework to provide a
more complete and detailed IoT multi-classification approach
based on a deep learning solution. As this research is an
extension of our previous study, we used the same IoT dataset
[23]. However, in order to prove the generalization of our
proposed methodology we also performed our experiments
with a second IoT dataset [25]. Additionally, herein, we
include a more extended feature set at three different levels
such as: device, flow and packet.

This work also introduces a feature correlation mecha-
nism, whereas specific features are selected for training mod-
els which is not included in our previous work. Furthermore,
for the new two stage learning framework, we apply an opti-

4 VOLUME 4, 2016



Author et al.:

mal searched neural network architecture at the second stage.
Finally, a completely new performance evaluation section is
presented. The particular section includes a new set of results
for both datasets, new experiments, and additional compar-
isons with machine learning and deep learning approaches.
The differences between our previous and proposed work are
given in Fig. 1.

The extensions made in this paper are aligned in such a
way to address the above cited limitations:

• To overcome limitation 1, we incorporate a fine-grained
feature set at different network levels i.e., flow, device
and packet level.

• To address limitation 2 and the high computational costs
of complex features, we employ a statistical feature
selection (i.e., ANOVA score) to select a subset of the
available features at a time instance t.

• To address limitation 3, we propose a two-stage learning
framework. Firstly, a relevance weighting-based prepro-
cessing is performed for the available features, whereas
different subsets of the selected features are utilized
across these two stages to avoid the high dimensionality
issue. Finally, the tuned hyperparameters are utilized in
a neural network that achieves 99.9% accuracy for the
first dataset and 99.8% for the second.

III. PROBLEM SETUP
In this section, we describe and formulate the IoT traffic
classification problem, where different IoT devices are com-
bined to their respective classes according to their distinctive
characteristics. To help the reader follow the modeling of our
work, Table 3 summarizes the key notation used throughout
this paper.

In particular, a smart environment (e.g. smart city, home,
grid, etc.) can be modeled as a network of S smart de-
vices, generating M traffic flows. The devices are repre-
sented by the set D = {d1, d2.., ds}, where ds indicates
the sth smart device, where 1 ≤ s ≤ S. Similarly, the
set T = {t1d1 , t

2
d2
, ..., tmds} represents the generated traffic

flows, where tmds denotes the mth traffic flow in T generated
by the sth device, with 1 ≤ m ≤ M such that M ⊆ S.
Furthermore, each traffic flow is constituted by a number of
packets denoted by P = {p1m, p2m, ..., pkm} where pkm
represents the kth packet of the mth flow.

Regarding the features, the set F denotes the distinctive
properties of the traffic flow tmds which we want to classify.
Each packet in P is a D-dimensional set of the network el-
ements under consideration. These elements are represented
as a feature space F , such that F = {f1, f2, f3, .., fi}, where
fi represents the ith feature in the feature space F with
1 < i ≤ 11 (in this work we assume 11 distinctive features).

The set F consists of device, flow and packet level fea-
tures, where f1 represents the interarrival time, f2 denotes the
source IP address, f3 is the destination IP address, f4 shows
the transport protocol used by each flow, f5 is the source
port number, f6 denotes the destination port number, f7 is
the Time-to-Live (TTL) information, f8 denotes the window

TABLE 3: Summary of the key notation

Symbols Meaning
D Set of devices
S Smart devices
M Traffic flows
mth Last traffic flows
ds Last smart device in set S
T Set of generated traffic flow
tmds Last traffic flow generated by last device in set S
P Set of packets generated by traffic flow
kth Last packet generated in the traffic flow
pkm Last packet generated in the last flow
F Set of features
fi Last feature in the feature set F
G Set of training instances
X Set of total sample instances
xr Last instance of features in set X
C Set of classes or labels
cq Last class of features in set C
qth Last class
rth Any input sample of set X
D Input vector of specific dimension
fi Feature in feature space
cov Covariance between two features
σ Standard deviation
ρ Pearson’s correlation coefficient
v Feature vector
p Probability for a combination of independent variables
β0 Intercept
βn Regression coefficients
yi Dependent variable
xn Independent variable
lth Layer of neural network
O

(l)
i Output of the ith neuron at lth layer

V Nonlinear activation function
w Weight of a neural network connection
B Bias value applied at a layer
O(n) Linear complexity
t Number of training examples
e Number of epochs
d Number of neurons in each layer
∩ Intersection between two sets
/∈ Not element of
⇔ Equivalent of

size used by the transport layer, f9 indicates the length of a
packet, and f10 denotes the source Ethernet address, and f11
is the destination Ethernet address.

Furthermore, we assume that we have a given training set
G, including pairs of input samples along with their class
labels asG = {(x1, c1), (x2, c2), . . . , (xr, cq)}. Accordingly,
the set C = {c1, c2, ..., cq} denotes the available classes,
where cq ∈ C represents the qth class in C, while C ⊂ D
and q ≤ n. Furthermore, xr ∈ X is the rth input sample
of the total set of samples X = {x1, x2, ..., xr}, such that
X ⊂ P and r ≤ k. Hence, the IoT Traffic Classification
problem is defined as the task of estimating the class label
cq to the input vector xr, where xr belongs to a subset of a
feature space F , xr ∈ X ⊂ F . This task is accomplished
using a classification rule or function f(x) : XD → C that
can predict the label C of unseenD dimensional input vector
xr.

VOLUME 4, 2016 5



Author et al.:

A. FEATURE DESCRIPTION
As mentioned earlier, the available features can be catego-
rized as follows:

1) Device level features
In this category we consider the source and destination MAC
addresses of the devices. Such features are extracted directly
from the traffic traces. These features offer a characterization
of the IoT traffic independent of the other two levels of
features.

2) Flow level features
This includes features such as source and destination IP
addresses, protocol type of a flow, source and destination port
numbers, the TTL information of a flow, and the window size
used by the flow. This set can be used to extract the packet
level features of a flow described below.

3) Packet level features
This category includes the timestamp, the interarrival time
(IaT), and the length of the packets. The interarrival time
is the amount of time that elapses between a packet recep-
tion and the arrival of the one following it. As timestamp
follows the normal (guassian) distribution, to calculate the
interarrival time feature, we analyzed and extracted the time
between the successive incoming traffic packets following a
Gaussian’s distribution with an average rate of 1 (since at
each time unit one packet arrives). All of the above features
along with their description are illustrated in Table 4. To
prove the generality of our approach, we used the same
feature sets for both datasets under consideration.

