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Abstract

In this outlet, a journey amid three models are designed. Graphs, fuzzy graphs
and neutrosophic graphs are three models which form main parts. Assigning one
specific number with some conditions to vertices and edges of graphs make them
to be titled as fuzzy graphs and assigning three specific numbers with some
conditions to vertices and edges of graphs make them to be titled as neutrosophic
graphs. In other viewpoint, neutrosophic graphs are 3-array fuzzy graphs which
every things are triple. To make more sense, the well-known graphs are defined
in new ways. For example, crisp complete, fuzzy complete and neutrosophic
complete when the context is about being complete in every model. New notions
are defined in the comparable structures on these three models to understand
the behaviors of these models according to the notions. Different edges define
new form of connections amid vertices. Thus defining new notion of coloring is
possible when the connections of vertices which determine new color and it’s
decider whether using new color or not, have been considered if they’ve special
edges. The tools to define specific edges are studied. One notion is to use the
connectedness to have two different types of numbers which are neutrosophic
chromatic number and chromatic number. Other notion is to use the idea of
neutrosophic strong to get specific edges which are eligible to define new numbers.
Some classes of neutrosophic graphs are studied in the the terms of different
types of chromatic numbers and neutrosophic chromatic numbers. This book is
based on neutrosophic graph theory which is designed to study different types
of coloring in that graphs to get new ideas and new results. The results concern
specific classes of neutrosophic graphs. In this book, idea of neutrosophic is
applied into the setting of hypergraphs and n-SuperHyperGraphs. New setting
has the name neutrosophic hypergraphs and neutrosophic n-SuperHyperGraphs.
Also, idea of close numbers and super-close numbers are applied to study. The
idea of closing numbers and super-closing numbers are some names for (dual)
super-coloring and (dual) super-resolving alongside (dual) super-dominating
which give us a set and number arising from hyper-vertices and super-vertices
alongside their relations in neutrosophic hypergraphs and neutrosophic n-
SuperHyperGraphs. When hyper-vertices and super-vertices are too close,
idea of (dual) super-coloring and (dual) super-resolving alongside (dual) super-
dominating are introduced to study the behaviors of too close hyper-vertices and
super-vertices. In this book, idea of neutrosophic is applied into the setting of
hypergraphs and n-SuperHyperGraphs. New setting has the name neutrosophic
hypergraphs and neutrosophic n-SuperHyperGraphs. Also, idea of close numbers
and super-close numbers are applied to study. The idea of closing numbers
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and super-closing numbers are some names for (dual) super-coloring and (dual)
super-resolving alongside (dual) super-dominating which give us a set and
number arising from hyper-vertices and super-vertices alongside their relations
in neutrosophic hypergraphs and neutrosophic n-SuperHyperGraphs. When
hyper-vertices and super-vertices are too close, idea of (dual) super-coloring
and (dual) super-resolving alongside (dual) super-dominating are introduced to
study the behaviors of too close hyper-vertices and super-vertices. New setting is
introduced to study the alliances. Alliances are about a set of vertices which are
applied into the setting of neutrosophic graphs. Neighborhood has the key role
to define these notions. Also, neighborhood is defined based on the edges, strong
edges and some edges which are coming from connectedness. These three types
of edges get a framework as neighborhood and after that, too close vertices have
key role to define offensive alliance, defensive alliance, t-offensive alliance, and t-
defensive alliance based on three types of edges, common edges, strong edges and
some edges which are coming from connectedness. The structure of set is studied
and general results are obtained. Also, some classes of neutrosophic graphs
containing complete, empty, path, cycle, bipartite, t-partite, star and wheel are
investigated in the terms of set, minimal set, number, and neutrosophic number.
In this study, there’s an open way to extend these results into the family of these
classes of neutrosophic graphs. The family of neutrosophic graphs aren’t study
but it seems that analogous results are determined. There’s a question. How
can be related to each other, two sets partitioning the vertex set of a graph? The
ideas of neighborhood and neighbors based on different edges illustrate open
way to get results. A set is alliance when two sets partitioning vertex set have
uniform structure. All members of set have different amount of neighbors in the
set and out of set. It leads us to the notion of offensive and defensive. New ideas,
offensive alliance, defensive alliance, t-offensive alliance, t-defensive alliance,
strong offensive alliance, strong defensive alliance, strong t-offensive alliance,
strong t-defensive alliance, connected offensive alliance, connected defensive
alliance, connected t-offensive alliance, and connected t-defensive alliance are
introduced. Two numbers concerning cardinality and neutrosophic cardinality of
alliances are introduced. A set is alliance when its complement make a relation
in the terms of neighborhood. Different edges make different neighborhoods.
Three types of edges are applied to define three styles of neighborhoods. General
edges, strong edges and connected edges are used where connected edges are
the edges arising from connectedness amid two endpoints of the edges. These
notions are applied into neutrosophic graphs as individuals and family of them.
Independent set as an alliance is a special set which has no neighbor inside
and it implies some drawbacks for this notions. Finding special sets which are
well-known, is an open way to purse this study. Special set which its members
have only one neighbor inside, characterize the connected components where
the cardinality of its complement is the number of connected components. Some
problems are proposed to pursue this study. Basic familiarities with graph
theory and neutrosophic graph theory are proposed for this book. New setting
is introduced to study the global offensive alliance. Global offensive alliance is
about a set of vertices which are applied into the setting of neutrosophic graphs.
Neighborhood has the key role to define this notion. Also, neighborhood is
defined based on strong edges. Strong edge gets a framework as neighborhood
and after that, too close vertices have key role to define global offensive alliance
based on strong edges. The structure of set is studied and general results are
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obtained. Also, some classes of neutrosophic graphs containing complete, empty,
path, cycle, star, and wheel are investigated in the terms of set, minimal set,
number, and neutrosophic number. Neutrosophic number is defined in new way.
It’s first time to define this type of neutrosophic number in the way that, three
values of a vertex are used and they’ve same share to construct this number.
It’s called “modified neutrosophic number”. Summation of three values of vertex
makes one number and applying it to a set makes neutrosophic number of set.
This approach facilitates identifying minimal set and optimal set which forms
minimal-global-offensive-alliance number and minimal-global-offensive-alliance-
neutrosophic number. Two different types of sets namely global-offensive
alliance and minimal-global-offensive alliance are defined. Global-offensive
alliance identifies the sets in general vision but minimal-global-offensive alliance
takes focus on the sets which deleting a vertex is impossible. Minimal-global-
offensive-alliance number is about minimum cardinality amid the cardinalities
of all minimal-global-offensive alliances in a given neutrosophic graph. New
notions are applied in the settings both individual and family. Family of
neutrosophic graphs is studied in the way that, the family only contains same
classes of neutrosophic graphs. Three types of family of neutrosophic graphs
including m-family of neutrosophic stars with common neutrosophic vertex set,
m-family of odd complete graphs with common neutrosophic vertex set, and
m-family of odd complete graphs with common neutrosophic vertex set are
studied. The results are about minimal-global-offensive alliance, minimal-global-
offensive-alliance number and its corresponded sets, minimal-global-offensive-
alliance-neutrosophic number and its corresponded sets, and characterizing all
minimal-global-offensive alliances. The connection of global-offensive-alliances
with dominating set and chromatic number are obtained. The number of
connected components has some relations with this new concept and it gets
some results. Some classes of neutrosophic graphs behave differently when
the parity of vertices are different and in this case, path, cycle, and complete
illustrate these behaviors. Two applications concerning complete model as
individual and family, under the titles of time table and scheduling conclude
the results and they give more clarifications. In this study, there’s an open way
to extend these results into the family of these classes of neutrosophic graphs.
The family of neutrosophic graphs aren’t study deeply and with more results
but it seems that analogous results are determined. Slight progress is obtained
in the family of these models but there are open avenues to study family of
other models as same models and different models. There’s a question. How
can be related to each other, two sets partitioning the vertex set of a graph?
The ideas of neighborhood and neighbors based on strong edges illustrate open
way to get results. A set is global offensive alliance when two sets partitioning
vertex set have uniform structure. All members of set have more amount of
neighbors in the set than out of set. It leads us to the notion of global offensive
alliance. Different edges make different neighborhoods but it’s used one style
edge titled strong edge. These notions are applied into neutrosophic graphs as
individuals and family of them. Independent set as an alliance is a special set
which has no neighbor inside and it implies some drawbacks for these notions.
Finding special sets which are well-known, is an open way to purse this study.
Special set which its members have only one neighbor inside, characterize the
connected components where the cardinality of its complement is the number of
connected components. Some problems are proposed to pursue this study. Basic
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familiarities with graph theory and neutrosophic graph theory are proposed for
this book.
New notions are defined in the comparable structures on these three models to
understand the behaviors of these models according to the notions. This book is based
on neutrosophic graph theory which is designed to study different types of coloring in
that graphs to get new ideas and new results. The results concern specific classes of
neutrosophic graphs. New notions are defined in the comparable structures on these
three models to understand the behaviors of these models according to the notions. This
book is based on neutrosophic graph theory which is designed to study different types
of coloring in that graphs to get new ideas and new results. The results concern specific
classes of neutrosophic graphs.
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CHAPTER 1

Neutrosophic Graphs

Akram et al. [1] introduce bipolar neutrosophic graphs. He et al. [2] also
propose operations on single-valued neutrosophic graphs. Broumi et al. [3]
elicit an introduction to bipolar single valued neutrosophic graph theory. He
et al. also introduce Interval valued neutrosophic graphs [4], Isolated single
valued neutrosophic graphs [5], on bipolar single valued neutrosophic graphs
[6], Single valued neutrosophic graphs [7], single valued neutrosophic graphs:
degree, order and size [8]. Kandasamy et al. [11] illustrate Neutrosophic graphs:
a new dimension to graph theory in 2015. In 2017, Operations on single valued
neutrosophic graphs with application was introduced by Naz et al. [12].

1.1 Definitions
To clarify about
the definitions,

I use some
examples and in

this way,
exemplifying has
key role to make
sense about the
definitions and
to introduce new
ways to use on
these models in
the terms of new

notions.

The concept of complete is used to classify specific graph in every environment.
To differentiate, I use an adjective or prefix in every definition. Two adjectives
“fuzzy” and “neutrosophic” are used to distinguish every graph or classes of
graph or any notion on them.
The reference [9; 10] is used to write the contents of this chapter.

Definition 1.1.1. G : (V,E) is called a crisp graph where V is a set of objects
and E is a subset of V × V such that this subset is symmetric.

Definition 1.1.2. A crisp graph G : (V,E) is called a fuzzy graph G : (σ, µ)
where σ : V → [0, 1] and µ : E → [0, 1] such that µ(xy) ≤ σ(x) ∧ σ(y) for all
xy ∈ E.

Definition 1.1.3. A crisp graph G : (V,E) is called a neutrosophic graph
G : (σ, µ) where σ = (σ1, σ2, σ3) : V → [0, 1] and µ = (µ1, µ2.µ3) : E → [0, 1]
such that µ(xy) ≤ σ(x) ∧ σ(y) for all xy ∈ E.

Definition 1.1.4. A crisp graph G : (V,E) is called a crisp complete where
∀x ∈ V, ∀y ∈ V, xy ∈ E.

Definition 1.1.5. A fuzzy graph G : (σ, µ) is called fuzzy complete where it’s
complete and µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E.

Definition 1.1.6. A neutrosophic graph G : (σ, µ) is called a neutrosophic
complete where it’s complete and µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E.

Definition 1.1.7. A crisp graph G : (V,E) is called a crisp strong.
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1. Neutrosophic Graphs

Figure 1.1: Neutrosophic Graph, N1 nsc1

Figure 1.2: Neutrosophic Complete, N1 nsc2

Definition 1.1.8. A fuzzy graph G : (σ, µ) is called fuzzy strong where
µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E.

Definition 1.1.9. A neutrosophic graph G : (σ, µ) is called a neutrosophic
strong where µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E.

Definition 1.1.10. A distinct sequence of vertices v0, v1, · · · , vn in a crisp
graph G : (V,E) is called crisp path with length n from v0 to vn where
vivi+1 ∈ E, i = 0, 1, · · · , n− 1.
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1.1. Definitions

Figure 1.3: Neutrosophic Strong, N1 nsc3

Definition 1.1.11. A path v0, v1, · · · , vn is called fuzzy path where µ(vivi+1) >
0, i = 0, 1, · · · , n− 1.

Definition 1.1.12. A path v0, v1, · · · , vn is called neutrosophic path where
µ(vivi+1) > 0, i = 0, 1, · · · , n− 1.

Definition 1.1.13. A path v0, v1, · · · , vn with exception of v0 and vn in a crisp
graph G : (V,E) is called crisp cycle with length n for v0 where v0 = vn. and
the order is three.

Definition 1.1.14. A crisp cycle v0, v1, · · · , vn, v0 is called fuzzy cycle
where there are two edges xy and uv such that µ(xy) = µ(uv) =∧
i=0,1,··· ,n−1 µ(vivi+1).

Definition 1.1.15. A crisp cycle v0, v1, · · · , vn, v0 is called neutrosophic
cycle where there are two edges xy and uv such that µ(xy) = µ(uv) =∧
i=0,1,··· ,n−1 µ(vivi+1).

Table 1.1: Crisp-fying, Fuzzy-fying and Neutrosophic-fying tbl1

Crisp Graphs Fuzzy Graphs Neutrosophic Graphs
Crisp Complete Fuzzy Complete Neutrosophic Complete
Crisp Strong Fuzzy Strong Neutrosophic Strong
Crisp Path Fuzzy Path Neutrosophic Path
Crisp Cycle Fuzzy Cycle Neutrosophic Cycle

New definitions are introduced in the terms of neutrosophic type. There are
some questions about the relations amid these notions.
The notion of strong is too close to the notions of complete.
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1. Neutrosophic Graphs

(1). Is neutrosophic strong, neutrosophic complete?
No.

Example 1.1.16. Consider Figure (1.3). N1 is a neutrosophic strong
which isn’t also neutrosophic complete.

(2). Does neutrosophic strong imply neutrosophic complete?
Sometimes.

Example 1.1.17. Consider Figure (1.3). N1 is a neutrosophic strong
which isn’t neutrosophic complete.

Example 1.1.18. Consider Figure (1.2). N1 is a neutrosophic strong
which is also neutrosophic complete.

(3). Does neutrosophic complete imply neutrosophic strong?
Yes. All neutrosophic complete from order 1, 2, 3, · · · are neutrosophic
strong. All neutrosophic complete from any order are neutrosophic strong.

Example 1.1.19. Consider Figure (1.2). N1 is a neutrosophic complete
which is also neutrosophic strong.

(4). When does neutrosophic complete imply neutrosophic strong?
Always.

Example 1.1.20. Consider Figure (1.2). N1 is a neutrosophic complete
which is also neutrosophic strong.

(5). When neutrosophic strong imply neutrosophic complete?
When neutrosophic graph is crisp complete.

Example 1.1.21. Consider Figure (1.2). N1 is a neutrosophic strong
which is also neutrosophic complete. Since it’s neutrosophic strong and
crisp complete.

(6). Which neutrosophic graphs are both neutrosophic complete and neutro-
sophic strong?
All neutrosophic graphs, which are neutrosophic complete, are neutro-
sophic strong. In other words, neutrosophic graphs, which are neutrosophic
strong and crisp complete, are neutrosophic complete. Neutrosophic com-
plete means that neutrosophic graph is neutrosophic strong and crisp
complete.

Example 1.1.22. Consider Figure (1.2). N1 is a neutrosophic strong
which is also neutrosophic complete.

(7). Which neutrosophic graphs are either neutrosophic complete or neutro-
sophic strong?
Neutrosophic graphs, which are neutrosophic strong but not crisp com-
plete, aren’t neutrosophic complete.

Example 1.1.23. Consider Figure (1.3). N1 is a neutrosophic strong
which isn’t also neutrosophic complete.

4
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(8). Which neutrosophic graphs are neither neutrosophic complete nor
neutrosophic strong?
Neutrosophic graphs, which aren’t neutrosophic strong, are neithter
neutrosophic complete.

Example 1.1.24. Consider Figure (2.1). N1 is neither a neutrosophic
strong nor neutrosophic complete.

The notion of cycle when the order is three, is too close to the notions of
complete. Thus there are some natural questions about them.

(1). Is neutrosophic cycle, neutrosophic complete?
When the order is three and it’s neutrosophic strong. For instance, there’s
a possibility to have neutrosophic cycle and neutrosophic complete. In
these Examples, at least the neutrosophic values of two vertices have to be
same and minimum to have two edges which have minimum neutrosophic
values. In this case, all three edges have same neutrosophic values. Thus I
represent three types neutrosophic graphs, which are neutrosophic cycle in
the terms of non-isomorphic. Firstly, two vertices have same neutrosophic
values and third vertex has neutrosophic value which is greater than them.

Example 1.1.25. Consider Figure (1.4). N1 is a neutrosophic cycle and
neutrosophic complete.

Figure 1.4: Neutrosophic Cycle, N1, has same neutrosophic values for two
vertices. nsc4

Secondly, three vertices have same neutrosophic values.

Example 1.1.26. Consider Figure (1.4). N1 is both a neutrosophic
complete and neutrosophic cycle.

Thirdly, three vertices have different neutrosophic values.
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1. Neutrosophic Graphs

Example 1.1.27. Consider Figure (1.2). N1 is both a neutrosophic
complete and neutrosophic cycle.

Figure 1.5: Neutrosophic Cycle, N1, has same neutrosophic values for vertices. nsc5

(2). Does neutrosophic cycle imply neutrosophic complete?
When the order is three and it’s neutrosophic strong.

(3). Does neutrosophic complete imply neutrosophic cycle?
When the order is three.

(4). When does neutrosophic complete imply neutrosophic cycle?
When the order is three.

(5). When neutrosophic cycle imply neutrosophic complete?
When the order is three and it’s neutrosophic strong.

(6). Which neutrosophic graphs are both neutrosophic complete and neutro-
sophic cycle?
Only three types of neutrosophic graphs which are in Figures (1.2),(1.4)
and (1.5). The order has to be three and it’s neutrosophic strong.
Firstly, two vertices have same neutrosophic values and third vertex has
neutrosophic value which is greater than them.
Secondly, three vertices have same neutrosophic values.
Thirdly, three vertices have different neutrosophic values.

(7). Which neutrosophic graphs are either neutrosophic complete or neutro-
sophic cycle?
Either neutrosophic complete or neutrosophic cycle which don’t have the
order is three for neutrosophic complete and if they have, then they aren’t
neutrosophic strong.

(8). Which neutrosophic graphs are neither neutrosophic cycle nor neutrosophic
strong?
Neutrosophic graphs which aren’t neutrosophic strong.
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1.1. Definitions

Proposition 1.1.28. A neutrosophic cycle is neutrosophic complete if and only
if it’s neutrosophic strong and order is three.

Proof. Let N is neutrosophic cycle.
(⇒) If N is neutrosophic complete, then, by it’s neutrosophic complete, it’s
neutrosophic strong. By it’s crisp cycle and crisp complete, order is three. Thus
N is neutrosophic strong and order is three.
(⇐) If it’s neutrosophic strong and order is three, then, by order is three and it’s
crisp cycle, it’s crisp complete. By it’s neutrosophic strong, N is neutrosophic
complete. �

Proposition 1.1.29. A neutrosophic complete is neutrosophic cycle if and only
if it’s order is three.

Proof. Let N is neutrosophic complete.
(⇒) If N is neutrosophic cycle, then, by it’s crisp cycle and it’s crisp complete,
order is three.
(⇐) If order is three, then, by order is three and it’s crisp complete, it’s crisp
cycle. By it’s neutrosophic complete, N is neutrosophic cycle. �

Proposition 1.1.30. A neutrosophic path is neutrosophic complete if and only
if it’s neutrosophic strong and order is two.

Proof. Let N is neutrosophic path.
(⇒) If N is neutrosophic complete, then, by it’s crisp path and it’s crisp
complete, order is two. By it’s crisp complete, it’s neutrosophic strong. Thus
it’s neutrosophic strong and order is two.
(⇐) If order is two, then, by order is two, it’s crisp connected and it’s
neutrosophic strong, N is neutrosophic complete. �

Proposition 1.1.31. A neutrosophic complete is neutrosophic path if and only
if it’s order is two.

Proof. Let N is neutrosophic complete.
(⇒) Consider N is neutrosophic path. Then, by it’s crisp path and it’s crisp
complete, order is two.
(⇐) Suppose order is two, then, by order is two and it’s crisp complete, it’s
crisp path. By it’s neutrosophic complete, it’s neutrosophic path. Thus N is
neutrosophic path. �

Example 1.1.32. Up to isomorphic there are two neutrosophic graphs which
are neutrosophic path, neutrosophic complete and neutrosophic strong.

• Firstly, two vertices have same neutrosophic values as Figure (1.6).

• Secondly, two vertices have different neutrosophic values as Figure (1.7).

Numbers are created by some tools arising from attributes concerning different
models of graphs.

Definition 1.1.33. Let G : (V,E) be a crisp graph. For any given subset N of
V, Σn∈N1 is called crisp cardinality of N and it’s denoted by |N |c.
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1. Neutrosophic Graphs

Figure 1.6: Neutrosophic path, N1, has same neutrosophic values for vertices.
It’s also Neutrosophic strong and Neutrosophic complete. nsc6

Figure 1.7: Neutrosophic Path, N1, has same neutrosophic values for vertices.
It’s also Neutrosophic strong and Neutrosophic complete. nsc7

Definition 1.1.34. Let G : (V,E) be a crisp graph. Crisp cardinality of V is
called crisp order of G and it’s denoted by Oc(G).

Definition 1.1.35. Let G : (σ, µ) be a fuzzy graph. For any given subset N of
V, Σn∈Nσ(n) is called fuzzy cardinality of N and it’s denoted by |N |f .

Definition 1.1.36. Let G : (σ, µ) be a fuzzy graph. Fuzzy cardinality of V is
called fuzzy order of G and it’s denoted by Of (G).

Definition 1.1.37. Let G : (σ, µ) be a neutrosophic graph. For any given subset
N of V, Σn∈Nσ(n) is called neutrosophic cardinality of N and it’s denoted
by |N |n.

Definition 1.1.38. Let G : (σ, µ) be a neutrosophic graph. Neutrosophic
cardinality of V is called neutrosophic order of G and it’s denoted by On(G).

exm39 Example 1.1.39.

• Consider Figure (2.1). Neutrosophic order of N1, On(N1) is
(2.57, 2.05, 1.04). Thus On(N1) = (2.57, 2.05, 1.04).

8



1.1. Definitions

• Consider Figure (1.2). Neutrosophic order of N1, On(N1) is
(2.57, 2.05, 1.04). Thus On(N1) = (2.57, 2.05, 1.04).

• Consider Figure (1.3). Neutrosophic order of N1, On(N1) is
(2.57, 2.05, 1.04). Thus On(N1) = (2.57, 2.05, 1.04).

• Consider Figure (1.4). Neutrosophic order of N1, On(N1) is
(2.47, 2.26, 1.47). Thus On(N1) = (2.47, 2.26, 1.47).

• Consider Figure (1.5). Neutrosophic order of N1, On(N1) is
(2.22, 1.92, 1.47). Thus On(N1) = (2.47, 2.26, 1.38).

• Consider Figure (1.6). Neutrosophic order of N1, On(N1) is
(1.48, 1.28, 0.92). Thus On(N1) = (1.48, 1.28, 0.92).

• Consider Figure (1.7). Neutrosophic order of N1, On(N1) is
(1.73, 1.49, 1.13). Thus On(N1) = (1.73, 1.49, 1.13).

prp40 Proposition 1.1.40. |N |n ≤ (|N |c, |N |c, |N |c).

Proof.

|N |n = Σn∈Nσ(n) = Σn=(n1,n2,n3)∈N (σ(n1), σ(n2), σ(n3))
≤ Σn=(n1,n2,n3)∈N (1, 1, 1) = (|N |c, |N |c, |N |c).

�

cor41 Corollary 1.1.41. On(N) ≤ (Oc(N), Oc(N), Oc(N)).

Proof. By Proposition (1.1.40), Oc(N) = |V |c and On(N) = |V |n, the result is
straightforward. Since

On(N) = |V |n = Σv∈V σ(v) = Σv=(v1,v2,v3)∈V (σ(v1), σ(v2), σ(v3))
≤ Σn=(v1,v2,v3)∈V (1, 1, 1) = (|V |c, |V |c, |V |c) = (Oc(N), Oc(N), Oc(N)).

�

prp42 Proposition 1.1.42. |N |n = (|N |f , |N |f , |N |f ).

Proof.

|N |n = Σn∈Nσ(n) = Σn=(n1,n2,n3)∈N (σ(n1), σ(n2), σ(n3))
= (|N |f , |N |f , |N |f ).

�

In Example (1.1.39), the computations of this notion when they come to
neutrosophic order, are done. There’s same type-result with analogous to
Corollary (1.1.41).

Corollary 1.1.43. On(N) = (Of (N), Of (N), Of (N)).
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1. Neutrosophic Graphs

Proof. By Proposition (1.1.42), Of (N) = |V |f and On(N) = |V |n, the result is
straightforward. Since

On(N) = |V |n = Σv∈V σ(v) = Σv=(v1,v2,v3)∈V (σ(v1), σ(v2), σ(v3))
= (|V |f , |V |f , |V |f ) = (Of (N), Of (N), Of (N)).

�

prp44 Proposition 1.1.44. Let N = (σ, µ) be a neutrosophic graph and S, S′ ⊆ V. If
S ⊆ S′, then |S|n ≤ |S′|n.

Proof.

|S|n = Σs∈Sσ(s) = Σs∈S⊆S′σ(s) ≤ Σs′∈S′σ(s′) = |S′|n.

�

The converse of Proposition (1.1.44), doesn’t hold. Since in Figure
(1.6), S = {n1}, S′ = {n2} ⊆ V = {n1, n2}. |S|n = (0.74, 0.64, 0.46) =
(0.74, 0.64, 0.46) = |S′|n. Thus |S|n ≤ |S′|n but S 6⊆ S′.

cor45 Corollary 1.1.45. Let N = (σ, µ) be a neutrosophic graph. S ⊆ V if and only
if |S|n ≤ |V |n.

Proof. (⇒). By S ⊆ V and Proposition (1.1.44), |S|n ≤ |V |n. In other words,

|S|n = Σs∈Sσ(s) = Σs∈S⊆V σ(s) ≤ Σv∈V σ(v) = |V |n.

(⇐). This case is obvious. �

Corollary 1.1.46. Let N = (σ, µ) be a neutrosophic graph and S ⊆ V.
|S|n = On(N) if and only if S = V.

Proof. (⇒). Suppose |S|n = On(N). Hence |S|n = On(N) = |V |n. Thus
|S|n = |V |n. By Corollary (1.1.45), we get S = V.
(⇐). Consider S = V. Thus |V |n = |S|n. By On(N) = |V |n, |S|n = On(N). �

Definition 1.1.47. Let C = (V,E) be a crisp graph. It’s called crisp
connected if for every given couple of vertices, there’s at least one path
amid them.

Definition 1.1.48. Let F = (σ, µ) be a fuzzy graph. It’s called fuzzy
connected if for every given couple of vertices, there’s at least one path
amid them.

Definition 1.1.49. Let N = (σ, µ) be a neutrosophic graph. It’s called
neutrosophic connected if for every given couple of vertices, there’s at
least one path amid them.

Example 1.1.50. Neutrosophic complete, neutrosophic path and neutrosophic
cycle, are only neutrosophic connected but neutrosophic strong could be either
neutrosophic connected or not. In other words, if neutrosophic graph is
neutrosophic strong, then it’s neutrosophic connected or not but if neutrosophic
graph is either of neutrosophic complete, neutrosophic path and neutrosophic
cycle, then it’s forever neutrosophic connected.
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1.1. Definitions

Definition 1.1.51. Let C = (V,E) be a crisp graph. Suppose a path P :
v0, v1, · · · , vn−1, vn from v0 to vn. mini=0,1,2,··· ,n−1 1 is called crisp strength
of P and it’s denoted by Sc(P ).

Definition 1.1.52. Let F = (σ, µ) be a fuzzy graph. Suppose a path P :
v0, v1, · · · , vn−1, vn from v0 to vn. mini=0,1,2,··· ,n−1 µ(vivi+1) is called fuzzy
strength of P and it’s denoted by Sf (P ).

Definition 1.1.53. Let N = (σ, µ) be a neutrosophic graph. Suppose a path
P : v0, v1, · · · , vn−1, vn from v0 to vn. mini=0,1,2,··· ,n−1 µ(vivi+1) is called
neutrosophic strength of P and it’s denoted by Sn(P ).

i-path is a path with i edges, it’s also called length of path.

Example 1.1.54. In Figures (2.1), (1.2), (1.3), (1.4), (1.5), (1.6), (1.7),
neutrosophic strengths are computed for all possible paths.

(a) : Consider Figure (2.1).

(i) : An 1-path P1 : n1, n2 has neutrosophic strength (0.74, 0.47, 0.31).
(ii) : An 1-path P2 : n1, n3 has neutrosophic strength (0.55, 0.64, 0.26).

(iii) : An 1-path P3 : n2, n3 has neutrosophic strength (0.37, 0.46, 0.24).
(iv) : An 2-path P4 : n1, n2, n3 has neutrosophic strength (0.37, 0.46, 0.24).
(v) : There are only four distinct paths.

(vi) : There are only three neutrosophic strengths.
(vii) : There are only two same neutrosophic strengths.

(b) : Consider Figure (1.2).

(i) : An 1-path P1 : n1, n2 has neutrosophic strength (0.74, 0.47, 0.31).
(ii) : An 1-path P2 : n1, n3 has neutrosophic strength (0.84, 0.47, 0.27).

(iii) : An 1-path P3 : n2, n3 has neutrosophic strength (0.74, 0.64, 0.27).
(iv) : An 2-path P4 : n1, n2, n3 has neutrosophic strength (0.74, 0.47, 0.27).
(v) : There are only four distinct paths.

(vi) : There are only four different neutrosophic strengths.
(vii) : There is no same neutrosophic strengths.

(c) : Consider Figure (1.3).

(i) : An 1-path P1 : n1, n3 has neutrosophic strength (0.84, 0.47, 0.27).
(ii) : An 1-path P2 : n2, n3 has neutrosophic strength (0.74, 0.64, 0.27).

(iii) : An 2-path P3 : n1, n3, n2 has neutrosophic strength (0.74, 0.47, 0.27).
(iv) : There are only three distinct paths.
(v) : There are only three different neutrosophic strengths.

(vii) : There is no same neutrosophic strengths.

(d) : Consider Figure (1.4).

(i) : An 1-path P1 : n1, n2 has neutrosophic strength (0.74, 0.64, 0.46).

11
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(ii) : An 1-path P2 : n1, n3 has neutrosophic strength (0.74, 0.64, 0.46).
(iii) : An 1-path P3 : n2, n3 has neutrosophic strength (0.74, 0.64, 0.46).
(iv) : An 2-path P4 : n1, n2, n3 has neutrosophic strength (0.74, 0.64, 0.46).
(v) : There are only four distinct paths.

(vi) : There are only four different neutrosophic strengths.
(vii) : There are only four same neutrosophic strengths.

(e) : Consider Figure (1.5).

(i) : An 1-path P1 : n1, n2 has neutrosophic strength (0.74, 0.64, 0.46).
(ii) : An 1-path P2 : n1, n3 has neutrosophic strength (0.74, 0.64, 0.46).

(iii) : An 1-path P3 : n2, n3 has neutrosophic strength (0.74, 0.64, 0.46).
(iv) : An 2-path P4 : n1, n2, n3 has neutrosophic strength (0.74, 0.64, 0.46).
(v) : There are only four distinct paths.

(vi) : There are only four different neutrosophic strengths.
(vii) : There are only four same neutrosophic strengths.

(f) : Consider Figure (1.6).

(i) : An 1-path P1 : n1, n2 has neutrosophic strength (0.74, 0.64, 0.46).
(ii) : There is only one different neutrosophic strengths.

(iii) : There is no same neutrosophic strengths.

(g) : Consider Figure (1.7).

(i) : An 1-path P1 : n1, n2 has neutrosophic strength (0.74, 0.64, 0.46).
(ii) : There is only one different neutrosophic strengths.

(iii) : There is no same neutrosophic strengths.

prp55 Proposition 1.1.55. Let N = (σ, µ) be a neutrosophic cycle. Then the number
of distinct neutrosophic path is 2n − n− 1.

Proof. The number of subsets of number n is 2n. The vertex of 1-set couldn’t
be considered as path. The number of 1-set is n. Thus it remains 2n − n. Also,
the vertex of 0-set couldn’t be considered as path. The number of 0-set is 1.
Thus it finally remains 2n − n− 1. �

Corollary 1.1.56. Let N = (σ, µ) be a neutrosophic cycle. Then the number of
distinct neutrosophic path is 2n − n− 1.

Proof. neutrosophic path implies having distinct vertices in a consecutive
sequence of vertices. Thus neutrosophic cycle is as same case as neutrosophic
path. So by applying Proposition (1.1.55), the result is straightforward. In
other way, there’s direct proof as follows. The number of subsets of number n
is 2n. The vertex of 1-set couldn’t be considered as path. The number of 1-set
is n. Thus it remains 2n − n. Also, the vertex of 0-set couldn’t be considered as
path. The number of 0-set is 1. Thus it finally remains 2n − n− 1. �
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1.1. Definitions

Definition 1.1.57. Let C = (V,E) be a crisp graph which isn’t crisp path. For
any given couple of vertices v0 and vn,

(i) : max{P is a path from v0 to vn} Sc(P ) is denoted by C(v0, vn) and it’s called
t-connectedness amid v0 and vn in C.

(ii) : max{P is a path from v0 to vn}\{P :v0vn} Sc(P ) is denoted by Cα(v0, vn) it’s
called α−connectedness v0 and vn in C where v0vn is an edge, if
Cα(v0, vn) > µ(v0vn).

(iii) : max{P is a path from v0 to vn}\{P :v0vn} Sc(P ) is denoted by Cα(v0, vn) it’s
called β−connectedness v0 and vn in C where v0vn is an edge, if
Cα(v0, vn) = µ(v0vn).

(iv) : max{P is a path from v0 to vn}\{P :v0vn} Sc(P ) is denoted by Cα(v0, vn) it’s
called δ−connectedness v0 and vn in C where v0vn is an edge, if
Cα(v0, vn) < µ(v0vn).

Definition 1.1.58. Let C = (V,E) be a crisp graph which isn’t crisp path. For
any given couple of vertices v0 and vn,

(i) : max{P is a path from v0 to vn} Sc(P ) = c ∈ Q is denoted by Ct and it’s called
t-crisp.

(ii) : max{P is a path from v0 to vn}\{P :v0vn} Sc(P ) > µ(v0vn) is denoted by Cα
it’s called α−crisp where v0vn is an edge.

(iii) : max{P is a path from v0 to vn}\{P :v0vn} Sc(P ) = µ(v0vn) is denoted by Cβ
it’s called β−crisp where v0vn is an edge.

(iv) : max{P is a path from v0 to vn}\{P :v0vn} Sc(P ) < µ(v0vn) is denoted by Cδ
it’s called δ−crisp where v0vn is an edge.

