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Abstract. Cardiac image segmentation is a crucial step in clinical prac-
tice as it allows for the assessment of cardiac morphology and the quan-
tification of image-based biomarkers. While deep learning methods have
recently achieved near human-level performance on large, single-domain
cine MRI datasets, their accuracy decreases considerably in more com-
plex multi-domain settings, limiting their clinical applicability. To this
end, we propose a novel multi-view crossover cascade approach com-
bined with both shape and appearance augmentations for effective multi-
domain cardiac image segmentation. Our cascade consists of two Atten-
tion U-Net paths that share information across different views and an
intermediate heart location crop to reduce variance and improve label
balance. In addition to multiple shape augmentations (scaling, elastic
deformations, grid distortions, etc.) and histogram matching, we intro-
duce multi-scale Fourier Domain Adaptation to cardiac image analysis.
We evaluate both the crossover cascade and the augmentations on the
cine MRI dataset of the M&Ms-2 challenge and outperform a U-Net
benchmark by respective Dice score increases of ∼0.02 and ∼0.03.

Keywords: Multi-view cascade · Crossover cascade · Fourier domain
adaptation · Attention U-net · Multi-domain cardiac image
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1 Introduction

Cardiac Magnetic Resonance (CMR) imaging is the gold standard for the accurate
non-invasive quantification of cardiac function and structure [20]. Anatomical seg-
mentation is a standard pre-requisite for the calculation of both 2D and 3D image-
based biomarkers [1,3,4,18] with proven prognostic value in the management of
cardiac diseases [12]. Facilitated by the expansion of big data in the cardiovascu-
lar medicine field, deep learning models have marked a watershed moment towards
the automation of the analysis [8,19]. Nevertheless, CMR analysis mostly remains
manual in clinical practice, with the incurred time burden and associated costs

c© Springer Nature Switzerland AG 2022
E. Puyol Antón et al. (Eds.): STACOM 2021, LNCS 13131, pp. 323–334, 2022.
https://doi.org/10.1007/978-3-030-93722-5_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93722-5_35&domain=pdf
https://doi.org/10.1007/978-3-030-93722-5_35


324 M. Beetz et al.

[19]. The main challenges limiting the automation include: (a) the intrinsic com-
plexity of cardiac dynamics and the anatomical variability of the heart; (b) the het-
erogeneity in imaging acquisitions, introduced by different scanners, centers, and
protocols; and (c) the limited availability of clinical data, constrained by finan-
cial, technical, ethical and confidentiality issues [13,19,21]. In order to address
these challenges, data augmentation has become standard practice in fully auto-
matic method designs to enlarge datasets and expose the network to higher degrees
of variability. This includes simple, routinely-used approaches (cropping, trans-
lation, rotation, and flipping) [5,7], deformation-based techniques [11], as well
as augmentations addressing imaging heterogeneity [5,23]. The above-mentioned
methods aim to overcome the segmentation challenges by exploiting the avail-
able training data. Alternatively, a number of architectural variations have been
introduced to improve segmentation performance, such as Attention U-Nets [16],
cascaded approaches [10,22], domain adaptation methods [5,9], multi-view tech-
niques [6], and ensembles [2,5]. In this work, we explore both data-driven methods
and architectural enhancements in the context of the Multi-Disease, Multi-View
& Multi-Center RV Segmentation in Cardiac Magnetic Resonance Imaging (MRI)
Challenge (M&Ms-2) [15]. Its main goal is the segmentation of the right ventricle
(RV), which is especially challenging given its highly complex and variable shape
and its sometimes ill-defined borders. Thus, we deploy a novel multi-view crossover
cascade pipeline, based on Attention U-Nets, that integrates the information from
short and long axis. In addition, we train our approach with augmentations to pop-
ulate both spaces of anatomical variability and imaging heterogeneity and thereby
introduce a multi-scale version of Fourier Domain Adaptation [23] to cardiac image
analysis as a new cross-domain data augmentation approach.

2 Methods

We first briefly describe the dataset of the M&Ms-2 challenge before giving an
explanation of our proposed approaches.

