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Abstract
The goals of this research are to minimize the risk of losses for specified returns using the
mean-variance model and to compare the risk and return valuations (in terms of in-sample and
out-of-sample analysis) when the optimization is implemented on three different sets of
assets. The assets consist of constituents of FBMKLCI, which represents the Top 30 Risky
Asset and FBMM70, which represents the Mid 70 Risky Asset. The closing price data are
drawn from Thomson Reuter Eikon. The mean-variance model is implemented using AMPL
and the numerical results were analysed in Microsoft Excel. The general assumption on
mean-variance is the higher the return, the higher the risk. Main findings show that the higher
the expected return, the higher the risk at Top 30 Risky Asset. The number of assets that
constructed the portfolios was more diversified as the risk decreased. While Mid 70 Risky
Asset does not follow the general assumption of mean-variance. The combination of the two
assets provides a more interesting outcome. The result improved in terms of the level of risk.
The insertion of the really risky asset in a basket of assets somehow affects the behaviour of
assets in terms of risk. We validate our in-sample portfolios by using out-of-sample analysis.
The result shows that a combination of both Risky Assets gave better performance mainly for
low and medium target returns.
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Introduction
Uncertainty, Risk, and Decision Making
Uncertainty refers to situations that have more alternatives resulting from the outcome, but the
probability is uncertain. This is due to a lack of information or knowledge about the condition.
Hence, making it hard and impossible to predict the future outcome. Risk can be described as
a situation in which loss of money during an investment provides disappointing returns
(LeRoy & Singell Jr, 1987). In finance, risk can be defined as the standard deviation of the
return values. The risk can be measured by theoretical model and as a prediction for future
outcomes. Investors can minimise the risk by taking extra action or precautions. In general, an



investment that carries a higher risk also has potential to get higher return. All investment
carries some level of risk since the return is not guaranteed.

Every investor needs to make decisions since it is an important process in investment.
Decision-making is an act of choosing the best alternative among two or more possible
alternatives and putting it into practise. Most decision will take place under conditions of
certainty, risk, and uncertainty. In certainty conditions, the decision maker knows the
reasonable alternatives and the conditions that associated. In risk condition, it is about the
availability of each alternatives, its potential payoffs, and cost associated with the estimation
of probability (Steuer & Na, 2003). While in uncertainty conditions, the decision maker does
not know the alternatives, the relation of risk, or the consequences of each alternatives. In
finance, portfolio selection is a type of decision-making under risk because the decision
maker must select a strategy before allocating his money in order to obtain high return
(Roman & Mitra, 2009).

Portfolio Selection
Portfolio can be said as a basket of financial assets, which consist of stocks, bonds, and
securities while, portfolio selection is a decision on how to distribute an amount of money
among assets in order to obtain high return on investment (Roman & Mitra, 2009). The
problem in this matter is that investors or practitioners are having a hard time in allocating the
percentage of money to be distributed among assets. They need to deal with the
decision-making under risk, which to minimise the risk of portfolio since the future return of
assets are unknown. Portfolio selection problems focus on allocating an amount of capital
onto a set of assets or securities such that the profit or the risk can be optimised in achieving
investment goals.

One vital rule when choosing portfolio is that investors should maximise the value of future
returns. However future is somehow unpredictable therefore, it is measure based on the
performance return variables. Markowitz (1952) consider that expected return is desirable and
variance of return is undesirable, meaning that risk is undesirable.

Following notation by Maasar et al. (2016), we consider the situation of which there is a set of
𝑛 assets available for a trade. Since the future return is unknown, it can be denoted by 𝑅𝑗
where𝑗∈ {1, … , 𝑛}. Let 𝑥𝑗 be the weight of the capital invested in asset 𝑗 and 𝑥 = (𝑥1, … , 𝑥𝑛)
as the portfolio weight, which is the requirement of investment decisions. Finally, we denote
the portfolio return, 𝑅𝑥 as:

𝑅𝑥 = 𝑥1 𝑅1 + ⋯ + 𝑥𝑛 𝑅𝑛 (1)

where the weight (𝑥1, … , 𝑥𝑛) belongs to set of decision given as

𝑛

𝑋 = (𝑥1, … , 𝑥𝑛)| ∑ 𝑥𝑗 = 1, 𝑥𝑗 ≥ 0, ∀𝑗 = 1 … 𝑛. (2)
𝑗=1



The above equation is the simplest way in setting the feasible set for future returns’
requirement, where it must be positive and sum to one, meaning that buy to hold and any
short selling1 is not permitted.