Definition 1.1.59. Let F = (σ, µ) be a fuzzy graph which isn’t fuzzy path. For
any given couple of vertices v0 and vn,

(i) : max{P is a path from v0 to vn} Sf (P ) is denoted by F(v0, vn) and it’s called
t-connectedness amid v0 and vn in F.

(ii) : max{P is a path from v0 to vn}\{P :v0vn} Sf (P ) is denoted by Fα(v0, vn) it’s
called α−connectedness v0 and vn in F where v0vn is an edge, if
Fα(v0, vn) > µ(v0vn).

(iii) : max{P is a path from v0 to vn}\{P :v0vn} Sf (P ) is denoted by Fα(v0, vn) it’s
called β−connectedness v0 and vn in F where v0vn is an edge, if
Fα(v0, vn) = µ(v0vn).

(iv) : max{P is a path from v0 to vn}\{P :v0vn} Sf (P ) is denoted by Fα(v0, vn) it’s
called δ−connectedness v0 and vn in F where v0vn is an edge, if
Fα(v0, vn) < µ(v0vn).

Definition 1.1.60. Let F = (σ, µ) be a fuzzy graph which isn’t fuzzy path. For
any given couple of vertices v0 and vn,

(i) : max{P is a path from v0 to vn} Sf (P ) = c ∈ Q is denoted by Ft and it’s
called t-fuzzy.

13
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(ii) : max{P is a path from v0 to vn}\{P :v0vn} Sf (P ) > µ(v0vn) is denoted by Fα
it’s called α−fuzzy where v0vn is an edge.

(iii) : max{P is a path from v0 to vn}\{P :v0vn} Sf (P ) = µ(v0vn) is denoted by Fβ
it’s called β−fuzzy where v0vn is an edge.

(iv) : max{P is a path from v0 to vn}\{P :v0vn} Sf (P ) < µ(v0vn) is denoted by Fδ
it’s called δ−fuzzy where v0vn is an edge.

Definition 1.1.61. Let N = (σ, µ) be a neutrosophic graph which isn’t
neutrosophic path. For any given couple of vertices v0 and vn,

(i) : max{P is a path from v0 to vn} Sn(P ) is denoted by N (v0, vn) and it’s called
t-connectedness amid v0 and vn in N.

(ii) : max{P is a path from v0 to vn}\{P :v0vn} Sn(P ) is denoted by Nα(v0, vn) it’s
called α−connectedness v0 and vn in N where v0vn is an edge, if
Nα(v0, vn) > µ(v0vn).

(iii) : max{P is a path from v0 to vn}\{P :v0vn} Sn(P ) is denoted by Nα(v0, vn) it’s
called β−connectedness v0 and vn in N where v0vn is an edge, if
Nα(v0, vn) = µ(v0vn).

(iv) : max{P is a path from v0 to vn}\{P :v0vn} Sn(P ) is denoted by Nα(v0, vn) it’s
called δ−connectedness v0 and vn in N where v0vn is an edge, if
Nα(v0, vn) < µ(v0vn).

Definition 1.1.62. Let N = (σ, µ) be a neutrosophic graph which isn’t
neutrosophic path. For any given couple of vertices v0 and vn,

(i) : max{P is a path from v0 to vn} Sn(P ) = c ∈ Q. Then N = (σ, µ) is denoted
by Nt and it’s called t-neutrosophic.

(ii) : max{P is a path from v0 to vn}\{P :v0vn} Sn(P ) > µ(v0vn). Then N = (σ, µ)
is denoted by Nα it’s called α−neutrosophic where v0vn is an edge.

(iii) : max{P is a path from v0 to vn}\{P :v0vn} Sn(P ) = µ(v0vn). Then N = (σ, µ)
is denoted by Nβ it’s called β−neutrosophic where v0vn is an edge.

(iv) : max{P is a path from v0 to vn}\{P :v0vn} Sn(P ) < µ(v0vn). Then N = (σ, µ)
is denoted by Nδ it’s called δ−neutrosophic where v0vn is an edge.

Example 1.1.63. In Figures (2.1), (1.2), (1.3), (1.4), (1.5), (1.6), (1.7),
neutrosophic graphs and all possible edges are characterized.

(a) : Consider Figure (2.1).

(i) : The edge n1n2 is α−connectedness and Nα(v0, vn) =
(0.74, 0.47, 0.31).

(ii) : The edge n1n3 is α−connectedness and Nα(v0, vn) =
(0.55, 0.64, 0.26).
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(iii) : The edge n2n3 is neither of t−connectedness α−connectedness
β−connectedness and δ−connectedness. Since for path P :
n2, n1, n3, Sn(P ) isn’t computable. So

max
{P is a path from v2 to v3}\{P :v2v3}

Sn(P )

isn’t computable.
(iv) : N = (σ, µ) is neither of t−neutrosophic, Nt, α−neutrosophic, Nα,

β−neutrosophic, Nβ , and δ−connectedness, Nδ.

(b) : Consider Figure (1.2).

(i) : The edge n1n2 is neither of t−connectedness, α−connectedness,
β−connectedness and δ−connectedness. Since for path P :
n1, n2, n2, Sn(P ) isn’t computable. So

max
{P is a path from v1 to v2}\{P :v1v2}

Sn(P )

isn’t computable.
(ii) : The edge n1n3 is neither of t−connectedness, α−connectedness,

β−connectedness and δ−connectedness. Since for path P :
n1, n2, n3, Sn(P ) isn’t computable. So

max
{P is a path from v1 to v3}\{P :v1v3}

Sn(P )

isn’t computable.
(iii) : The edge n2n3 is neither of t−connectedness, α−connectedness,

β−connectedness and δ−connectedness. Since for path P :
n2, n1, n3, Sn(P ) isn’t computable. So

max
{P is a path from v2 to v3}\{P :v2v3}

Sn(P )

isn’t computable.
(iv) : N = (σ, µ) is neither of t−neutrosophic, Nt, α−neutrosophic,

Nα, β−neutrosophic, Nβ and δ−connectedness, Nδ.

(c) : Consider Figure (1.3).

(i) : It’s neutrosophic path. Thus the notion couldn’t be applied.

(d) : Consider Figure (1.4).

(i) : The edge n1n2 is t−connectedness and α−connectedness and
Nα(v1, v2) = (0.74, 0.64, 0.46).

(ii) : The edge n1n3 is t−connectedness and α−connectedness and
Nα(v1, v3) = (0.74, 0.64, 0.46).

(iii) : The edge n1n3 is t−connectedness and α−connectedness and
Nα(v1, v3) = (0.74, 0.64, 0.46).

(iv) : N = (σ, µ) is neither of α−neutrosophic, Nα, and δ−connectedness,
Nδ.
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(v) : N = (σ, µ) is both t−neutrosophic, Nt, and β−neutrosophic, Nβ .

(e) : Consider Figure (1.5).

(i) : The edge n1n2 is t−connectedness and α−connectedness and
Nα(v1, v2) = (0.74, 0.64, 0.46).

(ii) : The edge n1n3 is t−connectedness and α−connectedness and
Nα(v1, v3) = (0.74, 0.64, 0.46).

(iii) : The edge n1n3 is t−connectedness and α−connectedness and
Nα(v1, v3) = (0.74, 0.64, 0.46).

(iv) : N = (σ, µ) is neither of α−neutrosophic, Nα, and δ−connectedness,
Nδ.

(v) : N = (σ, µ) is both t−neutrosophic, Nt, and β−neutrosophic, Nβ .

(f) : Consider Figure (1.6).

(i) : It’s neutrosophic path. Thus the notion couldn’t be applied.

(g) : Consider Figure (1.7).

(i) : It’s neutrosophic path. Thus the notion couldn’t be applied.

Proposition 1.1.64. Let N = (σ, µ) be a neutrosophic complete. Then it’s
β−neutrosophic.

Proof. Suppose xy is a given neutrosophic edge. For any given neut-
rosophic path P : x = v0, v1, · · · , vn = y, neutrosophic strength
is min{σ(x), σ(v1), · · · , σ(y)} ≤ min{σ(x), σ(y)}. It implies Sn(P ) ≤
min{σ(x), σ(y)}. In other hand, by xy is an edge, P ′ : x, y is a path thus
Sn(P ) ≥ min{σ(x), σ(y)}. Thus Sn(P ) = min{σ(x), σ(y)}. It means every edge
is β−neutrosophic. It induces N = (σ, µ) is β−neutrosophic. So N = (σ, µ) is
Nβ . �

Proposition 1.1.65. Let N = (σ, µ) be a neutrosophic graph such that for every
neutrosophic edges xy and uv, µ(xy) = µ(uv). Then it’s β−neutrosophic.

Proof. Suppose xy is a given neutrosophic edge. Consider µ(xy) = c, c ∈ Q. For
any given neutrosophic path P : x = v0, v1, · · · , vn = y, neutrosophic strength
is min{µ(xv1), µ(v1v2), · · · , µ(vn−1y)} = min{c, c, · · · , c}. It implies Sn(P ) ≤ c.
In other hand, by xy is an edge, P ′ : x, y is a path thus Sn(P ) ≥ µ(xy) = c. Thus
Sn(P ) = c. It means every edge is β−neutrosophic. It induces N = (σ, µ) is
β−neutrosophic. So N = (σ, µ) is Nβ . �

Proposition 1.1.66. Let N = (σ, µ) be a neutrosophic graph. Then it’s neither
α−neutrosophic nor δ−neutrosophic.

Proof. If all edges have same values, then every given edge isn’t neither
α−neutrosophic nor δ−neutrosophic. Otherwise, if there’s an edge which
has different value, then there’s one edge which has minimum value so it isn’t
neither α−neutrosophic nor δ−neutrosophic. �
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Definition 1.1.67. Let N = (σ, µ) be a neutrosophic graph. Coloring number
is minimum number of distinct colors which are used to color the vertices which
are neighbors.

Example 1.1.68. In Figures (2.1), (1.2), (1.3), (1.4), (1.5), (1.6), (1.7),
neutrosophic graphs and all possible edges are characterized.

(a) : Consider Figure (2.1). Coloring number is three.

(b) : Consider Figure (1.2). Coloring number is three.

(c) : Consider Figure (1.3). Coloring number is two.

(d) : Consider Figure (1.4). Coloring number is three.

(e) : Consider Figure (1.5). Coloring number is three.

(f) : Consider Figure (1.6). Coloring number is two.

(g) : Consider Figure (1.7). Coloring number is two.

Proposition 1.1.69. In complete neutrosophic, coloring number is n.

Proof. Every vertex has n− 1 neighbors. Thus the number of colors are n. �

Proposition 1.1.70. In path neutrosophic, coloring number is 2.

Proof. Every vertex has two different neighbors. Thus coloring number is 2. �

Proposition 1.1.71. In even cycle neutrosophic, coloring number is 2.

Proof. Every vertex has two different neighbors. Thus coloring number is 2. �

Proposition 1.1.72. In odd cycle neutrosophic, coloring number is 3.

Proof. Every vertex has two different neighbors but one vertex has two neighbors
which have different colors. Thus coloring number is 3. �

Definition 1.1.73. A fuzzy(neutrosophic) graph is called fuzzy(neutrosophic)
t-partite if V is partitioned to t parts, V1, V2, · · · , Vt and the edge xy implies
x ∈ Vi and y ∈ Vj where i 6= j. If it’s fuzzy(neutrosophic) complete, then
it’s denoted by Kσ1,σ2,··· ,σt

where σi is σ on Vi instead V which mean x 6∈ Vi
induces σi(x) = 0. If t = 2, then it’s called fuzzy(neutrosophic) complete
bipartite and it’s denoted by Kσ1,σ2 especially, if |V1| = 1, then it’s called
fuzzy(neutrosophic) star and it’s denoted by S1,σ2 . In this case, the vertex
in V1 is called center and if a vertex joins to all vertices of fuzzy(neutrosophic),
it’s called fuzzy(neutrosophic) wheel and it’s denoted by W1,σ2 .

Example 1.1.74. In Figures (2.1), (1.2), (1.3), (1.4), (1.5), (1.6), (1.7),
neutrosophic graphs and all possible edges are characterized.

(a) : Consider Figure (2.1).

(i) : Neutrosophic graph is neutrosophic wheel.

(b) : Consider Figure (1.2).
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Table 1.2: Crisp-fying, Fuzzy-fying and Neutrosophic-fying tbl2

Crisp Graphs Fuzzy Graphs Neutrosophic Graphs
Crisp Complete Fuzzy Complete Neutrosophic Complete
Crisp Strong Fuzzy Strong Neutrosophic Strong
Crisp Path Fuzzy Path Neutrosophic Path
Crisp Cycle Fuzzy Cycle Neutrosophic Cycle
Crisp t-partite Fuzzy t-partite Neutrosophic t-partite
Crisp Bipartite Fuzzy Bipartite Neutrosophic Bipartite
Crisp Star Fuzzy Star Neutrosophic Star
Crisp Wheel Fuzzy Wheel Neutrosophic Wheel

(i) : Neutrosophic graph is neutrosophic wheel.

(c) : Consider Figure (1.3).

(i) : Neutrosophic graph is neutrosophic star.
(ii) : Neutrosophic graph is neutrosophic bipartite.

(iii) : Neutrosophic graph is neutrosophic t-partite.
(iv) : Neutrosophic graph is neutrosophic complete.

(d) : Consider Figure (1.4).

(i) : Neutrosophic graph is neutrosophic wheel.

(e) : Consider Figure (1.5).

(i) : Neutrosophic graph is neutrosophic wheel.

(f) : Consider Figure (1.6).

(i) : Neutrosophic graph is neutrosophic wheel.
(ii) : Neutrosophic graph is neutrosophic star.

(iii) : Neutrosophic graph is neutrosophic bipartite.
(iv) : Neutrosophic graph is neutrosophic t-partite.
(v) : Neutrosophic graph is neutrosophic complete.

(g) : Consider Figure (1.7).

(i) : Neutrosophic graph is neutrosophic wheel.
(ii) : Neutrosophic graph is neutrosophic star.

(iii) : Neutrosophic graph is neutrosophic bipartite.
(iv) : Neutrosophic graph is neutrosophic t-partite.
(v) : Neutrosophic graph is neutrosophic complete.

Proposition 1.1.75. In star neutrosophic, coloring number is 2.

Proof. The center has n − 1 different neighbors and its neighbors have no
neighbor instead of center. So the neighbors have same color and center has
different color. Thus coloring number is 2. �
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Proposition 1.1.76. In wheel neutrosophic, coloring number is 4.

Proof. The center has n − 1 different neighbors and its neighbors have two
neighbors which are distinct from center. So the neighbors have same color and
center has different color. Thus coloring number is 4. �

Proposition 1.1.77. In bipartite neutrosophic such that it’s neutrosophic
complete, coloring number is 2.

Proof. There are two parts and in every part, there’s no neighbor. Thus coloring
number is 2. �

Proposition 1.1.78. In t-partite neutrosophic such that it’s neutrosophic
complete, coloring number is t.

Proof. There are t parts and in every part, there’s no neighbor. Thus coloring
number is t. �

Definition 1.1.79. Let N = (σ, µ) be a neutrosophic graph. Dominating
number is minimum number of vertices which has at least one edge with the
vertices out of this set.

Example 1.1.80. In Figures (2.1), (1.2), (1.3), (1.4), (1.5), (1.6), (1.7),
neutrosophic graphs and all possible edges are characterized.

(a) : Consider Figure (2.1). Dominating number is one.

(b) : Consider Figure (1.2). Dominating number is one.

(c) : Consider Figure (1.3). Dominating number is one.

(d) : Consider Figure (1.4). Dominating number is one.

(e) : Consider Figure (1.5). Dominating number is one.

(f) : Consider Figure (1.6). Dominating number is one.

(g) : Consider Figure (1.7). Dominating number is one.

Proposition 1.1.81. In complete neutrosophic, dominating number is 1.

Proof. Every vertex has n− 1 neighbors. Thus dominating number of is 1. �

Proposition 1.1.82. In path neutrosophic, dominating number is bn3 c.

Proof. Every vertex has two different neighbors. One vertex has edge with its
neighbors and the next vertex is the vertex has two vertices amid itself and the
last vertex in the set. Since the minimum number is on demand, one vertex
dominates its neighbors and every of these neighbors has one neighbor which is
dominated by the vertex which is coming up after it. Thus dominating number
is bn3 c. �

Proposition 1.1.83. In cycle neutrosophic, dominating number is bn3 c.
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Proof. Every vertex has two different neighbors. One vertex has edge with its
neighbors and the next vertex is the vertex has two vertices amid itself and the
last vertex in the set. Since the minimum number is on demand, one vertex
dominates its neighbors and every of these neighbors has one neighbor which is
dominated by the vertex which is coming up after it. Thus dominating number
is bn3 c. �

Proposition 1.1.84. In star neutrosophic, dominating number is 1.

Proof. The center has n − 1 different neighbors and its neighbors have no
neighbor instead of center. So the neighbors are only dominated by center as
singleton. Since the minimum number is on demand, center is 1-set which is on
demand. Thus dominating number is 1. �

Proposition 1.1.85. In wheel neutrosophic, dominating number is 1.

Proof. The center has n− 1 different neighbors and its neighbors but neighbors
have two neighbors instead of center. So the neighbors are only dominated by
center as singleton. Since the minimum number is on demand, center is 1-set
which is on demand. Thus dominating number is 1. �

Proposition 1.1.86. In bipartite neutrosophic such that it’s neutrosophic
complete, dominating number is 2.

Proof. There are two parts and in every part, there’s no neighbor. Every vertex
from one part, dominates all vertex from different part. Thus dominating
number is 2. �

Proposition 1.1.87. In t-partite neutrosophic such that it’s neutrosophic
complete, dominating number is 2.

Proof. There are t parts and in every part, there’s no neighbor. Every vertex
from one part, dominates all vertices from different parts. Since minimum
number is on demand, one vertex x, dominates all vertices from other parts and
one vertex y, from different part, dominates all vertices which have common
part with first vertex x. Thus dominating number is 2. �

1.2 New Ideas
New ideas are

applied on these
models to
explore

behaviors of
these models in
the mathematical

perspective.
Another ways to
make sense about
them, are used
by relatively
comparable
results to
conclude
analysis.

The reference [9; 10] is used to write the contents of this chapter and next
chapter.

1.3 Abstract

New notion of dimension as set, as two optimal numbers including metric
number, dimension number and as optimal set are introduced in individual
framework and in formation of family. Behaviors of twin and antipodal are
explored in fuzzy(neutrosophic) graphs. Fuzzy(neutrosophic) graphs, under
conditions, fixed-edges, fixed-vertex and strong fixed-vertex are studied. Some
classes as path, cycle, complete, strong, t-partite, bipartite, star and wheel in
the formation of individual case and in the case, they form a family are studied
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in the term of dimension. Fuzzification (neutrosofication) of twin vertices
but using crisp concept of antipodal vertices are another approaches of this
study. Thus defining two notions concerning vertices which one of them is
fuzzy(neutrosophic) titled twin and another is crisp titled antipodal to study
the behaviors of cycles which are partitioned into even and odd, are concluded.
Classes of cycles according to antipodal vertices are divided into two classes
as even and odd. Parity of the number of edges in cycle causes to have two
subsections under the section is entitled to antipodal vertices. In this study,
the term dimension is introduced on fuzzy(neutrosophic) graphs. The locations
of objects by a set of some junctions which have distinct distance from any
couple of objects out of the set, are determined. Thus it’s possible to have
the locations of objects outside of this set by assigning partial number to any
objects. The classes of these specific graphs are chosen to obtain some results
based on dimension. The types of crisp notions and fuzzy(neutrosophic) notions
are used to make sense about the material of this study and the outline of this
study uses some new notions which are crisp and fuzzy(neutrosophic). Some
questions and problems are posed concerning ways to do further studies on
this topic. Basic familiarities with fuzzy(neutrosophic) graph theory and graph
theory are proposed for this article.
Keywords: Fuzzy Graphs, Neutrosophic Graphs, Dimension

AMS Subject Classification: 05C17, 05C22, 05E45

1.4 Background

Fuzzy set, neutrosophic set, related definitions of other sets, graphs and new
notions on them, neutrosophic graphs, studies on neutrosophic graphs, relevant
definitions of other graphs based on fuzzy graphs, related definitions of other
graphs based on neutrosophic graphs, are proposed.
In this section, I use two subsections to illustrate a perspective about the
background of this study.

Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 1.4.1. Is it possible to use mixed versions of ideas concerning
“crisp”, “fuzzy” and “neutrosophic” to define some notions which are applied to
fuzzy(neutrosophic) graphs?

It’s motivation to find notions to use in any classes of fuzzy(neutrosophic)
graphs. Real-world applications about locating the item, are another thoughts
which lead to be considered as motivation. Distance and path amid two items
have key roles to locate. Thus they’re used to define new ideas which conclude
to the structure of metric dimension. The concept of connectedness inspire
to study the behavior of path and distance in the way that, both individual
fuzzy(neutrosophic) graphs and family of them are the cases of study.
The framework of this study is as follows. In section (3.32), I introduce main
definitions alongside some examples to clarify about them. In section (3.29), one
idea titled fuzzy(neutrosophic) twin about specific fuzzy(neutrosophic) vertices,
is used to form the results for fuzzy(neutrosophic) graphs and family of them
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but in this section, there’re some results concerning largest metric number since
fuzzy(neutrosophic) twin forms largest metric number as possible. In section
(3.30), one idea titled antipodal vertices about specific crisp vertices, is used to
form the results for fuzzy(neutrosophic) graphs and family of them especially
fuzzy(neutrosophic) cycles as two subsections. Fuzzy(neutrosophic) cycles form
smallest metric number but In section (3.31), the results are extended and
they’re inclusive and especific for fuzzy(neutrosophic) graphs and family of
them in the way that, the classification is done in the terms of smallest metric
number and largest metric number. In section (??), two applications are posed
for fuzzy(neutrosophic) graphs and family of them. In section (1.10), some
problems and questions for further studies are proposed. In section (1.11),
gentle discussion about results and applications are featured. In section (1.11),
a brief overview concerning advantages and limitations of this study alongside
conclusions are formed.

Preliminaries

To clarify about the models, I use some definitions and results, and in this way,
results have a key role to make sense about the definitions and to introduce
new ways to use on these models in the terms of new notions. For instance,
the concept of complete is used to specialize a graph in every environment. To
differentiate, I use an adjective or prefix in every definition. Two adjectives
“fuzzy” and “neutrosophic” are used to distinguish every graph or classes of
graph or any notion on them.
G : (V,E) is called a crisp graph where V is a set of objects and E is a
subset of V × V such that this subset is symmetric. A crisp graph G : (V,E) is
called a fuzzy graph G : (σ, µ) where σ : V → [0, 1] and µ : E → [0, 1] such
that µ(xy) ≤ σ(x) ∧ σ(y) for all xy ∈ E. A crisp graph G : (V,E) is called
a neutrosophic graph G : (σ, µ) where σ = (σ1, σ2, σ3) : V → [0, 1] and
µ = (µ1, µ2, µ3) : E → [0, 1] such that µ(xy) ≤ σ(x)∧σ(y) for all xy ∈ E. A crisp
graph G : (V,E) is called a crisp complete where ∀x ∈ V, ∀y ∈ V, xy ∈ E.
A fuzzy graph G : (σ, µ) is called fuzzy complete where it’s complete and
µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. A neutrosophic graph G : (σ, µ) is called
a neutrosophic complete where it’s complete and µ(xy) = σ(x) ∧ σ(y) for
all xy ∈ E. An N which is a set of vertices, is called fuzzy(neutrosophic)
cardinality and it’s denoted by |N | such that |N | = Σn∈Nσ(n). A crisp graph
G : (V,E) is called a crisp strong. A fuzzy graph G : (σ, µ) is called fuzzy
strong where µ(xy) = σ(x)∧σ(y) for all xy ∈ E. A neutrosophic graphG : (σ, µ)
is called a neutrosophic strong where µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. A
distinct sequence of vertices v0, v1, · · · , vn in a crisp graph G : (V,E) is called
crisp path with length n from v0 to vn where vivi+1 ∈ E, i = 0, 1, · · · , n−1. If
one edge is incident to a vertex, the vertex is called leaf. A path v0, v1, · · · , vn is
called fuzzy path where µ(vivi+1) > 0, i = 0, 1, · · · , n−1. A path v0, v1, · · · , vn
is called neutrosophic path where µ(vivi+1) > 0, i = 0, 1, · · · , n − 1. Let
P : v0, v1, · · · , vn be fuzzy(neutrosophic) path from v0 to vn such that it
has minimum number of vertices as possible, then d(v0, vn) is defined as
Σn
i=0µ(vi−1vi). A path v0, v1, · · · , vn with exception of v0 and vn in a crisp

graph G : (V,E) is called crisp cycle with length n for v0 where v0 = vn.
A cycle v0, v1, · · · , v0 is called fuzzy cycle where there are two edges xy and
uv such that µ(xy) = µ(uv) =

∧
i=0,1,··· ,n−1 µ(vivi+1). A cycle v0, v1, · · · , v0 is
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1.4. Background

called neutrosophic cycle where there are two edges xy and uv such that
µ(xy) = µ(uv) =

∧
i=0,1,··· ,n−1 µ(vivi+1). A fuzzy(neutrosophic) cycle is called

odd if the number of its vertices is odd. Similarly, a fuzzy(neutrosophic) cycle
is called even if the number of its vertices is even. A fuzzy(neutrosophic)
graph is called fuzzy(neutrosophic) t-partite if V is partitioned to t parts,
V1, V2, · · · , Vt and the edge xy implies x ∈ Vi and y ∈ Vj where i 6= j. If it’s
fuzzy(neutrosophic) complete, then it’s denoted by Kσ1,σ2,··· ,σt

where σi is σ
on Vi instead V which mean x 6∈ Vi induces σi(x) = 0. If t = 2, then it’s
called fuzzy(neutrosophic) complete bipartite and it’s denoted by Kσ1,σ2

especially, if |V1| = 1, then it’s called fuzzy(neutrosophic) star and it’s
denoted by S1,σ2 . In this case, the vertex in V1 is called center and if a vertex
joins to all vertices of fuzzy(neutrosophic), it’s called fuzzy(neutrosophic)
wheel and it’s denoted by W1,σ2 . A set is n-set if its cardinality is n. A

Table 1.3: Crisp-fying, Fuzzy-fying and Neutrosophic-fying T1

Crisp Graphs Fuzzy Graphs Neutrosophic Graphs
Crisp Complete Fuzzy Complete Neutrosophic Complete
Crisp Strong Fuzzy Strong Neutrosophic Strong
Crisp Path Fuzzy Path Neutrosophic Path
Crisp Cycle Fuzzy Cycle Neutrosophic Cycle
Crisp t-partite Fuzzy t-partite Neutrosophic t-partite
Crisp Bipartite Fuzzy Bipartite Neutrosophic Bipartite
Crisp Star Fuzzy Star Neutrosophic Star
Crisp Wheel Fuzzy Wheel Neutrosophic Wheel

fuzzy vertex set is the subset of vertex set of (neutrosophic) fuzzy graph
such that the values of these vertices are considered. A fuzzy edge set is
the subset of edge set of (neutrosophic) fuzzy graph such that the values of
these edges are considered. Let G be a family of fuzzy graphs or neutrosophic
graphs. This family have fuzzy(neutrosophic) common vertex set if all
graphs have same vertex set and its values but edges set is subset of fuzzy edge
set. A (neutrosophic) fuzzy graph is called fixed-edge fuzzy(neutrosophic)
graph if all edges have same values. A (neutrosophic) fuzzy graph is called
fixed-vertex fuzzy(neutrosophic) graph if all vertices have same values. A
couple of vertices x and y is called crisp twin vertices if either N(x) = N(y)
or N [x] = N [y] where ∀x ∈ V, N(x) = {y| xy ∈ E}, N [x] = N(x) ∪ {x}. Two
vertices t and t′ are called fuzzy(neutrosophic) twin vertices if N(t) = N(t′)
and µ(ts) = µ(t′s), for all s ∈ N(t) = N(t′). maxx,y∈V (G) |E(P (x, y))| is called

Table 1.4: Crisp-fying, Fuzzy-fying and Neutrosophic-fying T1

Crisp Vertex Set Fuzzy Vertex Set Neutrosophic Vertex Set
Crisp Edge Set Fuzzy Edge Set Neutrosophic Edge Set
Crisp Common Fuzzy Common Neutrosophic Common
Crisp Fixed-edge Fuzzy Fixed-edge Neutrosophic Fixed-edge
Crisp Fixed-vertex Fuzzy Fixed-vertex Neutrosophic Fixed-vertex
Crisp Twin Fuzzy Twin Neutrosophic Twin
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diameter of G and it’s denoted by D(G) where |E(P (x, y))| is the number of
edges on the path from x to y. For any given vertex x if there’s exactly one
vertex y such that minP (x,y) |E(P (x, y))| = D(G), then a couple of vertices x
and y are called antipodal vertices.

1.5 Definitions
sec2

I use the notion of vertex in fuzzy(neutrosophic) graphs to define new notions
which state the relation amid vertices. In this way, the set of vertices are
distinguished by another set of vertices.

Definition 1.5.1. Let G = (V, σ, µ) be a fuzzy(neutrosophic) graph. A vertex m
fuzzy(neutrosophic)-resolves vertices f1 and f2 if d(m, f1) 6= d(m, f2). A set M
is fuzzy(neutrosophic)-resolving set if for every couple of vertices f1, f2 ∈ V \M,
there’s a vertex m ∈ M such that m fuzzy(neutrosophic)-resolves f1 and f2.
|M | is called fuzzy(neutrosophic)-metric number of G and

min
S is fuzzy(neutrosophic)-resolving set

Σs∈Sσ(s) = Σm∈Mσ(m)

is called fuzzy(neutrosophic)-metric dimension of G and if

min
S is fuzzy(neutrosophic)-resolving set

Σs∈Sσ(s) = Σm∈Mσ(m)

where M is fuzzy(neutrosophic)-resolving set, then M is called
fuzzy(neutrosophic)-metric set of G.

Example 1.5.2. Let G be a fuzzy(neutrosophic) graph as figure (1.8). By
applying Table (1.5), the 1-set is explored which its cardinality is minimum.
{f6} and {f4} are 1-set which has minimum cardinality amid all sets of vertices
but {f4} isn’t fuzzy(neutrosophic)-resolving set and {f6} is fuzzy(neutrosophic)-
resolving set. Thus there’s no fuzzy(neutrosophic)-metric set but {f6}. f6
fuzzy(neutrosophic)-resolves all given couple of vertices. Therefore one is
fuzzy(neutrosophic)-metric number of G and 0.13 is fuzzy(neutrosophic)-metric
dimension of G. By using Table (1.5), f4 doesn’t fuzzy(neutrosophic)-resolve f2
and f6. f4 doesn’t fuzzy(neutrosophic)-resolve f1 and f5, too.

Table 1.5: Distances of Vertices from sets of vertices {f6} and {f4} in
fuzzy(neutrosophic) Graph G. T1

Vertices f1 f2 f3 f4 f5 f6
f6 0.22 0.26 0.39 0.24 0.13 0

Vertices f1 f2 f3 f4 f5 f6
f4 0.11 0.24 0.37 0 0.11 0.24

Definition 1.5.3. Consider G as a family of fuzzy(neutrosophic) graphs on
a fuzzy(neutrosophic) common vertex set V. A vertex m simultaneously
fuzzy(neutrosophic)-resolves vertices f1 and f2 if dG(m, f1) 6= dG(m, f2), for all
G ∈ G. A set M is simultaneously fuzzy(neutrosophic)-resolving set if for every
couple of vertices f1, f2 ∈ V \M, there’s a vertex m ∈M such that m resolves
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1.5. Definitions

Figure 1.8: Black vertex {f6} is only fuzzy(neutrosophic)-metric set amid all
sets of vertices for fuzzy(neutrosophic) graph G. F1

f1 and f2, for all G ∈ G. |M | is called simultaneously fuzzy(neutrosophic)-metric
number of G and

min
S is fuzzy(neutrosophic)-resolving set

Σs∈Sσ(s) = Σm∈Mσ(m)

is called simultaneously fuzzy(neutrosophic)-metric dimension of G and if

min
S is fuzzy(neutrosophic)-resolving set

Σs∈Sσ(s) = Σm∈Mσ(m)

where M is fuzzy(neutrosophic)-resolving set, then M is called simultaneously
fuzzy(neutrosophic)-metric set of G.

Example 1.5.4. Let G = {G1, G2, G3} be a collection of fuzzy(neutrosophic)
graphs with common fuzzy(neutrosophic) vertex set and a subset of
fuzzy(neutrosophic) edge set as figure (1.9). By applying Table (1.6), the 1-set
is explored which its cardinality is minimum. {f2} and {f4} are 1-set which has
minimum cardinality amid all sets of vertices. {f4} is as fuzzy(neutrosophic)-
resolving set as {f6} is. Thus there’s no fuzzy(neutrosophic)-metric set but
{f4} and {f6}. f6 as fuzzy(neutrosophic)-resolves all given couple of ver-
tices as f4. Therefore one is fuzzy(neutrosophic)-metric number of G and
0.13 is fuzzy(neutrosophic)-metric dimension of G. By using Table (1.6), f4
fuzzy(neutrosophic)-resolves all given couple of vertices.

Table 1.6: Distances of Vertices from set of vertices {f6} in Family of
fuzzy(neutrosophic) Graphs G. T2

Vertices of G1 f1 f2 f3 f4
f4 0.37 0.26 0.13 0

Vertices of G2 f1 f2 f3 f4
f4 0.11 0.22 0.13 0

Vertices of G3 f1 f2 f3 f4
f4 0.24 0.26 0.13 0
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1. Neutrosophic Graphs

Figure 1.9: Black vertex {f4} and the set of vertices {f2} are simultan-
eously fuzzy(neutrosophic)-metric set amid all sets of vertices for family of
fuzzy(neutrosophic) graphs G. F2

1.6 Fuzzy(Neutrosophic) Twin Vertices
sec4
prp2 Proposition 1.6.1. Let G be a fuzzy(neutrosophic) graph. An (k − 1)-set from

an k-set of fuzzy(neutrosophic) twin vertices is subset of a fuzzy(neutrosophic)-
resolving set.

Proof. If t and t′ are fuzzy(neutrosophic) twin vertices, then N(t) = N(t′) and
µ(ts) = µ(t′s), for all s ∈ N(t) = N(t′). �

cor2 Corollary 1.6.2. Let G be a fuzzy(neutrosophic) graph. The number of
fuzzy(neutrosophic) twin vertices is n − 1. Then fuzzy(neutrosophic)-metric
number is n− 2.

Proof. Let f and f ′ be two vertices. By supposition, the cardinality of set of
fuzzy(neutrosophic) twin vertices is n− 2. Thus there are two cases. If both
are fuzzy(neutrosophic) twin vertices, then N(f) = N(f ′) and µ(fs) = µ(f ′s′),
∀s ∈ N(f), ∀s′ ∈ N(f ′). It implies d(f, t) = d(f, t) for all t ∈ V. Thus suppose
if not, then let f be a vertex which isn’t fuzzy(neutrosophic) twin vertices
with any given vertex and let f ′ be a vertex which is fuzzy(neutrosophic) twin
vertices with any given vertex but not f. By supposition, it’s possible and this
is only case. Therefore, any given distinct vertex fuzzy(neutrosophic)-resolves
f and f ′. Then V \ {f, f ′} is fuzzy(neutrosophic)-resolving set. It implies
fuzzy(neutrosophic)-metric number is n− 2. �

Corollary 1.6.3. Let G be a fuzzy(neutrosophic) graph. The number of
fuzzy(neutrosophic) twin vertices is n. Then G is fixed-edge fuzzy(neutrosophic)
graph.