2.1 Dataset

The M&Ms-2 training dataset consists of both short-axis (SA) and long-axis (LA)
cine MRI acquisitions of 40 healthy subjects and 120 patients. It exhibits consid-
erable variation in terms of scanner type, acquisition center and protocol, and con-
tains multiple diseases affecting both ventricles. The pixel sizes vary from ∼0.68 to
∼1.63 mm for the SA data and from ∼0.68 to ∼1.72 mm for the LA data while the
image resolution ranges from 192 to 512 pixels for SA and from 208 to 512 pixels
for LA images. The left ventricular (LV) bloodpool, the LV myocardium, and the
right ventricular (RV) bloodpool were manually segmented by clinical experts and
serve as the ground truth for evaluation. We randomly split the dataset into train,
validation, and test sets of 120, 8, and 32 cases respectively. In addition to the chal-
lenge training dataset available for method development, a test dataset with 160
cases is withheld from all challenge participants by the organizers and used only
for the final evaluation of all challenge submissions.
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2.2 Preprocessing

As preprocessing steps, we first adjust the pixel sizes of all SA images to
∼1.33 mm and all LA images to ∼1.43 mm using linear interpolation for the
MR images and nearest neighbor interpolation for the segmentation masks. We
then either crop or pad the resulting images to the same resolution of 256 × 256
pixels for both SA and LA data. Finally, we apply min-max normalization and
intensity clipping (10th and 96th percentiles) to each SA and LA image.

2.3 Multi-view Crossover Cascade

A core feature of the M&Ms-2 dataset is the availability of paired SA and LA
images. This allows information of the respective other view to be used in the seg-
mentation task which is especially beneficial for determining the often difficult-
to-pinpoint RV boundary or when segmenting the basal slices to avoid confusion
between the right atrium and ventricles. In order to enable this information
sharing between the SA and LA views in a deep learning approach, we propose
a novel multi-view crossover cascade pipeline of Attention U-Nets (Fig. 1).

Fig. 1. Overview of the proposed multi-view crossover cascade pipeline. Two separate
neural networks first locate the heart in the long-axis and short-axis input images
respectively. Their predictions are then used to crop out a rectangular patch around the
heart from the input images. The cropped images from both views are then combined
into a new crossover volume that is fed into two additional separate neural networks
which output the final predictions of the segmentation masks corresponding to the SA
and LA input images respectively.

The pipeline consists of four main steps. First, two Attention U-Nets locate
the heart in the LA and SA images respectively. Second, the heart location
predictions are used to apply a crop of size 128×128 pixels centered at the heart’s
center of mass to both SA and LA images. Third, the information of both views is
combined into a single volume. For LA segmentation, we concatenate the cropped
LA image and the three cropped mid-cavity SA slices, as their segmentation
quality is usually very high and it thus provides reliable information about the
LV and RV boundaries and shapes to the LA segmentation task. The choice of
three SA slices reduces the negative effects of potential segmentation errors on
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individual SA slices while still maintaining a high probability that ventricular
anatomy is present in the given slices. For SA segmentation, we concatenate
the respective cropped SA slice with the cropped LA image enabling access of
the SA slices to further anatomical information in the basal and apical heart
areas. Finally, each of the two volumes is passed through one of two additional
Attention U-Nets to produce the final segmentation masks.

2.4 Shape Augmentations

Our first proposed set of augmentations is aimed at representing the consider-
able spatial variability of anatomical shapes and sizes, both of the heart and
its surrounding tissue. In addition to commonly used affine transforms (flip-
ping, rotating, and translating), we therefore use scaling, elastic deformations,
grid distortions, and optical distortions as additional augmentation methods. We
hypothesize these to be crucial for our highly multi-domain dataset and effec-
tive in capturing different disease phenotypes, such as the size variations of the
dilated left and right ventricle condition. This is especially important considering
the unknown diseases in the external test dataset of the M&Ms-2 challenge.

2.5 Domain Adaptation

The general appearance of cine MR images is heavily influenced by its acquisition
conditions, such as the type of MRI scanner, acquisition protocol, and center
location. To mimic such differences in our training dataset, we propose two
types of appearance augmentations: histogram matching and Fourier Domain
Adaptation (FDA) [23]. In both cases, a target image is randomly selected for
each input image with the aim of transforming the input image in a way that
matches the global appearance of the target image without altering its core
structural content. Figure 2 shows the effect of each on both a SA (top row) and
LA sample (bottom row) image.