An efficient portfolio is the one that has the lowest risk at a specified target return. Portfolio
optimisation is a technique for solving optimisation problem where we minimise the risk
subject to a constraint on expected return. The efficient portfolios are obtained by solving
optimisation problems that can be developed in various ways. The most common formulation
is based on specified target on portfolio’s targeted return while minimising its risk. Following
notation by Roman & Mitra (2009), this paradigm is formulated as follows:

min 𝜌(𝑅𝑥 )
Subject to: 𝛦(𝑅𝑥 ) ≥ 𝑑 𝑎𝑛𝑑 𝑥 ∈ 𝑋 (3)

where Ε(∙) represents the expected value operator and 𝜌 is denoted as the risk measure in the
men-risk approach where 𝑑 represents the desired level of expected return for the portfolio.
This model will provide the efficient portfolio and create the efficient set.

Practitioners seek to optimally construct these portfolios by using the pioneer mean-risk
model, which is Mean-Variance model. The problem always remain with “which set of asset
will give efficient portfolio for which the risk is minimised for a specified level of return”. It
is common to see most of top or main risky asset in a country satisfy the mean-variance’s
assumption, thus making us curious to see the riskiness of less risky asset when
mean-variance model is applied. We aim to address this

1 Short selling is an act where the seller sells the stocks first and assuming that in the future, he is going
to buy it all back for a cheaper price.  The stocks involved are actually does not owned by him, but
borrowed from others
i.e. broker.

problem by experimenting the performance of some efficient portfolios constructed under
different set of assets, which are the Top 30 Risky Asset2 and the Mid 70 Asset3 . From the
evaluation of the performance using in-sample and out-of-sample analyses, a practitioner can
make a prompt comparison of which efficient portfolios may perform better than the other
portfolios based on some specified constraints.

Methods
Variance
Risk measure used in this research is variance. Variance is widely used in statistic to measure
spread around the expected value. The expected value of the square of deviation 𝑅𝑥 from its
own mean
𝜎2(𝑅𝑥) = 𝐸((𝑅𝑥) − 𝐸(𝑅𝑥))2 (Roman & Mitra, 2009). The variance of linear combination of random
variable is given as:

𝜎2(𝑠𝑅1 + 𝑡𝑅2) = 𝑠2𝜎2 (𝑅1) + 𝑡2 𝜎2 (𝑅2) + 2𝑠𝑡𝐶𝑜𝑣(𝑅1, 𝑅2) (4)



where 𝑅1, 𝑅2 such a random variable, 𝑠, 𝑡∈ ℝ and 𝐶𝑜𝑣(𝑅1, 𝑅2) = 𝐸[(𝑅1 − 𝐸(𝑅1))(𝑅2 − 𝐸(𝑅2))]
is the covariance of 𝑅1 and 𝑅2. The relation above is particularly useful to express the
variance of the portfolio return 𝑅𝑥 = 𝑥1𝑅1 + ⋯ + 𝑥𝑛𝑅𝑛, as a result from choice 𝑥 = (𝑥1, … , 𝑥𝑛)
as:

𝑛 𝑛

(5)

𝜎2(𝑅𝑥) = ∑ ∑ 𝑥𝑗𝑥𝑘 𝜎𝑗𝑘
𝑗=1 𝑘=1

where 𝜎𝑗𝑘 denotes the co-variance between 𝑅𝑗 and 𝑅𝑘. 𝑅𝑗 and 𝑅𝑘 is the returns of asset 𝑗 and
asset 𝑘. Thus, variance will expressed as a quadratic function of (𝑥1, … , 𝑥𝑛).

Mean-Variance Model
We used the mean-variance model to solve our portfolio solution problem formulated in
equation (1) and (2) under the paradigm of (3). Consequently, this model will provide an
efficient portfolio 𝑥 having
a return 𝑅𝑥. An efficient portfolio is considered efficient when risk is minimised at specified
level either of target return or vice versa. For the general assumption of mean-variance
efficient portfolio, it is high return, high risk (Roman & Mitra, 2009). The basic
mean-variance optimisation model followed by (Markowitz, 1952):

