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The Lorentz force is a consequence of the 
system of Maxwell equations 

 

Annotation 
A new variational principle is formulated and it is proved that 

Maxwell's equations are a consequence of this principle. Symmetric 
Maxwell's equations, in which, along with electric potentials and 
charges, there are magnetic potentials and charges are also a 
consequence of this principle. Thermal losses from conduction 
currents are also taken into account in this principle. Maxwell's 
equations, supplemented by the Lorentz force formula, are also a 
consequence of this principle. Finally, Maxwell's equations, 
supplemented by the formula for the force arising from the 
movement of magnetic charges in an electric field, similar to the 
Lorentz formula, are also a consequence of this principle. This allows 
the author to conclude that the Lorentz formula and its analogue are 
also a consequence of the extended symmetric system of Maxwell's 
equations. 
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1. Introduction 
Usually, the system of Maxwell equations and the Lorentz force 

formula are considered as the foundations of electrodynamics, as two 
independent components of these foundations. Further, it is shown that 
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the Lorentz formula is a consequence of the system of Maxwell's 
equations. 

But for this, Maxwell's symmetric equations are first considered, in 
which, along with electric potentials and charges, there are magnetic 
potentials and charges, which is known, but (I would say) not advertised. 
These equations include the Lorentz formula. 

Then a new variational principle is formulated and it is proved that 
these equations are derived from the proposed variational principle. This 
allows the author to conclude that the Lorentz formula is a consequence 
of Maxwell's system of equations. 

At the same time, it is proved that along with the Lorentz magnetic 
force, which relates the magnetic induction and the speed of the electric 
charge, there also exists the Lorentz electric force, which relates the electric 
induction and the speed of the magnetic charge. This (as far as the author 
knows) has not been established experimentally. 

 

2. Symmetric Maxwell equations 
It is known that Heaviside was the first to introduce magnetic 

charges and magnetic currents into Maxwell's electrodynamics [2]. We also 
note that the pole of a long magnet in mathematical terms can be identified 
with a magnetic charge. In this case, substances with high magnetic 
permeability behave approximately like magnetic conductors [3]. 
Symmetric Maxwell's equations in this consideration are a system of 8 
equations with 8 unknown functions - 6 strengths and 2 scalar potentials 
with known electric and magnetic charges. 

In this edition, only the Cartesian coordinate system is considered, 
where the oz axis is the direction of wave propagation. 

Such a system of Maxwell's equations allows solving problems in 
which electric and/or magnetic charges are given. They can be given by 
step and impulse functions, as well as by Dirac functions. In this case, the 
strengths and scalar potentials are determined, i.e. conduction currents - 
electric and / or magnetic. 

 

3. On the variational principle 
It is known [4, 5] that Maxwell's equations are derived from the 

principle of least action. For this, the concept of the existence of a vector 
potential is used, as a consequence of Maxwell's equations, then some 
functional is formulated with respect to such a potential and a scalar 
electric potential, called action. By varying the action with respect to the 
vector magnetic potential and the scalar potential, the condition for the 
minimum of this functional is found. This conclusion is incomplete, since 
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the functional used does not include thermal energy losses arising from 
conduction currents. 

It is important to note for what follows that the solution of 
Maxwell's equations is not a wave function [6]. It cannot be a solution to 
the Maxwell equations, since it does not satisfy the law of conservation of 
energy - this issue is analyzed in detail in [7]. The vector potential is 
compatible only with the wave equation and, therefore, its use also 
contradicts the law of conservation of energy - see [8]. However, as 
mentioned, it was the vector potential that made it possible to obtain the 
derivation of Maxwell's equations from the proposed functional. Since the 
existence of a vector potential contradicts the fundamental physical law, 
the resulting derivation of Maxwell's equations cannot be considered 
satisfactory. 

The matter is further complicated by the fact that in the symmetric 
form of Maxwell's equations (in the presence of both magnetic and electric 
charges), the electromagnetic field cannot be described using a vector 
potential that is continuous throughout space. Therefore, Maxwell's 
symmetric equations are not derived from the variational principle of least 
action, where the action is the integral of the difference between the kinetic 
and potential energies. 