Histogram matching achieves this similarity between images by first deter-
mining the histogram of both the input and target images, then deriving the
respective cumulative probability distributions from each histogram, and finally
creating a mapping function from each graylevel value in the input image to the
target image. This mapping function can then be applied to the input image to
obtain the transformed image. In Fourier Domain Adaptation, both the input
and target images are first converted into Fourier space using a standard 2D
discrete Fourier transform. A rectangular patch centered at the Fourier image
center is then exchanged between the input and target Fourier images before
both are converted back to the spatial domain using the inverse Fourier trans-
form. Since the central locations in Fourier space represent low-frequency signals,
only global image information is transferred from the target to the input image
while its structural integrity remains mostly unchanged. The size of the patch
is controlled by a parameter β that is crucial for maintaining a good trade-off
between excessive and barely noticeable appearance changes. In this work, we
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Fig. 2. Effect of histogram matching and Fourier Domain Adaptation on one sample
short-axis (top row) and one sample long-axis image (bottom row).

randomly sample the β values from a range between 0.001 and 0.01, thereby
extending the original method to a multi-scale FDA setting.

2.6 Postprocessing

As postprocessing steps, we apply hole closing and select only the largest con-
nected RV component in the prediction mask. We also completely remove the
right ventricle from slices which do not contain any predicted left ventricle.

2.7 Implementation

We conduct all experiments and method development on a GeForce RTX 2070
Graphics Card with 8 GB memory. All networks are implemented using the
PyTorch deep learning framework [17] and trained using the Adam optimizer [14]
with a batch size of 4. We stop the training process once network performance
on the validation dataset has not improved for 50 epochs and select the best
checkpoint as our final model.

3 Experiments

In order to evaluate both the architectural (Sec. 3.1) and data-driven (Sec. 3.2)
approaches we select a baseline method as a benchmark for each of the two and
compare it to the performance of the proposed changes using the Dice coefficients
of three anatomical structures (LV bloodpool, LV myocardium, RV bloodpool)
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in a 5-fold cross-validation setup. Furthermore, we report the RV segmentation
results of our final challenge submission on the external challenge test dataset
in terms of both Dice scores and Hausdorff distances (Sec. 3.3).

3.1 Architectural Methods

We choose a standard U-Net as a benchmark to assess the effect of three archi-
tectural changes, an Attention U-Net [16] and a cascaded Attention U-Net app-
roach, each of which trained separately for SA and LA data, as well as the
proposed multi-view crossover Attention U-Net cascade (Sec. 2.3). All methods
are trained using the same baseline augmentations (flipping, rotating, translat-
ing) to enable a fair comparison. The results on the test dataset for both SA
and LA data are depicted in Table 1.

Table 1. Segmentation results of proposed architectures.

Image type Method Dice score

LV bloodpool LV myocardium RV bloodpool

Short-axis Baseline U-Net 0.88 (± 0.1) 0.80 (± 0.08) 0.86 (± 0.08)

Attention U-Net 0.89 (± 0.08) 0.80 (± 0.07) 0.87 (± 0.08)

Cascade 0.88 (±0.11) 0.80 (± 0.12) 0.84 (± 0.15)

Crossover cascade 0.89 (± 0.14) 0.80 (± 0.13) 0.85 (± 0.17)

Long-axis Baseline U-Net 0.89 (± 0.15) 0.77 (± 0.14) 0.83 (± 0.21)

Attention U-Net 0.92 (± 0.09) 0.80 (± 0.12) 0.87 (± 0.15)

Cascade 0.91 (± 0.11) 0.77 (± 0.13) 0.87 (± 0.14)

Crossover cascade 0.92 (± 0.13) 0.80 (± 0.13) 0.88 (± 0.15)

All values represent mean (± standard deviation).

We find similar results across all four architectures in the SA dataset, while
the standalone Attention U-Net and the crossover cascade achieve the highest
scores for the LA data.

When assessing the methods’ performance on individual cases and slices, we
observe that prediction quality is relatively similar for mid-cavity SA images,
but varies to a much larger extent for basal and apical slices. Figure 3 depicts
the qualitative prediction results for three sample cases.

For example, the first row in Fig. 3 shows a basal SA slice for which the
crossover pipeline was able to correctly detect the absence of the heart while the
other approaches erroneously predicted a left ventricular structure.
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Fig. 3. Qualitative segmentation results of all analyzed architectures on three sample
images.