𝑛 𝑛

minimise ∑ ∑ 𝑥𝑗 𝑥𝑘 𝜎𝑗𝑘
𝑗=1 𝑘=1

𝑛

Subject to: ∑ 𝑥𝑗�̅�𝑗 ≥ 𝑑
𝑗=1

𝑥𝑗 ≥ 0 𝑓𝑜𝑟 𝑗 = (1,2,3, … , 𝑛)

𝑛

∑ 𝑥𝑗 = 1
𝑗=1

2 The Top 30 Risky Asset referring to the components of FTSE Bursa Malaysia KLCI (FBMKLCI)
index and the main risky asset.
3 The Mid 70 Risky Asset referring to the components of FTSE Bursa Malaysia Mid 70 (FBMKLCI)
index and the less risky asset.

where,

𝑛: Be the number of assets;
�̅�𝑗: Expected return of asset, 𝑗;



𝜎𝑗𝑘: Co-variance between asset 𝑗 and 𝑘;
𝑥𝑗: The amount invested in asset 𝑗(0 ≤ 𝑥𝑖 ≤ 1) and
𝑑: Level of target return for the portfolio.

Here the objective function is to minimise the total variance, which is the value of risk related
with the portfolio. The constraint used to ensure that the portfolio will achieve the target
return, 𝑑. The total amount of stocks investment must be equal to one. Therefore, all cash is
invested in the asset.

Numerical Setup and Implementations
The data of closing prices of constituents of FBMKLCI and FBMM70 are drawn from
Thomson Reuter Eikon. We evaluate the 120 monthly return from September 2009 to
September 2018 and implement the mean-variance model in AMPL using the in-sample data.
Generally, in-sample analysis refers to past data that you have and wish to see the initial
prediction and do the model selection. A specific criterion on efficient portfolio is determine
by investor’s preferences of risk (Roman & Mitra, 2009). We wish to see the movement of
risk as we change the target return. Therefore, we setup low return – low risk portfolio,
medium return – medium risk portfolio, and high return – high risk portfolio. An efficient
portfolio may vary depending on the chosen target return, 𝑑. For both data set of FBMKLCI
and FBMM70, we use 𝑑1 = 1% to represent our low return low risk portfolio, 𝑑2 = 1.5% to
represent
our medium return medium risk portfolio, and 𝑑3 = 2.55% to represent our high return high
risk portfolio. For the first in-sample portfolio, we consider 100 scenarios from October 2008
to November
2016 to be the return parameter, and one month rolling window approach is used for the
following in- sample portfolios4. Then, we run the mean-variance model to obtain 9 optimised
in-sample portfolios and compare the risk and return values.

A better way to test the assumptions of a model is to perform out-of-sample analysis.
Out-of-sample analysis means to withhold some of the sample data from the model
identification and estimation process, then use the model to make the predictions for the
holdout data in order to its accuracy. We validate the optimised in-sample portfolios using the
out-of-sample analysis. Back-testing is an important in validation process because it provides
confirmation concerning a system’s efficiency before implement the system for future use. At
this stage, we use the remaining of 20 scenarios to construct the out-of-sample portfolios.
Then, we calculate the realised return and standard deviation using the optimal portfolio
weight of in-sample portfolios.

Results and Discussions
In-sample portfolio analysis
In this section, we compare the risk and return values for both FBMKLCI and FBMM70, each
having the expected values of 𝑑1, 𝑑2, and 𝑑3 (1%, 1.5%, 𝑎𝑛𝑑 2.55%). Note that it is desirable
for investors to have smaller standard deviation for portfolio distribution as it indicates the
level of risk.

For Top 30 Asset, as the level of targeted return increase, the standard deviation also
increased. This indicates that the higher the return, the higher the level of risk and it is aligned



with the mean-variance’s assumption as stated earlier. As optimisation ran for 9 times, the low
target return has decreasing value of standard deviation, followed by increasing number of
components assets. The number of assets are more diversified in order to lower the level of
risk. Similar to the medium and high target return, as the level of risk decreasing, the number
of assets also diversified. For each portfolios, it can be seen that the consistency is obvious as
target return increase, the standard deviation also increase. This strengthen our research our
research that when dealing with unsystematic risk which is diversified risk, as the

4 Rolling window approach is where the adding of next monthly return with the current monthly return
and removing the oldest monthly return is made.

