
DUNE Software Framework Requirements
HSF Review

Review panelists: Marco Clemencica, Giulio Eulissea, Christian Haackb, Matti Kortelainenc,
Charles Leggettd, Marc Paternoc, Simon Pattond

HSF frameworks WG conveners: Chris Jonesc, Kyle Knoepfelc, Attila Krasznahorkaya

HSF coordinators: Benedikt Hegnera, Liz Sexton-Kennedyc, Graeme Stewarta

Introduction
In the spring of 2021, the DUNE experiment contacted the HEP Software Foundation (HSF)
to review a set of requirements drawn up to help the experiment determine how to meet its
framework needs. In response, the HSF coordinators and framework working-group
conveners assembled a panel of framework experts from across the international HEP
community.

A public workshop1 was held on 2-3 June 2021 between members of the DUNE experiment
and the HSF panelists, conveners, and coordinators. The DUNE framework requirements
document (see footnote) was discussed in detail, along with questions that arose prior to the
workshop.

This document presents the findings of the HSF review panel, including the coordinators and
framework working-group conveners, who served as ex officio members of the review
process. The panel’s reactions to the requirements stated in that document are categorized
into the following sections:

● General comments
● Missing requirements
● Requirements that need clarification
● Overly constraining requirements
● Novel requirements
● Further items for DUNE’s consideration
● Appendix (sent separately): Prior experience

Instead of proposing a framework solution for DUNE, this document is intended to provide
DUNE with information it should consider as they determine the best way forward for their
framework needs. The comments herein should therefore not be construed as criticisms or
endorsements, per se, of any particular framework option.

1 https://indico.cern.ch/event/1038551/

a European Organization for Nuclear Research (CERN)
b Technical University of Munich
c Fermi National Accelerator Laboratory (FNAL)
d Lawrence Berkeley National Laboratory (LBNL)

1

https://indico.cern.ch/event/1038551/

Review findings

General comments

Use cases should be clear
Our understanding is that DUNE solicited physics use cases to form the list of requirements.
References to these use cases should be included for each of the requirements so that a
developer or maintainer may understand the context of the requirement and whether it is
appropriate for the actual physics need.

Define terms intended to convey framework concepts

It is important to define any terms that convey a framework concept. The following list
contains such terms that are used yet undefined in the requirements document

● Algorithm
● Service
● Data store

Please provide definitions for them.

Requirements should focus on specific behavior

A common problem among software users is to specify a solution as the requirement instead
of stating the specific behavior that is desired. An example of this is requirement 3, which
states that the framework should provide a Turing complete language for configuring a
framework program. Based on the annotated requirements document, it would be better to
specify that the framework should support a configuration language with (e.g.) control-flow
constructs (list comprehensions, conditionals, etc.) and arithmetic capabilities. Such a
description maps closer to a configuration language you may have in mind (such as Python
or Jsonnet) than something that’s generally Turing complete (such as C).

Requirements should be verifiable

The following statements were made in the requirements document:

● Requirement 28: “Data products should not occupy memory beyond their useful
lifetimes”

● Requirement 31: “Labelling of data objects...should be intuitive”

The underlined words above are subjective and are not generally verifiable. In order for a
developer to ascertain whether a requirement has been met, a specific explanation should
be used instead of subjective terminology. For example, requirement 28 would be better
phrased as “a given data product should not remain in memory past the execution of the last
module or algorithm that requires it.”

2

Missing requirements
There are some requirements that are either missing or implicitly assumed. This section
enumerates such requirements.

Timescale
We understand that DUNE’s developers are engaged in other, smaller scale LAr TPC
experiments that would benefit from a timely DUNE framework solution. However, given that
DUNE’s far-detector data-taking is projected to occur in roughly 10 years, it is not
immediately clear what factors impel DUNE to settle on a framework solution right now.

DUNE should therefore specify a timescale for when a framework solution must be in place,
mentioning which aspects of the timescale are informed by experiments that will come online
sooner than DUNE does. As technologies can evolve rapidly, we encourage you to reserve
any detailed projections for only the next 5 years, allowing some flexibility for what may need
to happen longer term.

Framework migration and backwards compatibility
DUNE currently develops offline functionality in the context of the art framework. It also has
produced files in art/ROOT format, including files for detector simulation and also those that
contain ProtoDUNE data. A requirement should be specified as to what extent backwards
compatibility is needed. Specifically, to what degree (if any) must the framework (e.g.):

● Support DUNE’s existing algorithms and code structures
● Read and properly interpret existing simulation and (ProtoDUNE) data files

A cost/benefit analysis will help determine how much bridging from one framework to
another is reasonable.