TABLE 4: Description of features in both datasets

Level Variable Features Description
Packet f1 IaT Average time between two
Level consecutive packet receptions

f9 Length The length of network packet
Flow f2 IP.src Source IP address
Level f3 IP.dst Destination IP address

f4 Protocol Protocol used by the flow
f5 Port.src Port number of the client
f6 Port.dst Port number of the server
f7 TTL Maximum number of hops left

for each packet to reach the
destination

f8 WS The amount of bytes the receiving
device is capable to receive

Device f10 MAC.src Source MAC address
Level f11 MAC.dst Destination MAC address

B. STATISTICAL CHARACTERISTICS OF THE
FEATURES
Each feature fi in the feature space F has its own dis-
tribution, which is represented by the number of different
statistical characteristics over different smart devices. The
analysis of such distributions can be useful in order to iden-
tify which features are most important for the classification.
In this work, we considered three statistical characteristics

TABLE 5: Statistical characteristics of IoT traffic features

Datasets Measures f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11
Mean 0.45 0.67 0.59 0.50 0.35 0.38 0.37 0.07 0.16 0.74 0.69

Dataset 1 Median 0.50 0.85 0.75 0.65 0.06 0.13 0.24 0.02 0.03 0.86 0.81
S.D 0.22 0.28 0.25 0.45 0.37 0.37 0.26 0.18 0.30 0.28 0.28

Mean 0.39 0.001 5.21 0.29 0.38 0.44 0.33 0.09 0.01 0.61 0.46
Dataset 2 Median 0.38 1.45 1.43 0.33 0.11 0.67 0.25 0.01 0.01 0.69 0.39

S.D 0.39 0.03 0.002 0.12 0.36 0.34 0.20 0.22 0.01 0.19 0.18

of the distribution of each feature, such as: mean, median
and standard deviation. Table 5 summarizes the statistical
characteristics of each feature for both datasets. However,
for illustration purposes we plot the probability distribution
of the features under consideration for the first dataset only,
as shown in Fig. 2. As can be seen, the interarrival time
shows a Gaussian distribution (as explained in the previous
subsection), while all other features illustrate an exponential
distribution.

C. FEATURE CORRELATION
One very important aspect of the performance of the clas-
sification is the correlation between the features. Hence,
in this work we consider the feature correlation from two
perspectives. Firstly, we examine which features are corre-
lated within the feature space. The correlation between two
features say, fi and fj , is calculated using the Pearson’s
correlation coefficient which is given as:

ρ(fi,fj) =
cov(fi, fj)

σfiσfj
(1)

where cov(fi, fj) is the covariance between features fi and
fj , whereas σ(fi) and σ(fj) represent the standard deviation
of the ith and jth feature respectively. The value of cor-
relation coefficient lies between −1 and 1. If there is no
correlation between the features fi and fj then ρ(fi,fj) = 0.
A perfect negative correlation is found if ρ(fi,fj) = −1 and
a perfect positive correlation is found if ρ(fi,fj) = 1. We
plot the correlation between features for the first dataset as a
heatmap, which is shown in Fig. 3.

As it can be seen, the source IP address is more correlated
to TTL, destination port number, source MAC addresses
and destination IP addresses. Furthermore, the destination IP
address and source port number, the destination IP address
and destination MAC address, the packet length and destina-
tion MAC address, the source MAC address and source port
number, the source port number and destination port number
are also highly correlated features.

Secondly, we find the correlation between the input vector
features and the target class labels. Then based on the rela-
tionship between independent variables (i.e., feature space)
and dependent variable (i.e., class label) we select the fea-
tures for our learning (classification) framework. This is
further discussed in Section IV-C.

IV. PROPOSED CLASSIFICATION FRAMEWORK
A. OVERVIEW
The proposed classification framework consists of three key
steps as shown in Fig. 4 and discussed in the following

6 VOLUME 4, 2016



Author et al.:

FIGURE 2: Probability distributions of IoT traffic flow features of Dataset 1

FIGURE 3: Correlation between IoT traffic features of
Dataset 1

sections.
1) Preprocessing the IoT Traffic (Section IV-B): It

is the first step executed and it aims at providing
the weighted preprocessing of dataset along with the
rescaling, imputation and transformation of traffic
traces.

2) Selecting the most relevant features (Section IV-
C): It consists of the selection of the most important
features, which are highly correlated to the class labels,

using the ANOVA filter based selection method.
3) Two-stage learning model (Section IV-D): Here the

classification of the IoT traffic traces is done using
the proposed two stage learning model. At stage 0,
the classification is performed by applying a logistic
regression technique, while the tentative classes are
provided. At stage 1, a neural network is applied to
provide the final classes.

The operational flow of the proposed work is provided in
Fig. 5.

B. DATA PREPROCESSING
During the data preprocessing, a basic filtering of the dataset
is performed in order to remove some of the non-meaningful
packets such as ping, DNS requests, etc. The features such
as TTL, window size, packet length are already numerical,
whereas the interarrival time feature is converted to seconds.
Following, we observed that some of the features such as “set
of port numbers (f5 and f6)”, “set of IP addresses (f2 and
f3)” and “set of MAC addresses (f10 and f11)” are nominal
and multi-valued (having more than one value with a single
data instance). As machine learning classifiers cannot deal
with such data, we converted these features into a numerical
form using a two-step procedure.

Firstly, we perform the data cleaning by passing the nomi-
nal vectors to the Bag-of-Word (BoW) model [26]. Secondly,
as the BoW assigns the same importance to each vector
word, we have proposed a relevance weighting to assign
a prioritized importance to each word within each vector.
These relevance weights, attributed to each feature vector, are

VOLUME 4, 2016 7



Author et al.:

FIGURE 4: Overview of proposed two-stage classification framework

FIGURE 5: Operational flow of the proposed work

passed to the stage 0 classifier and is given by Eq. (2):

RelevanceWeight = wfw,v × vfw,v (2)

where wfw,v denotes the word frequency of a word w within
a vector v and vfw,v represents the total vector frequency.
Herein, the vectors consist of the “port numbers vector”, “IP
addresses vector”, and “MAC addresses vector”. The word
frequency wfw,v is defined as the number of times that w
occurs in v and is given using Eq. (3):

wfw,v =
number of occurrence of aword in a vector

number of words in that vector
(3)

Because frequent words are less informative than rare
words, the vector frequency, vfw,v is given as Eq. (4).

vfw,v = log
number of vectors

number of vectors containing wordw
(4)

After this step, we impute the missing values of features
using their mean value and re-scale the dataset between 0
and 1 using the MinMaxScaler technique.

C. FEATURE SELECTION
The supervised feature selection is a way to choose the input
features that are believed to be the most useful to a model
in order to predict the target variable. For our supervised
feature selection method, we resort to either wrapper methods
or filter based methods. A wrapper based method, such as
Recursive Feature Elimination (RFE), selects the features
that are performing well.

However, for the selection of features from our feature
space F , we employed the filter-based feature selection tech-
nique [27] which uses the statistical methods to score the re-
lationship between the features and the target labels i.e., class
labels. Specifically, we have selected the ANOVA (Analysis
of Variance) F-value feature selection technique because our
input features are quantitative or become quantitative after
preprocessing and the target class labels are of categorical
nature (i.e. c1 indicates a belkin wemo switch, c2 represents
smart cam and so on).

D. PROPOSED TWO-STAGE LEARNING MODEL
1) Stage 0 classifier
The Logistic Regression method is employed at stage 0,
which takes the selected set of features for the training, as
given by the ANOVA F-value. The reason that we have
selected this classifier is that it has been proven to perform
well for very large data sets [28], as in the case of a smart
environment. The logistic regression technique investigates

8 VOLUME 4, 2016



Author et al.:

the association among the independent variables and the
dependent variables of the problem. In our scenario, the
selected features are the independent variables and the de-
vice categories (e.g. hubs, cameras, etc.) are the dependent
variables. The goal is to estimate the probability p for a
combination of independent variables using the following
logit function:

logit(p) = ln
p

1− p
(5)

where ln is the natural logarithm and p denotes the probabil-
ity of an independent variable. The anti log of (5) allows us
to find the estimated regression equation given by Eq. (6):

logit(p) = ln
p

1− p
= β0+β1∗x1+β2∗x2+...+βn∗xn ⇒

p =
eβ0+β1∗x1+β2∗x2+...+βn∗xn

1 + eβ0+β1∗x1+β2∗x2+...+βn∗xn
(6)

where β0 is an intercept, β1, β2, and βn are the regression
coefficients, x1 is the first independent variable, x2 is the
second independent variable, and xn is the nth selected
feature. In order to calculate β coefficients, we employed the
Gradient Descent method [29]. The general form of Eq. (6)
is given as:

p(yi|x1, x2, ..., xn) =
1

1 + e−(β0+β1∗x1+β2∗x2+...+βn∗xn)

(7)
where yi represents the dependent variable i.e., the ith IoT
device class, which we predict based on x1, x2, and xn. After
calculating the regression coefficients the testing component
comes into effect, where the classifier uses the regression
coefficients and computes the estimated regression for each
testing instance using Eq. (7). Finally, stage 0 classifier
performs a first tentative prediction.