Thus, to derive the Maxwell equations from the variational principle, 
another functional must be found that does not involve the use of a vector 
potential and allows one to take into account the energy dissipation. 

 
The author proposed the full action extremum principle, which also 

takes into account heat losses. This principle is described in [1]. There is 
also a functional for which the complete system of symmetric Maxwell 
equations is a necessary and sufficient condition for the existence of a 
unique optimum. 

In addition, the proposed functional can be used to solve Maxwell's 
equations. The fact is that the functional used in this or that principle is an 
integral. It is possible to construct an algorithm for moving along the 
surface described by the integrand in the direction of the optimal line. 
When the optimum is reached, the equations are thus solved, which are 
the conditions for the existence of this optimum. 

Thus, the search for a functional for some area of physics is 
1. a method for deriving equations for this area, 
2. a method for solving these equations. 
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4. Functional for rotors of Maxwell's equations 
Next, we consider three-dimensional vectors in a vector space with 

coordinate axes 0𝑥, 0𝑦, 0𝑧  and unit vectors of these axes 𝑖, 𝑗, 𝑘, 

respectively. Further, the vector Н is denoted as 𝐻 = (𝐻𝑥, 𝐻𝑦, 𝐻𝑧), where 

its coordinates are indicated in brackets. Consider the functional proposed 
in [1]: 
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from the functions 𝐻𝑥, 𝐻𝑦, 𝐻𝑧 , 𝐸𝑥, 𝐸𝑦 , 𝐸𝑧 of three variables 𝑥, 𝑦, 𝑧 and 

show that the extremals of this functional are equations of the form 

rot𝐻 = 0,       (2) 

rot𝐸 = 0.       (3) 
 
Necessary conditions for the extremum of a functional of functions 

of several independent variables - the Ostrogradsky equations [9] for each 
function have the form 

𝜕𝑓

𝜕𝑣
− ∑ [

𝜕

𝜕𝑎
(

𝜕𝑓

𝜕(𝑑𝑣 𝑑𝑎⁄ )
)]𝑎=𝑥,𝑦,𝑧,𝑡 = 0,   (4) 

where f is an integrand, v(x,y,z,t) is a variable function, a is an 
independent variable. For this functionality, they take the following form: 

• for the variable 𝐻𝑥 (see terms 1, 2, 9, 12): 

2
𝜕𝐸𝑧

𝜕𝑦
− 2

𝜕𝐸𝑦

𝜕𝑧
= 0, 

• for the variable 𝐻𝑦 (see terms 3, 4, 8, 11): 

2
𝜕𝐸𝑥

𝜕𝑧
− 2

𝜕𝐸𝑧

𝜕𝑥
= 0, 

• for the variable 𝐻𝑧 (see terms 5, 6, 7, 10): 
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2
𝜕𝐸𝑦

𝜕𝑥
− 2

𝜕𝐸𝑥

𝜕𝑦
= 0, 

• for the variable 𝐸𝑥 (see terms 3, 6, 7, 8): 

2
𝜕𝐻𝑧

𝜕𝑦
− 2

𝜕𝐻𝑦

𝜕𝑧
= 0, 

• for the variable 𝐸𝑦 (see terms 2, 5, 9, 10): 

2
𝜕𝐻𝑧

𝜕𝑦
− 2

𝜕𝐻𝑦

𝜕𝑧
= 0, 

• for the variable 𝐸𝑧 (see terms 1, 4, 11, 12): 

2
𝜕𝐻𝑦

𝜕𝑥
− 2

𝜕𝐻𝑥

𝜕𝑦
= 0. 