Proof. Suppose f and f ′ are two given edges. By supposition, every couple
of vertices are fuzzy(neutrosophic) twin vertices. It implies µ(f) = µ(f ′). f
and f ′ are arbitrary so every couple of edges have same values. It induces G is
fixed-edge fuzzy(neutrosophic) graph. �

cor1 Corollary 1.6.4. Let G be a fixed-vertex fuzzy(neutrosophic) graph. The number
of fuzzy(neutrosophic) twin vertices is n− 1. Then fuzzy(neutrosophic)-metric
number is n− 2, fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) where m
is fuzzy(neutrosophic) twin vertex with a vertex. Every (n − 2)-set including
fuzzy(neutrosophic) twin vertices is fuzzy(neutrosophic)-metric set.
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Proof. By Corollary (3.29.2), fuzzy(neutrosophic)-metric number is n−2. By G
is a fixed-vertex fuzzy(neutrosophic) graph, fuzzy metric dimension is (n−2)σ(m)
where m is fuzzy(neutrosophic) twin vertex with a vertex. One vertex doesn’t
belong to set of fuzzy(neutrosophic) twin vertices and a vertex from that set, are
out of fuzzy metric set. It induces every (n−2)-set including fuzzy(neutrosophic)
twin vertices is fuzzy metric set. �

Proposition 1.6.5. Let G be a fixed-vertex fuzzy(neutrosophic) graph such that
it’s fuzzy(neutrosophic) complete. Then fuzzy(neutrosophic)-metric number is
n− 1, fuzzy(neutrosophic)-metric dimension is (n− 1)σ(m) where m is a given
vertex. Every (n− 1)-set is fuzzy(neutrosophic)-metric set.

Proof. In fuzzy(neutrosophic) complete, every couple of vertices are twin vertices.
By G is a fixed-vertex fuzzy(neutrosophic) graph and it’s fuzzy(neutrosophic)
complete, every couple of vertices are fuzzy(neutrosophic) twin vertices. Thus
by Proposition (3.29.1), the result follows. �

prp3 Proposition 1.6.6. Let G be a family of fuzzy(neutrosophic) graphs
with fuzzy(neutrosophic) common vertex set. Then simultaneously
fuzzy(neutrosophic)-metric number of G is n− 1.

Proof. Consider (n − 1)-set. Thus there’s no couple of vertices to be
fuzzy(neutrosophic)-resolved. Therefore, every (n−1)-set is fuzzy(neutrosophic)-
resolving set for any given fuzzy(neutrosophic) graph. Then it holds for any
fuzzy(neutrosophic) graph. It implies it’s fuzzy(neutrosophic)-resolving set
and its cardinality is fuzzy(neutrosophic)-metric number. (n − 1)-set has
the cardinality n − 1. Then it holds for any fuzzy(neutrosophic) graph. It
induces it’s simultaneously fuzzy(neutrosophic)-resolving set and its cardinality
is simultaneously fuzzy(neutrosophic)-metric number. �

prp4 Proposition 1.6.7. Let G be a family of fuzzy(neutrosophic) graphs
with fuzzy(neutrosophic) common vertex set. Then simultaneously
fuzzy(neutrosophic)-metric number of G is greater than the maximum
fuzzy(neutrosophic)-metric number of G ∈ G.

Proof. Suppose t and t′ are simultaneously fuzzy(neutrosophic)-metric num-
ber of G and fuzzy(neutrosophic)-metric number of G ∈ G. Thus t is
fuzzy(neutrosophic)-metric number for any G ∈ G. Hence, t ≥ t′. So simultan-
eously fuzzy(neutrosophic)-metric number of G is greater than the maximum
fuzzy(neutrosophic)-metric number of G ∈ G. �

prp5 Proposition 1.6.8. Let G be a family of fuzzy(neutrosophic) graphs
with fuzzy(neutrosophic) common vertex set. Then simultaneously
fuzzy(neutrosophic)-metric number of G is greater than simultaneously
fuzzy(neutrosophic)-metric number of H ⊆ G.

Proof. Suppose t and t′ are simultaneously fuzzy(neutrosophic)-metric number
of G and H. Thus t is fuzzy(neutrosophic)-metric number for any G ∈ G. It
implies t is fuzzy(neutrosophic)-metric number for any G ∈ H. So t is simultan-
eously fuzzy(neutrosophic)-metric number of H. By applying Definition about
being the minimum number, t ≥ t′. So simultaneously fuzzy(neutrosophic)-
metric number of G is greater than simultaneously fuzzy(neutrosophic)-metric
number of H ⊆ G. �
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thm1 Theorem 1.6.9. Fuzzy(neutrosophic) twin vertices aren’t fuzzy(neutrosophic)-
resolved in any given fuzzy(neutrosophic) graph.

Proof. Let t and t′ be fuzzy(neutrosophic) twin vertices. Then N(t) = N(t′)
and µ(ts) = µ(t′s), for all s, s′ ∈ V such that ts, t′s ∈ E. Thus for every given
vertex s′ ∈ V, dG(s′, t) = dG(s, t) where G is a given fuzzy(neutrosophic) graph.
It means that t and t′ aren’t resolved in any given fuzzy(neutrosophic) graph. t
and t′ are arbitrary so fuzzy(neutrosophic) twin vertices aren’t resolved in any
given fuzzy(neutrosophic) graph. �

prp6 Proposition 1.6.10. Let G be a fixed-vertex fuzzy(neutrosophic) graph.
If G is fuzzy(neutrosophic) complete, then every couple of vertices are
fuzzy(neutrosophic) twin vertices.

Proof. Let t and t′ be couple of given vertices. By G is fuzzy(neutrosophic)
complete, N(t) = N(t′). By G is a fixed-vertex fuzzy(neutrosophic) graph,
µ(ts) = µ(t′s), for all edges ts, t′s ∈ E. Thus t and t′ are fuzzy(neutrosophic)
twin vertices. t and t′ are arbitrary couple of vertices, hence every couple of
vertices are fuzzy(neutrosophic) twin vertices. �

thm17 Theorem 1.6.11. Let G be a family of fuzzy(neutrosophic) graphs with
fuzzy(neutrosophic) common vertex set and G ∈ G is a fixed-vertex
fuzzy(neutrosophic) graph such that it’s fuzzy(neutrosophic) complete. Then
simultaneously fuzzy(neutrosophic)-metric number is n − 1, simultaneously
fuzzy(neutrosophic)-metric dimension is (n− 1)σ(m) where m is a given vertex.
Every (n− 1)-set is simultaneously fuzzy(neutrosophic)-metric set for G.

Proof. G is fixed-vertex fuzzy(neutrosophic) graph and it’s fuzzy(neutrosophic)
complete. So by Theorem (3.29.9), I get every couple of vertices in
fuzzy(neutrosophic) complete are fuzzy(neutrosophic) twin vertices. So every
couple of vertices, by Theorem (3.29.8), aren’t resolved. �

Corollary 1.6.12. Let G be a family of fuzzy(neutrosophic) graphs with
fuzzy(neutrosophic) common vertex set and G ∈ G is a fuzzy(neutrosophic)
complete. Then simultaneously fuzzy(neutrosophic)-metric number is n − 1,
simultaneously fuzzy(neutrosophic)-metric dimension is (n− 1)σ(m) where m is
a given vertex. Every (n− 1)-set is simultaneously fuzzy(neutrosophic)-metric
set for G.

Proof. By fuzzy(neutrosophic) graphs with fuzzy(neutrosophic) common vertex
set, G is fixed-vertex fuzzy(neutrosophic) graph. It’s fuzzy(neutrosophic)
complete. So by Theorem (3.29.10), I get intended result. �

Theorem 1.6.13. Let G be a family of fuzzy(neutrosophic) graphs with
fuzzy(neutrosophic) common vertex set and for every given couple of vertices,
there’s a G ∈ G such that in that, they’re fuzzy(neutrosophic) twin vertices.
Then simultaneously fuzzy(neutrosophic)-metric number is n− 1, simultaneously
fuzzy(neutrosophic)-metric dimension is (n− 1)σ(m) where m is a given vertex.
Every (n− 1)-set is simultaneously fuzzy(neutrosophic)-metric set for G.
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Proof. By Proposition (3.29.5), simultaneously fuzzy(neutrosophic)-metric
number is n − 1. By Theorem (3.29.8), simultaneously fuzzy(neutrosophic)-
metric dimension is (n−1)σ(m) wherem is a given vertex. Also, every (n−1)-set
is simultaneously fuzzy(neutrosophic)-metric set for G. �

thm19 Theorem 1.6.14. Let G be a family of fuzzy(neutrosophic) graphs with
fuzzy(neutrosophic) common vertex set. If G contains three fixed-
vertex fuzzy(neutrosophic) stars with different center, then simultaneously
fuzzy(neutrosophic)-metric number is n− 2, simultaneously fuzzy(neutrosophic)-
metric dimension is (n− 2)σ(m) where m is a given vertex. Every (n− 2)-set
is simultaneously fuzzy(neutrosophic)-metric set for G.

Proof. The cardinality of set of fuzzy(neutrosophic) twin vertices is n− 1. Thus
by Corollary (3.29.3), the result follows. �

Corollary 1.6.15. Let G be a family of fuzzy(neutrosophic) graphs with
fuzzy(neutrosophic) common vertex set. If G contains three fuzzy(neutrosophic)
stars with different center, then simultaneously fuzzy(neutrosophic)-metric
number is n − 2, simultaneously fuzzy(neutrosophic)-metric dimension is
(n − 2)σ(m) where m is a given vertex. Every (n − 2)-set is simultaneously
fuzzy(neutrosophic)-metric set for G.

Proof. By fuzzy(neutrosophic) graphs with fuzzy(neutrosophic) common vertex
set, G is fixed-vertex fuzzy(neutrosophic) graph. It’s fuzzy(neutrosophic)
complete. So by Theorem (3.29.13), I get intended result. �

1.7 Antipodal Vertices
sec5

Even Fuzzy(Neutrosophic) Cycle

prp5.1 Proposition 1.7.1. Consider two antipodal vertices x and y in any given fixed-
edge even fuzzy(neutrosophic) cycle. Let u and v be given vertices. Then
d(x, u) 6= d(x, v) if and only if d(y, u) 6= d(y, v).

Proof. (⇒). Consider d(x, u) 6= d(x, v). By d(x, u) + d(u, y) = d(x, y) =
D(G), D(G)− d(x, u) 6= D(G)− d(x, v). It implies d(y, u) 6= d(y, v).
(⇐). Consider d(y, u) 6= d(y, v). By d(y, u) + d(u, x) = d(x, y) = D(G), D(G)−
d(y, u) 6= D(G)− d(y, v). It implies d(x, u) 6= d(x, v). �

Proposition 1.7.2. Consider two antipodal vertices x and y in any given fixed-
edge even fuzzy(neutrosophic) cycle. Let u and v be given vertices. Then
d(x, u) = d(x, v) if and only if d(y, u) = d(y, v).

Proof. (⇒). Consider d(x, u) = d(x, v). By d(x, u) + d(u, y) = d(x, y) =
D(G), D(G)− d(x, u) = D(G)− d(x, v). It implies d(y, u) = d(y, v).
(⇐). Consider d(y, u) = d(y, v). By d(y, u) + d(u, x) = d(x, y) = D(G), D(G)−
d(y, u) = D(G)− d(y, v). It implies d(x, u) = d(x, v). �

Proposition 1.7.3. The set contains two antipodal vertices, isn’t
fuzzy(neutrosophic)-metric set in any given fixed-edge even fuzzy(neutrosophic)
cycle.
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Proof. Let x and y be two given antipodal vertices in any given even
fuzzy(neutrosophic) cycle. By Proposition (3.30.1), d(x, u) 6= d(x, v) if and
only if d(y, u) 6= d(y, v). It implies that if x fuzzy(neutrosophic)-resolves a
couple of vertices, then y fuzzy(neutrosophic)-resolves them, too. Thus either
x is in fuzzy(neutrosophic)-metric set or y is. It induces the set contains
two antipodal vertices, isn’t fuzzy(neutrosophic)-metric set in any given even
fuzzy(neutrosophic) cycle. �

Proposition 1.7.4. Consider two antipodal vertices x and y in any given fixed-
edge even fuzzy(neutrosophic) cycle. x fuzzy(neutrosophic)-resolves a given
couple of vertices, z and z′, if and only if y does.

Proof. (⇒). x fuzzy(neutrosophic)-resolves a given couple of vertices, z and z′,
then d(x, z) 6= d(x, z′). By Proposition (3.30.1), d(x, z) 6= d(x, z′) if and only if
d(y, z) 6= d(y, z′). Thus y fuzzy(neutrosophic)-resolves a given couple of vertices
z and z′.
(⇐). y fuzzy(neutrosophic)-resolves a given couple of vertices, z and z′, then
d(y, z) 6= d(y, z′). By Proposition (3.30.1), d(y, z) 6= d(y, z′) if and only if
d(x, z) 6= d(x, z′). Thus x fuzzy(neutrosophic)-resolves a given couple of vertices
z and z′. �

Proposition 1.7.5. There are two antipodal vertices aren’t fuzzy(neutrosophic)-
resolved by other two antipodal vertices in any given fixed-edge even
fuzzy(neutrosophic) cycle.

Proof. Suppose x and y are a couple of vertices. It implies d(x, y) = D(G).
Consider u and v are another couple of vertices such that d(x, u) = D(G)

2 .

It implies d(y, u) = D(G)
2 . Thus d(x, u) = d(y, u). Therefore, u doesn’t

fuzzy(neutrosophic)-resolve a given couple of vertices x and y. By D(G) =
d(u, v) = d(u, x) + d(x, v) = D(G)

2 + d(x, v), d(x, v) = D(G)
2 . It implies

d(y, v) = D(G)
2 . Thus d(x, v) = d(y, v). Therefore, v doesn’t fuzzy(neutrosophic)-

resolve a given couple of vertices x and y. �

Proposition 1.7.6. For any two antipodal vertices in any given fixed-edge
even fuzzy(neutrosophic) cycle, there are only two antipodal vertices don’t
fuzzy(neutrosophic)-resolve them

Proof. Suppose x and y are a couple of vertices such that they’re antipodal
vertices. Let u be a vertex such that d(x, u) = D(G)

2 . It implies d(y, u) = D(G)
2 .

Thus d(x, u) = d(y, u). Therefore, u doesn’t fuzzy(neutrosophic)-resolve a given
couple of vertices x and y. Let v be a antipodal vertex for u such that u and
v are antipodal vertices. Thus v d(x, v) = D(G)

2 . It implies d(y, v) = D(G)
2 .

Therefore, v doesn’t fuzzy(neutrosophic)-resolve a given couple of vertices x and
y. If u is a vertex such that d(x, u) 6= D(G)

2 and v is a vertex such that u and v
are antipodal vertices. Thus d(x, v) 6= D(G)

2 It induces either d(x, u) 6= d(y, u) or
d(x, v) 6= d(y, v). It means either u fuzzy(neutrosophic)-resolves a given couple
of vertices x and y or v fuzzy(neutrosophic)-resolves a given couple of vertices
x and y. �

Proposition 1.7.7. In any given fixed-edge even fuzzy(neutrosophic) cycle, for
any vertex, there’s only one vertex such that they’re antipodal vertices.
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Proof. If d(x, y) = D(G), then x and y are antipodal vertices. �

prp5.8 Proposition 1.7.8. Let G be a fixed-edge even fuzzy(neutrosophic) cycle. Then
every couple of vertices are fuzzy(neutrosophic)-resolving set if and only if they
aren’t antipodal vertices.

Proof. If x and y are antipodal vertices, then they don’t fuzzy(neutrosophic)-
resolve a given couple of vertices u and v such that they’re antipodal vertices
and d(x, u) = D(G)

2 . Since d(x, u) = d(x, v) = d(y, u) = d(y, v) = D(G)
2 . �

cor5.9 Corollary 1.7.9. Let G be a fixed-edge even fuzzy(neutrosophic) cycle. Then
fuzzy(neutrosophic)-metric number is two.

Proof. A set contains one vertex x isn’t fuzzy(neutrosophic)-resolving set. Since
it doesn’t fuzzy(neutrosophic)-resolve a given couple of vertices u and v such
that d(x, u) = d(x, v) = 1. Thus fuzzy(neutrosophic)-metric number ≥ 2. By
Proposition (3.30.8), every couple of vertices such that they aren’t antipodal
vertices, are fuzzy(neutrosophic)-resolving set. Therefore, fuzzy(neutrosophic)-
metric number is 2. �

cor5.10 Corollary 1.7.10. Let G be a fixed-edge even fuzzy(neutrosophic) cycle. Then
fuzzy(neutrosophic)-metric set contains couple of vertices such that they aren’t
antipodal vertices.

Proof. By Corollary (3.30.9), fuzzy(neutrosophic)-metric number is two. By
Proposition (3.30.8), every couple of vertices such that they aren’t antipodal
vertices, are fuzzy(neutrosophic)-resolving set. Therefore, fuzzy(neutrosophic)-
metric set contains couple of vertices such that they aren’t antipodal vertices. �

cor4.11 Corollary 1.7.11. Let G be a family of fixed-edge odd fuzzy(neutrosophic)
cycles with fuzzy(neutrosophic) common vertex set. Then simultaneously
fuzzy(neutrosophic)-metric set contains couple of vertices such that they aren’t
antipodal vertices and fuzzy(neutrosophic)-metric number is two.

Odd Fuzzy(Neutrosophic) Cycle

prp5.11 Proposition 1.7.12. In any given fixed-edge odd fuzzy(neutrosophic) cycle, for
any vertex, there’s no vertex such that they’re antipodal vertices.

Proof. Let G be a fixed-edge odd fuzzy(neutrosophic) cycle. if x is a given
vertex. Then there are two vertices u and v such that d(x, u) = d(x, v) = D(G).
It implies they aren’t antipodal vertices. �

prp5.12 Proposition 1.7.13. Let G be a fixed-edge odd fuzzy(neutrosophic) cycle. Then
every couple of vertices are fuzzy(neutrosophic)-resolving set.

Proof. Let l and l′ be couple of vertices. Thus, by Proposition (3.30.12), l and
l′ aren’t antipodal vertices. It implies for every given couple of vertices fi and
fj , I get either d(l, fi) 6= d(l, fj) or d(l′, fi) 6= d(l′, fj). Therefore, fi and fj
are fuzzy(neutrosophic)-resolved by either l or l′. It induces the set {l, l′} is
fuzzy(neutrosophic)-resolving set. �
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prp5.13 Proposition 1.7.14. Let G be a fixed-edge odd fuzzy(neutrosophic) cycle. Then
fuzzy(neutrosophic)-metric number is two.

Proof. Let l and l′ be couple of vertices. Thus, by Proposition (3.30.12), l and
l′ aren’t antipodal vertices. It implies for every given couple of vertices fi and
fj , I get either d(l, fi) 6= d(l, fj) or d(l′, fi) 6= d(l′, fj). Therefore, fi and fj
are fuzzy(neutrosophic)-resolved by either l or l′. It induces the set {l, l′} is
fuzzy(neutrosophic)-resolving set. �

Corollary 1.7.15. Let G be a fixed-edge odd fuzzy(neutrosophic) cycle. Then
fuzzy(neutrosophic)-metric set contains couple of vertices.

Proof. By Proposition (3.30.14), fuzzy(neutrosophic)-metric number is two. By
Proposition (3.30.13), every couple of vertices are fuzzy(neutrosophic)-resolving
set. Therefore, fuzzy(neutrosophic)-metric set contains couple of vertices. �

Corollary 1.7.16. Let G be a family of fixed-edge odd fuzzy(neutrosophic)
cycles with fuzzy(neutrosophic) common vertex set. Then simultan-
eously fuzzy(neutrosophic)-metric set contains couple of vertices and
fuzzy(neutrosophic)-metric number is two.

1.8 Extended Results
sec6

Smallest Metric Number

prp1 Proposition 1.8.1. Let G be a fuzzy(neutrosophic) path. Then every leaf is
fuzzy(neutrosophic)-resolving set.

Proof. Let l be a leaf. For every given a couple of vertices fi and fj , I get
d(l, fi) 6= d(l, fj). Since if I reassign indexes to vertices such that every vertex
fi and l have i vertices amid themselves, then d(l, fi) = Σj≤iµ(fjfi) ≤ i. Thus
j ≤ i implies

Σt≤jµ(ftfj)+Σj≤s≤iµ(fsfi) > Σj≤iµ(ffi) ≡ d(l, fj)+c = d(l, fi) ≡ d(l, fj) < d(l, fi).

Therefore, by d(l, fj) < d(l, fi), I get d(l, fi) 6= d(l, fj). fi and fj are arbitrary
so l fuzzy(neutrosophic)-resolves any given couple of vertices fi and fj which
implies {l} is a fuzzy(neutrosophic)-resolving set. �

Corollary 1.8.2. Let G be a fixed-edge fuzzy(neutrosophic) path. Then every
leaf is fuzzy(neutrosophic)-resolving set.

Proof. Let l be a leaf. For every given couple of vertices, fi and fj , I get
d(l, fi) = ci 6= d(l, fj) = cj. It implies l fuzzy(neutrosophic)-resolves any given
couple of vertices fi and fj which implies {l} is a fuzzy(neutrosophic)-resolving
set. �

Corollary 1.8.3. Let G be a fixed-vertex fuzzy(neutrosophic) path. Then every
leaf is fuzzy(neutrosophic)-metric set, fuzzy(neutrosophic)-metric number is one
and fuzzy(neutrosophic)-metric dimension is c where c = σ(f), f ∈ V.
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Proof. By Proposition (3.31.1), every leaf is fuzzy(neutrosophic)-resolving
set. By c = σ(f), ∀f ∈ V, every leaf is fuzzy(neutrosophic)-metric set,
fuzzy(neutrosophic)-metric number is one and fuzzy(neutrosophic)-metric
dimension is c. �

prp7 Proposition 1.8.4. Let G be a fuzzy(neutrosophic) path. Then a set including
every couple of vertices is fuzzy(neutrosophic)-resolving set.

Proof. Let f and f ′ be a couple of vertices. For every given a couple of vertices
fi and fj , I get either d(f, fi) 6= d(f, fj) or d(f ′, fi) 6= d(f ′, fj). �

Corollary 1.8.5. Let G be a fixed-edge fuzzy(neutrosophic) path. Then every
set containing couple of vertices is fuzzy(neutrosophic)-resolving set.

Proof. Consider G is a fuzzy(neutrosophic) path. Thus by Proposition (3.31.2),
every set containing couple of vertices is fuzzy(neutrosophic)-resolving set. So
it holds for any given fixed-edge path fuzzy(neutrosophic) graph. �

Proposition 1.8.6. If I use fixed-vertex strong fuzzy(neutrosophic) cycles instead
of fixed-edge fuzzy(neutrosophic) cycles, then all results of Section (3.30) hold.

Proof. Let G be a fixed-vertex strong fuzzy(neutrosophic) cycles. By
G is fuzzy(neutrosophic) strong and it’s fixed-vertex, G is fixed-edge
fuzzy(neutrosophic). �

prp6.2 Proposition 1.8.7. Let G be a fixed-vertex strong fuzzy(neutrosophic) path.
Then an 1-set contains leaf, is fuzzy(neutrosophic)-resolving set. An 1-set
contains leaf, is fuzzy(neutrosophic)-metric set. Fuzzy(neutrosophic)-metric
number is one. Fuzzy(neutrosophic)-metric dimension is σ(m) where m is a
given vertex.

Proof. There are two leaves. Consider l is a given leaf. By G is a fixed-vertex
strong fuzzy(neutrosophic) path, there’s only one number to be seen. Thus if v
and e are a given vertex and given edge, then σ(v) = σ(e) = c where c ∈ [0, 1].
Further, for every given vertices v and v′, σ(v) = σ(v′). With analogous, for
every given edges e and e′, σ(e) = σ(e′). With rearranging the indexes of
vertices, d(l, vi) = ci. Further more, d(l, vi) = ci 6= cj = d(l, vj). Therefore, l
fuzzy(neutrosophic)-resolves every given couple of vertices x and v. It induces
1-set containing leaf, is fuzzy(neutrosophic)-resolving set. By G is a fixed-vertex,
for every given vertices v and v′, σ(v) = σ(v′). It implies 1-set containing leaf,
is fuzzy(neutrosophic)-metric set. Also, fuzzy(neutrosophic)-metric number is
one. Hence, fuzzy(neutrosophic)-metric dimension is σ(m) where m is a given
vertex. �

cor6.3 Corollary 1.8.8. Let G be a family of fuzzy(neutrosophic) paths with
fuzzy(neutrosophic) common vertex set such that they’ve a common leaf.
Then simultaneously fuzzy(neutrosophic)-metric number is 1, simultaneously
fuzzy(neutrosophic)-metric dimension is σ(m) where m is a given vertex. 1-set
contains common leaf, is simultaneously fuzzy(neutrosophic)-metric set for G.
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Proof. By Proposition (3.31.3), common leaf fuzzy(neutrosophic)-resolves every
given couple of vertices x and v, simultaneously. Thus 1-set containing
common leaf, is simultaneously fuzzy(neutrosophic)-metric set. Also, sim-
ultaneously fuzzy(neutrosophic)-metric number is one. Hence, simultaneously
fuzzy(neutrosophic)-metric dimension is σ(m) where m is a given vertex. �

prp6.4 Proposition 1.8.9. Let G be a fixed-vertex strong fuzzy(neutrosophic) path.
Then an 2-set contains every couple of vertices, is fuzzy(neutrosophic)-resolving
set. An 2-set contains every couple of vertices, is fuzzy(neutrosophic)-metric
set. Fuzzy(neutrosophic)-metric number is two. Fuzzy(neutrosophic)-metric
dimension is 2σ(m) where m is a given vertex.

Proof. Suppose v is a given vertex. If there are two vertices x and y such
that d(x, v) 6= d(y, v), then x fuzzy(neutrosophic)-resolves x and y and the
proof is done. If not, d(x, v) = d(y, v), but for every given vertex v′,
d(x, v′) 6= d(y, v′). �

Corollary 1.8.10. Let G be a family of fuzzy(neutrosophic) paths with
fuzzy(neutrosophic) common vertex set such that they’ve no common leaf. Then
an 2-set is simultaneously fuzzy(neutrosophic)-resolving set, simultaneously
fuzzy(neutrosophic)-metric number is 2, simultaneously fuzzy(neutrosophic)-
metric dimension is minm,m′∈V σ(m) + σ(m′). Every 2-set is simultaneously
fuzzy(neutrosophic)-metric set for G.

Proof. By Corollary (3.31.4), common leaf forms a simultaneously
fuzzy(neutrosophic)-resolving set but in this case, there’s no common leaf.
Thus by Proposition (3.31.5), an 2-set is fuzzy(neutrosophic)-resolving set for
any fuzzy(neutrosophic). Then an 2-set is simultaneously fuzzy(neutrosophic)-
resolving set. It induces simultaneously fuzzy(neutrosophic)-metric number
is 2. It also implies simultaneously fuzzy(neutrosophic)-metric dimension is
minm,m′∈V σ(m) + σ(m′). So every 2-set is simultaneously fuzzy(neutrosophic)-
metric set for G. �

Largest Metric Number

Fuzzy(neutrosophic) t-partite(bipartite/star/wheel) is also studied but by
adding one restriction on these models. Fuzzy(neutrosophic) t-partite gets
us two results as individual and family when they’re either fixed-edge or strong
fixed-vertex.

prp55.11 Proposition 1.8.11. Let G be a fixed-edge fuzzy(neutrosophic) t-partite. Then
every set excluding couple of vertices in different parts whose cardinalities of
them are strictly greater than one, is fuzzy(neutrosophic)-resolving set.

Proof. Consider two vertices x and y. Suppose m has same part with either x
or y. Without loosing the generality, suppose m has same part with x thus it
doesn’t have common part with y. Therefore, d(m,x) = 2 6= 1 = d(m, y). �

cor55.12 Corollary 1.8.12. Let G be a fixed-vertex strong fuzzy(neutrosophic) t-partite.
Let n ≥ 3. Then every (n − 2)-set excludes two vertices from different parts
whose cardinalities of them are strictly greater than one, is fuzzy(neutrosophic)-
resolving set. Every (n− 2)-set excludes two vertices from different parts whose
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cardinalities of them are strictly greater than one, is fuzzy(neutrosophic)-metric
set. Fuzzy(neutrosophic)-metric number is n− 2. Fuzzy(neutrosophic)-metric
dimension is (n− 2)σ(m) where m is a given vertex.

Proof. By Proposition (3.31.7), every (n − 2)-set excludes two vertices from
different parts whose cardinalities of them are strictly greater than one, is
fuzzy(neutrosophic)-resolving set. It means that every (n− 2)-set excludes two
vertices from different parts whose cardinalities of them are strictly greater than
one, is fuzzy(neutrosophic)-metric set. Since if x and y are either in same part
or in different parts, then, by any given vertex w, d(w, x) = d(w, y). Thus 1-set
isn’t fuzzy(neutrosophic)-resolving set. There are same arguments for a set with
cardinality ≤ n− 3 when pigeonhole principle implies at least two vertices have
same conditions concerning either being in same part or in different parts. �

cor55.13 Corollary 1.8.13. Let G be a fixed-vertex strong fuzzy(neutrosophic) bipartite.
Let n ≥ 3. Then every (n− 2)-set excludes two vertices from different parts, is
fuzzy(neutrosophic)-resolving set. Every (n− 2)-set excludes two vertices from
different parts, is fuzzy(neutrosophic)-metric set. Fuzzy(neutrosophic)-metric
number is n− 2. Fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) where
m is a given vertex.

Proof. Consider x and y are excluded by a (n − 2)-set. Let m be a given
vertex which is distinct from them. By G is bipartite, m has a common part
with either x or y and not with both of them. It implies d(x,m) 6= d(y,m).
Since if m has a common part with x, then d(x,m) = 1 6= 2 = d(y,m). And
if m has a common part with y, then d(x,m) = 2 6= 1 = d(y,m). Thus m
fuzzy(neutrosophic)-resolves x and y. If w is another vertex which is distinct
from them, then pigeonhole principle induces at least two vertices have same
conditions concerning either being in same part or in different parts. It implies
(n− 3)-set isn’t fuzzy(neutrosophic)-resolving set. Therefore, every (n− 2)-set
excludes two vertices from different parts, is fuzzy(neutrosophic)-metric set.
Fuzzy(neutrosophic)-metric number is n− 2. By G is fixed-vertex, for any given
vertices m and m′, σ(m) = σ(m′). So fuzzy(neutrosophic)-metric dimension is
(n− 2)σ(m) where m is a given vertex. �

cor55.14 Corollary 1.8.14. Let G be a fixed-vertex strong fuzzy(neutrosophic) star. Then
every (n − 2)-set excludes center and a given vertex, is fuzzy(neutrosophic)-
resolving set. An (n − 2)-set excludes center and a given vertex, is
fuzzy(neutrosophic)-metric set. Fuzzy(neutrosophic)-metric number is (n− 2).
Fuzzy(neutrosophic)-metric dimension is (n−2)σ(m) where m is a given vertex.

Proof. Consider x and y are excluded by a (n − 2)-set. Let m be a given
vertex which is distinct from them. By G is star, m has a common part
with either x or y and not with both of them. It implies d(x,m) 6= d(y,m).
Since if m has a common part with x, then d(x,m) = 1 6= 2 = d(y,m). And
if m has a common part with y, then d(x,m) = 2 6= 1 = d(y,m). Thus m
fuzzy(neutrosophic)-resolves x and y. If w is another vertex which is distinct
from them, then pigeonhole principle induces at least two vertices have same
conditions concerning either being in same part or in different parts. It implies
(n− 3)-set isn’t fuzzy(neutrosophic)-resolving set. Therefore, every (n− 2)-set
excludes two vertices from different parts, is fuzzy(neutrosophic)-metric set.
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Fuzzy(neutrosophic)-metric number is n− 2. By G is fixed-vertex, for any given
vertices m and m′, σ(m) = σ(m′). So fuzzy(neutrosophic)-metric dimension is
(n− 2)σ(m) where m is a given vertex. �

cor55.15 Corollary 1.8.15. Let G be a fixed-vertex strong fuzzy(neutrosophic) wheel.
Let n ≥ 3. Then every (n − 2)-set excludes center and a given vertex, is
fuzzy(neutrosophic)-resolving set. Every (n− 2)-set excludes center and a given
vertex, is fuzzy(neutrosophic)-metric set. Fuzzy(neutrosophic)-metric number
is n− 2. Fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) where m is a
given vertex.

Proof. Consider x and y are excluded by a (n − 2)-set. Let m be a given
vertex which is distinct from them. By G is wheel, m has a common part
with either x or y and not with both of them. It implies d(x,m) 6= d(y,m).
Since if m has a common part with x, then d(x,m) = 1 6= 2 = d(y,m). And
if m has a common part with y, then d(x,m) = 2 6= 1 = d(y,m). Thus m
fuzzy(neutrosophic)-resolves x and y. If w is another vertex which is distinct
from them, then pigeonhole principle induces at least two vertices have same
conditions concerning either being in same part or in different parts. It implies
(n− 3)-set isn’t fuzzy(neutrosophic)-resolving set. Therefore, every (n− 2)-set
excludes two vertices from different parts, is fuzzy(neutrosophic)-metric set.
Fuzzy(neutrosophic)-metric number is n− 2. By G is fixed-vertex, for any given
vertices m and m′, σ(m) = σ(m′). So fuzzy(neutrosophic)-metric dimension is
(n− 2)σ(m) where m is a given vertex. �

Fuzzy(neutrosophic) t-partite(bipartite/star/wheel) is also studied but by
adding one restriction on these models. Fuzzy(neutrosophic) t-partite gets us
one result involving family of them when they’re either fixed-edge or strong
fixed-vertex.

Corollary 1.8.16. Let G be a family of fixed-vertex strong fuzzy(neutrosophic)
t-partite with fuzzy(neutrosophic) common vertex set. Let n ≥ 3. Then
simultaneously fuzzy(neutrosophic)-metric number is n − 2, simultaneously
fuzzy(neutrosophic)-metric dimension is (n−2)σ(m). Every (n−2)-set excludes
two vertices from different parts, is simultaneously fuzzy(neutrosophic)-resolving
set for G. There’s an (n− 2)-set which is simultaneously fuzzy(neutrosophic)-
metric set for G.