2) Stage 1 classifier
In order to optimally classify the IoT devices, we architect
the Multi-Layer Perceptron Artificial Neural Network (MLP-
ANN) [30] based classification as our stage 1 classifier. MLP-
ANNs are composed of multiple neurons that are arranged
in the form of an input, output, and hidden layers. In this
work, the architecture of MLP-ANN consists of one input
layer with 11 neurons, because we have 11 different features
to be passed as an input to the neural network. Following, we
optimize the number of hidden layers, while the output layer
consists of n number of neurons depending on the number of
labelled classes n found in each of the dataset.

MLP-ANN provides two major processes for the classi-
fication task. Firstly, it performs the forward propagation
process, which feeds the features to the input layer neurons.
In our case, all quantitative features along with the output
from stage 0 classifier (i.e., tentative classes) are fed to an
input layer. Following, the input layer propagates these data
to the hidden layers and then to the output layer. The neurons
in each of the neural network layer calculates the weighted

sum as output which is then passed to the activation function
and is given by Eq. (8).

O
(l)
i = V (l)(

∑
j

w
(l)
(i,j) ×O

(l−1)
j +B

(l)
i ) (8)

where the superscripts on variables represent the layer num-
ber and the subscripts represent the neuron numbers in the
respective layer. The w(l)

(i,j) denotes the weight of a connec-
tion between the ith neuron of layer l and the jth neuron of
layer l − 1; B(l)

i represents the bias value applied at the lth

layer for the ith neuron; O(l)
i denotes the output of the the

ith neuron at the lth layer and V l represents the nonlinear
activation function applied at layer l. This work applied the
Rectified Linear Units (ReLU) activation function at the input
layer and the softmax activation function at the output layer.

The above process continues till the output layer predicts
a label, i.e., class of an IoT device, which is then compared
with the actual label and a loss value is calculated using a loss
function based on the categorical cross entropy. Secondly, a
back propagation is done in which weights are updated using
the predicted output, desired output and their difference. The
goal is to minimize the loss by finding the optimal weights
value. The optimization function that we applied is based
on the Adaptive Moment Estimation (Adam) because it is
proved to be very robust for large datasets [31].

To model an optimal MLP-ANN, we used the Keras tuner
[32] along with the Random Search technique. For the hyper
parameter optimization, we determine the optimal number
of hidden layers, the optimal number of neurons in each
layer (i.e., a search between 22 and 512 neurons), and the
learning rate (i.e., a search between 1e-2 and 1e-4) using a
random search tuner. Following, these parameters are passed
to the Adam optimizer, since we want to achieve the best
performance along with the least computational complexity.

V. CLASSIFICATION ALGORITHM
A. ALGORITHM DESCRIPTION
The preprocessing algorithm (Algorithm 1) consists of the
PREP procedure, which firstly generates the BoW rep-
resentations using the function generate_BOW (). Then,
the relevant weights are calculated by employing the
word_Freq() and vector_Freq() functions, which takes
BoW as an input. Following, the features are scaled us-
ing the function MinMaxScaler(). Algorithm 2 depicts
the learning model consisting of two procedures, namely,
LOGREG and MLP . In the LOGREG procedure, the
input labels x and output labels y are split into training
and testing data using the function, split(). Next, the filter-
based feature selection is done using the statistical method
called ANOVA score and this is achieved by employing the
SelectKBest() function. Then the LogisticRegression()
generates and fit the model using the fit() function. The
prediction is done using the predict() which contains the
x_tst as testing dataset.

The MLP procedure generates the classification results
based on the MLP-ANN which takes stage’s 0 results along-

VOLUME 4, 2016 9



Author et al.:

Algorithm 1 Preprocessing Algorithm

PREP(f2,f3,f5,f6 ,f10,f11,devices)
// f2 and f3 are source and destination IP addresses; f5 and
f6 are source and destination port numbers; f10 and f11
are source and destination MAC addresses; and devices
labels.
1. BOW1 ← generate_BOW (f2, f3)
2. BOW2 ← generate_BOW (f5, f6)
3. BOW3 ← generate_BOW (f10, f11)
4. wf ← word_Freq(BOW1, BOW2, BOW3)
5. vf ← vector_Freq(BOW1, BOW2, BOW3)
6. relweight ← wf × vf
7. set x← dataset(BOW1, BOW2, BOW3, relweight)
8. set y ← dataset(devices)
9. set xnorm ←MinMaxScaler(x)
Output: xnorm,y

with the other features. At this stage, firstly the data are
split using split() and then a sequential model is created
using the function, build_model(). Following, the keras
tuner is applied to search the number of models using
RandomSearch(), which takes the sequential model, the
number of trials per search, the max trials allowed and the
search objective as an input. Then, the getBestModel()
returns the model with the highest validation accuracy across
all models given by theRandomSearch(). Finally, we fit the
model with fit() for 70 epochs and then call the predict()
function.

B. ASYMPTOTIC ANALYSIS
Proposition 1. The computational complexity of PREP
procedure is O(n)

Proof. The PREP procedure running time depends on the
number of feature vectors, represented as n. Lines 1-3 take
a constant time as they split the vectors into words, thus
O(1). Lines 4-5 and 7-8 are assignment statements and each
requires O(1) operations. For the relweight statement (line
6) the complexity is O(1) ∗ O(n) = O(n). However, line
9 depends on the number of feature vectors n and thus,
in the worst-case scenario needs O(n). Accordingly, the
overall time complexity of PREP procedure is linear i.e.,
O(1) +O(1) +O(n) +O(n) = O(n).

Proposition 2. The computational complexity of LOGREG
procedure is O(n).