higher the target return, the higher the standard deviation. For Mid 70 Asset, the standard
deviation also increase as the level of target return increase. This indicates that the higher the
return, the higher the level of risk and it is aligned with mean-variance’s assumption.
However, for each portfolio, as the expected return increase, the number of assets that
constructed the portfolio shows unfavourable movement. The number of assets initially
increase and then rapidly decline. This situation consequently making the portfolio unaligned
with the mean-variance’s assumption. This happened due to the constituents frequently going
in and out of the Mid 70 Asset during the 10-year period. Contradict with the result obtained
in Top 30 Asset, Mid 70 Asset does not consists of the “really risky” assets as in the Top 30
Asset, thus mean-variance model may not do the works as presumed. Mean-variance model
cannot capture the “riskiness” of the asset. Alternatively, we combine the both Top 30 and
Mid 70 Risky Asset into one basket of asset.

Risk Movement for Combination of Top 30 and Mid 70 Asset
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Figure 1. Risk values for efficient in-sample portfolios for Combination of Top 30 and Mid 70 Risky
Assets.

The basket of asset is now contain the really risky asset and the “not so risky” asset. It is
noticeable that as the target return goes higher, the standard deviation also goes higher, which
indicates that level of risk goes higher as well. When both of Top 30 and Mid 70 Asset are
combined, the level of risks are reduced compared to the previous findings on Top 30 and Mid
70 Asset alone. While for each portfolio obtained, each of them having the higher the
expected return, the higher the level of risk. The number of component assets that constructed
the portfolio also decreasing as the expected return goes high. Interestingly, this outcome for
combination of assets are somehow affected due to the involvement of the less risky asset,
where the result earlier on Top 30 Asset shows that the asset followed the mean- variance’s
characteristics and the other way around for Mid 70 Asset. This situation making a basket of
assets becomes more desirable when being merged with the undesirable asset. Hence, we can
conclude that the inclusion of Mid 70 Asset into the basket has caught the nature of
mean-variance model as a risk minimisation tool.

Out-of-sample portfolio analysis
We analysed the realised return of the efficient portfolios for three different sets of data, each
having the expected value of 𝑑1, 𝑑2, and 𝑑3.

Table 1. The realised returns and standard deviation using second in-sample portfolio
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Deviation

Our recent numerical works show that the results of the analysis is inconsistent between
portfolios. We analysed the favourable results according to the level of target return. The
performance in the combination of both assets give better statistics. The lower and medium of
target return in combination of both assets shows a desirable return by looking on the standard
deviation. The value of standard deviation is lower compare to other assets. For high target
return, the lower standard deviation is obtained in Top 30 Asset. Hence, the out-of-sample
results differ as the targeted return differ. Based on the table, the combination of Top 30 and
Mid 70 Asset gives desirable outcomes especially at the low and medium target return. The
expected values (realised return) obtained also are relatively higher. While the standard
deviation at the high target return is higher than the Top 30 Asset alone. Therefore, the
combination of these two risky assets followed the result in in-sample portfolios.



Conclusion
Above all, we consider variance as the risk measure and mean-variance model as the
mean-risk model for this research. Variance is an unsystematic risk which dealt with
diversified risk. We observed that when dealing with main or top risky asset, the in-sample
portfolios behave accordingly to the mean- variance’s efficient portfolio’s assumption that, as
the higher the expected return, the higher the level of risk. The number of constituents that
constructed the portfolios also diversified to reduce risk. However, throughout the research,
we found that when mean-variance was applied at the FBMM70 asset, the outcome did not
came out as expected. Mid 70 does not possessed the nature of mean-variance and this
indicates that Mid 70 Asset is a less risky asset. This situation resulting us in combining both
FBMKLCI and FBMM70 into one basket of assets. The interesting part begins here where the
in-sample results show that this combination follow the mean-variance’s assumption. The
combination of the risky and the “not so risky” assets hold the mean-variance’s assumption
and at the same time provide a smaller level of risk compared to constructing portfolios based
on risky asset only.

We validate the in-sample portfolios obtained earlier using out-of-sample analysis. The
remaining 20 scenarios and the portfolio weight from in-sample portfolios were used to
construct the out-of-sample analysis. The result shows that the combination of Top 30 and
Mid 70 Assets gave better performance mainly at low and medium target return. Overall, we
can conclude that the inclusion of less risky asset in a basket of assets will give a better result
in terms of lowering the risk and future performance in terms of realised returns. As for future
improvement, we are planning to observe on how many constituents in the less risky asset
will be selected in the optimal portfolios of combination of both Top 30 and Mid 70 Assets.
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