Proof. By Corollary (3.31.8), every result hold for any given fixed-vertex strong
fuzzy(neutrosophic) t-partite. Thus every result hold for any given fixed-vertex
strong fuzzy(neutrosophic) t-partite, simultaneously. Therefore, simultaneously
fuzzy(neutrosophic)-metric number is n−2, simultaneously fuzzy(neutrosophic)-
metric dimension is (n− 2)σ(m). Every (n− 2)-set excludes two vertices from
different parts, is simultaneously fuzzy(neutrosophic)-resolving set for G. There’s
an (n− 2)-set which is simultaneously fuzzy(neutrosophic)-metric set for G. �

Corollary 1.8.17. Let G be a family of fixed-vertex strong fuzzy(neutrosophic)
bipartite with fuzzy(neutrosophic) common vertex set. Let n ≥ 3. Then
simultaneously fuzzy(neutrosophic)-metric number is n − 2, simultaneously
fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) Every (n− 2)-set excludes
two vertices from different parts, is simultaneously fuzzy(neutrosophic)-resolving
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set for G. There’s an (n− 2)-set which is simultaneously fuzzy(neutrosophic)-
metric set for G.

Proof. By Corollary (3.31.9), every result hold for any given fixed-vertex strong
fuzzy(neutrosophic) bipartite. Thus every result hold for any given fixed-vertex
strong fuzzy(neutrosophic) bipartite, simultaneously. Therefore, simultaneously
fuzzy(neutrosophic)-metric number is n−2, simultaneously fuzzy(neutrosophic)-
metric dimension is (n− 2)σ(m). Every (n− 2)-set excludes two vertices from
different parts, is simultaneously fuzzy(neutrosophic)-resolving set for G. There’s
an (n− 2)-set which is simultaneously fuzzy(neutrosophic)-metric set for G. �

Corollary 1.8.18. Let G be a family of fixed-vertex strong fuzzy(neutrosophic)
star with fuzzy(neutrosophic) common vertex set. Let n ≥ 3. Then
simultaneously fuzzy(neutrosophic)-metric number is n − 2, simultaneously
fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) Every (n− 2)-set excludes
center and a given vertex, is simultaneously fuzzy(neutrosophic)-resolving set
for G. There’s an (n− 2)-set which is simultaneously fuzzy(neutrosophic)-metric
set for G.

Proof. By Corollary (3.31.10), every result hold for any given fixed-vertex strong
fuzzy(neutrosophic) star. Thus every result hold for any given fixed-vertex
strong fuzzy(neutrosophic) star, simultaneously. Therefore, simultaneously
fuzzy(neutrosophic)-metric number is n−2, simultaneously fuzzy(neutrosophic)-
metric dimension is (n− 2)σ(m). Every (n− 2)-set excludes two vertices from
different parts, is simultaneously fuzzy(neutrosophic)-resolving set for G. There’s
an (n− 2)-set which is simultaneously fuzzy(neutrosophic)-metric set for G. �

Corollary 1.8.19. Let G be a family of fixed-vertex strong fuzzy(neutrosophic)
wheel with fuzzy(neutrosophic) common vertex set. Let n ≥ 3. Then
simultaneously fuzzy(neutrosophic)-metric number is n − 2, simultaneously
fuzzy(neutrosophic)-metric dimension is (n− 2)σ(m) Every (n− 2)-set excludes
center and a given vertex, is simultaneously fuzzy(neutrosophic)-resolving set
for G. There’s an (n− 2)-set which is simultaneously fuzzy(neutrosophic)-metric
set for G.

Proof. By Corollary (3.31.11), every result hold for any given fixed-vertex strong
fuzzy(neutrosophic) wheel. Thus every result hold for any given fixed-vertex
strong fuzzy(neutrosophic) wheel, simultaneously. Therefore, simultaneously
fuzzy(neutrosophic)-metric number is n−2, simultaneously fuzzy(neutrosophic)-
metric dimension is (n− 2)σ(m). Every (n− 2)-set excludes two vertices from
different parts, is simultaneously fuzzy(neutrosophic)-resolving set for G. There’s
an (n− 2)-set which is simultaneously fuzzy(neutrosophic)-metric set for G. �

1.9 Applications
In this chapter,
I introduce some

applications
concerning new
ideas and in

this ways, the
results make

sense more about
their impacts on

different
models.

Two applications are posed as follow.
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Located Places

A program is devised for a robot to locate every couple of given places, separ-
ately. The number which this program assigns to any place from a given couple
of places are unique. Thus every place has an unique number when a couple
of places are given. Three numbers are assigned to a place. First number is
about a model concerning attributes which titled to be obstacle for locating
the place, second number is about a model concerning attributes which titled
to be indeterminate for locating the place and sometimes, they’re obstacle but
sometimes, they’re determinate to locate that place. Third number is about
a model concerning attributes which titled to be determinate for locating the
place. For example, (0.2, 0.5, 0.8) is assigned to a place v as information about
its location. This is a brief outline of this application. To get it more precisely,
I use some steps to clarify about them.

Step 1. (Definition) Located place is a term to categorize places into two
classes. Applications for this function are too many but they’ve noticed
to some parameters like decreasing costs, precise analysis, decreasing the
ranges of analysis, restrictions on cases, low amount of selective data as
possible, et cetera. Selective points as possible to distinguish about every
couple of points out of them, are optimal case as possibilities allow.

Step 2. (Issue) A train has some stops which every stop has some attributes.
A couple of stops are given but they’re impossible to locate by their
attributes.

Step 3. (Model) I use attributes of stops to get a model with three numbers
chosen from real numbers amid zero and one. Every number illustrates
every aspect of their attributes. The first number is obstacle means
bad attributes, the second number is indeterminate and third number is
determinate means good attributes. But to use sensible clarification, I use
a fuzzy model as Figure (1.10). To get it more precisely, consider Table
(1.7) as a fuzzy model which assigns to every stations and connections a
value, separately. In fact, set of stations and set of connections are used
to make fuzzy sets from them.

Figure 1.10: Black vertex {s1} is only fuzzy(neutrosophic)-metric set amid all
sets of vertices for fuzzy(neutrosophic) graph T. F3

Step 4. (Solution) As figure (1.10) shows, I study this fuzzy model. By
Proposition (3.31.1), the stop s1 locates every given couple of stations.
To get beyond this result, If I’ve a family of fuzzy(neutrosophic) paths
excerpt from family of trains with fuzzy(neutrosophic) common and s1
in common, then by Corollary (3.31.4), the stop s1 locates every given
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Table 1.7: A Train concerning its Stations and its Connections as a Fuzzy
Graph in a Model. T3

Stations of T s1 s2 s3 s4 s5 s6 s7 s8 s9, s10
Values 0.1 0.8 0.7 0.8 0.1 0.3 0.6 0.5 0.2

Connections of T s1s2 s2s3 s3s4 s4s5 s5s6 s6s7 s7s8 s8s9 s9s10
Values 0.1 0.6 0.4 0.1 0.1 0.2 0.4 0.2 0.1

couple of stations in every fuzzy(neutrosophic) graph excerpt from any
trains, simultaneously.

Covid-19 and Identifying Infected People

Dark network is description for infected people who are anonymous in the
matter of Covid-19. Virus and its anonymously style to transmit the virus from
one person to another person, could make a dark network involving people.
Consider everyone as network titled fuzzy(neutrosophic). It means that the
person and his networks containing his connections make two models, fixed-edge
fuzzy(neutrosophic) and fixed-vertex strong fuzzy(neutrosophic). Now, I have a
family of people which everyone is a model in the terms of Covid-19.

Step 1. (Definition) Covid-19 is well-known disease which like every disease
has general parameters. Parameters are intensity of symptom, decreasing
impacts, relatively treatments, complete treatments and et cetera. But
Covid-19 has specific ways which they transmit this disease. It’s coming
up with finding impressive networks of people to identify infected people.
People and their connections are important cases to develop this notion.

Step 2. (Issue) A person has been infected and I try to find the connections
and the people which transmit this disease.

Step 3. (Model) A person and his connections are a network which are a fuzzy
model. Two numbers are assigned to a person and his connections. To do
this, I need to identify a couple of people which are given in a network
of this person. I proposed two fuzzy models. Firstly, as Figure (1.11), a
fuzzy graph containing the people who connect to this person, is proposed
in Table (1.8). Secondly, as Figure (1.11), a fuzzy model including person
with his two selective connections and other people with two selective
connections of them, is posed in Table (1.9). The attributes are like the
iterations of connections, the intensity of infected people, serious symptom,
locations of people and et cetera, are used to have couple of people who
are selected. Capable for being infected and infected people are used to
make these models.

Step 4. (Solution) By Corollary (3.30.10), a person i1 and his partner i2
identify every given couple of partners which are in Figure (1.11) as T . To
get beyond this result, if a person i1 and the partner i2 aren’t antipodal
vertices in every fuzzy cycles are contained in a family of person’s networks,
then by Corollary (3.30.11), a person i1 and the partner i2 identify every
given couple of partners in every fuzzy cycles, simultaneously. By Corollary

39



1. Neutrosophic Graphs

Figure 1.11: Black vertices {i1, i2} are only fuzzy(neutrosophic)-metric set
amid all sets of vertices for fuzzy(neutrosophic) graph T. Black vertices
V \ {c1, c2} are only fuzzy(neutrosophic)-metric set amid all sets of vertices for
fuzzy(neutrosophic) graph T ′. F4

Table 1.8: An Infected Person concerning his two selective Connections and his
Partners With their two selective Connections as a Fuzzy Graph T in a Model. T4

People of T i1 i2 c1 c2 c3 i3
Values 0.7 0.8 0.6 0.8 0.6 0.9

Connections of T i1i2 i2c1 c1c2 c2c3 c3i3 i3i1
Values 0.6 0.6 0.6 0.6 0.6 0.6

Table 1.9: An Infected Person concerning his Connections and his Partners as
a Fuzzy Graph T ′ in a Model. T5

People of T ′ i1 c1 c2 c3
Values 0.7 0.7 0.8 0.9

Connections of T ′ i1c1 i1c2 i1c3 c3i1
Values 0.6 0.6 0.6 0.6

(3.31.10), {c1, c2} identify couple of person i1 and his partner c3, in Figure
(1.11) as T ′ in optimal way and this set is unique.

1.10 Open Problems
sec8

The crisp notion of dimension is defined on fuzzy(neutrosophic) graphs. Thus

Question 1.10.1. Is it possible to define fuzzy(neutrosophic) notion of dimen-
sion on fuzzy(neutrosophic) graphs?

There are too many limitations on the classes of fuzzy(neutrosophic)
graphs by using fixed-edge fuzzy(neutrosophic) graphs and fixed-vertex strong
fuzzy(neutrosophic) graphs.
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Question 1.10.2. Is an approach existed to compute current dimension for
specific classes of fuzzy(neutrosophic) graphs?

Question 1.10.3. What are basic attributes of current dimension for general
classes of fuzzy(neutrosophic) graphs?

Finding other classes of fuzzy(neutrosophic) graphs has an ordinary approach
to develop this study.

Question 1.10.4. Which new classes of fuzzy(neutrosophic) graphs are existed
to develop this notion of current dimension?

Question 1.10.5. Which new classes of fuzzy(neutrosophic) graphs are existed
to compute this notion of current dimension?

Question 1.10.6. Which general approaches are existed to study this notion of
current dimension in fuzzy(neutrosophic) graphs?

Question 1.10.7. Which specific approaches are existed to study this notion of
current dimension in fuzzy(neutrosophic) graphs?

Problem 1.10.8. Are there special crisp sets of vertices, e.g. antipodal vertices
for fuzzy(neutrosophic) cycles, which have key role to study this notion of current
dimension in fuzzy(neutrosophic) graphs?

Problem 1.10.9. Are there fuzzy(neutrosophic) special sets of vertices, e.g.
fuzzy(neutrosophic) twin vertices for general classes, which have key role to
study this notion of current dimension in fuzzy(neutrosophic) graphs?

1.11 Conclusion and Closing Remarks
sec10

This study uses mixed combinations of fuzzy concepts and crisp concepts to
explore new notion of crisp dimension in fuzzy(neutrosophic) graphs as individual
and as family. In this way, some crisp notions like antipodal vertices are defined
to use as a tool to study fuzzy(neutrosophic) cycles as individual and as family.
Also, some fuzzy(neutrosophic) notions like fuzzy(neutrosophic) twin vertices
are defined to use as a tool to study general classes of fuzzy(neutrosophic)
graphs as individual and as family. Mixed family of fuzzy(neutrosophic) graphs
are slightly studied by using fuzzy(neutrosophic) twin vertices and other ideas
as individual and as family. In Table (1.10), I mention some advantages and
limitations concerning this article and its proposed notions.
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Table 1.10: A Brief Overview about Advantages and Limitations of this study tbl5

Advantages Limitations
1. Using crisp and fuzzy(neutrosophic) 1. The most usages of fixed-edge

notions in one framework fuzzy(neutrosophic) graphs
together simultaneously. and fixed-vertex strong

2. Study on fuzzy(neutrosophic) fuzzy(neutrosophic) graphs.
as individual and as family.

3. Involved classes as complete, 2. Study on family of different models
strong, path, cycle, t-partite,

bipartite, star, wheel.
4. Characterizing classes of 3. Characterizing classes of
fuzzy(neutrosophic) graphs fuzzy(neutrosophic) graphs
with smallest metric number with smallest dimension number
and largest metric number. and largest dimension number.
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CHAPTER 2

Neutrosophic Chromatic Number

Rohini et al. [4] introduce single valued neutrosophic coloring. He et al. [5]
also propose operations of single valued neutrosophic coloring. Rohini et al. [6]
study on single valued neutrosophic irregular vertex coloring.

2.1 Definitions
To clarify about
the definitions,

I use some
examples and in

this way,
exemplifying has
key role to make
sense about the
definitions and
to introduce new
ways to use on
these models in
the terms of new

notions.

The reference [1] is used to write the contents of this chapter.

Definition 2.1.1. G : (V,E) is called a crisp graph where V is a set of objects
and E is a subset of V × V such that this subset is symmetric.

Definition 2.1.2. A crisp graph G : (V,E) is called a neutrosophic graph
G : (σ, µ) where σ = (σ1, σ2, σ3) : V → [0, 1] and µ = (µ1, µ2.µ3) : E → [0, 1]
such that µ(xy) ≤ σ(x) ∧ σ(y) for all xy ∈ E.

Definition 2.1.3. A neutrosophic graph is called neutrosophic empty if it
has no edge. It’s also called neutrosophic trivial. A neutrosophic graph
which isn’t neutrosophic empty, is called neutrosophic nontrivial.

Definition 2.1.4. A neutrosophic graph G : (σ, µ) is called a neutrosophic
complete where it’s complete and µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E.

Definition 2.1.5. A neutrosophic graph G : (σ, µ) is called a neutrosophic
strong where µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E.

Definition 2.1.6. A path v0, v1, · · · , vn is called neutrosophic path where
µ(vivi+1) > 0, i = 0, 1, · · · , n− 1. i-path is a path with i edges, it’s also called
length of path.

Definition 2.1.7. A crisp cycle v0, v1, · · · , vn, v0 is called neutrosophic
cycle where there are two edges xy and uv such that µ(xy) = µ(uv) =∧
i=0,1,··· ,n−1 µ(vivi+1).

Definition 2.1.8. A neutrosophic graph is called neutrosophic t-partite if
V is partitioned to t parts, V1, V2, · · · , Vt and the edge xy implies x ∈ Vi
and y ∈ Vj where i 6= j. If it’s neutrosophic complete, then it’s denoted by
Kσ1,σ2,··· ,σt where σi is σ on Vi instead V which mean x 6∈ Vi induces σi(x) = 0.
If t = 2, then it’s called neutrosophic complete bipartite and it’s denoted
by Kσ1,σ2 especially, if |V1| = 1, then it’s called neutrosophic star and it’s
denoted by S1,σ2 . In this case, the vertex in V1 is called center and if a vertex
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joins to all vertices of neutrosophic cycle, it’s called neutrosophic wheel and
it’s denoted by W1,σ2 .

Definition 2.1.9. Let G : (σ, µ) be a neutrosophic graph. For any given subset
N of V, Σn∈Nσ(n) is called neutrosophic cardinality of N and it’s denoted
by |N |n.

Definition 2.1.10. Let G : (σ, µ) be a neutrosophic graph. Neutrosophic
cardinality of V is called neutrosophic order of G and it’s denoted by On(G).

Definition 2.1.11. Let G : (σ, µ) be a neutrosophic graph. The number of
vertices is denoted by n and the number of edges is denoted by m.

Definition 2.1.12. Let N = (σ, µ) be a neutrosophic graph. It’s called
neutrosophic connected if for every given couple of vertices, there’s at
least one neutrosophic path amid them.

Definition 2.1.13. Let N = (σ, µ) be a neutrosophic graph. Suppose a path
P : v0, v1, · · · , vn−1, vn from v0 to vn. mini=0,1,2,··· ,n−1 µ(vivi+1) is called
neutrosophic strength of P and it’s denoted by Sn(P ).

Definition 2.1.14. Let N = (σ, µ) be a neutrosophic graph. The number of
maximum edges for a vertex, amid all vertices, is denoted by ∆(N).

First case for the contents is to use the article from [1]. The contents are used
in the way that, usages of new contents are preferences and the preliminaries
are passed in the beginning of this chapter.

2.2 Chromatic Number and Neutrosophic Chromatic
Number

2.3 Abstract

New setting is introduced to study chromatic number. Neutrosophic chromatic
number and chromatic number are proposed in this way, some results are
obtained. Classes of neutrosophic graphs are used to obtains these numbers
and the representatives of the colors. Using colors to assign to the vertices
of neutrosophic graphs is applied. Some questions and problems are posed
concerning ways to do further studies on this topic. Using strong edge to define
the relation amid vertices which implies having different colors amid them and
as consequences, choosing one vertex as a representative of each color to use
them in a set of representatives and finally, using neutrosophic cardinality of
this set to compute neutrosophic chromatic number. This specific relation amid
edges is necessary to compute both chromatic number concerning the number of
representative in the set of representatives and neutrosophic chromatic number
concerning neutrosophic cardinality of set of representatives. If two vertices
have no strong edge, then they can be assigned to same color even they’ve
common edge. Basic familiarities with neutrosophic graph theory and graph
theory are proposed for this article.
Keywords: Neutrosophic Strong, Neutrosophic Graphs, Chromatic Number

AMS Subject Classification: 05C17, 05C22, 05E45
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2.4 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 2.4.1. Is it possible to use mixed versions of ideas concerning
“neutrosophic strong edges”, “neutrosophic graphs” and “neutrosophic coloring”
to define some notions which are applied to neutrosophic graphs?

It’s motivation to find notions to use in any classes of neutrosophic graphs.
Real-world applications about time table and scheduling are another thoughts
which lead to be considered as motivation. Connections amid two items have
key roles to assign colors. Thus they’re used to define new ideas which conclude
to the structure of coloring. The concept of having strong edge inspires to
study the behavior of strong edge in the way that, both neutrosophic chromatic
number and chromatic number are the cases of study.
The framework of this study is as follows. In the beginning of chapter, I
introduced basic definitions to clarify about preliminaries. In subsection
“Chromatic Number and Neutrosophic Chromatic Number”, new notion of
coloring is applied to the vertices of neutrosophic graphs. Neutrosophic strong
edge has the key role in this way. Classes of neutrosophic graphs are studied when
the edges are neutrosophic strong. In subsection “Applications in Time Table
and Scheduling”, one application is posed for neutrosophic graphs concerning
time table and scheduling when the suspicions are about choosing some subjects.
In subsection “Open Problems”, some problems and questions for further
studies are proposed. In subsection “Conclusion and Closing Remarks”, gentle
discussion about results and applications are featured. In subsection “Conclusion
and Closing Remarks”, a brief overview concerning advantages and limitations
of this study alongside conclusions are formed.

2.5 Chromatic Number and Neutrosophic Chromatic
Number

sec2

Definition 2.5.1. Let N = (σ, µ) be a neutrosophic graph. Chromatic
number is minimum number of distinct colors which are used to color the
vertices which have neutrosophic strong edge. Neutrosophic cardinality of the
set of these distinct colors when it’s minimum amid all of these sets, is called
neutrosophic chromatic number with respect with first order.

Example 2.5.2. Consider Figure (2.1). The chromatic number is three and
neutrosophic chromatic number is 2.57 with respect to first order.

Neutrosophic chromatic number of some classes of neutrosophic graphs are
computed.

Proposition 2.5.3. Let N = (σ, µ) be a neutrosophic complete. Then chromatic
number is n and neutrosophic chromatic number is neutrosophic order.

Proof. All edges are neutrosophic strong. Every vertex has edge with n − 1
vertices. Thus n is chromatic number. Since any given vertex has different color
in comparison to another vertex, neutrosophic cardinality of V is neutrosophic
chromatic number. Therefore, neutrosophic chromatic number is neutrosophic
order. �
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Figure 2.1: Neutrosophic Graph, N1 nsc1

Proposition 2.5.4. Let N = (σ, µ) be a neutrosophic strong path. Then
chromatic number is two and neutrosophic chromatic number is

min
x and y have different colors

{σ(x) + σ(y)}.

Proof. With alternative colors, neutrosophic strong path has distinct color
for every vertices which have one edge in common. Thus if x and y are two
vertices which have one edge in common, then x and y have different color.
Therefore, chromatic number is two. The representative of colors are a vertex
with minimum value amid all vertices which have same color with it. Thus,

min
x and y have different colors

{σ(x) + σ(y)}.

�

Proposition 2.5.5. Let N = (σ, µ) be an even neutrosophic strong cycle. Then
chromatic number is two and neutrosophic chromatic number is

min
x and y have different colors

{σ(x) + σ(y)}.

Proof. All edges are neutrosophic strong. Since the cycle has even vertices,
with alternative coloring of vertices, the vertices which have common edge, have
different colors. So chromatic number is two. With every color, the vertex which
has minimum value amid vertices with same color with it, is representative of
that color. Thus,

min
x and y have different colors

{σ(x) + σ(y)}.

�
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Proposition 2.5.6. Let N = (σ, µ) be an odd neutrosophic strong cycle. Then
chromatic number is three and neutrosophic chromatic number is

min
x,y and z have different colors

{σ(x) + σ(y) + σ(z)}.

Proof. With alternative coloring on vertices, at end, two vertices have same
color, and they’ve same edge. So, chromatic number is three. Since the colors
are three, the vertices with minimum values in every color, are representatives.
Hence,

min
x,y and z have different colors

{σ(x) + σ(y) + σ(z)}.

�

Proposition 2.5.7. Let N = (σ, µ) be a neutrosophic strong star with c as
center. Then chromatic number is two and neutrosophic chromatic number is

min
x is non-center vertex

{σ(c) + σ(x)}.

Proof. All edges are neutrosophic strong. Center vertex has common edge with
every given vertex. So it has different color in comparison to other vertices. So
one color has only one vertex which has that color. All non-center vertices have
no common edge amid each other. Then they’ve same color. The representative
of this color is a non-center vertex which has minimum value amid all non-center
vertices. Hence,

min
x is non-center vertex

{σ(c) + σ(x)}.

�

Proposition 2.5.8. Let N = (σ, µ) be a neutrosophic strong wheel with c as
center. Then chromatic number is three where neutrosophic cycle has even
number as its length and neutrosophic chromatic number is

min
x,y are non-center vertices and have different colors

{σ(c) + σ(x) + σ(y)}.

Proof. Center vertex has unique color. So it’s only representative of this color.
Non-center vertices form a neutrosophic cycle which have distinct colors for the
vertices which have common edge with each other when the number of colors is
two. So a color for center vertex and two colors for non-center vertices, make
neutrosophic strong wheel has distinct colors for vertices which have common
edge. Hence, chromatic number is three when the non-center vertices form odd
cycle. Therefore,

min
x,y are non-center vertices and have different colors

{σ(c) + σ(x) + σ(y)}.

�

Proposition 2.5.9. Let N = (σ, µ) be a neutrosophic strong wheel with c as
center. Then chromatic number is four where neutrosophic cycle has odd number
as its length and neutrosophic chromatic number is

min
x,y,z are non-center vertices and have different colors

{σ(c) + σ(x) + σ(y) + σ(z)}.
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Proof. All edges are neutrosophic strong and non-center vertices form odd
neutrosophic strong cycles. Odd neutrosophic strong cycle have chromatic
number which is three. Non-center vertex has same edges with all non-center
vertices. Thus non-center vertex has different colors with non-center vertices.
Therefore, chromatic number is four. Four representatives of colors form
neutrosophic chromatic number where one representative is center vertex and
other three representatives are non-center vertices. So,

min
x,y,z are non-center vertices and have different colors

{σ(c) + σ(x) + σ(y) + σ(z)}.

�

Proposition 2.5.10. Let N = (σ, µ) be a neutrosophic complete bipartite. Then
chromatic number is two and neutrosophic chromatic number is

min
x and y are in different parts

{σ(x) + σ(y)}.

Proof. Every given vertex has neutrosophic strong edge with all vertices from
another part. So the color of every vertex which is in a same part is same.
Hence, two parts implies two different colors. It induces chromatic number is
two. The minimum value of a vertex amid all vertices in every part, identify
the representative of every color. Therefore,

min
x and y are in different parts

{σ(x) + σ(y)}.

�

Proposition 2.5.11. Let N = (σ, µ) be a neutrosophic complete t−partite. Then
chromatic number is t and neutrosophic chromatic number is

min
x1,x2 ,··· ,xt are in different parts

{σ(x1) + σ(x2) + · · ·+ σ(xt)}.

Proof. Every part has same color for its vertices. So chromatic number is
t. Every part introduces one vertex as a representative of its color. Thus,
neutrosophic chromatic number is

min
x1,x2 ,··· ,xt are in different parts

{σ(x1) + σ(x2) + · · ·+ σ(xt)}.

�

Proposition 2.5.12. Let N = (σ, µ) be a neutrosophic strong. Then chromatic
number is 1 if and only if N = (σ, µ) is neutrosophic empty.

Proof. (⇒). Let chromatic number be 1. It implies there’s no vertex which
has same edge with a vertex. So there’s no neutrosophic strong edge. Since
N = (σ, µ) is a neutrosophic strong, N = (σ, µ) is a neutrosophic empty.
(⇐). Let N = (σ, µ) be neutrosophic empty and neutrosophic strong. Hence
there’s no edge. It implies for every given vertex, there’s no common
neutrosophic strong edge. It induces there’s only one color for vertices. Hence
the representative of this color is chosen from n vertices. Thus chromatic
number is 1. �
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Proposition 2.5.13. Let N = (σ, µ) be a neutrosophic strong. Then chromatic
number is 2 if and only if N = (σ, µ) is neutrosophic complete bipartite.

Proof. (⇒). Let chromatic number be two. So every vertex has either one
vertex or two vertices with a common edge. The number of colors are two so
there are two sets which each set has the vertices which same color. If two
vertices have same color, then they don’t have a common edge. So every set is
a part in that, no vertex has common edge. The number of these sets is two.
Hence there are two parts in each of them, every vertex has no common edge
with other vertices. Since N = (σ, µ) is a neutrosophic strong, N = (σ, µ) is
neutrosophic complete bipartite.
(⇐). Assume N = (σ, µ) is neutrosophic complete bipartite. Then all edges
are neutrosophic strong. Every part has the vertices which have no edge in
common. So they’re assigned to have same color. There are two parts. Thus
there are two colors to assign to the vertices in that, the vertices with common
edge, have different colors. It induces chromatic number is 2. �

Proposition 2.5.14. Let N = (σ, µ) be a neutrosophic strong. Then chromatic
number is n if and only if N = (σ, µ) is neutrosophic complete.

Proof. (⇒). Let chromatic number be n. So any given vertex has n vertices
which have common edge with them and every of them have common edge with
each other. It implies every vertex has n vertices which have common edge with
them. Since N = (σ, µ) is a neutrosophic strong, N = (σ, µ) is neutrosophic
complete.
(⇐). Suppose N = (σ, µ) is neutrosophic complete. Every vertex has n vertices
which have common edge with them. Since all edges are neutrosophic strong,
the minimum number of colors are n. Thus chromatic number is n. �

General bounds for neutrosophic chromatic number are computed.

Proposition 2.5.15. Let N = (σ, µ) be a neutrosophic graph. Then chromatic
number is at most the number of vertices and neutrosophic chromatic number is
at most neutrosophic order.

Proof. When every vertex is a representative of each color, chromatic number
is the number of vertices and it happens in chromatic number of neutrosophic
complete which is n. When all vertices have distinct colors, neutrosophic
chromatic number is neutrosophic order and it’s sharp for neutrosophic
complete. �

The relation amid neutrosophic chromatic number and main parameters of
neutrosophic graphs is computed.

Proposition 2.5.16. Let N = (σ, µ) be a neutrosophic strong. Then chromatic
number is at most ∆ + 1 and at least 2.

Proof. Neutrosophic strong is neutrosophic nontrivial. So it isn’t neutrosophic
empty which induces there’s no edge. It implies chromatic number is two. Since
chromatic number is one if and only if N = (σ, µ) is neutrosophic empty if
and only if N = (σ, µ) is neutrosophic trivial. A vertex with degree ∆, has ∆
vertices which have common edges with them. If these vertices have no edge
amid each other, then chromatic number is two especially, neutrosophic star. If
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not, then in the case, all vertices have edge amid each other, chromatic number
is ∆ + 1, especially, neutrosophic complete. �

Proposition 2.5.17. Let N = (σ, µ) be a neutrosophic r−regular. Then
chromatic number is at most r + 1.

Proof. N = (σ, µ) is a neutrosophic r−regular. So any of vertex has r vertices
which have common edge with it. If these vertices have no common edge with
each other, for instance neutrosophic star, chromatic number is two. But since
the vertices have common edge with each other, chromatic number is r + 1, for
instance, neutrosophic complete. �

2.6 Applications in Time Table and Scheduling
sec3

Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has important to avoid mixing up.

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) scheduling of program has faced with difficulties to differ amid
consecutive section. Beyond that, sometimes sections are not the same.

Step 3. (Model) As Figure (2.2), the situation is designed as a model. The
model uses data to assign every section and to assign to relation amid
section, three numbers belong unit interval to state indeterminacy,
possibilities and determinacy. There’s one restriction in that, the numbers
amid two section is at least the number of the relation amid them. Table
(2.1), clarifies about the assigned numbers to these situation.

Figure 2.2: Black vertices are suspicions about choosing them. fgr1
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Table 2.1: Scheduling concerns its Subjects and its Connections as a
Neutrosophic Graph in a Model. tbl1

Sections of T s1 s2 s3 s4 s5 s6 s7 s8 s9, s10
Values 0.1 0.8 0.7 0.8 0.1 0.3 0.6 0.5 0.2

Connections of T s1s2 s2s3 s3s4 s4s5 s5s6 s6s7 s7s8 s8s9 s9s10
Values 0.1 0.6 0.4 0.1 0.1 0.2 0.4 0.2 0.1

Step 4. (Solution) As Figure (2.2) shows, neutrosophic model, propose to use
chromatic number 2 in the case with is titled T ′. In this case, i1 and
c1 are representative of these two colors and neutrosophic chromatic
number is 1.4. The set {i1, c1} contains representatives of colors which
pose chromatic number and neutrosophic chromatic number. Thus the
decision amid choosing the subject c1 an c2 is concluded to choose c1. To
get brief overview, neutrosophic model uses one number for every array
so 0.9 means (0.9, 0.9, 0.9). In Figure (2.2), the neutrosophic model T
introduce the common situation. The representatives of colors are i2 and
c1. Thus chromatic number is two and neutrosophic chromatic number is
1.4. Thus suspicion about choosing i1 and i2 is determined to be i2. The
sets of representative for colors are {i2, c1}.

2.7 Open Problems
sec4

The two notions of coloring of vertices concerning neutrosophic chromatic
number and chromatic number are defined on neutrosophic graphs when
neutrosophic strong edges have key role to have these notions. Thus

Question 2.7.1. Is it possible to use other types edges to define chromatic
number and neutrosophic chromatic number?

Question 2.7.2. Is it possible to use other types of ways to make number to
define chromatic number and neutrosophic chromatic number?

Question 2.7.3. Which classes of neutrosophic graphs have the eligibility to
pursue independent study in this way?

Question 2.7.4. Which applications do make an independent study to define
chromatic number and neutrosophic chromatic number?

Problem 2.7.5. Which approaches do work to construct classes of neutrosophic
graphs to continue this study?

Problem 2.7.6. Which approaches do work to construct applications to create
independent study?

Problem 2.7.7. Which approaches do work to construct definitions which use
all three arrays and the relations amid them instead of one array of three arrays
to create independent study?
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2.8 Conclusion and Closing Remarks
sec5

This study uses mixed combinations of neutrosophic chromatic number and
chromatic number to study on neutrosophic graphs. The connections of vertices
which are clarified by neutrosophic strong edges, differ them from each other
and and put them in different categories to represent one representative for
each color. Further studies could be about changes in the settings to compare
this notion amid different settings of graph theory. One way is finding some
relations amid array of vertices to make sensible definitions. In Table (2.2),
some limitations and advantages of this study is pointed out. Second case for

Table 2.2: A Brief Overview about Advantages and Limitations of this study tbl2

Advantages Limitations
1. Using neutrosophic strong edges 1. Using only one array of three arrays

2. Using neutrosophic cardinality

3. Using cardinality 2. Study on a few classes

4. Characterizing smallest number

5. Characterizing biggest number 3. Quality of Results

the contents is to use the article from [3]. The contents are used in the way
that, usages of new contents are preferences and the preliminaries are passed in
the beginning of this chapter.

2.9 Neutrosophic Chromatic Number Based on
Connectedness

2.10 Abstract

New setting is introduced to study chromatic number. vital chromatic number
and n-vital chromatic number are proposed in this way, some results are
obtained. Classes of neutrosophic graphs are used to obtains these numbers
and the representatives of the colors. Using colors to assign to the vertices
of neutrosophic graphs is applied. Some questions and problems are posed
concerning ways to do further studies on this topic. Using vital edge from
connectedness to define the relation amid vertices which implies having different
colors amid them and as consequences, choosing one vertex as a representative of
each color to use them in a set of representatives and finally, using neutrosophic
cardinality of this set to compute vital chromatic number. This specific relation
amid edges is necessary to compute both vital chromatic number concerning
the number of representative in the set of representatives and n-vital chromatic
number concerning neutrosophic cardinality of set of representatives. If two
vertices have no vital edge, then they can be assigned to same color even they’ve
common edge. Basic familiarities with neutrosophic graph theory and graph
theory are proposed for this article.
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2.11 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 2.11.1. Is it possible to use mixed versions of ideas concerning
“connectedness”, “neutrosophic graphs” and “neutrosophic coloring” to define
some notions which are applied to neutrosophic graphs?

It’s motivation to find notions to use in any classes of neutrosophic graphs.
Real-world applications about time table and scheduling are another thoughts
which lead to be considered as motivation. Connections amid two items have key
roles to assign colors. Thus they’re used to define new ideas which conclude to
the structure of coloring. The concept of having vital edge from connectedness
inspires me to study the behavior of vital edge in the way that, both vital
chromatic number and n-vital number are the cases of study.
The framework of this study is as follows. In the beginning of chapter, I
introduced basic definitions to clarify about preliminaries. In subsection
“Definitions and Clarification”, new notion of coloring is applied to the vertices
of neutrosophic graphs. Vital edge from connectedness has the key role
in this way. Classes of neutrosophic graphs are studied in the terms of
vital edges. In subsection “Applications in Time Table and Scheduling”,
one application is posed for neutrosophic graphs concerning time table and
scheduling when the suspicions are about choosing some subjects. In subsection
“Open Problems”, some problems and questions for further studies are proposed.
In subsection “Conclusion and Closing Remarks”, gentle discussion about results
and applications are featured. In subsection “Conclusion and Closing Remarks”,
a brief overview concerning advantages and limitations of this study alongside
conclusions are formed.