Proof. Line 1 is a simple assignment statement (i.e., O(1))
and lines 2-3 require O(n) computation time in the worst
scenario. Regarding the training time (lines 4-5) of LO-
GREG the complexity is O(t ∗ n) where t is the number
of training examples and n is the number of selected data
features used for the classifier training. Additionally, the
testing time taken by line 6 is O(n). Thus, the LOGREG
takes O(1) + O(n) + O(t ∗ n) + O(n) = O(n), which can

Algorithm 2 Learning Algorithm

LOGREG(xnorm,y)
// xnorm is the dataset instances and y is the class labels
1. set xtr, xtst, ytr, ytst ← split(x, y, testsize ← 0.2)
2. set xtr ← selectKBest(Anovascore, xtr)
3. set xtst ← selectKBest(Anovascore, xtst)
4. set model← LogisticRegression(maxiter ← 3000)
5. set fit← model.fit(xtr, ytr)
6. set ypred ← model.predict(xtst)
Output: ypred . Stage 0

MLP(ypred,f1,f4,f7,f8,f9, devices)
// ypred is the output of Stage 0 classifier; f1 is the
interarrival time; f4 is the IP protocol used; f7 is the TTL;
f8 and f9 are the window size and packet length; devices
are the class labels.
7. set x← dataset(ypred, f1, f4, f7, f8, f9)
8. set y ← dataset(devices)
9. set xtr, xtst, ytr, ytst ← split(x, y, testsize ← 0.2)
10. set m← build_model()
11. set tuner ← RandomSearch(m, tuner.obj(valacc),
maxtr ← 3, searchtr ← 1)
12. set model ← tuner.getBestModel(nummodels ←
1)
13. set history ← model.fit(xtr, ytr, epochs← 70)
14. set ypred ← model.predict(xtst)
Output: ypred : FS ← devices . Stage 1

be beneficial for low latency applications that require a fast
classification method.

Proposition 3. The computational complexity of MLP pro-
cedure is O(nd)

Proof. In the MLP procedure, lines 7-9 consist of simple
assignments i.e., O(1). Line 10 indicates the build_model()
function of the neural network and its complexity is O(n ∗
d ∗ t ∗ e), where for proposition 3, n represents the number
of layers, d denotes the number of neurons in each layer, t
is the number of training examples and e is the number of
epochs. Because we are using 80% training examples i.e.,
664796 for 70 epochs, the complexity for this part is O(n ∗
d ∗ 664796 ∗ 70) = O(nd). Following, RandomSearch()
(line 11) takes O(n) for the worst scenario and line 12 takes
a constant amount of time i.e., O(1). Line 13 takes O(t) and
testing time taken by the line 14 is O(n). Thus, the MLP
takesO(1)+O(nd)+O(n)+O(1)+O(t)+O(n) = O(nd)
time.

The overall complexity, T of the proposed learning frame-
work is represented in term of n as: T (n) = O(n) +O(n) +
O(nd) = O(n). Thus, it is a linear time learning work.

VI. PERFORMANCE EVALUATION
A. MODEL IMPLEMENTATION AND FRAMEWORKS

10 VOLUME 4, 2016



Author et al.:

FIGURE 6: Samples of IoT traffic traces from dataset 1

1) Dataset Description
In this work, we have used two different datasets provided
by [33] and [25] consisting of IoT traffic traces in a smart
environment. The description of both datasets is provided as
follows:

Dataset 1 [33] consists of network traffic traces from 28
smart devices. As we have considered a subset of the network
traffic, which is a total of 12000317 labeled instances of 22
IoT devices, for this dataset we have 22 distinctive classes.
The devices are namely, smart phone, belkin wemo switch,
belkin wemo motion sensor, dropcam, HP printer, iphone,
laptop, nest protect smoke alarm, netatmo welcome, netatmo
weather station, PIX star photo frame, samsung tab, samsung
smartcam, smart things, TP link camera, TP link plug, TP
link router, triby speaker, withings smart baby monitor, with-
ings smart scale, ipv4mcast and amazon echo.

Dataset 2 [25] consists of traffic traces of from 81 IoT
devices which are located at various US and UK locations.
These devices belongs to cameras, smart hubs, home automa-
tion, TVs, audio devices and home appliances categories. For
the second dataset, a total of 40588450 labeled instances of
68 IoT devices were used in this work.

A sample of the network trace used from the first dataset
is provided in Fig. 6. Nonetheless, since we have used the
same feature space for both datasets, Fig. 6 reflects the traces
from the second dataset as well. The feature called "MAC
address" of each device is used to provide the label to each
network trace in both of the datasets.

2) Experiment setup
The configuration settings used for our experiments and for
both datasets are listed in Table 6. The proposed model was
implemented in Python (version 3.8.2). In Table 6, the No.
of architectures represents the number of different classi-
fication solutions used during our experimentation. These
architectures/solutions are further explained in section VI.3.
Following, the total number of instances provides the number
of labelled instances used from each dataset and the total
number of classes represents the total number of distinct
device types. The reason that we have selected a subset of the
labelled instances for each dataset, is because these datasets
span over a period of about two months and the training
of such a large amount of data can create several big data
challenges. Furthermore, as shown later, we also managed to
achieve a very good performance by using only the specific
subset of these datasets. Accordingly, the selected subset of
data under evaluation resulted in a slightly reduced number
of classes for each dataset.

Regarding the number of tuner trials, this value represents

the keras tuner trials that we executed for our proposed
model. In more details, for the first dataset, we noticed
that after 5 trials we have achieved the best hyperparameter
configuration and for the second dataset after 3 trials. The
reason for executing several trials, is that the keras tuner
uses a different set of parameters (i.e. learning rate, number
of layers and number of neurons in each layer) at each
trial and then it selects the best performing configuration.
Nonetheless, we have not seen a significant variation between
the accuracy of the different trials. Lastly, we split both
of the dataset instances into three groups as: 60% training
instances, 20% validation and 20% testing instances, which
is a common split ratio in the machine learning domain.

For the evaluation of the classification performance , we
have considered the following well known classification met-
rics:

1) Precision: It is the ability of a classifier to not label
an instance that is actually negative as positive and is
given as:

Precision =
TruePositive

TruePositive+ FalsePositive
(9)

2) Recall: Recall calculates the rate of all the positive
instances, which is also called true positive rate and is
given as:

Recall =
TruePositive

TruePositive+ FalseNegative
(10)

3) F1-score: It is the harmonic mean of the precision and
recall metrics and is given as:

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(11)

4) Accuracy: It is the proportion of correctly classified
instances and is given as:

Accuracy =
CorrectPredictions

TotalPredictions
(12)

5) Confusion matrix: It is a table that is used to describe
the classifier performance on a set of test data for which
the true values are known.

The values of recall, precision, F1-score, confusion matrix
and accuracy are calculated between [0,1] with 1 indicating
the best and 0 the worst performance. However, a decrease
from 1 towards 0 is good for the loss function of the network.

3) Architecture models
We have applied different composite models consisting of
neural networks along with traditional machine learning
algorithms to see their suitability for the IoT traffic multi
classification problem. Table 7 provides the description of
the different network architectures. The LR represents the
logistic regression algorithm and GB denotes the gradient
boosting algorithm (architecture I) [24]. The NB is Naive
Bayes algorithm at stage 0 and RF denotes applying random
forest at stage 1 (architecture II) [23]. IP(x) stands for the

VOLUME 4, 2016 11



Author et al.:

TABLE 6: Configurations used in the experiments

N/W Settings No. of Architectures Total Instances Total Classes No. of Tuner Trials Data Split Metrics
Dataset 1 5 12000317 24 5 60:20:20 Precision/Recall/F1/Accuracy
Dataset 2 5 40588450 68 3 60:20:20 Precision/Recall/F1/Accuracy

TABLE 7: Description of model architectures applied to the multi-classification problem

Architecture Details
I: LR+GB Stage 0: LR - Stage 1: GB
II: NB+RF Stage 0: NB - Stage 1: RF
III: MLP Single Stage : MLP with IP(11)-FC (100)-FC(100)-OP(22)
IV:. LR(RFE)+MLP Stage 0: LR along with RFE - Stage 1: MLP with IP(11)-FC(100)-FC(100)-OP(22)
V: LR(Anova)+MLP(Keras Tuner) Stage 0: LR along with Anova-score feature selection - Stage 1: MLP with IP(11)-FC (n)-FC (n)-OP(22)

input layer of neural network with x number of neurons.
FC(x) denotes the fully connected layer of neural network
with x number of nodes (or neurons). OP(x) represents the
output layer of neural network with x number of classes i.e.,
neurons.