Hence it follows that the necessary conditions for the extremum of the 
functional (1) are the equations 

• for the variable Е: 

2 ⋅ rot𝐻 = 0,       (5) 

• for the variable Н: 

2 ⋅ rot𝐸 = 0.       (6) 
For the convenience of further presentation, the integrand in (1) will be 

denoted as ℑ(𝐻, 𝐸). In this case, functional (1) takes the form 

𝛷о = ∮ {∮ {∮ {ℑ(𝐻, 𝐸)}
𝑥

𝑑𝑥}𝑑𝑦
𝑦

}
𝑧

𝑑𝑧,  (7) 

It can be seen that 

ℑ(𝐻, 𝐸) = 𝐻 ⋅ rot(𝐸) − 𝐸 ⋅ rot(𝐻).   (8) 
Here, each factor is considered as a three-component vector in the sense 
of matrix algebra. Thus, fair 

Lemma 1. The necessary conditions for the extremum of the 
functional (7, 8) are equations (2, 3). 

 
 

5. Construction of a functional for Maxwell's 
equations 
Consider a functional that differs from the one proposed in [1] in 

that the last 2 lines are added to it: 

Φ = ∫ {∫ {∫ {∫ (Φ1𝑑𝑥)𝑥
} 𝑑𝑦

𝑦
} 𝑑𝑧

𝑧
} 𝑑𝑡

𝑇

𝑡=0
  (1) 

where  
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Φ1 =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 +

1

2
{ℑ(𝐻′, 𝐸′) − ℑ(𝐻″, 𝐸″)}

+
𝜇

2
{𝐻′

𝑑𝐻″

𝑑𝑡
− 𝐻″

𝑑𝐻′

𝑑𝑡
}

+
𝜀

2
{−𝐸′

𝑑𝐸″

𝑑𝑡
+ 𝐸″

𝑑𝐸′

𝑑𝑡
}

+ {−𝐾′ (div𝐸′ −
𝜌

2𝜀
) + 𝐾′′ (div𝐸″ −

𝜌

2𝜀
)}

+ {𝐿′ (div𝐻′ −
𝜎

2𝜇
) − 𝐿′′ (div𝐻″ −

𝜎

2𝜇
)}

+
𝜇

2
{𝐻′ ∙

𝜕

𝜕𝑋
[𝑣𝜌 × 𝐻

″] − 𝐻″ ∙ [𝑣𝜌 × 𝐻
′]}

−
𝜀

2
{{𝐸′ ∙

𝜕

𝜕𝑋
[𝑣𝑚 × 𝐸

″] + 𝐸″ ∙ [𝑣𝑚 × 𝐸
′]}}

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

; 

𝑋 = {𝑥, 𝑦, 𝑧};   𝑣𝜌, 𝑣𝑚 are the speed of movement of electric and magnetic 

charges, respectively. In this functional, all variable functions are 

represented as sums: 𝐻 = 𝐻′ + 𝐻″, etc. Applying now the above 
Ostrogradsky equations, we find by differentiating: 

• for the variable 𝐸′: 

rot𝐻′ − 𝜀
𝑑𝐸″

𝑑𝑡
− grad(𝐾 ′) − 𝜀

𝜕

𝜕𝑋
[𝑣𝑚 × 𝐸

″] = 0, (2) 

• for the variable 𝐸″: 

−rot𝐻″ + 𝜀
𝑑𝐸′

𝑑𝑡
+ grad(𝐾″) + 𝜀

𝜕

𝜕𝑋
[𝑣𝑚 × 𝐸

′] = 0, (3) 

• for the variable 𝐻′: 

rot𝐸′ + 𝜇
𝑑𝐻″

𝑑𝑡
+ grad(𝐿′) + 𝜇

𝜕

𝜕𝑋
[𝑣𝜌 ×𝐻

″] = 0, (4) 

• for the variable 𝐻″: 

−rot𝐸″ − 𝜇
𝑑𝐻′

𝑑𝑡
− grad(𝐿″) − 𝜇

𝜕

𝜕𝑋
[𝑣𝜌 × 𝐻

′] = 0, (5) 

• for the variable 𝐾 ′, 𝐿′, 𝐾″, 𝐿″ respectively: 

−(div𝐸′ −
𝜌

2𝜀
) = 0, (div𝐻′ −

𝜎

2𝜇
) = 0,   (6) 