2.12 Definitions and Clarification

Definition 2.12.1. Let N = (σ, µ) be a neutrosophic graph. A neutrosophic
edge xy is called vital if deletion of xy has no change on its connectedness
which is a maximum strength of paths amid them.

Definition 2.12.2. Let N = (σ, µ) be a neutrosophic graph. A vertex which has
common vital edge with another vertex, has assigned different color from that
vertex. The number of different colors, is called vital chromatic number and
its neutrosophic cardinality is called n-vital chromatic number.

Example 2.12.3. Assume Figure (2.3) with respect to first order.

(i) : Only vital edge is n2n3. Other edges aren’t vital.

(ii) : The vertices n2 and n3 have different colors.

(iii) : The vertex n1 could get any color.
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(iv) : The vertex n1 has no vital edge with any given vertex.

(v) : The set of representatives of colors is {n1, n2}.

(vi) : Amid n2 and n3, n2 has minimum value.

(vii) : Deletion of edge n1n2 has no change in the connectedness of obtained
neutrosophic graph.

(viii) : The vital number is two.

(ix) : n-vital chromatic number is 2.57.

Figure 2.3: Neutrosophic graph N1 is considered with respect to first order. It’s
complete but it isn’t neutrosophic complete. It’s cycle but it isn’t neutrosophic
cycle. It’s neutrosophic 3-partite but it isn’t neutrosophic complete 3-partite. nsc1b

2.13 Basic Properties

prp5b Proposition 2.13.1. Let N = (σ, µ) be a neutrosophic cycle. Then all edges
are vital.

Proof. Consider N = (σ, µ) be a neutrosophic cycle. Hence, there are at least
two edges which are weakest, it means there are xy, uv ∈ E such that

µ(uv) = µ(xy) = min
e∈E

µ(e).

In other hand, for every given vertices x and y, there are two paths from x to
y. So for every given path,

S(P ) = min
e∈E

µ(e).
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Thus for every x, y ∈ V, xy ∈ E, the value µ(xy) forms the connectedness amid
x to y. Therefore connectedness amid any given couple of vertices, doesn’t
change when they form an edge and they’re deleted. It induces every edge is
vital. �

prp6b Proposition 2.13.2. Let N = (σ, µ) be a neutrosophic complete which is neither
neutrosophic empty nor neutrosophic path. Then all edges are vital.

Proof. Suppose N = (σ, µ) is a neutrosophic complete which is neither
neutrosophic empty nor neutrosophic path. If x, y ∈ V, then xy ∈ E. Thus
P : x, y is a path for every given couple of vertices. Hence

S(P ) = µ(xy).

Therefore, connectedness ≥ µ(xy). In other hands, assume P ′ : x, · · · , y is an
arbitrary path from x to y. By N = (σ, µ) is a neutrosophic complete, N = (σ, µ)
is a neutrosophic strong. By N = (σ, µ) is a neutrosophic strong,

S(P ′) ≤ µ(xy).

Then connectedness ≤ S(P ). It implies connectedness ≤ µ(xy). To sum it up,
connectedness = µ(xy). It induces xy is vital. �

Proposition 2.13.3. Let N = (σ, µ) be a neutrosophic graph which is fixed-edge
and which is neither neutrosophic empty nor neutrosophic path. Then all edges
are vital.

Proof. Assume N = (σ, µ) is a neutrosophic graph which is fixed-edge and
which is neither neutrosophic empty nor neutrosophic path. ByN = (σ, µ) is a
fixed-edge,

∀e, e′ ∈ E, µ(e) = µ(e′).

It induces for every given edge e and every given paths P, P ′

S(P ) = S(P ′) = µ(e).

It implies connectedness is fixed and it equals to µ(e) where e ∈ E. Therefore,
the deletion of e has no change on connectedness amid every couple of vertices.
It means every edge is vital. �

prp8b Proposition 2.13.4. Let N = (σ, µ) be a neutrosophic graph which is neither
neutrosophic empty nor neutrosophic path. Then there’s at least one vital edge.

Proof. Consider N = (σ, µ) is a neutrosophic graph which is neither
neutrosophic empty nor neutrosophic path. Assume N = (σ, µ) is a neutrosophic
graph which is either fixed-edge or fixed-vertex and neutrosophic strong. Hence,
all edges have same value. It means

∀e, e′ ∈ E, µ(e) = µ(e′).

It induces for every given edge e and every given paths P, P ′

S(P ) = S(P ′) = µ(e).
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It implies connectedness is fixed and it equals to µ(e) where e ∈ E. Therefore,
the deletion of e has no change on connectedness amid every couple of vertices.
It means every edge is vital. In other hand, suppose otherwise. So by |E| > 2,
there’s one edge e such that for every edge e′ 6= e,

µ(e) > µ(e′).

Let a number µ(e′) be
min
e∈E

µ(e).

Then connectedness is ≥ µ(e′). But there’s a cycle which implies |E| > 3.
It induces there are at least two paths corresponded to e′. By µ(e) > µ(e′),
connectedness ≥ µ(e′). It implies corresponded connectedness to e′ isn’t changed
when the deletion of e′ is done. Thus the edge e′ ∈ E is vital. �

prp9b Proposition 2.13.5. Let N = (σ, µ) be a neutrosophic strong which is fixed-
vertex and which is neither neutrosophic empty nor neutrosophic path. Then
all edges are vital.

Proof. Assume N = (σ, µ) is a neutrosophic strong which is fixed-vertex and
which is neither neutrosophic empty nor neutrosophic path. Thus by N = (σ, µ)
is a neutrosophic fixed-vertex, for all v, v′ ∈ V,

σ(v) = σ(v′).

By N = (σ, µ) is a neutrosophic strong, for all e, e′ ∈ V,

µ(e) = µ(e′).

It induces for every couple of vertices which form an edge, connectedness amid
them is same and equals µ(e) where e is a given edge. It implies at least there
are two paths with strength µ(e). Thus deletion of every edge has no change
on connectedness amid its vertices. Therefore, every edge is vital. �

Proposition 2.13.6. Let N = (σ, µ) be a neutrosophic graph which is fixed-
vertex and complete. Then all edges are vital.

Proof. By N = (σ, µ) is neutrosophic complete, N = (σ, µ) is neutrosophic
strong. By N = (σ, µ) is a neutrosophic graph which is fixed-vertex, complete
and applying Proposition (2.13.5), all edges are vital. �

prp11b Proposition 2.13.7. Let N = (σ, µ) be a neutrosophic graph which is fixed-edge.
Then all edges are vital.

Proof. Suppose N = (σ, µ) is a neutrosophic graph which is fixed-edge. Then
for every edges e and e′,

µ(e) = µ(e′).

It means all paths has same strength which is the value of an edge since all
edges have same values. It means the connectedness amid all given couple of
vertices is the same. There are at least two paths. So deletion any edge has no
change on the connectedness amid all given couple of vertices. �
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2.14 Vital Chromatic Number

Proposition 2.14.1. Let N = (σ, µ) be a neutrosophic graph which is neither
neutrosophic empty nor neutrosophic path. Then vital chromatic number is at
most n and at least 1.

Proof. These bounds are sharp and tight as they’ll be shown in upcoming
results. If there’s no edge, then vital chromatic number is 1 but if the number of
vertices are n and they’re connected to each other, then vital chromatic number
is n. �

2.15 Largest Vital Chromatic Number

Proposition 2.15.1. Let N = (σ, µ) be a neutrosophic complete which is neither
neutrosophic empty nor neutrosophic path. Then vital chromatic number is n.

Proof. Consider N = (σ, µ) is a neutrosophic complete which is neither
neutrosophic empty nor neutrosophic path. By Proposition (2.13.2), all edges
are vital. By N = (σ, µ) isn’t a neutrosophic path, there are at least two path
amid two given edges. In other words, there is at least one cycle. By N = (σ, µ)
is a neutrosophic complete, all vertices are connected to each other. It implies,

∀v, v′ ∈ V, vv′ ∈ E.

It induces all vertices have different colors. The number of vertices are n. So
vital chromatic number is n. �

Proposition 2.15.2. Let N = (σ, µ) be a neutrosophic path. Then vital
chromatic number aren’t computable.

Proof. Assume N = (σ, µ) is a neutrosophic path. Then there’s only one path
amid two given vertices. So deletion of an edge makes the connectedness amid
its vertices, to be incomputable. �

Proposition 2.15.3. Let N = (σ, µ) be a neutrosophic star. Then vital
chromatic number aren’t computable.

Proof. Consider N = (σ, µ) is a neutrosophic star. Hence there’s only one path
amid two given vertices. Thus deletion of an edge makes the connectedness
amid its vertices, to be incomputable. �

2.16 Smallest Vital Chromatic Number

Proposition 2.16.1. Let N = (σ, µ) be a neutrosophic empty. Then vital
chromatic number is 1.

Proof. Let N = (σ, µ) be a neutrosophic empty. Then there’s no edge. It
implies all vertices have same colors where the minimum number of colors are
applied. Thus vital chromatic number is 1. �

prp17b Proposition 2.16.2. Let N = (σ, µ) be a neutrosophic graph which is neither
neutrosophic empty nor neutrosophic path. Then vital chromatic number isn’t 1.
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Proof. Assume N = (σ, µ) is a neutrosophic graph which is neither neutrosophic
empty nor neutrosophic path. By Proposition (2.13.4), there’s at least one vital
edge. �

Proposition 2.16.3. Let N = (σ, µ) be a neutrosophic cycle. Then vital
chromatic number is at least 2 and at most 3.

Proof. Suppose N = (σ, µ) is a neutrosophic cycle. There’s at least amid two
vertices. By Proposition (2.13.1), all edges are vital. So at least the colors
of two vertices are different. It implies vital chromatic number is at least 2.
By applying colors on vertices in alternative ways, at most two vertices have
common edges with same color. Hence vital chromatic number is at most 3. �

Proposition 2.16.4. Let N = (σ, µ) be an even neutrosophic cycle. Then vital
chromatic number is 2.

Proof. Assume N = (σ, µ) is an even neutrosophic cycle. By Proposition
(2.16.2), vital chromatic number is at least 2. By applying coloring on vertices
in alternative ways, two vertices with common edge, has different colors. Since
the cycle has even number of edges. Thus vital chromatic number is 2. �

Proposition 2.16.5. Let N = (σ, µ) be an odd neutrosophic cycle. Then vital
chromatic number is 3.

Proof. Consider N = (σ, µ) is an odd neutrosophic cycle. By Proposition
(2.13.1), all edges are vital. So by using coloring in alternative way, there
are two vertices which have common edge and have same color. Thus vital
chromatic number is 3. �

prp21b Proposition 2.16.6. Let N = (σ, µ) be a neutrosophic bipartite which is fixed-
edge and complete. Then vital chromatic number is 2.

Proof. Suppose N = (σ, µ) is a neutrosophic bipartite which is fixed-edge and
complete. Thus strength of every path is as same as connectedness amid two
vertices is. Thus all edges are vital. By N = (σ, µ) is complete, all vertices
from one part are connected to all vertices of another part. Every part has no
connection amid its vertices so all vertices from every part, have same color.
There are two parts. Thus vital chromatic number is 2. �

Proposition 2.16.7. Let N = (σ, µ) be a neutrosophic bipartite which is fixed-
vertex and complete. Then vital chromatic number is 2.

Proof. By N = (σ, µ) is fixed-vertex and complete, N = (σ, µ) is fixed-edge and
complete. Therefore, by Proposition (2.16.6), vital chromatic number is 2. �

prp23b Proposition 2.16.8. Let N = (σ, µ) be a neutrosophic t−partite which is fixed-
edge and complete. Then vital chromatic number is t.

Proof. By N = (σ, µ) is fixed-edge, all edges have same value. Thus all paths
have same strength. So connectedness amid two given vertices are same.
Therefore all edges are vital. Inside every part, there’s no edge amid two
vertices. It induces the vertices of every part have same color. There are t parts.
It implies t different colors are applied. Therefore vital chromatic number is
t. �
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Proposition 2.16.9. Let N = (σ, µ) be a neutrosophic t−partite which is fixed-
vertex and complete. Then vital chromatic number is t.

Proof. It’s fixed-vertex and complete. So It’s fixed-edge and complete. By
Proposition (2.16.8), vital chromatic number is t. �

Proposition 2.16.10. Let N = (σ, µ) be a neutrosophic wheel which is fixed-
vertex and neutrosophic strong. Then vital chromatic number is 3 or 4.

Proof. Consider N = (σ, µ) is a neutrosophic wheel which is fixed-vertex and
neutrosophic strong. By it’s fixed-vertex and neutrosophic strong, it’s fixed-edge.
Every edges have same value. So strength of paths and connectedness are same
and equal to each other. Thus all edges are vital. Then the center has one
color and since it’s connected to all other vertices, the color of center is unique.
Therefore, vital chromatic number is at least 2. Non-center vertices form a path
which are colored by two colors when applying colors are in alternative ways.
Thus vital chromatic number is 3 if the non-center vertices form even color and
vital chromatic number is 4 if the non-center vertices form odd color. �

Proposition 2.16.11. Let N = (σ, µ) be a neutrosophic wheel which is fixed-edge
and neutrosophic strong. Then vital chromatic number is 3 or 4.

Proof. Consider N = (σ, µ) is a neutrosophic wheel which is fixed-vertex and
neutrosophic strong. It’s fixed-edge. Every edges have same value. So strength
of paths and connectedness are same and equal to each other. Thus all edges
are vital. Then the center has one color and since it’s connected to all other
vertices, the color of center is unique. Therefore, vital chromatic number is at
least 2. Non-center vertices form a path which are colored by two colors when
applying colors are in alternative ways. Thus vital chromatic number is 3 if
the non-center vertices form even color and vital chromatic number is 4 if the
non-center vertices form odd color. �

2.17 n-Vital Chromatic Number

Proposition 2.17.1. Let N = (σ, µ) be a neutrosophic graph which is neither
neutrosophic empty nor neutrosophic path. Then n-vital chromatic number is at
most order of N which is neutrosophic cardinality of V.

Proof. Assume N = (σ, µ) is a neutrosophic graph which is neither neutrosophic
empty nor neutrosophic path. If all edges are vital and all vertices are connected
to each other, then vital chromatic number is n. Thus n-vital chromatic number
is at most order of N which is neutrosophic cardinality of V. �

2.18 Largest n-Vital Chromatic Number

Proposition 2.18.1. Let N = (σ, µ) be a neutrosophic complete which is neither
neutrosophic empty nor neutrosophic path. Then n-vital chromatic number is
order of N which is neutrosophic cardinality of V.
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Proof. Suppose N = (σ, µ) is a neutrosophic complete which is neither
neutrosophic empty nor neutrosophic path. By it’s complete, then all vertices
are connected to each other and all edges are vital. Thus n colors are used. It
means n-vital chromatic number is order of N which is neutrosophic cardinality
of V. �

Proposition 2.18.2. Let N = (σ, µ) be a neutrosophic path. Then n-vital
chromatic number aren’t computable.

Proof. Deletion of one edge, make N = (σ, µ) be in the situation where n-vital
chromatic number aren’t computable. Since there’s need to have at least two
paths to compute n-vital chromatic number. In other words, this notion is
computable in neutrosophic graph which has at least one cycle. �

Proposition 2.18.3. Let N = (σ, µ) be a neutrosophic star. Then n-vital
chromatic number aren’t computable.

Proof. Assume N = (σ, µ) is a neutrosophic star. Then there’s only one path
amid two given vertices. Deletion one edge causes the connectedness to be
incomputable. Thus n-vital chromatic number aren’t computable. �

2.19 Smallest n-Vital Chromatic Number

Proposition 2.19.1. Let N = (σ, µ) be a neutrosophic empty. Then n-vital
chromatic number is

min
x∈V

σ(x).

Proof. Suppose N = (σ, µ) is a neutrosophic empty. Then there’s no edge. It
induces there’s no vital edge. So all vertices are colored by one color. Hence
all vertices have same color. It means the number of color is one. It induces
the cardinality of set includes the representative of color is one. To find the
representative of color, we have 1 choice from n options. Thus n-vital chromatic
number is

min
x∈V

σ(x).

�

Proposition 2.19.2. Let N = (σ, µ) be a neutrosophic graph which is neither
neutrosophic empty nor neutrosophic path. Then n-vital chromatic number isn’t

min
x∈V

σ(x).

Proof. Consider N = (σ, µ) is a neutrosophic graph which is neither
neutrosophic empty nor neutrosophic path. Then there’s at least one edge. By
Proposition (2.13.4), there’s at least one vital edge. It induces the number of
color is at least two. Therefore, the cardinality of set of representative is at
least two. It implies n-vital chromatic number isn’t

min
x∈V

σ(x).

�
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Proposition 2.19.3. Let N = (σ, µ) be a neutrosophic cycle. Then n-vital
chromatic number is at least

min
x,y∈V, xy∈E

σ(x) + σ(y).

And at most
min

x,y,z∈V,xy,yz,xz∈E
σ(x) + σ(y) + σ(z).

Proof. Suppose N = (σ, µ) is a neutrosophic cycle. By using alternative coloring
of vertices, two or three numbers of colors are used. So the cardinality of set
of representative is two or three. There are only these possibilities. Therefore
n-vital chromatic number is at least

min
x,y∈V, xy∈E

σ(x) + σ(y).

And at most
min

x,y,z∈V,xy,yz,xz∈E
σ(x) + σ(y) + σ(z).

�

Proposition 2.19.4. Let N = (σ, µ) be an even neutrosophic cycle. Then n-vital
chromatic number is

min
x,y∈V, xy∈E

σ(x) + σ(y).

Proof. Assume N = (σ, µ) is an even neutrosophic cycle. If colors are applied
on vertices in alternative ways which cause two vertices with a common edge,
have different colors, then by it’s even neutrosophic cycle, the representatives of
colors are two. Since there are even edges which by Proposition (2.13.1), all are
vital. It induces the cardinality of set of representatives is two. Thus n-vital
chromatic number is n-vital chromatic number is

min
x,y∈V, xy∈E

σ(x) + σ(y).

�

Proposition 2.19.5. Let N = (σ, µ) be an odd neutrosophic cycle. Then n-vital
chromatic number is

min
x,y,z∈V, xy∈E

σ(x) + σ(y) + σ(z).

Proof. Consider N = (σ, µ) is an odd neutrosophic cycle. Then number of edges
are odd. By Proposition (2.13.1), all edges are vital. Using different colors on
the vertices which have common edges, implies usage of three colors. Hence the
set of representatives has the cardinality three. To choose, the representatives,
in every color, minimum value of vertices, introduces the representative of
specific color. Then n-vital chromatic number is

min
x,y,z∈V, xy∈E

σ(x) + σ(y) + σ(z).

�
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prp36b Proposition 2.19.6. Let N = (σ, µ) be neutrosophic bipartite which is fixed-edge
and complete. Then n-vital chromatic number is

min
x,y∈V, xy∈E

σ(x) + σ(y).

Proof. Assume N = (σ, µ) is neutrosophic bipartite which is fixed-edge and
complete. It’s fixed-edge so all edges have same value and as its consequences,
all paths have same strength and all connectedness are same. Hence all edges
are vital. By it’s complete, all vertices from one part are connected to all
vertices from another part. By it’s bipartite, there are two colors to use on
vertices such that every part has same color. So the set of representatives has
the cardinality two which implies n-vital chromatic number is

min
x,y∈V, xy∈E

σ(x) + σ(y).

�

Proposition 2.19.7. Let N = (σ, µ) be neutrosophic bipartite which is fixed-
vertex and complete. Then n-vital chromatic number is

min
x,y∈V, xy∈E

σ(x) + σ(y).

Proof. Assume N = (σ, µ) is neutrosophic bipartite which is fixed-vertex and
complete. By it’s fixed-vertex and complete, it’s fixed-edge and complete. By
Proposition (2.19.6), n-vital chromatic number is

min
x,y∈V, xy∈E

σ(x) + σ(y).

�

prp38b Proposition 2.19.8. Let N = (σ, µ) be neutrosophic t−partite which is fixed-
edge and complete. Then n-vital chromatic number is

min
x1,x2,··· ,xt∈V, xixj∈E

σ(x1) + σ(x2) + · · ·+ σ(xt).

Proof. Assume N = (σ, µ) is neutrosophic t−partite which is fixed-edge and
complete. All parts have same color on their vertices. By it’s fixed-edge and
applying Proposition (2.13.7), all edges are vital. Thus minimum number of
colors is t. And the set of representatives has the cardinality t. It means n-vital
chromatic number is

min
x1,x2,··· ,xt∈V, xixj∈E

σ(x1) + σ(x2) + · · ·+ σ(xt).

�

Proposition 2.19.9. Let N = (σ, µ) be neutrosophic t−partite which is fixed-
vertex and complete. Then n-vital chromatic number is

min
x1,x2,··· ,xt∈V, xixj∈E

σ(x1) + σ(x2) + · · ·+ σ(xt).
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Proof. Assume N = (σ, µ) is neutrosophic t−partite which is fixed-vertex and
complete. Then by it’s fixed-vertex and complete, it’s it’s fixed-edge and
complete. By Proposition (2.19.8), n-vital chromatic number is

min
x1,x2,··· ,xt∈V, xixj∈E

σ(x1) + σ(x2) + · · ·+ σ(xt).

�

prp40b Proposition 2.19.10. Let N = (σ, µ) be neutrosophic wheel which is fixed-vertex
and neutrosophic strong. Then n-vital chromatic number is

min
y,z∈V,yz∈E

σ(c) + σ(y) + σ(z).

Or
min

y,z∈V,yz,zt∈E
σ(c) + σ(y) + σ(z) + σ(t).

Proof. Consider N = (σ, µ) is neutrosophic wheel which is fixed-vertex and
neutrosophic strong. By fixed-vertex and neutrosophic strong, it’s fixed-edge.
By it’s fixed-edge and applying Proposition (2.13.7), all edges are vital. Center
is connected to non-center vertices. So center uses unique color. Non-center
vertices form a cycle. If the cycle is even, then n-vital chromatic number is

min
y,z∈V,yz∈E

σ(c) + σ(y) + σ(z).

If it’s odd, then n-vital chromatic number is

min
y,z∈V,yz∈E

σ(c) + σ(y) + σ(z).

Or
min

y,z∈V,yz,zt∈E
σ(c) + σ(y) + σ(z) + σ(t).

�

Proposition 2.19.11. Let N = (σ, µ) be neutrosophic wheel which is fixed-edge
and neutrosophic strong. Then n-vital chromatic number is

min
y,z∈V,yz∈E

σ(c) + σ(y) + σ(z).

Proof. Assume N = (σ, µ) is neutrosophic wheel which is fixed-edge and
neutrosophic strong. By it’s fixed-edge and neutrosophic strong, it’s fixed-
vertex and neutrosophic strong. By Proposition (2.19.10),

min
y,z∈V,yz∈E

σ(c) + σ(y) + σ(z).

Or
min

y,z∈V,yz,zt∈E
σ(c) + σ(y) + σ(z) + σ(t).

�

The relation amid neutrosophic chromatic number and main parameters of
neutrosophic graphs is computed.
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Proposition 2.19.12. Let N = (σ, µ) be a neutrosophic strong. Then vital
chromatic number is at most ∆ + 1 and at least 2.

Proof. Neutrosophic strong is neutrosophic nontrivial. So it isn’t neutrosophic
empty which induces there’s no edge. It implies chromatic number is two. Since
chromatic number is one if and only if N = (σ, µ) is neutrosophic empty if
and only if N = (σ, µ) is neutrosophic trivial. A vertex with degree ∆, has ∆
vertices which have common edges with them. If these vertices have no edge
amid each other, then chromatic number is two especially, neutrosophic star. If
not, then in the case, all vertices have edge amid each other, chromatic number
is ∆ + 1, especially, neutrosophic complete. �

Proposition 2.19.13. Let N = (σ, µ) be a neutrosophic r−regular. Then vital
chromatic number is at most r + 1.

Proof. N = (σ, µ) is a neutrosophic r−regular. So any of vertex has r vertices
which have common edge with it. If these vertices have no common edge with
each other, for instance neutrosophic star, chromatic number is two. But since
the vertices have common edge with each other, chromatic number is r + 1, for
instance, neutrosophic complete. �

2.20 Applications in Time Table and Scheduling
sec3b

Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has important to avoid mixing up.

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive section. Beyond that, sometimes sections are not the same.

Step 3. (Model) As Figure (2.4), the situation is designed as a model. The
model uses data to assign every section and to assign to relation amid
section, three numbers belong unit interval to state indeterminacy,
possibilities and determinacy. There’s one restriction in that, the numbers
amid two sections are at least the number of the relation amid them.
Table (2.3), clarifies about the assigned numbers to these situation.

Table 2.3: Scheduling concerns its Subjects and its Connections as a
Neutrosophic Graph in a Model. tbl1b

Sections of T s1 s2 s3 s4 s5 s6 s7 s8 s9, s10
Values 0.1 0.8 0.7 0.8 0.1 0.3 0.6 0.5 0.2

Connections of T s1s2 s2s3 s3s4 s4s5 s5s6 s6s7 s7s8 s8s9 s9s10
Values 0.1 0.6 0.4 0.1 0.1 0.2 0.4 0.2 0.1
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Figure 2.4: Black vertices are suspicions about choosing them. fgr1b

Step 4. (Solution) As Figure (2.4) shows, neutrosophic model, proposes to
use vital chromatic number which is incomputable in the case which is
titled T ′. In this case, i1 and c1 aren’t representative of these two colors
and n-vital chromatic number is incomputable. The set {i1, c1} doesn’t
contain representatives of colors which pose vital chromatic number and
n-vital chromatic number. Thus the decision amid choosing the subject
c1 an c2 isn’t concluded to choose c1. To get brief overview, neutrosophic
model uses one number for every array so 0.9 means (0.9, 0.9, 0.9). In
Figure (2.4), the neutrosophic model T introduces the common situation.
The representatives of colors are i2 and c1. Thus vital chromatic number
is two and n-vital chromatic number is 1.4. Thus suspicion about choosing
i1 and i2 is determined to be i2. The sets of representative for colors are
{i2, c1}.

2.21 Open Problems
sec4b

The two notions of coloring of vertices concerning vital chromatic number and n-
vital chromatic number are defined on neutrosophic graphs when connectedness
and as its consequences, vital edges have key role to have these notions. Thus

Question 2.21.1. Is it possible to use other types edges via connectedness to
define vital chromatic number and n-vital chromatic number?

Question 2.21.2. Are existed some connections amid the coloring from
connectedness inside this concept and external connections with other types
of coloring from other notions?

Question 2.21.3. Is it possible to construct some classes neutrosophic graphs
which have “nice” behavior?

Question 2.21.4. Which applications do make an independent study to apply
vital chromatic number and n-vital chromatic number?

Problem 2.21.5. Which parameters are related to this parameter?
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Problem 2.21.6. Which approaches do work to construct applications to create
independent study?

Problem 2.21.7. Which approaches do work to construct definitions which use
all three arrays and the relations amid them instead of one array of three arrays
to create independent study?

2.22 Conclusion and Closing Remarks
sec5b

This study uses mixed combinations of vital chromatic number and n-vital
chromatic number to study on neutrosophic graphs. The connections of vertices
which are clarified by vital edges from connectedness, differ them from each
other and and put them in different categories to represent one representative for
each color. Further studies could be about changes in the settings to compare
this notion amid different settings of graph theory. One way is finding some
relations amid array of vertices to make sensible definitions. In Table (2.4),
some limitations and advantages of this study is pointed out.

Table 2.4: A Brief Overview about Advantages and Limitations of this study tbl2b

Advantages Limitations
1. Using connectedness for vital edges 1. Acyclic neutrosophic graphs

2. Using neutrosophic cardinality

3. Using cardinality 2. Connections with parameters

4. Characterizing smallest number

5. Characterizing biggest number 3. Star and path

2.23 New Ideas
New ideas are
applied on this
model to explore

behaviors of
these models in
the mathematical

perspective.
Another ways to
make sense about
them, are used
by relatively
comparable
results to
conclude
analysis.

Having different colors when two vertices have common “connection”. Common
connection can only be an edge. An edge with special attribute can be common
“connection”. Using neutrosophic attributes are expected to make sense about
the study in this framework. In what follows, some definitions are introduced
to be in the form of common “connection”.

2.24 Different Types of Neutrosophic Chromatic Number

Third case for the contents is to use the article from [2]. The contents are used
in the way that, usages of new contents are preferences and the preliminaries
are passed in the beginning of this chapter.
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2.25. Abstract

2.25 Abstract

New setting is introduced to study chromatic number. Different types of
chromatic numbers and neutrosophic chromatic number are proposed in this
way, some results are obtained. Classes of neutrosophic graphs are used to
obtains these numbers and the representatives of the colors. Using colors to
assign to the vertices of neutrosophic graphs is applied. Some questions and
problems are posed concerning ways to do further studies on this topic. Using
different types of edges from connectedness in same neutrosophic graphs and in
modified neutrosophic graphs to define the relation amid vertices which implies
having different colors amid them and as consequences, choosing one vertex as
a representative of each color to use them in a set of representatives and finally,
using neutrosophic cardinality of this set to compute types of chromatic numbers.
This specific relation amid edges is necessary to compute both types of chromatic
number concerning the number of representative in the set of representatives and
types of neutrosophic chromatic number concerning neutrosophic cardinality
of set of representatives. If two vertices have no intended edge, then they can
be assigned to same color even they’ve common edge. Basic familiarities with
neutrosophic graph theory and graph theory are proposed for this article.
Keywords: Neutrosophic Connctedness, Neutrosophic Graphs, Chromatic

Number
AMS Subject Classification: 05C17, 05C22, 05E45

2.26 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 2.26.1. Is it possible to use mixed versions of ideas concerning
“connectedness”, “neutrosophic graphs” and “neutrosophic coloring” to define
some notions which are applied to neutrosophic graphs?

It’s motivation to find notions to use in any classes of neutrosophic graphs.
Real-world applications about time table and scheduling are another thoughts
which lead to be considered as motivation. Connections amid two items have key
roles to assign colors. Thus they’re used to define new ideas which conclude to
the structure of coloring. The concept of having specific edge from connectedness
inspires me to study the behavior of specific edge in the way that, both types of
chromatic numbers and types of neutrosophic chromatic numbers are the cases
of study.
The framework of this study is as follows. In the beginning, I introduced basic
definitions to clarify about preliminaries. In section “New Ideas”, new notion
of coloring is applied to the vertices of neutrosophic graphs. Specific edge from
connectedness has the key role in this way. Classes of neutrosophic graphs
are studied in the terms of different types of edges in section “New Results”.
In section “Applications in Time Table and Scheduling”, one application is
posed for neutrosophic graphs concerning time table and scheduling when the
suspicions are about choosing some subjects. In section “Open Problems”, some
problems and questions for further studies are proposed. In section “Conclusion
and Closing Remarks”, gentle discussion about results and applications are
featured. In section “Conclusion and Closing Remarks”, a brief overview
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concerning advantages and limitations of this study alongside conclusions are
formed.

2.27 New Ideas

Question 2.27.1. What-if the common “connection” is beyond having one
common edge?

The first step is the definition of common “connection”.

Definition 2.27.2. Let N = (σ, µ) be a neutrosophic graph. A neutrosophic
edge xy is called type-I if value of xy is connectedness which is a maximum
strength of paths amid them.

Example 2.27.3. Consider Figure (2.5).

(i) : From n1 to n2, there’s no edge which is type-I but n2n3.

(ii) : From n2 to n3, there’s no edge which is type-I but n2n3.

(iii) : From n1 to n3, there’s no edge which is type-I but n1n3.

Figure 2.5: Two edges aren’t type-I. ncs1c2

There’s a curious question.

Question 2.27.4. Is there a neutrosophic graph whose edges are type-I?

Yes but only one class. Two upcoming Propositions give simple answers
about a class of neutrosophic graphs. Other classes of neutrosophic graphs have
at least one edge which isn’t type-I.

Proposition 2.27.5. Let N = (σ, µ) be a neutrosophic graph which is fixed-edge.
Then all edges are type-I.
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Proposition 2.27.6. Let N = (σ, µ) be a neutrosophic graph which is strong
fixed-vertex. Then N = (σ, µ) is fixed-edge.

Proposition 2.27.7. Let N = (σ, µ) be a neutrosophic graph which is strong
fixed-vertex. Then all edges are type-I.

Example 2.27.8. Consider Figure (2.6). All edges are type-I.

Figure 2.6: Neutrosophic graph which is fixed-edge but not strong fixed-vertex. ncs2c2

Definition 2.27.9. Let N = (σ, µ) be a neutrosophic graph. A neutrosophic
edge xy is called type-II if value of xy is lower than connectedness which is
a maximum strength of paths amid them.

Example 2.27.10. The comparison amid the variant of edges which are either
type-I or type-II, is possible when common neutrosophic graphs are studied.

(a) : Consider Figure (2.5).

(i) : From n1 to n2, there’s no edge which is type-II but n1n2.

(ii) : From n2 to n3, there’s no edge which is type-II but n1n2.

(iii) : From n1 to n3, there’s no edge which is type-II but n1n2 and n2n3.

(b) : Consider Figure (2.6). There’s no edge which is type-II.

Definition 2.27.11. Let N = (σ, µ) be a neutrosophic graph. A neutrosophic
edge xy is called type-III if value of xy is the only value which is
connectedness which is a maximum strength of paths amid them.

Example 2.27.12. The comparison amid the variant of edges which are either
type-I or type-II or type-III, is possible when common neutrosophic graphs are
studied.

(a) : Consider Figure (2.5).
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(i) : From n1 to n2, there’s no edge which is type-III but n2n3.

(ii) : From n2 to n3, there’s no edge which is type-III but n2n3.

(iii) : From n1 to n3, there’s no edge which is type-III but n1n3 and n2n3.

(b) : Consider Figure (2.6). There’s no edge which is type-III.

Definition 2.27.13. Let N = (σ, µ) be a neutrosophic graph. A neutrosophic
edge xy is called type-IV if value of xy is connectedness which is a maximum
strength of paths amid them but in N = (σ, µ) doesn’t have xy.

Example 2.27.14. The comparison amid the variant of edges which are either
type-I or...or type-IV, is possible when common neutrosophic graphs are studied.

(a) : Consider Figure (2.5).

(i) : From n1 to n2, there’s no edge which is type-IV.
(ii) : From n2 to n3, there’s no edge which is type-IV.

(iii) : From n1 to n3, there’s no edge which is type-IV.

(b) : Consider Figure (2.6). All edges are type-IV.

Definition 2.27.15. Let N = (σ, µ) be a neutrosophic graph. A neutrosophic
edge xy is called type-V if value of xy is lower than connectedness which is
a maximum strength of paths amid them but in N = (σ, µ) doesn’t have xy.

Example 2.27.16. The comparison amid the variant of edges which are either
type-I or...or type-V, is possible when common neutrosophic graphs are studied.

(a) : Consider Figure (2.5).