MLP represents the multi layer Perceptron neural network
with an input layer consisting of 11 neurons, two fully
connected layer and one output layer with 22 classes (archi-
tecture III). LR(RFE)+MLP denotes the logistic regression at
stage 0 with recursive feature elimination method and MLP at
stage 1 with one input layer, two fully connected layers and
one output layer (architecture IV). LR(Anova)+MLP (keras
tuner) denotes the logistic regression at stage 0 with the
Anova based feature selection and MLP at stage 1 (architec-
ture V), which is the two-stage learning model proposed in
this paper.

For comparison purposes, it is important to mention that
the accuracy of existing works are less than the proposed
framework, as shown in the following subsection. For ex-
ample, the proposed framework in [16] achieves an accuracy
of 99.0%, the authors in [21] achieve 96% accuracy, while
in [22] the accuracy is 99.2%. However, for our evaluation,
we compared the proposed framework with the architecture I
[24] and architecture II [23], which both use the first dataset.

Additionally, to better illustrate the efficiency of our work,
we also compare our proposed architecture V with the ar-
chitectures III and IV which are based on the MLP neural
network. For all the neural network-based architectures (i.e.
III to V), the training was done with a number of epochs
between 50 and 100. The training was stopped earlier if
an increase in the number of epochs did not lead into an
improvement of the loss function.

Furthermore, for the activation functions we used the
ReLU along with the softmax activation which was applied
at the last output layer. The loss functions used was the
categorical cross entropy. Finally, the optimization was done
with the Adaptive Gradient (AdaGrad) for the architectures
III and IV and with Adam for architecture V. The particular
configurations gave the best results for each of the examined
architectures.

We have also experimented with different LSTM configu-
rations. In particular, we executed five tuner trials to find the

FIGURE 7: Performance comparison at stage 0

best hyperparameters such as number of layers, LSTM units,
learning rate, etc. However, these models gave less accurate
results, (i.e., 70% of accuracy). Moreover, we also considered
the AdaGrad optimizer for the architecture V but it produced
an accuracy of 85% and we decided to show only the results
of the best configuration, which uses the Adam optimizer.

B. RESULTS
1) Impact of architectures
a: Stage 0
Fig. 7 illustrates the performance of the different network
architectures at stage 0, in terms of precision, recall and
F1 score for both datasets. We have only considered the
architectures I, II, IV, and V for this part, because architecture
III i.e., MLP does not consist of two stages. In terms of the
precision, our proposed architecture V provides the highest
value i.e., 0.74 followed by LR(RFE) + MLP with 0.72 and
LR+GB with 0.69 value for the first dataset. Regarding the
second dataset, the same trend is noticed, as architecture V
provides the highest value i.e., 0.87 followed by LR(RFE) +
MLP with 0.83 and LR+GB with a value of 0.79.

In contrast, NB + RF performed poorly for both datasets,
i.e., 0.6 for the first dataset and 0.4 for the second. This means
that 40% of the labelled instances were wrongly classified as
positive for the first dataset and 60% were wrongly classified
as positive for the second. This can be attributed to the
fact that the precision values of some devices were zero

12 VOLUME 4, 2016



Author et al.:

and less than 0.17 for many other. As an example, in the
first dataset the most misclassified devices for the NB+RF
were the Belkin Switch, HP printer, Netatmo Welcome, PIX-
STAR, Samsung tab and TP link camera.

When looking into the recall metric, we see that the
proposed architecture V also outperformed the rest of
the models, followed by the LR+GB and LR(RFE)+MLP
for the first dataset. However, for the second dataset,
LR(RFE)+MLP(KT) is followed by LR(RFE)+MLP and
LR+GB, while architecture V remains the most efficient
solution. Once again NB+RF gives the least average recall
for both datasets, with 0.61 and 0.29 for dataset 1 and 2. The
reason for this behavior is that the majority of instances were
100% misclassified. For instance, for the first dataset, out
of 22 classes, instances of 8 classes were 100% incorrectly
classified.

Lastly, we observe that the architecture V gives the highest
value of F1 score among all architectures at stage 0, with
a value of 0.7 for the first dataset, followed by LR+GB
and LR(RFE)+MLP which both give an F1-score of around
0.65, whereas NB+RF achieves only 0.6. For the second
dataset, our proposed architecture presents a F1-score of 0.89
followed by LR(RFE)+MLP, LR+GB, and NB+RF which
give a F1-score of 0.85, 0.80, and 0.28 respectively.

b: Stage 1
At this stage all five network architectures are considered as
shown in Fig. 8 for both datasets. Moreover, we also included
the accuracy in our evaluation metrics, since the output of
Stage 1 is our final classification. As it can be seen, our
proposed architecture (LR(Anova)+MLP(KT)) attained an
accuracy of 0.999, a precision of 0.996, a recall of 0.995 and a
F1-score of 0.996 for the first dataset. Regarding, the second
dataset, it achieved an accuracy of 0.998, a precision of
0.996, a recall of 0.997 and a F1-score of 0.997. Furthermore,
LR(RFE)+MLP(KT) provided reasonable results followed
by the other architectures for both of the datasets.

Once again, NB+RF continued to under-perform for both
datasets at stage 1. Specifically, for the dataset 1, the NB+RF
achieved a performance of only 0.78 for recall, 0.8 for preci-
sion and 0.77 for F1-score because 3335 training instances
of Belkin switch class, 374 instances of HP printer class,
262 instances of the TP link camera class and 31 iPhone
class instances were incorrectly classified. Similarly, for the
dataset 2, the particular model achieved a performance of
only 0.33 for recall, 0.29 for precision and 0.31 for F1-score
because many instances of devices such as Tphilips Hub
US, TP link bulb US, Sousvide US, TP link plug UK, T
wemo plug UK, T wemo plug US, Wans view cam wired
US, wans view cam wired UK, smart thing hub UK,sousvide
UK,T philips hub UK,TP link bulb UK,TP link plug US were
incorrectly classified.

Additionally, the NB+RF provided an accuracy of 0.77 for
dataset 1 and 0.92 for dataset 2. Further analysis showed
that for the first dataset, there were 5 classes incorrectly
classified out of 22 and for the second dataset, there were

FIGURE 8: Performance comparison at stage 1

13 misclassified classes out of 68. As accuracy is the ratio
of these numbers, we corroborate the poor performance of
architecture II as shown in Fig. 8.

After analyzing the results of stage 1, we conclude that our
architecture V and its variation (architecture VI) provide the
best classification results in terms of all performance metrics
for both of the datasets. This is a significant observation that
proves the robustness of our framework that works equally
well for different datasets with different number of classes.
That is not the case for architectures I-III, which presented
a great deviation in the attained results between the two
datasets.

2) Impact of features
Fig. 3 illustrated the correlation of the full set of features for
the first dataset. However, it is critical to understand which
features have a higher importance (rank value) provided by
the feature selection method in the classification process. For
this purpose, we provide the full set of features along with
their ranks, as calculated by Anova score and RFE for dataset
1, in Fig. 9. The most important features selected for both
datasets are provided in Table 8.