3.2 Data-Driven Methods

In order to evaluate the effects of our proposed data-driven changes, we choose
a U-Net architecture with basic augmentations (flipping, rotation, translation)
as our baseline. We then compare it to both a U-Net with basic and shape
augmentations (Sec. 2.4) and a U-Net with basic and appearance augmentations
(Sec. 2.5) for both SA and LA data (Table 2).

Table 2. Segmentation results of baseline, shape, and appearance augmentations.

Image type Method Dice score

LV bloodpool LV myocardium RV bloodpool

Short-axis Baseline 0.88 (± 0.10) 0.80 (± 0.08) 0.86 (± 0.08)

+ Shape 0.90 (± 0.08) 0.81 (± 0.09) 0.88 (± 0.07)

+ Appearance 0.90 (± 0.06) 0.82 (± 0.06) 0.88 (± 0.06)

Long-axis Baseline 0.89 (± 0.15) 0.77 (± 0.14) 0.83 (± 0.21)

+ Shape 0.90 (± 0.11) 0.80 (± 0.12) 0.86 (± 0.16)

+ Appearance 0.93 (± 0.08) 0.82 (± 0.09) 0.88 (± 0.13)

All values represent mean (± standard deviation).
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Both shape and appearance augmentations improve performance compared
to the baseline in both views with differences between methods larger for LA
data. Appearance augmentations achieve the highest Dice scores for each cardiac
substructure and view.

3.3 Ensemble

Following the experimental results described in Sec. 3.1 and Sec. 3.2, we com-
bine the architectural and data-driven changes that showed improvements over
their respective baselines in an ensemble approach as our final submission to
the M&Ms-2 challenge. To this end, we train both the crossover cascade and
the normal cascade with Attention U-Net architectures and both augmentation
types (baseline plus shape and appearance) in a 5-fold cross-validation setting
on the training dataset of the challenge and average the outputs of each network
to obtain the ensemble predictions. The results of this approach on the external
challenge test dataset are depicted in Table 3 as reported by the challenge orga-
nizers. Both Dice scores and Hausdorff distances between predicted and ground
truth segmentations were chosen as evaluation metrics using a 2D-based formu-
lation for LA images and a 3D-based one for SA data.

Table 3. Results of our ensemble method on the external test dataset of the M&Ms-2
challenge as provided by the challenge organizers. Row 1 and row 2 show mean values
for each image type. Row 3 represents the weighted average values across both image
types. The respective weight coefficients were selected by the challenge organizers and
set to 0.75 for SA data and 0.25 for LA images [15].

Image type Right ventricle

Dice score Hausdorff distance

Short-axis 0.83 17.62

Long-axis 0.85 10.95

Average 0.84 15.95

We observe an overall better performance of our method on long-axis images
than on short-axis images in terms of both metrics. Dice scores for both image
types are lower compared to the ones obtained in our experiments on the chal-
lenge training dataset.

The challenge organizers also provide our method’s segmentation results sep-
arated by the pathologies present in the external challenge test dataset (Table 4).

Overall, our method achieves both its best and worst results on patholog-
ical imaging data while intermediate scores are recorded for healthy subjects.
The highest Dice scores and lowest Hausdorff distances for long-axis images are
obtained for tetralogy of fallot and hypertrophic cardiomyopathy patients respec-
tively. Furthermore, we observe the best performance on short-axis images for
congenital arrhythmogenesis patients in terms of both evaluation metrics.
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Table 4. Results per pathology of our ensemble method on the external test dataset
of the M&Ms-2 challenge as provided by the challenge organizers.

Image type Pathology Right ventricle

Dice Hausdorff

Short-axis Tricuspid Regurgitation 0.82 (± 0.13) 19.46 (± 9.99)

Dilated Right Ventricle 0.86 (± 0.13) 16.90 (± 7.57)

Interatrial Communication 0.77 (± 0.26) 19.11 (± 10.67)

Dilated Left Ventricle 0.81 (± 0.18) 19.21 (± 11.07)

Congenital Arrhythmogenesis 0.88 (± 0.05) 13.49 (± 4.49)

Hypertrophic Cardiomyopathy 0.81 (± 0.20) 18.78 (± 11.37)

Tetralogy of Fallot 0.85 (± 0.09) 16.75 (± 8.56)