(i) : From n1 to n2, edge n1n2 is type-V.
(ii) : From n2 to n3, there’s no edge which is type-V.

(iii) : From n1 to n3, there’s no edge which is type-V.

(b) : Consider Figure (2.6). There’s no edge which is type-V.

Definition 2.27.17. Let N = (σ, µ) be a neutrosophic graph. A neutrosophic
edge xy is called type-VI if value of xy is greater than connectedness which
is a maximum strength of paths amid them but in N = (σ, µ) doesn’t have xy.

Example 2.27.18. The comparison amid the variant of edges which are either
type-I or...or type-VI, is possible when common neutrosophic graphs are studied.

(a) : Consider Figure (2.5).

(i) : From n1 to n2, there’s no edge which is type-VI.
(ii) : From n2 to n3, edges n2n3 and n1n3 are type-VI.

(iii) : From n1 to n3, edges n2n3 and n1n3 are type-VI.

(b) : Consider Figure (2.6). There’s no edge which is type-VI.

Definition 2.27.19. Let N = (σ, µ) be a neutrosophic graph. A neutrosophic
edge xy is called type-VII if value of xy is the only value which is
connectedness which is a maximum strength of paths amid them but in
N = (σ, µ) doesn’t have xy.
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Example 2.27.20. The comparison amid the variant of edges which are either
type-I or...or type-VII, is possible when common neutrosophic graphs are
studied.

(a) : Consider Figure (2.5).

(i) : From n1 to n2, there’s no edge which is type-VII.
(ii) : From n2 to n3, there’s no edge which is type-VII.

(iii) : From n1 to n3, there’s no edge which is type-VII.

(b) : Consider Figure (2.6). There’s no edge which is type-VII.

Common way to define the number, could be twofold. One is about the
cardinality and another is about neutrosophic cardinality.

Definition 2.27.21. Let N = (σ, µ) be a neutrosophic graph. A vertex which
has common type edge with another vertex, has assigned different color from
that vertex. The cardinality of the set of representatives of colors, is called
type chromatic number and its neutrosophic cardinality concerning the set
of representatives of colors is called n-type chromatic number.

Definition 2.27.22. It’s worthy to note that there are two types of definitions.
One is about the comparison amid edges and connectedness. Another is about
one edge when it’s deleted, new connectedness is compared to deleted edge.
Thus in first type, all edges are compared to connectedness but in second type,
for every edge, there’s a computation to have connectedness. So in first type,
connectedness is unique and there’s one number for all edges as connectedness
but in second type, for every edge, there’s a new connectedness to decide about
the edge whether has intended attribute or not. To avoid confusion, chromatic
number is computed with respect to n1 and n2 where second style is used and
all edges are labelled even they’re not deleted edges so third type is introduced
when deletion of one edge, is enough to label all edges. Also first order is used
to have these concepts.

In following example, third type of definitions which are except from type-
IV,V,VI,VII, are studied.

Example 2.27.23. The comparison amid the variant of numbers which are
either type-I or...or type-VII, is possible when common neutrosophic graphs
are studied. Chromatic number is computed with respect to n1 and n2. Also
first order is used to have these concepts.

(a) : Consider Figure (2.5).

(i) : The set of representatives of colors is {n1, n2}. Thus type-I chromatic
number is 2 and n-type-I chromatic number is 1.73.

(ii) : The set of representatives of colors is {n1, n2}. Thus type-II chromatic
number is 2 and n-type-II chromatic number is 1.73.

(iii) : The set of representatives of colors is {n2, n3}. Thus type-III
chromatic number is 2 and n-type-III chromatic number is 1.28.

(iv) : The set of representatives of colors is {n2, n3}. Thus type-IV
chromatic number is 2 and n-type-IV chromatic number is 1.28.
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(v) : The set of representatives of colors is {n1, n2}. Thus type-V chromatic
number is 2 and n-type-V chromatic number is 1.73.

(vi) : The set of representatives of colors is {n2, n3}. Thus type-VI
chromatic number is 2 and n-type-VI chromatic number is 1.28.

(vii) : The set of representatives of colors is {n2, n3}. Thus type-VII
chromatic number is 2 and n-type-VII chromatic number is 1.28.

(b) : Consider Figure (2.6).

(i) : The set of representatives of colors is {n1, n2, n3}. Thus type-I
chromatic number is 3 and n-type-I chromatic number is 3.01.

(ii) : The set of representatives of colors is {}. Thus type-II chromatic
number is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic
number is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {}. Thus type-IV chromatic
number is 0 and n-type-IV chromatic number is 0.

(v) : The set of representatives of colors is {}. Thus type-V chromatic
number is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic
number is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic
number is 0 and n-type-VII chromatic number is 0.

2.28 New Results
In this chapter,
I introduce some

results
concerning new
ideas and in

this ways, the
results make

sense more about
their impacts on

different
models.

2.29 Different Types of Neutrosophic Chromatic Number

Third case for the contents is to use the article from [Ref12]. The contents
are used in the way that, usages of new contents are preferences and the
preliminaries are passed in the beginning of this chapter.

2.30 New Results

Proposition 2.30.1. Let N = (σ, µ) be a neutrosophic graph which is complete.
If it’s fixed-edge, then

(i) : The set of representatives of colors is {v1, v2, · · · , vn}. Thus type-I
chromatic number is n and n-type-I chromatic number is neutrosophic
cardinality of V.

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {v1, v2, · · · , vn}. Thus type-IV
chromatic number is n and n-type-IV chromatic number is neutrosophic
cardinality of V.
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(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s neutrosophic complete, every
vertex has n− 1 vertices which have common edges which are type-I. Thus the
set of representatives of colors is {v1, v2, · · · , vn}. The type-I chromatic number
is n and n-type-I chromatic number is neutrosophic cardinality of V.
(ii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-II. By it’s neutrosophic complete, every vertex
has n − 1 vertices which have common edges which aren’t type-II. Thus the
set of representatives of colors is {}. The type-II chromatic number is 0 and
n-type-II chromatic number is 0.
(iii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s neutrosophic complete, every vertex
has n− 1 vertices which have common edges which aren’t type-III. Thus the
set of representatives of colors is {}. The type-III chromatic number is 0 and
n-type-III chromatic number is 0.
(iv). All edges have same amount so the connectedness amid two given edges is
the same. All edges are type-IV. By it’s neutrosophic complete, every vertex
has n− 1 vertices which have common edges which are type-IV. Thus the set
of representatives of colors is {v1, v2, · · · , vn}. The type-IV chromatic number
is n and n-type-IV chromatic number is neutrosophic cardinality of V.
(v). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-V. By it’s neutrosophic complete, every vertex
has n − 1 vertices which have common edges which aren’t type-V. Thus the
set of representatives of colors is {}. The type-V chromatic number is 0 and
n-type-V chromatic number is 0.
(vi). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-VI. By it’s neutrosophic complete, every vertex
has n− 1 vertices which have common edges which aren’t type-VI. Thus the
set of representatives of colors is {}. The type-VI chromatic number is 0 and
n-type-VI chromatic number is 0.
(vii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-VII. By it’s neutrosophic complete, every
vertex has n− 1 vertices which have common edges which aren’t type-VII. Thus
the set of representatives of colors is {}. The type-VII chromatic number is 0
and n-type-VII chromatic number is 0.

�

Proposition 2.30.2. Let N = (σ, µ) be a neutrosophic graph which is complete.
If it’s fixed-vertex, then

(i) : The set of representatives of colors is {v1, v2, · · · , vn}. Thus type-I
chromatic number is n and n-type-I chromatic number is nσ(vi).
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(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {v1, v2, · · · , vn}. Thus type-IV
chromatic number is n and n-type-IV chromatic number is nσ(vi).

(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). By it’s fixed-vertex and it’s neutrosophic complete, all edges have
same amount so the connectedness amid two given edges is the same. All edges
are type-I. By it’s neutrosophic complete, every vertex has n− 1 vertices which
have common edges which are type-I. Thus the set of representatives of colors
is {v1, v2, · · · , vn}. The type-I chromatic number is n and n-type-I chromatic
number is nσ(vi).
(ii). By it’s fixed-vertex and it’s neutrosophic complete, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-II. By it’s neutrosophic complete, every vertex has n− 1 vertices which
have common edges which aren’t type-II. Thus the set of representatives of
colors is {}. The type-II chromatic number is 0 and n-type-II chromatic number
is 0.
(iii). By it’s fixed-vertex and it’s neutrosophic complete, all edges have same
amount so the connectedness amid two given edges is the same. All edges
aren’t type-III. By it’s neutrosophic complete, every vertex has n− 1 vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0.
(iv). By it’s fixed-vertex and it’s neutrosophic complete, all edges have same
amount so the connectedness amid two given edges is the same. All edges are
type-IV. By it’s neutrosophic complete, every vertex has n− 1 vertices which
have common edges which are type-IV. Thus the set of representatives of colors
is {v1, v2, · · · , vn}. The type-IV chromatic number is n and n-type-IV chromatic
number is nσ(vi).
(v). By it’s fixed-vertex and it’s neutrosophic complete, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-V. By it’s neutrosophic complete, every vertex has n− 1 vertices which
have common edges which aren’t type-V. Thus the set of representatives of
colors is {}. The type-V chromatic number is 0 and n-type-V chromatic number
is 0.
(vi). By it’s fixed-vertex and it’s neutrosophic complete, all edges have same
amount so the connectedness amid two given edges is the same. All edges
aren’t type-VI. By it’s neutrosophic complete, every vertex has n− 1 vertices
which have common edges which aren’t type-VI. Thus the set of representatives
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of colors is {}. The type-VI chromatic number is 0 and n-type-VI chromatic
number is 0.
(vii). By it’s fixed-vertex and it’s neutrosophic complete, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-VII. By it’s neutrosophic complete, every vertex has n− 1 vertices which
have common edges which aren’t type-VII. Thus the set of representatives of
colors is {}. The type-VII chromatic number is 0 and n-type-VII chromatic
number is 0.

�

Proposition 2.30.3. Let N = (σ, µ) be a neutrosophic graph which is strong. If
it’s fixed-edge, then

(i) : The set of representatives of colors is {v1, v2, · · · , vt} where t = ∆(N).
Thus type-I chromatic number is t and n-type-I chromatic number is
neutrosophic cardinality of {v1, v2, · · · , vt}.

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {v1, v2, · · · , vt} where t = ∆(N).
Thus type-IV chromatic number is t and n-type-IV chromatic number is
neutrosophic cardinality of {v1, v2, · · · , vt}.

(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s neutrosophic strong, there’s
a vertex has t = ∆(N) vertices which have common edges which are type-I.
Thus the set of representatives of colors is {v1, v2, · · · , vt}. The type-I chromatic
number is t and n-type-I chromatic number is neutrosophic cardinality of
{v1, v2, · · · , vt}.
(ii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-II. By it’s neutrosophic strong, there’s a vertex
has t = ∆(N) vertices which have common edges which aren’t type-II. Thus
the set of representatives of colors is {}. The type-II chromatic number is 0 and
n-type-II chromatic number is 0.
(iii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-III. By it’s neutrosophic strong, there’s a
vertex has t = ∆(N) vertices which have common edges which aren’t type-III.
Thus the set of representatives of colors is {}. The type-III chromatic number
is 0 and n-type-III chromatic number is 0.
(iv). All edges have same amount so the connectedness amid two given edges is
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the same. All edges are type-IV. By it’s neutrosophic strong, there’s a vertex
has t = ∆(N) vertices which have common edges which are type-IV. Thus
the set of representatives of colors is {v1, v2, · · · , vt}. The type-IV chromatic
number is t and n-type-IV chromatic number is neutrosophic cardinality of
{v1, v2, · · · , vt}.
(v). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-V. By it’s neutrosophic strong, there’s a vertex
has t = ∆(N) vertices which have common edges which aren’t type-V. Thus
the set of representatives of colors is {}. The type-V chromatic number is 0 and
n-type-V chromatic number is 0.
(vi). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-VI. By it’s neutrosophic strong, there’s a vertex
has t = ∆(N) vertices which have common edges which aren’t type-VI. Thus
the set of representatives of colors is {}. The type-VI chromatic number is 0
and n-type-VI chromatic number is 0.
(vii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-VII. By it’s neutrosophic strong, there’s a
vertex has t = ∆(N) vertices which have common edges which aren’t type-VII.
Thus the set of representatives of colors is {}. The type-VII chromatic number
is 0 and n-type-VII chromatic number is 0. �

Proposition 2.30.4. Let N = (σ, µ) be a neutrosophic graph which is strong. If
it’s fixed-vertex, then

(i) : The set of representatives of colors is {v1, v2, · · · , vt} where t = ∆(N).
Thus type-I chromatic number is t and n-type-I chromatic number is tσ(vi).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {v1, v2, · · · , vt} where t = ∆(N).
Thus type-IV chromatic number is t and n-type-IV chromatic number is
tσ(vi).

(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges are
type-I. By it’s neutrosophic strong, there’s a vertex has t = ∆(N) vertices which
have common edges which are type-I. Thus the set of representatives of colors
is {v1, v2, · · · , vt}. The type-I chromatic number is t and n-type-I chromatic
number is tσ(vi).
(ii). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same amount
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so the connectedness amid two given edges is the same. All edges aren’t type-II.
By it’s neutrosophic strong, there’s a vertex has t = ∆(N) vertices which have
common edges which aren’t type-II. Thus the set of representatives of colors is
{}. The type-II chromatic number is 0 and n-type-II chromatic number is 0.
(iii). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-III. By it’s neutrosophic strong, there’s a vertex has t = ∆(N) vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0.
(iv). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges are
type-IV. By it’s neutrosophic strong, there’s a vertex has t = ∆(N) vertices
which have common edges which are type-IV. Thus the set of representatives
of colors is {v1, v2, · · · , vt}. The type-IV chromatic number is t and n-type-IV
chromatic number is tσ(vi).
(v). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same amount
so the connectedness amid two given edges is the same. All edges aren’t type-V.
By it’s neutrosophic strong, there’s a vertex has t = ∆(N) vertices which have
common edges which aren’t type-V. Thus the set of representatives of colors is
{}. The type-V chromatic number is 0 and n-type-V chromatic number is 0.
(vi). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-VI. By it’s neutrosophic strong, there’s a vertex has t = ∆(N) vertices
which have common edges which aren’t type-VI. Thus the set of representatives
of colors is {}. The type-VI chromatic number is 0 and n-type-VI chromatic
number is 0.
(vii). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-VII. By it’s neutrosophic strong, there’s a vertex has t = ∆(N) vertices
which have common edges which aren’t type-VII. Thus the set of representatives
of colors is {}. The type-VII chromatic number is 0 and n-type-VII chromatic
number is 0. �

Proposition 2.30.5. Let N = (σ, µ) be a neutrosophic graph which is strong
and path. If it’s fixed-edge, then

(i) : The set of representatives of colors is {vi, vj}. Thus type-I chromatic
number is 2 and n-type-I chromatic number is σ(vi) + σ(vj).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors, type-IV chromatic number and n-type-
IV chromatic number aren’t defined.

(v) : The set of representatives of colors, type-V chromatic number and n-type-V
chromatic number aren’t defined.
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(vi) : The set of representatives of colors, type-VI chromatic number and n-type-
VI chromatic number aren’t defined.

(vii) : The set of representatives of colors, type-VII chromatic number and n-
type-VII chromatic number aren’t defined.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s neutrosophic strong, there’s a
vertex has 2 vertices which have common edges which are type-I. Thus the set
of representatives of colors is {vi, vj}. The type-I chromatic number is 2 and
n-type-I chromatic number is neutrosophic cardinality of {vi, vj}.
(ii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-II. By it’s neutrosophic strong, there’s a vertex
has 2 vertices which have common edges which aren’t type-II. Thus the set of
representatives of colors is {}. The type-II chromatic number is 0 and n-type-II
chromatic number is 0.
(iii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-III. By it’s neutrosophic strong, there’s a
vertex has 2 vertices which have common edges which aren’t type-III. Thus the
set of representatives of colors is {}. The type-III chromatic number is 0 and
n-type-III chromatic number is 0.
(iv). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-IV. Since it’s impossible to define when there’s
no cycle in neutrosophic graph.
(v). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-V. Since it’s impossible to define when there’s
no cycle in neutrosophic graph.
(vi). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-VI. Since it’s impossible to define when there’s
no cycle in neutrosophic graph.
(vii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-VII. Since it’s impossible to define when there’s
no cycle in neutrosophic graph. �

Proposition 2.30.6. Let N = (σ, µ) be a neutrosophic graph which is strong
and path. If it’s fixed-vertex, then

(i) : The set of representatives of colors is {vi, vj}. Thus type-I chromatic
number is 2 and n-type-I chromatic number is 2σ(vi).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors, type-IV chromatic number and n-type-
IV chromatic number aren’t defined.

(v) : The set of representatives of colors, type-V chromatic number and n-type-V
chromatic number aren’t defined.
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(vi) : The set of representatives of colors, type-VI chromatic number and n-type-
VI chromatic number aren’t defined.

(vii) : The set of representatives of colors, type-VII chromatic number and n-
type-VII chromatic number aren’t defined.

Proof. (i). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges are
type-I. By it’s neutrosophic strong, there’s a vertex has 2 vertices which have
common edges which are type-I. Thus the set of representatives of colors is
{vi, vj}. The type-I chromatic number is 2 and n-type-I chromatic number is
2σ(vi).
(ii). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same amount
so the connectedness amid two given edges is the same. All edges aren’t type-II.
By it’s neutrosophic strong, there’s a vertex has 2 vertices which have common
edges which aren’t type-II. Thus the set of representatives of colors is {}. The
type-II chromatic number is 0 and n-type-II chromatic number is 0.
(iii). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-III. By it’s neutrosophic strong, there’s a vertex has 2 vertices which have
common edges which aren’t type-III. Thus the set of representatives of colors is
{}. The type-III chromatic number is 0 and n-type-III chromatic number is 0.
(iv). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-IV. Since it’s impossible to define when there’s no cycle in neutrosophic
graph.
(v). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same amount
so the connectedness amid two given edges is the same. All edges aren’t type-V.
Since it’s impossible to define when there’s no cycle in neutrosophic graph.
(vi). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-VI. Since it’s impossible to define when there’s no cycle in neutrosophic
graph.
(vii). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-VII. Since it’s impossible to define when there’s no cycle in neutrosophic
graph. �

Proposition 2.30.7. Let N = (σ, µ) be an even cycle. If it’s fixed-edge, then

(i) : The set of representatives of colors is {vi, vj}. Thus type-I chromatic
number is 2 and n-type-I chromatic number is σ(vi) + σ(vj).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {vi, vj}. Thus type-IV chromatic
number is 2 and n-type-IV chromatic number is σ(vi) + σ(vj).
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(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s cycle, all vertices have 2 vertices
which have common edges which are type-I. Thus the set of representatives
of colors is {vi, vj}. The type-I chromatic number is 2 and n-type-I chromatic
number is neutrosophic cardinality of {vi, vj}.
(ii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-II. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-II. Thus the set of representatives
of colors is {}. The type-II chromatic number is 0 and n-type-II chromatic
number is 0.
(iii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0.
(iv). All edges have same amount so the connectedness amid two given edges
is the same. All edges are type-IV. By it’s cycle, all vertices have 2 vertices
which have common edges which are type-IV. By deletion of one edge, it’s
possible to compute connectedness. Thus the set of representatives of colors is
{vi, vj}. The type-IV chromatic number is 2 and n-type-IV chromatic number
is neutrosophic cardinality of {vi, vj}.
(v). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0.
(vi). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0.
(vii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0. �

Proposition 2.30.8. Let N = (σ, µ) be a neutrosophic graph which is strong
and even cycle. If it’s fixed-vertex, then

(i) : The set of representatives of colors is {vi, vj}. Thus type-I chromatic
number is 2 and n-type-I chromatic number is 2σ(vi).
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(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {vi, vj}. Thus type-IV chromatic
number is 2 and n-type-IV chromatic number is 2σ(vi).

(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s cycle, all vertices have 2 vertices
which have common edges which are type-I. Thus the set of representatives
of colors is {vi, vj}. The type-I chromatic number is 2 and n-type-I chromatic
number is neutrosophic cardinality of {vi, vj} which is 2σ(vi).
(ii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-II. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-II. Thus the set of representatives
of colors is {}. The type-II chromatic number is 0 and n-type-II chromatic
number is 0.
(iii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0.
(iv). All edges have same amount so the connectedness amid two given edges
is the same. All edges are type-IV. By it’s cycle, all vertices have 2 vertices
which have common edges which are type-IV. By deletion of one edge, it’s
possible to compute connectedness. Thus the set of representatives of colors is
{vi, vj}. The type-IV chromatic number is 2 and n-type-IV chromatic number
is neutrosophic cardinality of {vi, vj} which is 2σ(vi).
(v). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0.
(vi). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0.
(vii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
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of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0. �

Proposition 2.30.9. Let N = (σ, µ) be a neutrosophic graph which is an odd
cycle. If it’s fixed-edge, then

(i) : The set of representatives of colors is {vi, vj , vk}. Thus type-I chromatic
number is 2 and n-type-I chromatic number is σ(vi) + σ(vj) + σ(vk).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {vi, vj , vk}. Thus type-IV chromatic
number is 2 and n-type-IV chromatic number is σ(vi) + σ(vj) + σ(vk).

(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s cycle, all vertices have 2 vertices
which have common edges which are type-I. Thus the set of representatives
of colors is {vi, vj}. The type-I chromatic number is 2 and n-type-I chromatic
number is neutrosophic cardinality of {vi, vj , vk} which is σ(vi) +σ(vj) +σ(vk).
(ii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-II. By it’s neutrosophic strong, there’s a vertex
has 2 vertices which have common edges which aren’t type-II. Thus the set of
representatives of colors is {}. The type-II chromatic number is 0 and n-type-II
chromatic number is 0.
(iii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-III. By it’s neutrosophic strong, there’s a
vertex has 2 vertices which have common edges which aren’t type-III. Thus the
set of representatives of colors is {}. The type-III chromatic number is 0 and
n-type-III chromatic number is 0.
(iv). All edges have same amount so the connectedness amid two given edges
is the same. All edges are type-IV. By it’s cycle, all vertices have 2 vertices
which have common edges which are type-IV. Thus the set of representatives of
colors is {vi, vj}. The type-IV chromatic number is 2 and n-type-IV chromatic
number is neutrosophic cardinality of {vi, vj , vk} which is σ(vi) +σ(vj) +σ(vk).
(v). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-V. By it’s neutrosophic strong, there’s a vertex
has 2 vertices which have common edges which aren’t type-V. Thus the set of
representatives of colors is {}. The type-V chromatic number is 0 and n-type-V
chromatic number is 0.
(vi). All edges have same amount so the connectedness amid two given edges is
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the same. All edges aren’t type-VI. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-VI. Thus the set of representatives
of colors is {}. The type-VI chromatic number is 0 and n-type-VI chromatic
number is 0.
(vii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-VII. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-VII. Thus the set of representatives
of colors is {}. The type-VII chromatic number is 0 and n-type-VII chromatic
number is 0. �

Proposition 2.30.10. Let N = (σ, µ) be a neutrosophic graph which is strong
and odd cycle. If it’s fixed-vertex, then

(i) : The set of representatives of colors is {vi, vj , vk}. Thus type-I chromatic
number is 2 and n-type-I chromatic number is 3σ(vi).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {vi, vj , vk}. Thus type-IV chromatic
number is 2 and n-type-IV chromatic number is 3σ(vi).

(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s cycle, all vertices have 2 vertices
which have common edges which are type-I. Thus the set of representatives
of colors is {vi, vj}. The type-I chromatic number is 2 and n-type-I chromatic
number is neutrosophic cardinality of {vi, vj , vk} which is 3σ(vi).
(ii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-II. By it’s neutrosophic strong, there’s a vertex
has 2 vertices which have common edges which aren’t type-II. Thus the set of
representatives of colors is {}. The type-II chromatic number is 0 and n-type-II
chromatic number is 0.
(iii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-III. By it’s neutrosophic strong, there’s a
vertex has 2 vertices which have common edges which aren’t type-III. Thus the
set of representatives of colors is {}. The type-III chromatic number is 0 and
n-type-III chromatic number is 0.
(iv). All edges have same amount so the connectedness amid two given edges
is the same. All edges are type-IV. By it’s cycle, all vertices have 2 vertices
which have common edges which are type-IV. Thus the set of representatives of
colors is {vi, vj}. The type-IV chromatic number is 2 and n-type-IV chromatic
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number is neutrosophic cardinality of {vi, vj , vk} which is 3σ(vi).
(v). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-V. By it’s neutrosophic strong, there’s a vertex
has 2 vertices which have common edges which aren’t type-V. Thus the set of
representatives of colors is {}. The type-V chromatic number is 0 and n-type-V
chromatic number is 0.
(vi). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-VI. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-VI. Thus the set of representatives
of colors is {}. The type-VI chromatic number is 0 and n-type-VI chromatic
number is 0.
(vii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-VII. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-VII. Thus the set of representatives
of colors is {}. The type-VII chromatic number is 0 and n-type-VII chromatic
number is 0. �

Proposition 2.30.11. Let N = (σ, µ) be an even wheel. If it’s fixed-edge, then

(i) : The set of representatives of colors is {vi, vj , vk}. Thus type-I chromatic
number is 2 and n-type-I chromatic number is σ(vi) + σ(vj) + σ(vk).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {vi, vj , vk}. Thus type-IV chromatic
number is 3 and n-type-IV chromatic number is σ(vi) + σ(vj) + σ(vk).

(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s cycle, all vertices have 2 vertices
which have common edges which are type-I. Thus the set of representatives of
colors is {vi, vj , vk}. The type-I chromatic number is 3 and n-type-I chromatic
number is neutrosophic cardinality of {vi, vj , vk} which is σ(vi) +σ(vj) +σ(vk).
(ii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-II. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-II. Thus the set of representatives
of colors is {}. The type-II chromatic number is 0 and n-type-II chromatic
number is 0.
(iii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
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of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0.
(iv). All edges have same amount so the connectedness amid two given edges
is the same. All edges are type-IV. By it’s cycle, all vertices have 2 vertices
which have common edges which are type-IV. By deletion of one edge, it’s
possible to compute connectedness. Thus the set of representatives of colors
is {vi, vj , vk}. The type-IV chromatic number is 3 and n-type-IV chromatic
number is neutrosophic cardinality of {vi, vj , vk} which is σ(vi) +σ(vj) +σ(vk).
(v). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0.
(vi). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0.
(vii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0. �

Proposition 2.30.12. Let N = (σ, µ) be a neutrosophic graph which is strong
and even wheel. If it’s fixed-vertex, then

(i) : The set of representatives of colors is {vi, vj , vk}. Thus type-I chromatic
number is 3 and n-type-I chromatic number is 3σ(vi).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {vi, vj , vk}. Thus type-IV chromatic
number is 3 and n-type-IV chromatic number is 3σ(vi).

(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s cycle, all vertices have 2 vertices
which have common edges which are type-I. Thus the set of representatives of
colors is {vi, vj , vk}. The type-I chromatic number is 3 and n-type-I chromatic
number is neutrosophic cardinality of {vi, vj , vk} which is 3σ(vi).

87



2. Neutrosophic Chromatic Number

(ii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-II. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-II. Thus the set of representatives
of colors is {}. The type-II chromatic number is 0 and n-type-II chromatic
number is 0.
(iii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0.
(iv). All edges have same amount so the connectedness amid two given edges
is the same. All edges are type-IV. By it’s cycle, all vertices have 3 vertices
which have common edges which are type-IV. By deletion of one edge, it’s
possible to compute connectedness. Thus the set of representatives of colors
is {vi, vj , vk}. The type-IV chromatic number is 3 and n-type-IV chromatic
number is neutrosophic cardinality of {vi, vj , vk} which is 3σ(vi).
(v). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0.
(vi). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0.
(vii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-III. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-III. Thus the set of representatives
of colors is {}. The type-III chromatic number is 0 and n-type-III chromatic
number is 0. �

Proposition 2.30.13. Let N = (σ, µ) be a neutrosophic graph which is an odd
wheel. If it’s fixed-edge, then

(i) : The set of representatives of colors is {vi, vj , vk, vs}. Thus type-I chromatic
number is 4 and n-type-I chromatic number is σ(vi)+σ(vj)+σ(vk)+σ(vs).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {vi, vj , vk, vs}. Thus type-IV
chromatic number is 2 and n-type-IV chromatic number is σ(vi) + σ(vj) +
σ(vk) + σ(vs).

(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.
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(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s cycle, all vertices have 2 vertices
which have common edges which are type-I. Thus the set of representatives
of colors is {vi, vj , vk, vs}. The type-I chromatic number is 4 and n-type-
I chromatic number is neutrosophic cardinality of {vi, vj , vk, vs} which is
σ(vi) + σ(vj) + σ(vk) + σ(vs).
(ii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-II. By it’s neutrosophic strong, there’s a vertex
has 2 vertices which have common edges which aren’t type-II. Thus the set of
representatives of colors is {}. The type-II chromatic number is 0 and n-type-II
chromatic number is 0.
(iii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-III. By it’s neutrosophic strong, there’s a
vertex has 2 vertices which have common edges which aren’t type-III. Thus the
set of representatives of colors is {}. The type-III chromatic number is 0 and
n-type-III chromatic number is 0.
(iv). All edges have same amount so the connectedness amid two given edges
is the same. All edges are type-IV. By it’s cycle, all vertices have 2 vertices
which have common edges which are type-IV. Thus the set of representatives
of colors is {vi, vj , vk, vs}. The type-IV chromatic number is 4 and n-type-
IV chromatic number is neutrosophic cardinality of {vi, vj , vk, vs} which is
σ(vi) + σ(vj) + σ(vk) + σ(vs).
(v). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-V. By it’s neutrosophic strong, there’s a vertex
has 2 vertices which have common edges which aren’t type-V. Thus the set of
representatives of colors is {}. The type-V chromatic number is 0 and n-type-V
chromatic number is 0.
(vi). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-VI. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-VI. Thus the set of representatives
of colors is {}. The type-VI chromatic number is 0 and n-type-VI chromatic
number is 0.
(vii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-VII. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-VII. Thus the set of representatives
of colors is {}. The type-VII chromatic number is 0 and n-type-VII chromatic
number is 0. �

Proposition 2.30.14. Let N = (σ, µ) be a neutrosophic graph which is strong
and odd wheel. If it’s fixed-vertex, then

(i) : The set of representatives of colors is {vi, vj , vk, vs}. Thus type-I chromatic
number is 4 and n-type-I chromatic number is 4σ(vi).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.
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(iv) : The set of representatives of colors is {vi, vj , vk, vs}. Thus type-IV
chromatic number is 4 and n-type-IV chromatic number is 4σ(vi).

(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s cycle, all vertices have 2 vertices
which have common edges which are type-I. Thus the set of representatives of
colors is {vi, vj , vk, vs}. The type-I chromatic number is 4 and n-type-I chromatic
number is neutrosophic cardinality of {vi, vj , vk, vs} which is 4σ(vi).
(ii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-II. By it’s neutrosophic strong, there’s a vertex
has 2 vertices which have common edges which aren’t type-II. Thus the set of
representatives of colors is {}. The type-II chromatic number is 0 and n-type-II
chromatic number is 0.
(iii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-III. By it’s neutrosophic strong, there’s a
vertex has 2 vertices which have common edges which aren’t type-III. Thus the
set of representatives of colors is {}. The type-III chromatic number is 0 and
n-type-III chromatic number is 0.
(iv). All edges have same amount so the connectedness amid two given edges is
the same. All edges are type-IV. By it’s cycle, all vertices have 2 vertices which
have common edges which are type-IV. Thus the set of representatives of colors
is {vi, vj , vk, vs}. The type-IV chromatic number is 4 and n-type-IV chromatic
number is neutrosophic cardinality of {vi, vj , vk, vs} which is 4σ(vi).
(v). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-V. By it’s neutrosophic strong, there’s a vertex
has 2 vertices which have common edges which aren’t type-V. Thus the set of
representatives of colors is {}. The type-V chromatic number is 0 and n-type-V
chromatic number is 0.
(vi). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-VI. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-VI. Thus the set of representatives
of colors is {}. The type-VI chromatic number is 0 and n-type-VI chromatic
number is 0.
(vii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-VII. By it’s cycle, all vertices have 2 vertices
which have common edges which aren’t type-VII. Thus the set of representatives
of colors is {}. The type-VII chromatic number is 0 and n-type-VII chromatic
number is 0. �

Proposition 2.30.15. Let N = (σ, µ) be a neutrosophic graph which is complete
t−partite. If it’s fixed-edge, then
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(i) : The set of representatives of colors is {v1, v2, · · · , vt}. Thus type-I
chromatic number is t and n-type-I chromatic number is σ(v1) + σ(v2) +
· · ·+ σ(vt).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {v1, v2, · · · , vt}. Thus type-IV
chromatic number is t and n-type-IV chromatic number is σ(v1) + σ(v2) +
· · ·+ σ(vt).

(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s neutrosophic complete, there’s a
vertex has t− 1 which have common edges which are type-I. Thus the set of
representatives of colors is {v1, v2, · · · , vt}. The type-I chromatic number is t
and n-type-I chromatic number is neutrosophic cardinality of {v1, v2, · · · , vt}
which is σ(v1) + σ(v2) + · · ·+ σ(vt).
(ii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-II. By it’s neutrosophic complete, there’s a
vertex has t− 1 vertices which have common edges which aren’t type-II. Thus
the set of representatives of colors is {}. The type-II chromatic number is 0 and
n-type-II chromatic number is 0.
(iii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s neutrosophic complete, there’s a
vertex has t− 1 vertices which have common edges which aren’t type-III. Thus
the set of representatives of colors is {}. The type-III chromatic number is 0
and n-type-III chromatic number is 0.
(iv). All edges have same amount so the connectedness amid two given edges is
the same. All edges are type-IV. By it’s neutrosophic complete, there’s a vertex
has t− 1 vertices which have common edges which are type-IV. Thus the set of
representatives of colors is {v1, v2, · · · , vt}. The type-IV chromatic number is t
and n-type-IV chromatic number is neutrosophic cardinality of {v1, v2, · · · , vt}
which is σ(v1) + σ(v2) + · · ·+ σ(vt).
(v). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-V. By it’s neutrosophic complete, there’s a
vertex has t− 1 vertices which have common edges which aren’t type-V. Thus
the set of representatives of colors is {}. The type-V chromatic number is 0 and
n-type-V chromatic number is 0.
(vi). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-VI. By it’s neutrosophic complete, there’s a
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vertex has t− 1 vertices which have common edges which aren’t type-VI. Thus
the set of representatives of colors is {}. The type-VI chromatic number is 0
and n-type-VI chromatic number is 0.
(vii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-VII. By it’s neutrosophic complete, there’s a
vertex has t− 1 vertices which have common edges which aren’t type-VII. Thus
the set of representatives of colors is {}. The type-VII chromatic number is 0
and n-type-VII chromatic number is 0. �

Proposition 2.30.16. Let N = (σ, µ) be a neutrosophic graph which is complete
t−partite. If it’s fixed-vertex, then

(i) : The set of representatives of colors is {v1, v2, · · · , vt}. Thus type-I
chromatic number is t and n-type-I chromatic number is tσ(vi).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {v1, v2, · · · , vt}. Thus type-IV
chromatic number is t and n-type-IV chromatic number is tσ(vi).