For the architectures I, II, III, we have used all features
during the training and testing phases, thus, we only compare
the architectures IV and V to see the feature importance.
Specifically, we illustrate the ranks provided by the RFE for
architecture IV and the ranks provided by the Anova score for
architecture V. The rank values are between 0 and 1. It can be
seen that the highest rank provided by Anova was 0.8 given to
the feature 2 i.e., source IP address and the least rank given by
Anova score was 0.14 for feature 4 i.e., IP protocol used by
device. For the RFE method, the highest rank was provided
to feature 2 i.e., 0.7 and the least to the feature 7 i.e., TTL
information. The features were selected in decreasing order
of their ranks by the architectures.

In more details, Table 8 provides the information about
the features utilized by each architecture along with the
performance metrics of each architecture for both datasets.
The first three architectures used all 11 features. However,
as mentionned earlier, architecture IV selected the features
by RFE and architecture V selected the features by ANOVA

VOLUME 4, 2016 13



Author et al.:

TABLE 8: Classification performance metrics vs features employed

Datasets Architecture Features Precision Recall F1 Accuracy
LR+GB f1, f2, f3, f4, f5..., f11 0.900 1.000 0.940 0.990
NB+RF f1, f2, f3, f4, f5..., f11 0.800 0.780 0.770 0.770

Dataset 1 MLP f1, f2, f3, f4, f5..., f11 0.992 0.943 0.986 0.946
LR(RFE)+MLP f2, f1, f5, f11, f8, f6, f10, f4 0.994 0.964 0.979 0.986

LR(Anova)+MLP(Tuner) f2, f9, f8, f10, f6, f7, f3, f5 0.996 0.995 0.996 0.999

LR+GB f1, f2, f3, f4, f5..., f11 0.997 0.972 0.984 0.990
NB+RF f1, f2, f3, f4, f5..., f11 0.289 0.331 0.307 0.926

Dataset 2 MLP f1, f2, f3, f4, f5..., f11 0.774 0.354 0.486 0.961
LR(RFE)+MLP f5, f6, f8, f10, f11 0.619 0.328 0.429 0.943

LR(Anova)+MLP(Tuner) f4, f5, f6, f7, f8 0.997 0.997 0.997 0.999

FIGURE 9: Feature ranks provided by the feature selection
methods

method. For the first dataset, the selected features by RFE for
architecture IV consists of the source IP address (f2), interar-
rival time (f1), source port number (f5), destination Ethernet
address (f11), window size (f8), destination port number
(f6), source Ethernet address (f10) and IP protocol used (f4).
In contrast, the selected features by Anova for architecture
V consists of source IP address (f2), packet length (f9),
window size (f8), source Ethernet address (f10), destination
port number (f6), TTL (f7), destination IP address (f3), and
source port number (f5).

For the second dataset, the selected features by RFE in
architecture IV are the source port number (f5), destina-
tion port number (f6), window size (f8), MAC address of
source (f10) and MAC address of destination (f11). For the
architecture V, the selected features are the type of protocol
(f4), port number of source (f5), port number of destination
(f6), TTL (f7) and window size (f8). Therefore, source IP
address, packet length, window size, source Ethernet address,
destination port number, TTL, destination IP address, and
source port number are more relevant to classify labels for
dataset 1 and the features as protocol, port number of source,
port number of destination,TTL and window size are more
important for the classification in the second dataset.

To better illustrate the impact of feature selection in the
resulted accuracy, we provide the following formal logic
representation for the first dataset. Nonetheless, the same

logic can be easily applied for the second dataset as well.
In more detail, we are representing the actual and se-

lected feature sets of dataset 1 as: R = {f2, f1, f5, f11, f8,
f6, f10, f4} and A = {f2, f9, f8, f10, f6, f7, f3, f5} respec-
tively. According to these sets, we model R ∩A as follows:

R ∩A = {x|x ∈ R : x ∈ A} ⇔ {f2, f5, f8, f6, f10} (13)

The intersection R ∩ A gives the features that were used
by both architectures. However, in order to evaluate the
impact of the feature selection in the overall performance,
we need to identify the features that were not included in
both architectures, which is captured as follows:

R−A = {x|x ∈ R ∧ x /∈ A} ⇔ {f1, f11, f4} (14)

Equation (14) provides the features that are only included
by RFE and these are the interarrival time, the destination
MAC address and the IP protocol used. Since, architecture
IV presented an inferior performance than architecture V,
we can safely say that these three features did not provide
a well aligned information with the features given by R ∩A.
Following, we extract the features included by the Anova
score method but not from the RFE:

A−R = {x|x ∈ A ∧ x /∈ R} ⇔ {f9, f7, f3} (15)

As (15) suggests, the packet length, TTL and destination
IP address are the features that they are only considered by
Anova and thus, by architecture V. Interestingly, we see that
when these features are included in R ∩ A such that (R ∩
A) ∪ (A−R) = A, the performance increased significantly.
Thus, the features {f9, f7, f3} have a positive impact in the
performance of architecture V as they increased the accuracy
to 99.9%, precision to 99.6%, recall to 99.5% and f1- score
to 99.6% for dataset 1.

3) Performance of Architecture V
In this part of the evaluation, we present the detailed results
of the proposed architecture V for the first dataset, however,
the accuracy, precision, recall and F1 score for both datasets
can be found in Table 8, as shown earlier.

14 VOLUME 4, 2016



Author et al.:

FIGURE 10: Performance comparison per device for archi-
tecture V

a: Performance of stage 0
As we have proved the superior performance of our proposed
two-stage classifier (architecture V), in this part of the section
we delve into the details of the performance of the particular
framework.

Accordingly, for the first dataset, Fig. 10 illustrates the
performance metrics per device for stage 0. Some devices
such as Belkin sensor, Dropcam and TP link router presents
the highest performance, i.e., recall=1; precision=1 and F1-
score=1, all aggregated to 3. The lowest precision is noticed
for the belkin wemo switch i.e., 0.61, while the lowest recall
and F1-score are observed for the Samsung smartcam i.e.,
0.53 and 0.65 respectively. Furthermore, for the SmartCam
the aggregated value is 2.04 since the F1 score is 0.65, the
recall is 0.53, whereas the precision is significantly high, i.e.,
0.86. For the Netatmo weather station device, the aggregated
value is 2.09 as the precision is reasonably good, i.e., 0.88 but
the recall and F1 score are relatively low i.e., 0.54 and 0.67.
However, there were some devices such as withings scale,
triby speaker, nest alarm, and iPhone for which precision,
recall and F1-score were zero. The reason is that the instances
of such devices were misclassified in other categories.

Following, we plot the confusion matrix of dataset 1 to
give the overall performance of stage 0 as shown in Fig.
11. The row entries of a confusion matrix depict the actual
values and the column entries depicts the predicted values for
the 22 classes. All the diagonal entries correspond to correct
classification whereas entries above diagonal are all Type
I error (also called False Positive Rate (FPR)) and entries
below are Type II error (also called False Negative Rate
(FNR)). The goal is to minimize the Type I and Type II errors
close or equal to zero.