Online constraints
The panel understands that the online system was not in the scope of the review. It is
important, however, to understand the interface between the online and offline contexts.
Therefore, any constraints imposed on the offline framework by the online system should be
explicitly stated.

Programming languages
In DUNE’s annotated requirements document, requirement 38’s annotation states:

“We specifically did not specify a programming language or packaging system in the
requirements. We are looking for a framework that is portable between architectures
and environments.”

It is likely that DUNE’s framework solution will support C++, making it a reasonable
assumption. However, what about interoperability with other languages (Python, Julia, Rust,
etc.)? Such interoperability may suggest a data model that is more flexible (e.g. Apache

3

Arrow) than what current frameworks support. In this case, providing a reasonable subset of
languages the framework must accommodate will be more helpful for a developer than not
specifying any language.

HPC usage
It is emphasized several times in the requirements document (and its annotations) that use
of the framework should be supported on HPC systems (e.g. requirement 38):

“The same code developed and tested on local resources must scale to large
resources. This should include HPC resources as far as possible.”

The requirements document should reference use cases and workflows where such HPC
utilization is important. The framework solution may look very different depending on the
HPC capabilities that are required (multi-node processing, internode communication and use
of network interconnects during processing, offloading to accelerators, etc.).

Requirements that need clarification

Processing contexts
There are different data-processing contexts required by DUNE (beam data, calibration data,
streaming data for debugging, supernovae, simulation, physics analysis, etc.) and it is
unclear how the processing requirements vary from one context to another. Please
enumerate:

● Which contexts will require a framework,
● For those that require a framework, the relevant groupings of data that need to be

processed (e.g. trigger record vs. slice/trigger primitive vs. APA), and
● Which processing contexts should be scalable from laptop environments to

large-scale HPC jobs.

Memory usage
Throughout the workshop, prudent use of memory was stated by DUNE as a crucial
consideration in processing data. However, the requirements document is relatively silent on
memory estimates (with some exceptions in the annotations), and any estimates that have
been provided are typically limited to only data use cases (e.g. trigger-record readout for
beam data and supernovae) and do not seem to take into account other contexts such as
simulation or machine-learning algorithms used in reconstruction.

In addition, the memory estimates for the data-only use cases cover a wide range: 40 MB of
raw 12-bit data per APA readout for a single drift, 6 GB for a full trigger-record drift readout
from all 150 APAs, to over 100 TB for a supernova event. These estimates do not account
for inflating 12-bit data to 32-bit native C++ types, nor do they allow for multiple copies of
data in flight at a given time, which is often necessary during file I/O operations.

4

Although it is likely possible to process portions of a trigger record, thus reducing the
memory usage, not all the cases that the framework will need to handle were presented. If
memory is of paramount concern, then the document should enumerate each of the
processing steps that will be the responsibility of the framework (e.g. simulation,
reconstruction, analysis) and their putative memory estimates. More firmly established
estimates will have a significant impact in determining how the framework needs to adapt the
running of jobs to the environment.

Overly constraining requirements

Reproducibility
Requirements 5, 6, 7, and 14-16 emphasize the need to be able to reproduce various types
of results, ranging from a final framework configuration to physics results themselves.
Reproducibility is a notoriously difficult subject and, except in specific contexts, generally
unattainable. The document should specify more consistently what types of reproducibility
are required.

For example, creating a precisely predictable final configuration (requirement 6) is sensible
and achievable depending on what configuration language/features are used. Exact
reproducibility of random-number generators can also be achieved if a suitable technology
and seeding technique are chosen. Requirement 5, however, states that a robust
persistency and versioning system must exist to enable reproducing “previous results,”
which is non-specific.

In general, bit-wise reproducibility cannot be guaranteed on even the most predictable
systems (e.g. CPU) for floating-point operations. The problem is compounded when
multi-threading is adopted or when offloading to accelerators is required. For many
situations, it may be more practical to require statistical consistency of results than bit-wise
exactness.

We therefore encourage DUNE to be explicit (which it is at times) about what reproducibility
is required.

One framework only
Although it is commendable to pursue common software to lessen maintenance and usage
burdens, forcing all data-processing steps into a single framework is likely to hinder rather
than enable agile development, production, and analysis. It may instead be preferable to
share components (e.g. algorithms or modules) among several frameworks and to adopt a
configuration language and coding syntax that is common among them.

We offer some further considerations for the reconstruction and analysis use cases.

Reconstruction
The physics contexts are disparate enough for DUNE’s physics use cases that
accommodating all of them by one framework may be difficult. For example, it seems

5

unlikely that supernova data will be processed on a laptop. DUNE could consider having
multiple frameworks, each one tailored for a specific use case (e.g. beam data) or platform
(e.g. HPC). Each framework might execute the same algorithms, just orchestrated by a
dedicated framework in a way that fits the use case or platform.