(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s neutrosophic complete, there’s a
vertex has t−1 vertices which have common edges which are type-I. Thus the set
of representatives of colors is {v1, v2, · · · , vt}. The type-I chromatic number is t
and n-type-I chromatic number is neutrosophic cardinality of {v1, v2, · · · , vt}.
which is tσ(vi).
(ii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-II. By it’s neutrosophic complete, there’s a
vertex has t− 1 vertices which have common edges which aren’t type-II. Thus
the set of representatives of colors is {}. The type-II chromatic number is 0 and
n-type-II chromatic number is 0.
(iii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s neutrosophic complete, there’s a
vertex has t− 1 vertices which have common edges which aren’t type-III. Thus
the set of representatives of colors is {}. The type-III chromatic number is 0
and n-type-III chromatic number is 0.
(iv). All edges have same amount so the connectedness amid two given edges is
the same. All edges are type-IV. By it’s neutrosophic complete, there’s a vertex
has t− 1 vertices which have common edges which are type-IV. Thus the set of
representatives of colors is {v1, v2, · · · , vt}. The type-IV chromatic number is t
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and n-type-IV chromatic number is neutrosophic c{v1, v2, · · · , vt}.{vi, vj , vk, vs}
which is tσ(vi).
(v). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-V. By it’s neutrosophic complete, there’s a
vertex has t− 1 vertices which have common edges which aren’t type-V. Thus
the set of representatives of colors is {}. The type-V chromatic number is 0 and
n-type-V chromatic number is 0.
(vi). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-VI. By it’s neutrosophic complete, there’s a
vertex has t− 1 vertices which have common edges which aren’t type-VI. Thus
the set of representatives of colors is {}. The type-VI chromatic number is 0
and n-type-VI chromatic number is 0.
(vii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-VII. By it’s neutrosophic complete, there’s a
vertex has t− 1 vertices which have common edges which aren’t type-VII. Thus
the set of representatives of colors is {}. The type-VII chromatic number is 0
and n-type-VII chromatic number is 0. �

Corollary 2.30.17. Let N = (σ, µ) be a neutrosophic graph which is complete
bipartite. If it’s fixed-edge, then

(i) : The set of representatives of colors is {v1, v2}. Thus type-I chromatic
number is 2 and n-type-I chromatic number is σ(v1) + σ(v2).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {v1, v2}. Thus type-IV chromatic
number is 2 and n-type-IV chromatic number is σ(v1) + σ(v2).

(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s neutrosophic complete, there’s
a vertex has 1 which have common edges which are type-I. Thus the set of
representatives of colors is {v1, v2}. The type-I chromatic number is 2 and
n-type-I chromatic number is neutrosophic cardinality of {v1, v2} which is
σ(v1) + σ(v2).
(ii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-II. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which aren’t type-II. Thus the
set of representatives of colors is {}. The type-II chromatic number is 0 and
n-type-II chromatic number is 0.
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(iii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which aren’t type-III. Thus the
set of representatives of colors is {}. The type-III chromatic number is 0 and
n-type-III chromatic number is 0.
(iv). All edges have same amount so the connectedness amid two given edges
is the same. All edges are type-IV. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which are type-IV. Thus the
set of representatives of colors is {v1, v2}. The type-IV chromatic number is 2
and n-type-IV chromatic number is neutrosophic cardinality of {v1, v2} which
is σ(v1) + σ(v2).
(v). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-V. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which aren’t type-V. Thus the
set of representatives of colors is {}. The type-V chromatic number is 0 and
n-type-V chromatic number is 0.
(vi). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-VI. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which aren’t type-VI. Thus the
set of representatives of colors is {}. The type-VI chromatic number is 0 and
n-type-VI chromatic number is 0.
(vii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-VII. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which aren’t type-VII. Thus
the set of representatives of colors is {}. The type-VII chromatic number is 0
and n-type-VII chromatic number is 0. �

Corollary 2.30.18. Let N = (σ, µ) be a neutrosophic graph which is complete
bipartite. If it’s fixed-vertex, then

(i) : The set of representatives of colors is {v1, v2}. Thus type-I chromatic
number is 2 and n-type-I chromatic number is 2σ(vi).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors is {v1, v2}. Thus type-IV chromatic
number is t and n-type-IV chromatic number is 2σ(vi).

(v) : The set of representatives of colors is {}. Thus type-V chromatic number
is 0 and n-type-V chromatic number is 0.

(vi) : The set of representatives of colors is {}. Thus type-VI chromatic number
is 0 and n-type-VI chromatic number is 0.

(vii) : The set of representatives of colors is {}. Thus type-VII chromatic number
is 0 and n-type-VII chromatic number is 0.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s neutrosophic complete, there’s

94



2.30. New Results

a vertex has 1 vertices which have common edges which are type-I. Thus the
set of representatives of colors is {v1, v2}. The type-I chromatic number is 2
and n-type-I chromatic number is neutrosophic cardinality of {v1, v2}. which is
2σ(vi).
(ii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-II. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which aren’t type-II. Thus the
set of representatives of colors is {}. The type-II chromatic number is 0 and
n-type-II chromatic number is 0.
(iii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which aren’t type-III. Thus the
set of representatives of colors is {}. The type-III chromatic number is 0 and
n-type-III chromatic number is 0.
(iv). All edges have same amount so the connectedness amid two given edges
is the same. All edges are type-IV. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which are type-IV. Thus the
set of representatives of colors is {v1, v2}. The type-IV chromatic number is 2
and n-type-IV chromatic number is neutrosophic {v1, v2} which is 2σ(vi).
(v). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-V. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which aren’t type-V. Thus the
set of representatives of colors is {}. The type-V chromatic number is 0 and
n-type-V chromatic number is 0.
(vi). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-VI. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which aren’t type-VI. Thus the
set of representatives of colors is {}. The type-VI chromatic number is 0 and
n-type-VI chromatic number is 0.
(vii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-VII. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which aren’t type-VII. Thus
the set of representatives of colors is {}. The type-VII chromatic number is 0
and n-type-VII chromatic number is 0. �

Corollary 2.30.19. Let N = (σ, µ) be a neutrosophic graph which is star. If it’s
fixed-edge, then

(i) : The set of representatives of colors is {c, v2}. Thus type-I chromatic
number is 2 and n-type-I chromatic number is σ(c) + σ(v2).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.

(iv) : The set of representatives of colors, type-IV chromatic number and n-type-
IV chromatic number aren’t defined.

(v) : The set of representatives of colors, type-V chromatic number and n-type-V
chromatic number aren’t defined.
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(vi) : The set of representatives of colors, type-VI chromatic number and n-type-
VI chromatic number aren’t defined.

(vii) : The set of representatives of colors, type-VII chromatic number and n-
type-VII chromatic number aren’t defined.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s neutrosophic complete, there’s
a vertex has 1 which have common edges which are type-I. Thus the set of
representatives of colors is {v1, v2}. The type-I chromatic number is 2 and
n-type-I chromatic number is neutrosophic cardinality of {v1, v2} which is
σ(v1) + σ(v2).
(ii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-II. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which aren’t type-II. Thus the
set of representatives of colors is {}. The type-II chromatic number is 0 and
n-type-II chromatic number is 0.
(iii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which aren’t type-III. Thus the
set of representatives of colors is {}. The type-III chromatic number is 0 and
n-type-III chromatic number is 0.
(iv). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-IV. Since it’s impossible to define when there’s no cycle in neutrosophic
graph.
(v). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same amount
so the connectedness amid two given edges is the same. All edges aren’t type-V.
Since it’s impossible to define when there’s no cycle in neutrosophic graph.
(vi). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-VI. Since it’s impossible to define when there’s no cycle in neutrosophic
graph.
(vii). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-VII. Since it’s impossible to define when there’s no cycle in neutrosophic
graph.

�

Corollary 2.30.20. Let N = (σ, µ) be a neutrosophic graph which is star. If it’s
fixed-vertex, then

(i) : The set of representatives of colors is {v1, c}. Thus type-I chromatic
number is 2 and n-type-I chromatic number is 2σ(c).

(ii) : The set of representatives of colors is {}. Thus type-II chromatic number
is 0 and n-type-II chromatic number is 0.

(iii) : The set of representatives of colors is {}. Thus type-III chromatic number
is 0 and n-type-III chromatic number is 0.
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(iv) : The set of representatives of colors, type-IV chromatic number and n-type-
IV chromatic number aren’t defined.

(v) : The set of representatives of colors, type-V chromatic number and n-type-V
chromatic number aren’t defined.

(vi) : The set of representatives of colors, type-VI chromatic number and n-type-
VI chromatic number aren’t defined.

(vii) : The set of representatives of colors, type-VII chromatic number and n-
type-VII chromatic number aren’t defined.

Proof. (i). All edges have same amount so the connectedness amid two given
edges is the same. All edges are type-I. By it’s neutrosophic complete, there’s
a vertex has 1 vertices which have common edges which are type-I. Thus the
set of representatives of colors is {c, v2}. The type-I chromatic number is 2 and
n-type-I chromatic number is neutrosophic cardinality of {c, v2}. which is 2σ(c).
(ii). All edges have same amount so the connectedness amid two given edges
is the same. All edges aren’t type-II. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which aren’t type-II. Thus the
set of representatives of colors is {}. The type-II chromatic number is 0 and
n-type-II chromatic number is 0.
(iii). All edges have same amount so the connectedness amid two given edges is
the same. All edges aren’t type-III. By it’s neutrosophic complete, there’s a
vertex has 1 vertices which have common edges which aren’t type-III. Thus the
set of representatives of colors is {}. The type-III chromatic number is 0 and
n-type-III chromatic number is 0.
(iv). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-IV. Since it’s impossible to define when there’s no cycle in neutrosophic
graph.
(v). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same amount
so the connectedness amid two given edges is the same. All edges aren’t type-V.
Since it’s impossible to define when there’s no cycle in neutrosophic graph.
(vi). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-VI. Since it’s impossible to define when there’s no cycle in neutrosophic
graph.
(vii). By it’s fixed-vertex and it’s neutrosophic strong, all edges have same
amount so the connectedness amid two given edges is the same. All edges aren’t
type-VII. Since it’s impossible to define when there’s no cycle in neutrosophic
graph. �

2.31 Applications in Time Table and Scheduling

Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has important to avoid mixing up.
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Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive section. Beyond that, sometimes sections are not the same.

Step 3. (Model) As Figure (2.7), the situation is designed as a model. The
model uses data to assign every section and to assign to relation amid
section, three numbers belong unit interval to state indeterminacy,
possibilities and determinacy. There’s one restriction in that, the numbers
amid two sections are at least the number of the relation amid them.
Table (4.5), clarifies about the assigned numbers to these situation.

Figure 2.7: Black vertices are suspicions about choosing them. fgr1c

Table 2.5: Scheduling concerns its Subjects and its Connections as a
Neutrosophic Graph in a Model. tbl1c

Sections of T s1 s2 s3 s4 s5 s6 s7 s8 s9, s10
Values 0.1 0.8 0.7 0.8 0.1 0.3 0.6 0.5 0.2

Connections of T s1s2 s2s3 s3s4 s4s5 s5s6 s6s7 s7s8 s8s9 s9s10
Values 0.1 0.6 0.4 0.1 0.1 0.2 0.4 0.2 0.1

Step 4. (Solution) As Figure (2.7) shows, neutrosophic model, proposes to
use different types of chromatic number which is incomputable for types
IV,V,VI,VII in the case which is titled T ′. In this case, i1 and c1 aren’t
representative of these two colors and different types of chromatic number
is incomputable for types IV,V,VI,VII. The set {i1, c1} doesn’t contain
representatives of colors which pose different types of chromatic number
and different types of chromatic number for types IV,V,VI,VII. Thus the
decision amid choosing the subject c1 an c2 isn’t concluded to choose
c1 for types IV,V,VI,VII. To get brief overview, neutrosophic model
uses one number for every array so 0.9 means (0.9, 0.9, 0.9). In Figure
(2.7), the neutrosophic model T introduces the common situation. The
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representatives of colors are i2 and c1. Thus different types of chromatic
numbers is two for types I and IV and different types of neutrosophic
chromatic number is 1.4 for types I and IV. Thus suspicion about choosing
i1 and i2 is determined to be i2. The sets of representative for colors
are {i2, c1} for types I and IV. Thus the comparative studies based on
different types of chromatic number and neutrosophic chromatic number
are concluded.

2.32 Open Problems

The two notions of coloring of vertices concerning different types of chromatic
number and different types of neutrosophic chromatic number are defined on
neutrosophic graphs when connectedness and as its consequences, different types
of edges have key role to have these notions. Thus

Question 2.32.1. Is it possible to use other types edges via connectedness to
define different types of chromatic number and different types of neutrosophic
chromatic number?

Question 2.32.2. Are existed some connections amid the coloring from
connectedness inside this concept and external connections with other types
of coloring from other notions?

Question 2.32.3. Is it possible to construct some classes neutrosophic graphs
which have “nice” behavior?

Question 2.32.4. Which applications do make an independent study to apply
different types of chromatic number and different types of neutrosophic chromatic
number?

Problem 2.32.5. Which parameters are related to this parameter?

Problem 2.32.6. Which approaches do work to construct applications to create
independent study?

Problem 2.32.7. Which approaches do work to construct definitions which use
all three arrays and the relations amid them instead of one array of three arrays
to create independent study?

2.33 Conclusion and Closing Remarks

This study uses mixed combinations of different types of chromatic number
and different types of neutrosophic chromatic number to study on neutrosophic
graphs. The connections of vertices which are clarified by special edges and
different edges from connectedness, differ them from each other and and put
them in different categories to represent one representative for each color.
Further studies could be about changes in the settings to compare this notion
amid different settings of graph theory. One way is finding some relations amid
array of vertices to make sensible definitions. In Table (2.4), some limitations
and advantages of this study is pointed out.
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Table 2.6: A Brief Overview about Advantages and Limitations of this study tbl2c

Advantages Limitations
1. Using connectedness for labelling edges 1. General Results

2. Using neutrosophic cardinality

3. Using cardinality 2. Connections with parameters

4. Applying Different Types of Edges

5. Different Types of Chromatic Notions 3. Connections of Results
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CHAPTER 3

Neutrosophic Hypergraphs

Akram et al. introduce A new decision-making method based on bipolar
neutrosophic directed hypergraphs [1], Bipolar neutrosophic hypergraphs with
applications [2], Certain networks models using single-valued neutrosophic
directed hypergraphs [3]. Also, Akram et al. in Fuzzy hypergraphs and related
extensions [4], get some directions to this topic. Hamidi et al. [8] propose
single-valued neutrosophic directed (hyper) graphs and applications [9] poses
generalized neutrosophic hypergraphs. Luqman et al. [10] introduce complex
neutrosophic hypergraphs: new social network models. Malik et al propose
Isomorphism of single valued neutrosophic hypergraphs [11] and regular single
valued neutrosophic hypergraphs [12].

3.1 Numbers and Sets
Based on some
ideas, numbers
and sets are
defined in the
ways that, some

results are
obtained. Thus

it’s an open way
to have well-
understandable
structures and
well-defined
ideas from
neutrosophic
hypergraphs.

3.2 Preliminaries For Setting of Neutrosophic
n-SuperHyperGraph and Setting of Neutrosophic
Hypergraphs

Definition 3.2.1. (Graph).
G = (V,E) is called a graph if V is a set of objects and E is a subset of V × V
(E is a set of 2-subsets of V ) where V is called vertex set and E is called
edge set. Every two vertices have been corresponded to at most one edge.

Definition 3.2.2. (Hypergraph).
H = (V,E) is called a hypergraph if V is a set of objects and for every
nonnegative integer t ≤ n, E is a set of t−subsets of V where V is called
vertex set and E is called hyperedge set.

Definition 3.2.3. (Neutrosophic Hypergraph).
NHG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) is called a neutrosophic
hypergraph if it’s hypergraph, σi : V → [0, 1], µi : E → [0, 1], and for every
v1v2 · · · vt ∈ E,

µ(v1v2 · · · vt) ≤ σ(v1) ∧ σ(v2) ∧ · · ·σ(vt).

(i) : σ is called neutrosophic vertex set.

(ii) : µ is called neutrosophic hyperedge set.
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(iii) : |V | is called order of NHG and it’s denoted by O(NHG).

(iv) : Σv∈V σ(v) is called neutrosophic order of NHG and it’s denoted by
On(NHG).

(vi) : |E| is called size of NHG and it’s denoted by S(NHG).

(vii) : Σe∈Eµ(e) is called neutrosophic size of NHG and it’s denoted by
Sn(NHG).

Example 3.2.4. Assume Figure (3.11).

(i) : Neutrosophic hyperedge n1n2n3 has three neutrosophic vertices.

(ii) : Neutrosophic hyperedge n3n4n5n6 has four neutrosophic vertices.

(iii) : Neutrosophic hyperedge n1n7n8n9n5n6 has six neutrosophic vertices.

(iv) : σ = {(n1, (0.99, 0.98, 0.55)), (n2, (0.74, 0.64, 0.46)), (n3, (0.99, 0.98, 0.55)),
(n4, (0.54, 0.24, 0.16)), (n5, (0.99, 0.98, 0.55)), (n6, (0.99, 0.98, 0.55)),
(n7, (0.99, 0.98, 0.55)), (n8, (0.99, 0.98, 0.55)), (n9, (0.99, 0.98, 0.55))}) is
neutrosophic vertex set.

(v) : µ = {(e1, (0.01, 0.01, 0.01)), (e2, (0.01, 0.01, 0.01)), (e3, (0.01, 0.01, 0.01))})
is neutrosophic hyperedge set.

(vi) : O(NHG) = 9.

(vii) : On(NHG) = (8.21, 7.74, 4.47).

(viii) : S(NHG) = 3.

(ix) : Sn(NHG) = (0.03, 0.03, 0.03).

Figure 3.1: There are three neutrosophic hyperedges and two neutrosophic
vertices. nhg1

Definition 3.2.5. (Neutrosophic Edge t−Regular Hypergraph).
A neutrosophic hypergraph NHG = (V,E, σ, µ) is called a neutrosophic
edge t−regular hypergraph if every neutrosophic hyperedge has only t
neutrosophic vertices.

Question 3.2.6. What-if all neutrosophic hypergraphs are either edge t−regular
or not?
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Setting of Neutrosophic Hypergraphs

Figure 3.2: NHG = (V,E, σ, µ) is neutrosophic edge 3−regular hypergraph nhg2

In the following, there are some directions which clarify the existence of
some neutrosophic hypergraphs which are either edge t−regular or not.

Example 3.2.7. Two neutrosophic hypergraphs are presented such that one of
them is edge t−regular and another isn’t.

(i) : Assume Figure (3.11). It isn’t neutrosophic edge t−regular hypergraph.

(ii) : Suppose Figure (3.2). It’s neutrosophic edge 3−regular hypergraph.

Definition 3.2.8. (Neutrosophic vertex t−Regular Hypergraph).
A neutrosophic hypergraph NHG = (V,E, σ, µ) is called a neutrosophic
vertex t−regular hypergraph if every neutrosophic vertex is incident to
only t neutrosophic hyperedges.

Example 3.2.9. Three neutrosophic hypergraphs are presented such that one
of them is vertex t−regular and anothers aren’t.

(i) : Consider Figure (3.11). It isn’t neutrosophic edge t−regular hypergraph.

(ii) : Suppose Figure (3.2). It’s neutrosophic edge 3−regular hypergraph but
It isn’t neutrosophic vertex 3−regular hypergraph.

(iii) : Assume Figure (3.3). It’s neutrosophic vertex 2−regular hypergraph but
It isn’t neutrosophic edge t−regular hypergraph.

Figure 3.3: NHG = (V,E, σ, µ) is neutrosophic strong hypergraph. nhg3
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Definition 3.2.10. (Neutrosophic Strong Hypergraph).
A neutrosophic hypergraph NHG = (V,E, σ, µ) is called a neutrosophic
strong hypergraph if it’s hypergraph and for every v1v2 · · · vt ∈ E,

µ(v1v2 · · · vt) = σ(v1) ∧ σ(v2) ∧ · · ·σ(vt).

Figure 3.4: NHG = (V,E, σ, µ) is neutrosophic strong hypergraph. nhg4

Example 3.2.11. Three neutrosophic hypergraphs are presented such that one
of them is neutrosophic strong hypergraph and others aren’t.

(i) : Consider Figure (3.11). It isn’t neutrosophic strong hypergraph.

(ii) : Assume Figure (3.2). It isn’t neutrosophic strong hypergraph.

(iii) : Suppose Figure (3.3). It isn’t neutrosophic strong hypergraph.

(iv) : Assume Figure (3.4). It’s neutrosophic strong hypergraph. It’s also
neutrosophic edge 3−regular hypergraph but it isn’t neutrosophic vertex
t−regular hypergraph.

Definition 3.2.12. (Neutrosophic Strong Hypergraph).
Assume neutrosophic hypergraph NHG = (V,E, σ, µ.) A neutrosophic
hyperedge v1v2 · · · vt ∈ E is called a neutrosophic strong hyperedge if

µ(v1v2 · · · vt) = σ(v1) ∧ σ(v2) ∧ · · ·σ(vt).

Proposition 3.2.13. Assume neutrosophic strong hypergraph NHG =
(V,E, σ, µ.) Then all neutrosophic hyperedges are neutrosophic strong.

Definition 3.2.14. (Neutrosophic Hyperpath).
A path v0, E0, v1, v1, E1, v2, · · · , vt−1, Et−1, vt, is called neutrosophic hyper-
path such that vi−1 and vi have incident to Ei−1 for all nonnegative integers
0 ≤ i ≤ t. In this case, t−1 is called length of neutrosophic hyperpath. Also, if
x and y are two neutrosophic vertices, then maximum length of neutrosophic hy-
perpaths from x to y, is called neutrosophic hyperdistance and it’s denoted
by d(x, y). If v0 = vt, then it’s called neutrosophic hypercycle.

Example 3.2.15. Assume Figure (3.11).

(i) : n1, E1, n3, E2, n6, E3, n1 is a neutrosophic hypercycle.
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(ii) : n1, E1, nn, E2, n6, E3, n1 isn’t neither neutrosophic hypercycle nor neutro-
sophic hyperpath.

(iii) : n1E1n3E2n6E3n1 isn’t neither neutrosophic hypercycle nor neutrosophic
hyperpath.

(iv) : n1, n3, n6, n1 isn’t neither neutrosophic hypercycle nor neutrosophic
hyperpath.

(v) : n1E1, n3, E2, n6, E3, n1 isn’t neither neutrosophic hypercycle nor neutro-
sophic hyperpath.

(vi) : n1, E1, n3, E2, n6, E3, n7 is a neutrosophic hyperpath.

(vii) : Neutrosophic hyperdistance amid n1 and n4 is two.

(viii) : Neutrosophic hyperdistance amid n1 and n7 is one.

(ix) : Neutrosophic hyperdistance amid n1 and n2 is one.

(x) : Neutrosophic hyperdistance amid two given neutrosophic vertices is either
one or two.

First case for the contents is to use the article from [7]. The contents are used
in the way that, usages of new contents are preferences and the preliminaries
are passed in the beginning of this chapter.

3.3 Dimension and Coloring alongside Domination in
Neutrosophic Hypergraphs

3.4 Abstract

New setting is introduced to study resolving number and chromatic number
alongside dominating number. Different types of procedures including set,
optimal set, and optimal number alongside study on the family of neutrosophic
hypergraphs are proposed in this way, some results are obtained. General
classes of neutrosophic hypergraphs are used to obtains these numbers and
the representatives of the colors, dominating sets and resolving sets. Using
colors to assign to the vertices of neutrosophic hypergraphs and characterizing
resolving sets and dominating sets are applied. Some questions and problems
are posed concerning ways to do further studies on this topic. Using different
ways of study on neutrosophic hypergraphs to get new results about numbers
and sets in the way that some numbers get understandable perspective. Family
of neutrosophic hypergraphs are studied to investigate about the notions,
dimension and coloring alongside domination in neutrosophic hypergraphs.
In this way, sets of representatives of colors, resolving sets and dominating
sets have key role. Optimal sets and optimal numbers have key points to get
new results but in some cases, there are usages of sets and numbers instead
of optimal ones. Simultaneously, three notions are applied into neutrosophic
hypergraphs to get sensible results about their structures. Basic familiarities
with neutrosophic hypergraphs theory and hypergraph theory are proposed for
this article.
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3.5 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 3.5.1. Is it possible to use mixed versions of ideas concerning “neut-
rosophic domination”, “neutrosophic dimension” and “neutrosophic coloring”
to define some notions which are applied to neutrosophic hypergraphs?

It’s motivation to find notions to use in any classes of neutrosophic
hypergraphs. Real-world applications about time table and scheduling are
another thoughts which lead to be considered as motivation. Connections amid
two items have key roles to assign colors, dominating and domination. Thus
they’re used to define new ideas which conclude to the structure of coloring,
dominating and domination. The concept of having general neutrosophic
hyperedge inspires me to study the behavior of general neutrosophic hyperedge
in the way that, three types of coloring numbers, dominating number and
resolving set are the cases of study in individuals and families.
The framework of this study is as follows. In the beginning, I introduced basic
definitions to clarify about preliminaries. In section “New Ideas For Neutrosophic
Hypergraphs”, new notions of coloring, dominating and domination are applied
to neutrosophic vertices of neutrosophic graphs as individuals. In section
“Optimal Numbers For Neutrosophic Hypergraphs”, specific numbers have the
key role in this way. Classes of neutrosophic graphs are studied in the terms of
different numbers in section “Optimal Numbers For Neutrosophic Hypergraphs”
as individuals. In the section “Optimal Sets For Neutrosophic Hypergraphs”,
usages of general neutrosophic sets and special neutrosophic sets have key role
in this study as individuals. In section “Optimal Sets and Numbers For Family
of Neutrosophic Hypergraphs”, both sets and numbers have applied into the
family of neutrosophic hypergraphs. In section “Applications in Time Table and
Scheduling”, one application is posed for neutrosophic hypergraphs concerning
time table and scheduling when the suspicions are about choosing some subjects.
In section “Open Problems”, some problems and questions for further studies
are proposed. In section “Conclusion and Closing Remarks”, gentle discussion
about results and applications are featured. In section “Conclusion and Closing
Remarks”, a brief overview concerning advantages and limitations of this study
alongside conclusions are formed.

3.6 New Ideas For Neutrosophic Hypergraphs

Definition 3.6.1. (Dominating, Resolving and Coloring).
Assume neutrosophic hypergraph NHG = (V,E, σ, µ).

(a) : Neutrosophic-dominating set and number are defined as follows.

(i) : A neutrosophic vertex x neutrosophic-dominates a vertex y if
there’s at least one neutrosophic strong hyperedge which have them.
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(ii) : A set S is called neutrosophic-dominating set if for every
y ∈ V \S, there’s at least one vertex x which neutrosophic-dominates
vertex y.

(iii) : If S is set of all neutrosophic-dominating sets, then

Σx∈Xσ(x) = min
S∈S

Σx∈Sσ(x)

is called optimal-neutrosophic-dominating number and X is
called optimal-neutrosophic-dominating set.

(b) : Neutrosophic-resolving set and number are defined as follows.

(i) : A neutrosophic vertex x neutrosophic-resolves vertices y, w if

d(x, y) 6= d(x,w).

.
(ii) : A set S is called neutrosophic-resolving set if for every y ∈ V \S,

there’s at least one vertex x which neutrosophic-resolves vertices
y, w.

(iii) : If S is set of all neutrosophic-resolving sets, then

Σx∈Xσ(x) = min
S∈S

Σx∈Sσ(x)

is called optimal-neutrosophic-resolving number and X is
called optimal-neutrosophic-resolving set.

(c) : Neutrosophic-coloring set and number are defined as follows.

(i) : A neutrosophic vertex x neutrosophic-colors a vertex y differently
with itself if there’s at least one neutrosophic strong hyperedge which
have them.

(ii) : A set S is called neutrosophic-coloring set if for every y ∈ V \S,
there’s at least one vertex x which neutrosophic-colors vertex y.

(iii) : If S is set of all neutrosophic-coloring sets, then

Σx∈Xσ(x) = min
S∈S

Σx∈Sσ(x)

is called optimal-neutrosophic-coloring number and X is called
optimal-neutrosophic-coloring set.

Example 3.6.2. Consider Figure (3.11) where the improvements on its
hyperedges to have neutrosophic strong hypergraph.

(a) : The notions of dominating are clarified.

(i) : n1 neutrosophic-dominates every vertex from the set of vertices
{n7, n8, n9, n2, n3}. n4 neutrosophic-dominates every vertex from
the set of vertices {n6, n5, n3}. n4 doesn’t neutrosophic-dominate
every vertex from the set of vertices {n1, n2, n7, n8, n9}.

(ii) : {n1, n3} is neutrosophic-coloring set but {n1, n4} is optimal-
neutrosophic-dominating set.
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(iii) : (1.53, 1.22, 0.71) is optimal-neutrosophic-dominating number.

(b) : The notions of resolving are clarified.

(i) : n1 neutrosophic-resolves two vertices n4 and n6.

(ii) : V \{n1, n4} is neutrosophic-resolves set but V \{n2, n4, n9} is optimal-
neutrosophic-resolving set.

(iii) : (5, 94, 6.36, 3.3) is optimal-neutrosophic-resolving number.

(c) : The notions of coloring are clarified.

(i) : n1 neutrosophic-colors every vertex from the set of vertices
{n7, n8, n9, n2, n3}. n4 neutrosophic-colors every vertex from the
set of vertices {n6, n5, n3}. n4 doesn’t neutrosophic-dominate every
vertex from the set of vertices {n1, n2, n7, n8, n9}.

(ii) : {n1, n5, n7, n8, n9, n6, n4} is neutrosophic-coloring set but
{n1, n5, n7, n8, n2, n4} is optimal-neutrosophic-coloring set.

(iii) : (5.24, 4.8, 2.82) is optimal-neutrosophic-coloring number.

Example 3.6.3. Consider Figure (3.3).

(a) : The notions of dominating are clarified.

(i) : n1 neutrosophic-dominates every vertex from the set of vertices
{n5, n6, n2, n3}. n4 neutrosophic-dominates every vertex from the set
of vertices {n5, n3}. n4 doesn’t neutrosophic-dominate every vertex
from the set of vertices {n1, n2, n6}.

(ii) : {n1, n3} is neutrosophic-dominating set but {n1, n4} is optimal-
neutrosophic-dominating set.

(iii) : (1.53, 1.22, 0.71) is optimal-neutrosophic-dominating number.

(b) : The notions of resolving are clarified.

(i) : n1 neutrosophic-resolves two vertices n4 and n6.

(ii) : V \{n1, n4} is neutrosophic-resolves set but V \{n2, n4, n6} is optimal-
neutrosophic-resolving set.

(iii) : (5, 94, 6.36, 3.3) is optimal-neutrosophic-resolving number.

(c) : The notions of coloring are clarified.

(i) : n1 neutrosophic-colors every vertex from the set of vertices
{n5, n6, n2, n3}. n4 neutrosophic-colors every vertex from the set
of vertices {n5, n3}. n4 doesn’t neutrosophic-dominate every vertex
from the set of vertices {n1, n2, n6}.

(ii) : {n1, n5, n6} is neutrosophic-coloring set but {n5, n2, n4} is optimal-
neutrosophic-coloring set.

(iii) : (2.27, 1.86, 1.17) is optimal-neutrosophic-coloring number.
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3.7 Optimal Numbers For Neutrosophic Hypergraphs

Proposition 3.7.1. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). S is
maximum set of vertices which form a hyperedge. Then optimal-neutrosophic-
coloring set has as cardinality as S has.

Proof. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). Every neutro-
sophic hyperedge has neutrosophic vertices which have common neutrosophic
hyperedge. Thus every neutrosophic vertex has different color with other neut-
rosophic vertices which are incident with a neutrosophic hyperedge. It induces
a neutrosophic hyperedge with the most number of neutrosophic vertices de-
termines optimal-neutrosophic-coloring set. S is maximum set of vertices which
form a hyperedge. Thus optimal-neutrosophic-coloring set has as cardinality as
S has. �

Proposition 3.7.2. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). S is
maximum set of vertices which form a hyperedge. Then optimal-neutrosophic-
coloring number is

Σs∈Sσ(s).

Proof. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). Every neutro-
sophic hyperedge has neutrosophic vertices which have common neutrosophic
hyperedge. Thus every neutrosophic vertex has different color with other neut-
rosophic vertices which are incident with a neutrosophic hyperedge. It induces
a neutrosophic hyperedge with the most number of neutrosophic vertices de-
termines optimal-neutrosophic-coloring set. S is maximum set of vertices which
form a hyperedge. Thus optimal-neutrosophic-coloring number is

Σs∈Sσ(s).

�

Proposition 3.7.3. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). If
optimal-neutrosophic-coloring number is

Σv∈V σ(v),

then there’s at least one hyperedge which contains n vertices where n is the
cardinality of the set V.

Proof. Suppose neutrosophic hypergraph NHG = (V,E, σ, µ). Consider
optimal-neutrosophic-coloring number is

Σv∈V σ(v).

It implies there’s one neutrosophic hyperedge which has all neutrosophic vertices.
Since if all neutrosophic vertices are incident to a neutrosophic hyperedge, then
all have different colors. �

Proposition 3.7.4. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). If
there’s at least one hyperedge which contains n vertices where n is the cardinality
of the set V, then optimal-neutrosophic-coloring number is

Σv∈V σ(v).

111



3. Neutrosophic Hypergraphs

Proof. Consider neutrosophic hypergraph NHG = (V,E, σ, µ). Suppose there’s
at least one hyperedge which contains n vertices where n is the cardinality of the
set V. It implies there’s one neutrosophic hyperedge which has all neutrosophic
vertices. If all neutrosophic vertices are incident to a neutrosophic hyperedge,
then all have different colors. So V is optimal-neutrosophic-coloring set. It
induces optimal-neutrosophic-coloring number is

Σv∈V σ(v).

�

Proposition 3.7.5. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). If
optimal-neutrosophic-dominating number is

Σv∈V σ(v),

then there’s at least one neutrosophic vertex which doesn’t have incident to any
neutrosophic hyperedge.

Proof. Suppose neutrosophic hypergraph NHG = (V,E, σ, µ). Consider
optimal-neutrosophic-dominating number is

Σv∈V σ(v).

If for all given neutrosophic vertex, there’s at least one neutrosophic hyperedge
which the neutrosophic vertex has incident to it, then there’s a neutrosophic
vertex x such that optimal-neutrosophic-dominating number is

Σv∈V−{x}σ(v).

It induces contradiction with hypothesis. It implies there’s at least one
neutrosophic vertex which doesn’t have incident to any neutrosophic hyperedge.

�

Proposition 3.7.6. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). Then
optimal-neutrosophic-dominating number is <

Σv∈V σ(v).

Proof. Consider neutrosophic hypergraph NHG = (V,E, σ, µ). Thus V − {x}
is a neutrosophic-dominating set. Since if not, x isn’t incident to any given
neutrosophic hyperedge. This is contradiction with supposition. It induces that
x belongs to a neutrosophic hyperedge which has another vertex s. It implies s
neutrosophic-dominates x. Thus V − {x} is a neutrosophic-dominating set. It
induces optimal-neutrosophic-dominating number is <

Σv∈V σ(v).