Normal 0.85 (± 0.11) 15.57 (± 8.95)

Long-axis Tricuspid Regurgitation 0.84 (± 0.24) 9.61 (± 12.61)

Dilated Right Ventricle 0.82 (± 0.20) 13.51 (± 14.46)

Interatrial Communication 0.81 (± 0.28) 11.81 (± 12.15)

Dilated Left Ventricle 0.88 (± 0.12) 8.02 (± 7.25)

Congenital Arrhythmogenesis 0.86 (± 0.21) 8.99 (± 9.96)

Hypertrophic Cardiomyopathy 0.89 (± 0.14) 7.44 (± 8.79)

Tetralogy of Fallot 0.90 (± 0.04) 8.45 (± 4.08)

Normal 0.84 (± 0.18) 16.52 (± 22.07)

All values represent mean (± standard deviation).

4 Discussion and Conclusion

In this work, we have presented a novel multi-view crossover cascade pipeline
with both shape and appearance augmentations capable of improving perfor-
mance for challenging multi-domain cardiac image segmentation.

In our experiments, the crossover cascade slightly outperforms a standard
cascade with separate view processing, showing the utility of information shar-
ing across different views. This is especially effective in the LA segmentation
task, indicating that the highly reliable mid-cavity SA information is helpful in
delineating anatomical LA boundaries. Since the stand-alone Attention U-Net
achieved similar results as the crossover Attention U-Net cascade, we conclude
that the usage of attention blocks is equally effective for accurately focusing
on the correct heart location compared to a cascaded approach in the given
dataset. However, we also find noticeable variations in performance between dif-
ferent slices, which shows that cascaded approaches can learn correct mappings
in situations where the Attention U-Net does not. In general, we observe a large
variability in Dice scores across the 5-fold cross-validation experiments, which
could be a reflection of the highly variable dataset (regarding pixel size, image
resolution, disease type, etc.) and indicates that our method would benefit from
further experiments.
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Regarding the data-driven changes, we find positive effects of both shape and
appearance augmentations. This demonstrates the special importance of aug-
mentation methods in highly variable multi-domain datasets since they expose
the network to a larger variety of inputs during training which in turn strength-
ens its generalization ability. Furthermore, we observe that interchanging domain
information between images as part of the appearance augmentations leads to
greater performance increases and smaller standard deviations than the analyzed
shape variations which were constrained to individual images in this work. The
increased robustness could be explained by the small amounts of additional noise
introduced into the images to a varying degree by the FDA approach, forcing
the network to be less susceptible to image artifacts.

Our ensemble method performs better on the LA images than on the SA
images of the external challenge test dataset in terms of both evaluation met-
rics, which is in line with our own experimental results. The considerably larger
Hausdorff distance indicates that more extreme outliers are present in the RV
predictions of the short-axis data. We hypothesize, that this might be caused by
the 3D-based metrics used to evaluate the performance on the SA stack where
distances between wrong and correct predictions are captured along all three
spatial dimensions instead of the 2D-based calculations used for the long-axis
data. Since the right ventricle is often only present in some of the slices of the
SA stack, small erroneous predictions in slices far away from the true anatomy
can lead to large Hausdorff distances despite negligible effects on 3D Dice scores.
In addition, the results indicate that the cross-view information exchange in our
proposed cascade architecture is more important for LA data since it only con-
sists of one 2D image as opposed to the multiple slices available in the SA view
which facilitate the network’s segmentation task.

When analyzing the pathology-specific results, we find that our ensemble
approach achieves similar levels of performance for the previously unseen dis-
ease cases (tricuspid regurgitation and dilated right ventricle) and for the healthy
subjects. On the one hand, this shows that the Dice score decrease between the
results observed in our own experiments and the ones on the external challenge
dataset was likely due to other domain changes unrelated to disease phenotypes.
On the other hand, it demonstrates that our method was able to generalize well
to new pathologies. In this regard, the access to multi-view information in the
crossover pipeline might have played an important role, for example when deter-
mining the boundary of the dilated RV. Besides this, the good generalization
results could also be attributed to the proposed augmentation strategies since,
for example, the scaling and deformation-based shape changes might have mim-
icked the dilation of the RV while the domain adaption techniques could have
exposed the network to a wider variety of acquisition conditions during training.
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