At the main diagonal there are four exception cases: (i) the
worst classification is noticed for the iPhone device, since
58% instances of the particular device were classified as
Samsung galaxy tab, 22% instances were misclassified as TP
link router, and 20% were misclassified as amazon echo thus
depicting 100% FPR; (ii) for the nest protect smoke alarm
the classification value is 0% with 100% FPR because it was
misclassified as Samsung tab; (iii) for the triby speaker, we
notice a 28% of misclassification as laptop (Type II error),

and 72% of misclassification as netatmo welcome (Type II
error); (iv) for the withings smart scale, we noticed 87% of
misclassification as baby monitor (Type II error), 9.6% of
misclassification as Samsung smartcam (Type II error), 1.9%
of misclassification as Netatmo welcome, and 1.9% instances
were incorrectly classified as belkin wemo switch.

This behavior is attributed to the following reasons: (a)
there were 50 instances of iPhone compared to 3242, 87580
and 6231 of galaxy tab, TP link router and amazon echo
instances; (b) 41 nest protect smoke alarm instances com-
pared to 3242 instances of Samsung galaxy tab; (c) 771 triby
speaker instances compared to 21815 laptop instances and
3995 instances of netatmo welcome; and (d) 52 withings
smart scale instances compared to 5912, 4895, 3995 and
4407 instances of baby monitor, Samsung smartcam, Ne-
tatmo welcome and belkin wemo switch respectively. Thus,
the prediction value for these devices is much higher as
compared to iPhone, nest protect smoke alarm, triby speaker
and withings scale.

b: Performance of stage 1
Fig. 12 depicts the training and testing accuracy, over the
100 epochs for the first dataset. The network model, i.e.,
optimized MLP at stage 1 of LR(Anova)+MLP (keras tuner),
achieves better training accuracy i.e., 0.9997292 and vali-
dation accuracy i.e., 0.99962693 as the number of epochs
increases. The initial accuracy values start from 0.998 at
epoch 1 and the accuracy value does not change significantly
after epoch 60. Regarding the spikes noticed, Keras Tuner
estimates a close to optimal neural network topology using
an exploitation versus exploration approach.

In the exploitation stage, it tries to improve the neural
network topology, which output the most accurate results.
In the exploration stage, it tries to randomly examine new
neural network topologies that have not been explored yet.
The exploration may help the optimisation process to escape
from a local optimal, resulting however to the spikes noticed
in Fig. 12. Yet, the optimisation process manage to converge
due to this exploitation stage.

Following, we have plotted the loss function for the train-
ing and testing datasets across the 100 epochs as shown in
Fig. 13. The learning curve shows the decay of the categor-
ical cross entropy loss function with respect to the number
of epochs. This curve is helpful in predicting whether our
model is overfitted, underfitted or is fit to testing and training
datasets. We see that the loss function for both training and
testing decays to low values i.e., 0.001193 for training and
0.001516 for the testing datasets at epoch 100. The spikes
are due to the use of a random search hyper tuner and the
reasons discussed above. Furthermore, training and testing
losses decrease and are stabilized around the same point i.e.,
after epoch 80 for training data. The model thus successfully
captures the classification patterns.

Next, Fig. 14 depicts the performance metrics for 100
epochs at stage 1. The precision is high as compared to the
other two performance metrics i.e., 0.996923 at the epoch

VOLUME 4, 2016 15



Author et al.:

FIGURE 11: Confusion matrix for stage 0 of architecture V of dataset 1

FIGURE 12: Training vs. validation accuracy of architecture
V for 100 epochs

100. It can also be observed that the precision metric for the
neural network does not exhibit significant changes after the
epoch 80. Regarding the recall, it is lower compared to the
precision and F1-score i.e., 0.9957 at epoch 100 and it shows
a constant behavior after the epoch 95. For the F1-score, the

FIGURE 13: Training vs. Testing loss functions for stage 1
of architecture V

value is 0.9964 at the epoch 90 and it does not present any
significant changes after this point.

16 VOLUME 4, 2016



Author et al.:

FIGURE 14: Comparison of performance metrics for stage 1
of architecture V over 100 epochs

C. LIMITATIONS
Even though our framework provides very encouraging re-
sults, it still presents some limitations that stem from the
intrinsic data nature of the IoT traffic multi-classification
problem. This includes the extra overhead of monitoring
the infrastructure to collect the traces, the construction of
a training dataset, and the computational overhead for the
model training. In addition to that a classification task is a
supervised learning approach. This means that if new types of
IoT devices are connected in the local network a new cycle of
data collection, annotation and training should begin in order
to update the model.

VII. CONCLUSION
In this work, we studied the problem of IoT traffic classifica-
tion. To solve this problem we have proposed a composite
learning framework that consists of two stages. After an
initial data preprocessing, the network traces are passed to
stage 0, where a feature selection mechanism and a Logistic
Regression classifier are applied. In particular, an ANOVA
filter based selection technique decides on the most important
features to be used by the stage 0 classifier. The tentative
classification of the stage 0 classifier along with the re-
maining features were then passed to the stage 1 classifier,
which used an optimal multi-layer perceptron neural network
architecture that provides the final classification.

Following, a detailed experimentation and comparison
with various composite architectures on two different IoT
datasets have been performed. We concluded that the pro-
posed framework can considerably increase the performance
of the classification in terms of recall, precision, F1-score, ac-
curacy and confusion matrix metrics. Regarding the accuracy,

our proposed model achieved a 99.9% accuracy for the first
dataset and a 99.8% accuracy for the second dataset, proving
the generalization aspects of our approach.

The particular model is of utmost importance in an IoT to
Cloud continuum communication model, where different IoT
devices need to be classified and their traffic profiles be ac-
curately predicted. This precise classification can positively
contribute to the proper estimation of the required resources
from the subsequent Edge and Cloud layers where the IoT
traffic will be processed and analyzed.

The future direction of this work lies in the combination of
our proposed model with a resource allocation mechanism
that will be able to leverage this workload estimation and
dynamically change the allocation strategy at the access and
Edge networks. Finally, we aim to include other machine
learning techniques such as K-means clustering along with
unsupervised methods to address the limitations of classify-
ing new and unknown types of IoT devices.

REFERENCES
[1] N. Ivanov, "Unleashing the Internet of Things with in-memory

computing - IoT Now - How to run an IoT enabled busi-
ness", 2019. [Online]. Available: https://www.iot-now.com/2019/01/17/
92200-unleashing-internet-things-memory-computing, Accessed on: Jul.
7, 2021.

[2] S. C. Mukhopadhyay and N. K. Suryadevara, "Internet of Things: Chal-
lenges and Opportunities," Internet of Things, 2014, pp. 1–17, doi:
10.1007/978-3-319-04223-7_1.

[3] F. Saeik et al., "Task Oflloading in Edge and Cloud Computing:
A survey on mathematical, artificial intelligence and control theory
solutions," Computer Networks, vol. 195, pp. 108177, 2021, doi:
10.1016/j.comnet.2021.108177.

[4] Y. Mao, C. You, J. Zhang, K. Huang and K. B. Letaief, "A Survey
on Mobile Edge Computing: The Communication Perspective," in IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322-2358,
Fourthquarter 2017, doi:10.1109/COMST.2017.2745201.

[5] D. Dechouniotis, N. Athanasopoulos, A. Leivadeas, N. Mitton, R. Jungers,
and S. Papavassiliou, "Edge Computing Resource Allocation for Dynamic
Networks: The DRUID-NET Vision and Perspective," Sensors, 20(8), pp.
2191, 2020, doi: 10.3390/s20082191.