(div𝐸″ −
𝜌

2𝜀
) = 0, − (div𝐻″ −

𝜎

2𝜇
) = 0.   (7) 

Due to the symmetry of equations (2-7) we have: 

𝐸′ = 𝐸″, 𝐻′ = 𝐻″, 𝐾 ′ = 𝐾″, 𝐿′ = 𝐿″.    (8) 
Denote: 

𝐸 = 𝐸′ + 𝐸″, 𝐻 = 𝐻′ + 𝐻″, 𝐾 = 𝐾 ′ + 𝐾″, 𝐿 = 𝐿′ + 𝐿″.  (9) 
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Subtracting equation (3) from (2), we obtain 

rot𝐻 − 𝜀
𝑑𝐸

𝑑𝑡
− grad(𝐾) − 𝜀

𝜕

𝜕𝑋
[𝑣𝑚 × 𝐸] = 0.   (10) 

Similarly, subtracting from (5) from (4), we obtain 

rot𝐸 + 𝜇
𝑑𝐻

𝑑𝑡
+ grad(𝐿′) + 𝜇

𝜕

𝜕𝑋
[𝑣𝜌 × 𝐻] = 0.  (11) 

Similarly, from (6, 7) we obtain 

(div𝐸 − 𝜌 𝜀⁄ ) = 0,      (12) 

(div𝐻 − 𝜎 𝜇⁄ ) = 0.      (13) 
Equations (2) and (3) are necessary conditions for the existence of 

an extremum of the functional (1) with respect to the function 𝐸′ and with 

respect to the function 𝐸″. These extrema are of opposite nature 
(minimum-maximum or maximum-minimum), since equations (2) and (3) 
differ in the signs of the terms. Consequently, these equations are 
necessary conditions for the existence of a saddle line for the functions 

𝐸′and 𝐸″ in the functional (1). 
Similarly, equations (4) and (5) are necessary conditions for the 

existence of a saddle line in the functions 𝐻′  and 𝐻″ for functional (1). 
Similarly, equations (6, 7) are necessary conditions for the existence 

of a saddle line with respect to the functions 𝐾′, 𝐾″ and a saddle point 

with respect to the functions 𝐿′, 𝐿″  in functional (1). 
 
Lemma 2. The necessary conditions for the extremum of the 

functional (1) are equations (9-13). 
It can be seen that equations (9-13) are symmetric Maxwell 

equations, where 

𝐸 is electric field strength, 

𝐻 is magnetic field strength, 

𝜇 is magnetic permeability, 

𝜀 is permittivity, 

𝜌 is electric charge density, 

𝜎 is the density of the hypothetical magnetic charge, 

grad(𝐾) is- electric current density, 

grad(𝐿) is the hypothetical magnetic current density. 
 
Denote: 

𝐽 = grad(𝐾),       (14) 

𝑀 = grad(𝐿).       (15) 

Let us consider the physical meaning of the quantity 𝐾. Denote: 

𝜙 is electric scalar potential, 



The Papers of independent Authors                                       Volume 55, 2022 

 37 

𝜗 is electrical conductivity, 

𝑗𝑥 is the projection of the electric current density vector 𝐽 onto the 

ох axis. 

Then we get 𝑗𝑥 = −𝜗
𝑑𝜙

𝑑𝑥
. But from (14) it follows that 𝑗𝑥 =

𝑑𝐾

𝑑𝑥
. 

Consequently, 
𝑑𝐾

𝑑𝑥
= −𝜗

𝑑𝜙

𝑑𝑥
,       (16) 

i.e. 

𝐾 = −𝜗𝜙.       (17) 
Likewise, 

𝑑𝐿

𝑑𝑥
= −𝜍

𝑑𝜑

𝑑𝑥
,       (18) 

𝐿 = −𝜍𝜑,       (19) 
where 

𝜑 is magnetic scalar potential, 

𝜍 is magnetic conductivity, 

𝑚𝑥 is the projection of the magnetic current density vector 𝑀 onto 

the ох axis. 
 