Analysis
Neutrino analyses come in different physics flavors (e.g. neutrino oscillations, proton decay,
supernovae, multi-messenger studies), which may not be well suited for any one particular
framework. It is also likely beneficial to decouple the offline and analysis frameworks if MPI
functionality, which has been successfully used by neutrino analyses in the past, cannot be
provided by the offline framework.

Lastly, in the panel’s experience, attempts to meet both offline and analysis needs with a
single framework have been largely unsuccessful. Notable exceptions are ALICE and Belle
II, whose common reconstruction/analysis frameworks may be possible in part due to the
fewer triggered data streams required by the experiments.2

Although an offline framework should be mindful of analysis needs, designing a framework
to meet both offline and analysis needs is difficult to achieve, both technically and
sociologically. Such an attempt would need to involve analysts from the earliest stages and
see their use cases as paramount and continually tested against the developing software.

Novel requirements
The requirements listed here are a poor fit to existing frameworks and would require
development.

Multi-node processing
Multi-node processing is not new to HEP (e.g. ALICE’s O2 framework or MPI-based
analyses). However, a framework that can efficiently schedule jobs on such disparate scales
as a laptop up to a many-node HPC system (see requirement 39) has not been
demonstrated before. As this requirement could have far-reaching implications for
framework design, changes in node capabilities should be monitored closely over the next
few years--what might be multi-node today may not need to be 5 years from now. If the
need for such dynamic and scalable functionality can be demonstrated, then development
outside of current framework technologies would be required.

Overlapping processing atoms
Requirement 27 states that the framework

“must be able to operate on subsets of a trigger record. Specifically, it must be
possible to break trigger records down into smaller chunks (e.g. one APA) and be
able to stitch those chunks back together.”

2 ALICE primarily triggers on minimum-bias events, and the decay products of the 𝛶(nS) resonances
detected by Belle II are significantly cleaner than those of hadronic collisions.

6

This requirement, although listed under the heading “Memory management,” presents more
processing challenges than memory ones, and it is related to the processing contexts
subsection above. A critical ingredient of most HEP frameworks is the ability to process
framework events as independent from each other--i.e. the order in which events are
processed is irrelevant. If DUNE’s processing model requires correlations between its
processing atoms, or if data from adjacent drift windows overlap each other or impose
boundary conditions that must be respected, then this argues for a framework design that
takes this into account upfront.

Additional complications include combining the results from different drift windows within the
same trigger record, and (for supernovae contexts) finding ways to straddle multiple trigger
records within the same job. Although extant frameworks may be able to accommodate
such processing, there is no single framework that we know of that readily provides such
processing behavior.

Meeting this requirement will not only require significant software development, but it will
also likely necessitate involvement with DUNE’s online developers. Consequently, DUNE
may need to consider a simpler framework model, perhaps moving the (e.g.) APA-stitching
further down the processing chain.

Fluid data-processing hierarchy
Most HEP frameworks have little flexibility in their data-processing hierarchy. The hierarchy
used by DUNE’s current framework art (run⊃ subrun⊃ event) has its origins in the collider
community (viz. CMSSW), where the subrun represents a luminosity block. Depending on
which processing contexts must be supported by the framework (see above), a more flexible
and fluid data-processing paradigm may be required. If so, development would be
necessary not only to determine an efficient computing model but to also develop a system
that can sufficiently meet DUNE’s provenance needs.

Further items for DUNE’s consideration

Framework vs. production system
The concept of a framework job has evolved over the last 10 years--from one
single-threaded process to a multi-threaded one, to a single program that can launch many
processes with many threads potentially distributed across multiple nodes, communicating in
coordinated ways.

If DUNE is considering a framework that supports such multi-node programs, it is important
to understand the boundary between the framework itself and the production system--i.e. the
entity responsible for managing the launching of framework jobs and collecting (and perhaps
validating) their outputs. For example, any job that uses MPI effectively is responsible to
some degree for scheduling the work among various ranks, which can reside on physically
distinct machines. It will therefore take analysis to determine which of these details, for a

7

given data-processing scenario, should be managed by the framework and which should be
handled by the production system.

An extant example demonstrating the framework/production system boundary problem is
ATLAS’ event service.3 The event service supports an external scheduler responsible for
assigning event-processing to (potentially physically isolated) systems in a coordinated
manner. An HPC-specific implementation of the service exists (see footnote 3) that relies on
MPI for scheduling processing on NERSC. ATLAS’ experience in this area may be of benefit
to DUNE.

3 D Benjamin et al 2017 J. Phys.: Conf. Ser. 898 062002 [doi:10.1088/1742-6596/898/6/062002]

8