[6] Q. Xu, R. Zheng, W. Saad and Z. Han, "Device Fingerprinting in Wire-
less Networks: Challenges and Opportunities," in IEEE Communications
Surveys & Tutorials, vol. 18, no. 1, pp. 94-104, Firstquarter 2016, doi:
10.1109/COMST.2015.2476338.

[7] M. Laner, P. Svoboda, N. Nikaein and M. Rupp, "Traffic Models for
Machine Type Communications," ISWCS 2013: The Tenth International
Symposium on Wireless Communication Systems, Ilmenau, Germany,
2013, pp. 1-5.

[8] M. Laner, N. Nikaein, P. Svoboda, M. Popovic, D. Drajic and S. Krco,
"Traffic models for machine-to-machine (M2M) communications: types
and applications", in Machine-to-machine (M2M) Communications Ar-
chitecture, Performance and Applications, C. Antón-Haro and M. Dohler,
Ed. Woodhead Publishing, 2020, pp. 133-154.

[9] A. Orrevad, "M2M Traffic Characteristics: When Machines Participate
in Communication", Ph.D. Thesis, KTH Information and Communication
Technology, 2009.

[10] M. Miettinen et al., "IoT Sentinel Demo: Automated Device-Type Identi-
fication for Security Enforcement in IoT," 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), Atlanta, GA,
2017, pp. 2511-2514.

[11] B. Bezawada, M. Bachani, J. Peterson, H. Shirazi, I. Ray and I. Ray,
"Behavioral Fingerprinting of IoT Devices", ASHES ’18: Proceedings of
the 2018 Workshop on Attacks and Solutions in Hardware Security, 2018,
pp. 41-50.

[12] Y. Meidan, et al., “Detection of Unauthorized IoT Devices Using Machine
Learning Techniques”, Tech. Report, arXiv:1709.04647, [Online]. Avail-
able: https://arxiv.org/abs/1709.04647, Accessed on: Jul. 27, 2021

VOLUME 4, 2016 17



Author et al.:

[13] S. Aneja, N. Aneja and M. S. Islam, "IoT Device Fingerprint using Deep
Learning," 2018 IEEE International Conference on Internet of Things and
Intelligence System (IOTAIS), 2018, pp. 174-179.

[14] N. Apthorpe, D. Reisman, and N. Feamster, “A Smart Home is No
Castle: Privacy Vulnerabilities of Encrypted IoT Traffic”, Tech. Report,
arXiv:1705.06805, [Online]. Available: https://arxiv.org/abs/1705.06805,
Accessed on Jul. 27, 2021.

[15] R. Lippmann, D. Fried, K. Piwowarski and W. Streilein, "Passive Op-
erating System Identification From TCP/IP Packet Headers", in ICDM
Workshop on Data Mining for Computer Security (DMSEC), 2003, pp.
1-10.

[16] J. Kotak and Y. Elovici, “IoT Device Identification Using Deep Learning,”
13th International Conference on Computational Intelligence in Security
for Information Systems (CISIS 2020), 2020, pp. 76–86.

[17] A. Hameed, J. Violos, N. Santi, A. Leivadeas and N. Mitton, "A Machine
Learning Regression approach for Throughput Estimation in an IoT En-
vironment", in 14th IEEE International Conference on Internet of Things,
Australia, 2021, pp. [29-36].

[18] M. R. P. Santos, R. M. C. Andrade, D. G. Gomes and A. C. Callado, "An
efficient approach for device identification and traffic classification in IoT
ecosystems," 2018 IEEE Symposium on Computers and Communications
(ISCC), 2018, pp. 304-309.

[19] A. Abdellah, V. Artem, A. Muthanna, D. Gallyamov and A. Koucheryavy,
"Deep Learning for IoT Traffic Prediction Based on Edge Computing",
in International Conference on Distributed Computer and Communication
Networks, Moscow, Russia, 2020, pp. 18-29.

[20] M. R. Shahid, G. Blanc, Z. Zhang and H. Debar, "IoT Devices Recognition
Through Network Traffic Analysis," 2018 IEEE International Confer-
ence on Big Data (Big Data), 2018, pp. 5187-5192, doi: 10.1109/Big-
Data.2018.8622243.

[21] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas and J. Lloret, ”Net-
work Traffic Classifier With Convolutional and Recurrent Neural Net-
works for Internet of Things,” in IEEE Access, vol. 5, pp. 18042- 18050,
2017, doi: 10.1109/ACCESS.2017.2747560.

[22] Y. Meidan et al., "ProfilIoT: a machine learning approach for IoT device
identification based on network traffic analysis Share on", in SAC ’17: Pro-
ceedings of the Symposium on Applied Computing, Marrakech, Morocco,
2017, pp. 506-509.

[23] A. Sivanathan et al., "Classifying IoT Devices in Smart Environ-
ments Using Network Traffic Characteristics", IEEE Transactions
on Mobile Computing, vol. 18, no. 8, pp. 1745-1759, 2019, doi:
10.1109/tmc.2018.2866249.

[24] A. Hameed and A. Leivadeas, "IoT Traffic Multi-Classification Using
Network and Statistical Features in a Smart Environment," 2020 IEEE
25th International Workshop on Computer Aided Modeling and Design
of Communication Links and Networks (CAMAD), Pisa, Italy, 2020, pp.
1-7.

[25] J. Ren, D. Dubois, D. Choffnes, A. Mandalari, R. Kolcun and H. Haddadi,
"Information Exposure From Consumer IoT Devices: A Multidimen-
sional, Network-Informed Measurement Approach", in IMC ’19: Proceed-
ings of the Internet Measurement Conference, New York, NY, United
States, 2019, pp. [267-279].

[26] C. Zong, R. Xia and J. Zhang, "Text Representation", in Text Data Mining,
Springer, First Edition, 2021, ISBN: 978-981-16-0102-6.

[27] J. Brownlee, "How to Choose a Feature Selection Method
For Machine Learning", Machine Learning Mastery, 2020.
[Online]. Available: https://machinelearningmastery.com/
feature-selection-with-real-and-categorical-data/, Accessed on: Jul.
27, 2021.

[28] K. Backhaus, B. Erichson, S. Gensler, R. Weiber and T. Weiber, "Logis-
tic Regression", in Multivariate Analysis, K. Backhaus, B. Erichson, S.
Gensler, R. Weiber and T. Weiber, Ed. Wiesbaden: Springer Gabler, 2021,
pp. 267-354.

[29] M. Henry "Review on Gradient Descent Algorithms in Deep Learning
Approaches," Journal for Innovative Development in Pharmaceutical and
Technical Science (JIDPTS), vol. 4, no. 3, pp 91-95, 2021.

[30] M. Okwu and L. Tartibu, "Artificial Neural Network", in Metaheuristic
Optimization: Nature-Inspired Algorithms Swarm and Computational In-
telligence, Theory and Applications, M. Okwu and L. Tartibu, Springer,
Cham, 2021, pp. 133-145.

[31] Scikit learn, Neural network models (supervised). [Online]. Avail-
able: https://scikit-learn.org/stable/modules/neural_networks_supervised.
html, Accessed on: Jul. 27, 2021

[32] "Keras Tuner", Keras-team.github.io, 2020. [Online]. Available: https:
//keras-team.github.io/keras-tuner/, Accessed on: Jul. 27, 2021.

[33] University of New Souths Wales, "IoT Traffic Traces", [Online]. Available:
https://iotanalytics.unsw.edu.au/iottraces, Accessed on: Jul. 27, 2021.

18 VOLUME 4, 2016