So, combining equations (10, 11, 14, 15), we get the final form of the 

extended Maxwell equations: 

rot𝐻 − 𝜀
𝑑𝐸

𝑑𝑡
− J − 𝜀

𝜕

𝜕𝑋
[𝑣𝑚 × 𝐸] = 0,    (20) 

rot𝐸 + 𝜇
𝑑𝐻

𝑑𝑡
+M+ 𝜇

𝜕

𝜕𝑋
[𝑣𝜌 × 𝐻] = 0,   (21) 

(div𝐸 − 𝜌 𝜀⁄ ) = 0,      (22) 

(div𝐻 − 𝜎 𝜇⁄ ) = 0.      (23) 
 

6. Lorentz force 

From (5.21) with  
𝑑𝐻

𝑑𝑡
= 0 , M = 0 we find: 

rot𝐸 + 𝜇
𝜕

𝜕𝑋
[𝑣𝜌 × 𝐻] = 0     (1) 

or in component form 

{
 
 

 
 (rot𝐸)𝑥 + 𝜇

𝜕

𝜕𝑥
[𝑣𝜌 ×𝐻]𝑥

= 0

(rot𝐸)𝑦 + 𝜇
𝜕

𝜕𝑦
[𝑣𝜌 × 𝐻]𝑦

= 0

(rot𝐸)𝑥𝑧 + 𝜇
𝜕

𝜕𝑧
[𝑣𝜌 × 𝐻]𝑧

= 0}
 
 

 
 

     (2) 

With rot𝐸 = 0, i.e. at 𝐸 = const, the second terms - derivatives are 
also equal to zero and then the differentiable expressions become 
constants, i.e. 
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{
 

 
𝜇[𝑣𝜌 ×𝐻]𝑥
𝜇[𝑣𝜌 × 𝐻]𝑦

𝜇[𝑣𝜌 × 𝐻]𝑧}
 

 

= 𝜇[𝑣𝜌 × 𝐻] = [𝑣𝜌 × В] = 𝐸   (3) 

It is easy to see that we have obtained an expression for the Lorentz 
magnetic force vector. Similarly, from (5.20) we can obtain an expression 
of the form 

𝜀[𝑣𝑚 × 𝐸] = [𝑣𝑚 × 𝐷] = 𝐹𝑚,      (4) 
which it is natural to call the expression for the Lorentz electric force 
vector. It seems that the existence of such a force should not be in doubt. 
Apparently, it has a small value and therefore has not yet been discovered. 

 
It should be noted that from the same equation (5.21) we can obtain 

formulas for the Faraday and Lorentz laws: 

at M=0 , 𝑣𝜌 = 0  from (5.21) we find  rot𝐸 = −
𝑑𝐵

𝑑𝑡
, 

at M = 0,
𝑑𝐻

𝑑𝑡
= 0   from (3) we find  𝐸 = [𝑣𝜌 × В]. 

At the same time, the contradiction that Feynman spoke about when 
he discussed the phenomena in which the emf arises is removed: “we do 
not know of any other such example when a simple and exact law would 
require for its real understanding of analysis in terms of two different 
phenomena” [12]. 

 

7. On sufficient conditions for an extremum 
In [1], sufficient conditions for an extremum are considered. We will 

not repeat this proof here. This proof is essentially the proof of the 
following theorem. 

Theorem 1. The functional Ф defined in (5.1) depending on the 

functions 𝑍′ = [𝐸′, 𝐻′, 𝐾′, 𝐿′] and 𝑍″ = [𝐸″, 𝐻″, 𝐾″, 𝐿″], has a global 

saddle extremal, where a strong minimum is reached on the function 𝑍′ 
and a strong maximum on the function 𝑍″. The functions on this extremal 

are such that 𝑍′ = 𝑍″, and their sum 𝑍 = 𝑍′ + 𝑍″ = [𝐸,𝐻, 𝐾, 𝐿]  satisfies 
Maxwell's equations. 

It is shown in [1] that this functional can be obtained by 
transforming the well-known equation [10] of the electromagnetic field 
power balance. 
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