�

Proposition 3.7.7. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). If
optimal-neutrosophic-resolving number is

Σv∈V σ(v),

then every given vertex doesn’t have incident to any hyperedge.
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Proof. Consider neutrosophic hypergraph NHG = (V,E, σ, µ). Let optimal-
neutrosophic-resolving number be

Σv∈V σ(v).

It implies every neutrosophic vertex isn’t neutrosophic-resolved by a neutro-
sophic vertex. It’s contradiction with hypothesis. So every given vertex doesn’t
have incident to any hyperedge. �

Proposition 3.7.8. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). Then
optimal-neutrosophic-resolving number is <

Σv∈V σ(v).

Proof. Consider neutrosophic hypergraph NHG = (V,E, σ, µ). If optimal-
neutrosophic-resolving number is

Σv∈V σ(v),

then there’s a contradiction to hypothesis. Since the set V \{x} is neutrosophic-
resolving set. It implies optimal-neutrosophic-resolving number is <

Σv∈V σ(v).

�

Proposition 3.7.9. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). If
optimal-neutrosophic-coloring number is

Σv∈V σ(v),

then all neutrosophic verties which have incident to at least one neutrosophic
hyperedge.

Proof. Suppose neutrosophic hypergraph NHG = (V,E, σ, µ). Consider
optimal-neutrosophic-coloring number is

Σv∈V σ(v).

If for all given neutrosophic vertices, there’s no neutrosophic hyperedge which
the neutrosophic vertices have incident to it, then there’s neutrosophic vertex x
such that optimal-neutrosophic-coloring number is

Σv∈V−{x}σ(v).

It induces contradiction with hypothesis. It implies all neutrosophic vertices
have incident to at least one neutrosophic hyperedge. �

Proposition 3.7.10. Assume neutrosophic hypergraph NHG = (V,E, σ, µ).
Then optimal-neutrosophic-coloring number isn’t <

Σv∈V σ(v).
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Proof. Consider neutrosophic hypergraph NHG = (V,E, σ, µ). Thus V − {x}
isn’t a neutrosophic-coloring set. Since if not, x isn’t incident to any given
neutrosophic hyperedge. This is contradiction with supposition. It induces that
x belongs to a neutrosophic hyperedge which has another vertex s. It implies
s neutrosophic-colors x. Thus V − {x} isn’t a neutrosophic-coloring set. It
induces optimal-neutrosophic-coloring number isn’t <

Σv∈V σ(v).

�

Proposition 3.7.11. Assume neutrosophic hypergraph NHG = (V,E, σ, µ).
Then optimal-neutrosophic-dominating set has cardinality which is greater than
n− 1 where n is is the cardinality of the set V.

Proof. Consider neutrosophic hypergraph NHG = (V,E, σ, µ). The set V is
neutrosophic-dominating set. So optimal-neutrosophic-dominating set has
cardinality which is greater than n where n is is the cardinality of the set V. But
the set V \ {x}, for every given neutrosophic vertex is optimal-neutrosophic-
dominating set has cardinality which is greater than n − 1 where n is is the
cardinality of the set V. The result is obtained. �

Proposition 3.7.12. Assume neutrosophic hypergraph NHG = (V,E, σ, µ).
S is maximum set of vertices which form a hyperedge. Then S is optimal-
neutrosophic-coloring set and

Σs∈Sσ(S)

is optimal-neutrosophic-coloring number.

Proof. Suppose neutrosophic hypergraph NHG = (V,E, σ, µ). Consider S is
maximum set of vertices which form a hyperedge. Thus all vertices of S have
incident to hyperedge. It implies the number of different colors equals to
cardinality of S. Therefore, optimal-neutrosophic-coloring number ≥

Σs∈Sσ(S).

In other hand, S is maximum set of vertices which form a hyperedge. It induces
optimal-neutrosophic-coloring number ≤

Σs∈Sσ(S).

So S is neutrosophic-coloring set. Hence S is optimal-neutrosophic-coloring set
and

Σs∈Sσ(S)

is optimal-neutrosophic-coloring number. �

3.8 Optimal Sets For Neutrosophic Hypergraphs

Proposition 3.8.1. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). If S
is neutrosophic-dominating set, then D contains S is neutrosophic-dominating
set.
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Proof. Consider neutrosophic hypergraph NHG = (V,E, σ, µ). Suppose S is
neutrosophic-dominating set. Then all neutrosophic vertices are neutrosophic-
dominated. Thus D contains S is neutrosophic-dominating set. �

Proposition 3.8.2. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). If S
is neutrosophic-resolving set, then D contains S is neutrosophic-resolving set.

Proof. Suppose neutrosophic hypergraph NHG = (V,E, σ, µ). Consider S is
neutrosophic-resolving set. Hence All two given neutrosophic vertices are
neutrosophic-resolved by at least one neutrosophic vertex of S. It induces D
contains S is neutrosophic-resolving set. �

Proposition 3.8.3. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). If S
is neutrosophic-coloring set, then D contains S is neutrosophic-coloring set.

Proof. Suppose neutrosophic hypergraph NHG = (V,E, σ, µ). Consider S is
neutrosophic-coloring set. So all neutrosophic vertices which have a common
neutrosophic hyperedge have different colors. Thus every neutrosophic vertex
neutrosophic-colored by a neutrosophic vertex of S. It induces every neutrosophic
vertex which has a common neutrosophic hyperedge has different colors with
other neutrosophic vertices belong to that neutrosophic hyperedge. then D
contains S is neutrosophic-coloring set. �

Proposition 3.8.4. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). Then
V is neutrosophic-dominating set.

Proof. Suppose neutrosophic hypergraph NHG = (V,E, σ, µ). Since V \ {x}
is neutrosophic-dominating set. Then V contains V \ {x} is neutrosophic-
dominating set. �

Proposition 3.8.5. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). Then
V is neutrosophic-resolving set.

Proof. Suppose neutrosophic hypergraph NHG = (V,E, σ, µ). If there’s no
neutrosophic vertex, then all neutrosophic vertices are neutrosophic-resolved.
Hence if I choose V, then there’s no neutrosophic vertex such that neutrosophic
vertex is neutrosophic-resolved. It implies V is neutrosophic-resolving set but
V isn’t optimal-neutrosophic-resolving set. Since if I construct one set from
V such that only one neutrosophic vertex is out of S, then S is neutrosophic-
resolving set. It implies V isn’t optimal-neutrosophic-resolving set. Thus V is
neutrosophic-resolving set. �

Proposition 3.8.6. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). Then
V is neutrosophic-coloring set.

Proof. Suppose neutrosophic hypergraph NHG = (V,E, σ, µ). All neutrosophic
vertices belong to a neutrosophic hyperedge have to color differently. If V is
chosen, then all neutrosophic vertices have different colors. It induces that
n colors are used where n is the number of neutrosophic vertices. Every
neutrosophic vertex has unique color. Thus V is neutrosophic-coloring set. �
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3.9 Optimal Sets and Numbers For Family of Neutrosophic
Hypergraphs

Proposition 3.9.1. Assume G is a family of neutrosophic hypergraphs. Then V
is neutrosophic-dominating set for all members of G, simultaneously.

Proof. Suppose G is a family of neutrosophic hypergraphs. Thus V is
neutrosophic-dominating set for every given neutrosophic hypergraph of
G. It implies V is neutrosophic-dominating set for all members of G,
simultaneously. �

Proposition 3.9.2. Assume G is a family of neutrosophic hypergraphs. Then V
is neutrosophic-resolving set for all members of G, simultaneously.

Proof. Suppose G is a family of neutrosophic hypergraphs. Thus V is
neutrosophic-resolving set for every given neutrosophic hypergraph of G. It
implies V is neutrosophic-resolving set for all members of G, simultaneously. �

Proposition 3.9.3. Assume G is a family of neutrosophic hypergraphs. Then V
is neutrosophic-coloring set for all members of G, simultaneously.

Proof. Suppose G is a family of neutrosophic hypergraphs. Thus V is
neutrosophic-coloring set for every given neutrosophic hypergraph of G. It
implies V is neutrosophic-coloring set for all members of G, simultaneously. �

Proposition 3.9.4. Assume G is a family of neutrosophic hypergraphs. Then
V \ {x} is neutrosophic-dominating set for all members of G, simultaneously.

Proof. Suppose G is a family of neutrosophic hypergraphs. Thus V \ {x} is
neutrosophic-dominating set for every given neutrosophic hypergraph of G. One
neutrosophic vertex is out of V \ {x}. It’s neutrosophic-dominated from any
neutrosophic vertex in V \ {x}. Hence every given two neutrosophic vertices
are neutrosophic-dominated from any neutrosophic vertex in V \ {x}. It implies
V \{x} is neutrosophic-dominating set for all members of G, simultaneously. �

Proposition 3.9.5. Assume G is a family of neutrosophic hypergraphs. Then
V \ {x} is neutrosophic-resolving set for all members of G, simultaneously.

Proof. Suppose G is a family of neutrosophic hypergraphs. Thus V \ {x} is
neutrosophic-resolving set for every given neutrosophic hypergraph of G. One
neutrosophic vertex is out of V \ {x}. It’s neutrosophic-resolved from any
neutrosophic vertex in V \ {x}. Hence every given two neutrosophic vertices
are neutrosophic-resolved from any neutrosophic vertex in V \ {x}. It implies
V \ {x} is neutrosophic-resolving set for all members of G, simultaneously. �

Proposition 3.9.6. Assume G is a family of neutrosophic hypergraphs. Then
V \ {x} isn’t neutrosophic-coloring set for all members of G, simultaneously.

Proof. Suppose G is a family of neutrosophic hypergraphs. Thus V \ {x} isn’t
neutrosophic-coloring set for every given neutrosophic hypergraph of G. One
neutrosophic vertex is out of V \ {x}. It isn’t neutrosophic-colored from any
neutrosophic vertex in V \ {x}. Hence every given two neutrosophic vertices
aren’t neutrosophic-colored from any neutrosophic vertex in V \ {x}. It implies
V \{x} isn’t neutrosophic-coloring set for all members of G, simultaneously. �
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Proposition 3.9.7. Assume G is a family of neutrosophic hypergraphs. Then
union of neutrosophic-dominating sets from each member of G is neutrosophic-
dominating set for all members of G, simultaneously.

Proof. Suppose G is a family of neutrosophic hypergraphs. For every chosen
neutrosophic hypergraph, there’s one neutrosophic-dominating set in the
union of neutrosophic-dominating sets from each member of G. Thus union of
neutrosophic-dominating sets from each member of G is neutrosophic-dominating
set for every given neutrosophic hypergraph of G. Even one neutrosophic vertex
isn’t out of the union. It’s neutrosophic-dominated from any neutrosophic vertex
in the union. Hence every given two neutrosophic vertices are neutrosophic-
dominated from any neutrosophic vertex in union of neutrosophic-coloring sets.
It implies union of neutrosophic-coloring sets is neutrosophic-dominating set
for all members of G, simultaneously. �

Proposition 3.9.8. Assume G is a family of neutrosophic hypergraphs. Then
union of neutrosophic-resolving sets from each member of G is neutrosophic-
resolving set for all members of G, simultaneously.

Proof. Suppose G is a family of neutrosophic hypergraphs. For every chosen
neutrosophic hypergraph, there’s one neutrosophic-resolving set in the union of
neutrosophic-resolving sets from each member of G. Thus union of neutrosophic-
resolving sets from each member of G is neutrosophic-resolving set for every
given neutrosophic hypergraph of G. Even one neutrosophic vertex isn’t out
of the union. It’s neutrosophic-resolved from any neutrosophic vertex in the
union. Hence every given two neutrosophic vertices are neutrosophic-resolved
from any neutrosophic vertex in union of neutrosophic-coloring sets. It implies
union of neutrosophic-coloring sets is neutrosophic-resolved set for all members
of G, simultaneously. �

Proposition 3.9.9. Assume G is a family of neutrosophic hypergraphs. Then
union of neutrosophic-coloring sets from each member of G is neutrosophic-
coloring set for all members of G, simultaneously.

Proof. Suppose G is a family of neutrosophic hypergraphs. For every chosen
neutrosophic hypergraph, there’s one neutrosophic-coloring set in the union of
neutrosophic-coloring sets from each member of G. Thus union of neutrosophic-
coloring sets from each member of G is neutrosophic-coloring set for every given
neutrosophic hypergraph of G. Even one neutrosophic vertex isn’t out of the
union. It’s neutrosophic-colored from any neutrosophic vertex in the union.
Hence every given two neutrosophic vertices are neutrosophic-colored from any
neutrosophic vertex in union of neutrosophic-coloring sets. It implies union
of neutrosophic-coloring sets is neutrosophic-colored set for all members of G,
simultaneously. �

Proposition 3.9.10. Assume G is a family of neutrosophic hypergraphs. For
every given neutrosophic vertex, there’s one neutrosophic hypergraph such that
the vertex has another neutrosophic vertex which are incident to a neutrosophic
hyperedge. If for given neutrosophic vertex, all neutrosophic vertices have a
common neutrosophic hyperedge in this way, then V \{x} is optimal-neutrosophic-
dominating set for all members of G, simultaneously.

117



3. Neutrosophic Hypergraphs

Proof. Suppose G is a family of neutrosophic hypergraphs. For all neutrosophic
hypergraphs, there’s no neutrosophic-dominating set from any of member of
G. Thus V \ {x} is neutrosophic-dominating set for every given neutrosophic
hypergraph of G. For every given neutrosophic vertex, there’s one neutrosophic
hypergraph such that the vertex has another neutrosophic vertex which are
incident to a neutrosophic hyperedge. Only one neutrosophic vertex is out
of V \ {x}. It’s neutrosophic-dominated from any neutrosophic vertex in the
V \{x}. Hence every given two neutrosophic vertices are neutrosophic-dominated
from any neutrosophic vertex in V \ {x}. It implies V \ {x} is neutrosophic-
dominating set for all members of G, simultaneously. If for given neutrosophic
vertex, all neutrosophic vertices have a common neutrosophic hyperedge in this
way, then V \ {x} is optimal-neutrosophic-dominating set for all members of G,
simultaneously. �

Proposition 3.9.11. Assume G is a family of neutrosophic hypergraphs. For
every given neutrosophic vertex, there’s one neutrosophic hypergraph such that
the neutrosophic vertex has another neutrosophic vertex which are incident to
a neutrosophic hyperedge. If for given neutrosophic vertex, all neutrosophic
vertices have a common neutrosophic hyperedge in this way, then V \ {x} is
optimal-neutrosophic-resolving set for all members of G, simultaneously.

Proof. Suppose G is a family of neutrosophic hypergraphs. For all neutrosophic
hypergraphs, there’s no neutrosophic-resolving set from any of member of
G. Thus V \ {x} is neutrosophic-resolving set for every given neutrosophic
hypergraph of G. For every given neutrosophic vertex, there’s one neutrosophic
hypergraph such that the vertex has another neutrosophic vertex which are
incident to a neutrosophic hyperedge. Only one neutrosophic vertex is out
of V \ {x}. It’s neutrosophic-resolved from any neutrosophic vertex in the
V \ {x}. Hence every given two neutrosophic vertices are neutrosophic-resolving
from any neutrosophic vertex in V \ {x}. It implies V \ {x} is neutrosophic-
resolved set for all members of G, simultaneously. If for given neutrosophic
vertex, all neutrosophic vertices have a common neutrosophic hyperedge in this
way, then V \ {x} is optimal-neutrosophic-resolving set for all members of G,
simultaneously. �

Proposition 3.9.12. Assume G is a family of neutrosophic hypergraphs. For
every given neutrosophic vertex, there’s one neutrosophic hypergraph such that
the neutrosophic vertex has another neutrosophic vertex which are incident to
a neutrosophic hyperedge. If for given neutrosophic vertex, all neutrosophic
vertices have a common neutrosophic hyperedge in this way, then V is optimal-
neutrosophic-coloring set for all members of G, simultaneously.

Proof. Suppose G is a family of neutrosophic hypergraphs. For all neutrosophic
hypergraphs, there’s no neutrosophic-coloring set from any of member of G. Thus
V is neutrosophic-coloring set for every given neutrosophic hypergraphs of G. For
every given neutrosophic vertex, there’s one neutrosophic hypergraph such that
the vertex has another neutrosophic vertex which are incident to a neutrosophic
hyperedge. No neutrosophic vertex is out of V. It’s neutrosophic-colored from
any neutrosophic vertex in the V. Hence every given two neutrosophic vertices
are neutrosophic-colored from any neutrosophic vertex in V. It implies V is
neutrosophic-coloring set for all members of G, simultaneously. If for given
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neutrosophic vertex, all neutrosophic vertices have a common neutrosophic
hyperedge in this way, then V is optimal-neutrosophic-coloring set for all
members of G, simultaneously. �

3.10 Applications in Time Table and Scheduling

Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has important to avoid mixing up.

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive section. Beyond that, sometimes sections are not the same.

Step 3. (Model) As Figure (3.11), the situation is designed as a model. The
model uses data to assign every section and to assign to relation amid
section, three numbers belong unit interval to state indeterminacy,
possibilities and determinacy. There’s one restriction in that, the numbers
amid two sections are at least the number of the relation amid them.
Table (4.5), clarifies about the assigned numbers to these situation.

Figure 3.5: Vertices are suspicions about choosing them. nhg1

Table 3.1: Scheduling concerns its Subjects and its Connections as a
Neutrosophic Hypergraph in a Model. tbl1c

Sections of NHG n1 n2· · · n9
Values (0.99, 0.98, 0.55) (0.74, 0.64, 0.46)· · · (0.99, 0.98, 0.55)

Connections of NHG E1 E2 E3
Values (0.01, 0.01, 0.01) (0.01, 0.01, 0.01) (0.01, 0.01, 0.01)

Step 4. (Solution) As Figure (3.11) shows, neutrosophic hyper graph as model,
proposes to use different types of coloring, resolving and dominating as
numbers, sets, optimal numbers, optimal sets and et cetera.
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(a) : The notions of dominating are applied.
(i) : n1 neutrosophic-dominates every vertex from the set of vertices

{n7, n8, n9, n2, n3}. n4 neutrosophic-dominates every vertex from
the set of vertices {n6, n5, n3}. n4 doesn’t neutrosophic-dominate
every vertex from the set of vertices {n1, n2, n7, n8, n9}.

(ii) : {n1, n3} is neutrosophic-coloring set but {n1, n4} is optimal-
neutrosophic-dominating set.

(iii) : (1.53, 1.22, 0.71) is optimal-neutrosophic-dominating number.
(b) : The notions of resolving are applied.

(i) : n1 neutrosophic-resolves two vertices n4 and n6.

(ii) : V \ {n1, n4} is neutrosophic-resolves set but V \ {n2, n4, n9} is
optimal-neutrosophic-resolving set.

(iii) : (5, 94, 6.36, 3.3) is optimal-neutrosophic-resolving number.
(c) : The notions of coloring are applied.

(i) : n1 neutrosophic-colors every vertex from the set of vertices
{n7, n8, n9, n2, n3}. n4 neutrosophic-colors every vertex from the
set of vertices {n6, n5, n3}. n4 doesn’t neutrosophic-dominate
every vertex from the set of vertices {n1, n2, n7, n8, n9}.

(ii) : {n1, n5, n7, n8, n9, n6, n4} is neutrosophic-coloring set but
{n1, n5, n7, n8, n2, n4} is optimal-neutrosophic-coloring set.

(iii) : (5.24, 4.8, 2.82) is optimal-neutrosophic-coloring number.

3.11 Open Problems

The three notions of coloring, resolving and dominating are introduced on
neutrosophic hypergraphs. Thus,

Question 3.11.1. Is it possible to use other types neutrosophic hyperedges to
define different types of coloring, resolving and dominating on neutrosophic
hypergraphs?

Question 3.11.2. Are existed some connections amid the coloring, resolving
and dominating inside this concept and external connections with other types of
coloring, resolving and dominating on neutrosophic hypergraphs?

Question 3.11.3. Is it possible to construct some classes on neutrosophic
hypergraphs which have “nice” behavior?

Question 3.11.4. Which applications do make an independent study to
apply these three types coloring, resolving and dominating on neutrosophic
hypergraphs?

Problem 3.11.5. Which parameters are related to this parameter?

Problem 3.11.6. Which approaches do work to construct applications to create
independent study?

Problem 3.11.7. Which approaches do work to construct definitions which use
all three definitions and the relations amid them instead of separate definitions
to create independent study?
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Table 3.2: A Brief Overview about Advantages and Limitations of this study tbl2c

Advantages Limitations
1. Defining Dimension 1. General Results

2. Defining Domination

3. Defining Coloring 2. Connections Amid New Notions

4. Applying on Individuals

5. Applying on Family 3. Connections of Results

3.12 Conclusion and Closing Remarks

This study uses mixed combinations of different types of definitions, including
coloring, resolving and dominating to study on neutrosophic hypergraphs. The
connections of neutrosophic vertices which are clarified by general hyperedges
differ them from each other and and put them in different categories to represent
one representative for each color, resolver and dominator. Further studies could
be about changes in the settings to compare this notion amid different settings
of neutrosophic hypergraphs theory. One way is finding some relations amid
three definitions of notions to make sensible definitions. In Table (4.6), some
limitations and advantages of this study are pointed out.

3.13 Classes Of Neutrosophic Hypergraphs

Second case for the contents is to use the article from [6]. The contents are used
in the way that, usages of new contents are preferences and the preliminaries
are passed in the beginning of first chapter.

3.14 Co-degree and Degree of classes of Neutrosophic
Hypergraphs

3.15 Abstract

New setting is introduced to study types of coloring numbers, degree of vertices,
degree of hyperedges, co-degree of vertices, co-degree of hyperedges, neutro-
sophic degree of vertices, neutrosophic degree of hyperedges, neutrosophic
co-degree of vertices, neutrosophic co-degree of hyperedges, neutrosophic num-
ber of vertices, neutrosophic number of hyperedges in neutrosophic hypergraphs.
Different types of procedures including neutrosophic (r, n)−regular hypergraphs
and neutrosophic complete r−partite hypergraphs are proposed in this way,
some results are obtained. General classes of neutrosophic hypergraphs are
used to obtain chromatic number, the representatives of the colors, degree of
vertices, degree of hyperedges, co-degree of vertices, co-degree of hyperedges,
neutrosophic degree of vertices, neutrosophic degree of hyperedges, neutrosophic
co-degree of vertices, neutrosophic co-degree of hyperedges, neutrosophic num-
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ber of vertices, neutrosophic number of hyperedges in neutrosophic hypergraphs.
Using colors to assign to the vertices of neutrosophic hypergraphs and charac-
terizing representatives of the colors are applied in neutrosophic (r, n)−regular
hypergraphs and neutrosophic complete r−partite hypergraphs. Some questions
and problems are posed concerning ways to do further studies on this topic.
Using different ways of study on neutrosophic hypergraphs to get new results
about number, degree and co-degree in the way that some number, degree
and co-degree get understandable perspective. Neutrosophic (r, n)−regular
hypergraphs and neutrosophic complete r−partite hypergraphs are studied
to investigate about the notions, coloring, the representatives of the colors,
degree of vertices, degree of hyperedges, co-degree of vertices, co-degree of
hyperedges, neutrosophic degree of vertices, neutrosophic degree of hyperedges,
neutrosophic co-degree of vertices, neutrosophic co-degree of hyperedges, neut-
rosophic number of vertices, neutrosophic number of hyperedges in neutrosophic
(r, n)−regular hypergraphs and neutrosophic complete r−partite hypergraphs.
In this way, sets of representatives of colors, degree of vertices, degree of
hyperedges, co-degree of vertices, co-degree of hyperedges, neutrosophic degree
of vertices, neutrosophic degree of hyperedges, neutrosophic co-degree of ver-
tices, neutrosophic co-degree of hyperedges, neutrosophic number of vertices,
neutrosophic number of hyperedges have key points to get new results but
in some cases, there are usages of sets and numbers instead of optimal ones.
Simultaneously, notions chromatic number, the representatives of the colors,
degree of vertices, degree of hyperedges, co-degree of vertices, co-degree of
hyperedges, neutrosophic degree of vertices, neutrosophic degree of hyperedges,
neutrosophic co-degree of vertices, neutrosophic co-degree of hyperedges, neutro-
sophic number of vertices, neutrosophic number of hyperedges are applied into
neutrosophic hypergraphs, especially, neutrosophic (r, n)−regular hypergraphs
and neutrosophic complete r−partite hypergraphs to get sensible results about
their structures. Basic familiarities with neutrosophic hypergraphs theory and
hypergraph theory are proposed for this article.
Keywords: Degree, Coloring, Co-degree

AMS Subject Classification: 05C17, 05C22, 05E45

3.16 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 3.16.1. Is it possible to use mixed versions of ideas concerning
“neutrosophic degree”, “neutrosophic co-degree” and “neutrosophic coloring” to
define some notions which are applied to neutrosophic hypergraphs?

It’s motivation to find notions to use in any classes of neutrosophic
hypergraphs. Real-world applications about time table and scheduling are
another thoughts which lead to be considered as motivation. Connections amid
two items have key roles to assign colors and introducing different types of degree
of vertices, degree of hyperedges, co-degree of vertices, co-degree of hyperedges,
neutrosophic degree of vertices, neutrosophic degree of hyperedges, neutrosophic
co-degree of vertices, neutrosophic co-degree of hyperedges, neutrosophic number
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of vertices, neutrosophic number of hyperedges in neutrosophic hypergraphs.
Thus they’re used to define new ideas which conclude to the structure of
coloring, degree and co-degree. The concept of having general neutrosophic
hyperedge inspires me to study the behavior of general neutrosophic hyperedge
in the way that, types of coloring numbers, degree of vertices, degree of
hyperedges, co-degree of vertices, co-degree of hyperedges, neutrosophic degree
of vertices, neutrosophic degree of hyperedges, neutrosophic co-degree of
vertices, neutrosophic co-degree of hyperedges, neutrosophic number of vertices,
neutrosophic number of hyperedges in neutrosophic hypergraphs are introduced.
The framework of this study is as follows. In the beginning, I introduced
basic definitions to clarify about preliminaries. In section “New Ideas For
Neutrosophic Hypergraphs”, new notions of coloring, degree of vertices, degree
of hyperedges, co-degree of vertices, co-degree of hyperedges, neutrosophic
degree of vertices, neutrosophic degree of hyperedges, neutrosophic co-degree of
vertices, neutrosophic co-degree of hyperedges, neutrosophic number of vertices,
neutrosophic number of hyperedges in neutrosophic hypergraphs are introduced.
In section “Applications in Time Table and Scheduling”, one application is posed
for neutrosophic hypergraphs concerning time table and scheduling when the
suspicions are about choosing some subjects. In section “Open Problems”, some
problems and questions for further studies are proposed. In section “Conclusion
and Closing Remarks”, gentle discussion about results and applications are
featured. In section “Conclusion and Closing Remarks”, a brief overview
concerning advantages and limitations of this study alongside conclusions are
formed.

3.17 New Ideas For Neutrosophic Hypergraphs

Question 3.17.1. What-if the notion of complete proposes some classes of
neutrosophic hypergraphs?

In the setting of neutrosophic hypergraphs, the notion of complete have
introduced some classes. Since the vertex could have any number of arbitrary
hyperedges. This notion is too close to the notion of regularity. Thus the idea
of complete has an obvious structure in that, every hyperedge has n vertices so
there’s only one hyperedge.

Definition 3.17.2. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). It’s
denoted by NHGrn and it’s (r, n)− regular if every hyperedge has exactly r
vertices in the way that, all r−subsets of the vertices have an unique hyperedge
where r ≤ n and |V | = n.

Example 3.17.3. In Figure (3.9), NHG3
4 is shown.

Definition 3.17.4. Assume neutrosophic hypergraph NHG = (V,E, σ, µ).

(i) : Maximum number is maximum number of hyperedges which are
incident to a vertex and it’s denoted by ∆(NHG);

(ii) : Minimum number is minimum number of hyperedges which are incident
to a vertex and it’s denoted by δ(NHG);

(iii) : Maximum value is maximum value of vertices and it’s denoted by
∆n(NHG);

123



3. Neutrosophic Hypergraphs

Figure 3.6: NHG3
4 = (V,E, σ, µ) is neutrosophic (3, 4)− regular hypergraph. nhg6

(iv) : Minimum value is minimum value of vertices and it’s denoted by
δn(NHG).

Example 3.17.5. Assume neutrosophic hypergraph NHG = (V,E, σ, µ) as
Figure (3.9).

(i) : ∆(NHG) = 3;

(ii) : δ(NHG) = 3;

(iii) : ∆n(NHG) = (0.99, 0.98, 0.55);

(iv) : δn(NHG) = (0.99, 0.98, 0.55).

Proposition 3.17.6. Assume neutrosophic hypergraph NHGrn = (V,E, σ, µ)
which is (r, n)− regular. Then ∆(NHG) = δ(NHG).

Proof. Consider neutrosophic hypergraph NHGrn = (V,E, σ, µ) which is (r, n)−
regular. Every hyperedge has same number of vertices. Hyperedges are distinct.
It implies the number of hyperedges which are incident to every vertex is the
same. �

Proposition 3.17.7. Assume neutrosophic hypergraph NHGrn = (V,E, σ, µ)
which is (r, n)− regular. Then the number of hyperedges equals to n choose r.

Proof. Suppose neutrosophic hypergraph NHGrn = (V,E, σ, µ) which is (r, n)−
regular. Every hyperedge has r vertices. Thus r−subsets of n form hyperedges.
It induces n choose r. �

Proposition 3.17.8. Assume neutrosophic hypergraph NHGrn = (V,E, σ, µ)
which is (r, n)− regular. Then

(i) : Chromatic number is at least r;

(ii) : Chromatic number is at most ∆r;

(iii) : Neutrosophic chromatic number is at most ∆nr.
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Proof. (i). Suppose NHGrn = (V,E, σ, µ). Every hyperedge has r vertices. It
implies the set of representatives has at least r members. Hence chromatic
number is at least r.
(ii). Suppose NHGrn = (V,E, σ, µ). Every hyperedge has r vertices. It implies
the set of representatives has at least r members. If all vertices have at least
one common hyperedge, then chromatic number is at most ∆r. Thus chromatic
number is at most ∆r.
(iii). Consider NHGrn = (V,E, σ, µ). Every hyperedge has r vertices. It implies
the set of representatives has at least r members. If all vertices have at least
one common hyperedge, then neutrosophic chromatic number is at most ∆nr.
Thus neutrosophic chromatic number is at most ∆nr. �

Question 3.17.9. What-if the notion of complete proposes some classes of
neutrosophic hypergraphs with some parts?

In the setting of neutrosophic hypergraphs, when every part has specific
attribute inside and outside, the notion of complete is applied to parts to form
the idea of completeness.

Definition 3.17.10. Assume neutrosophic hypergraph NHG = (V,E, σ, µ).
It’s denoted by NHGrn1,n2,··· ,nr

and it’s complete r−partite if V can be
partitioned into r non-empty parts, Vi, and every hyperedge has only one vertex
from each part where ni is the number of vertices in part Vi.

Example 3.17.11. In Figure (3.10), NHG3
3,3,3 = (V,E, σ, µ) is shown.

Figure 3.7: NHG3
3,3,3 = (V,E, σ, µ) is neutrosophic complete 3−partite

hypergraph. nhg7

Proposition 3.17.12. For any given r, the number of neutrosophic complete
r−partite hypergraph NHGrp1,p2,··· ,pr

= (V,E, σ, µ) is at most

p1 × p2,× · · · × pr.
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Proof. Assume r is given. Consider NHGrp1,p2,··· ,pr
= (V,E, σ, µ) is neut-

rosophic complete r−partite hypergraph. Any possible hyperedge has to
choose exactly one vertex from every part. First part has p1 vertices. Thus
there are p1 choices. Second part has p2 vertices and et cetera. Thus for
any given r, the number of neutrosophic complete r−partite hypergraph
NHGrp1,p2,··· ,pr

= (V,E, σ, µ) is at most

p1 × p2 × · · · × pr.

�

Proposition 3.17.13. Assume neutrosophic complete r−partite hypergraph
NHGrn1,n2,··· ,nr

= (V,E, σ, µ). Then

(i) : Chromatic number is at least r;

(ii) : Neutrosophic chromatic number is at least

min
X⊆V and X is r-subset

Σx∈Xσ(x).

Proof. (i). Suppose neutrosophic complete r−partite hypergraphNHGrn1,n2,··· ,nr
.

Every hyperedge has r vertices. It implies the set of representatives has r
members. Hence chromatic number is least r.
(ii). Consider neutrosophic complete r−partite hypergraph NHGrn1,n2,··· ,nr

.
Every hyperedge has r vertices. It implies the set of representatives has r
members. If all vertices have at least one common hyperedge, then neutrosophic
chromatic number is at least minX⊆V and X is r-subset Σx∈Xσ(x). �

Definition 3.17.14. Assume neutrosophic hypergraph NHG = (V,E, σ, µ).

(i) : A neutrosophic number of vertices x1, x2, · · · , xn is

Σni=1σ(xi).

(ii) : A neutrosophic number of hyperedges e1, e2, · · · , en is

Σni=1µ(ei).

Example 3.17.15. I get some clarifications about new definitions.

(i) : In Figure (3.9), NHG3
4 is shown.

(a) : A neutrosophic number of vertices n1, n2, n3 is

Σ3
i=1σ(ni) = (2.97, 2.94, 1.65).

(b) : A neutrosophic number of hyperedges e1, e2, e3 is

Σ3
i=1σ(ei) = (1.82, 1.12, 0.78).

where e1 = (0.54, 0.24, 0.16), e2 = (0.74, 0.64, 0.46), e3 =
(0.54, 0.24, 0.16).

(ii) : In Figure (3.10), NHG3
3,3,3 = (V,E, σ, µ) is shown.
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(a) : A neutrosophic number of vertices n1, n2, n3 is

Σ3
i=1σ(ni) = (2.97, 2.94, 1.65).

(b) : A neutrosophic number of hyperedges e1, e2, e3 is

Σ3
i=1σ(ei) = (1.82, 1.12, 0.78).

where e1 = (0.54, 0.24, 0.16), e2 = (0.74, 0.64, 0.46), e3 =
(0.54, 0.24, 0.16).

Proposition 3.17.16. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). A
neutrosophic number of vertices is at least δn and at most On.

Proof. Suppose neutrosophic hypergraph NHG = (V,E, σ, µ). Let v be a given
vertex. Then σ(v) ≥ minv∈V σ(v). Thus σ(v) ≥ δn. So a neutrosophic number
of vertices is at least δn. σ(v) ≤ Σv∈V σ(v). Thus σ(v) ≤ On. So a neutrosophic
number of vertices is at most On. Hence a neutrosophic number of vertices is
at least δn and at most On. �

Proposition 3.17.17. Assume neutrosophic hypergraph NHG = (V,E, σ, µ).
A neutrosophic number of hyperedges is at least δen and at most Sn where
δen = mine∈E µ(e).

Proof. Suppose neutrosophic hypergraph NHG = (V,E, σ, µ). Let e be a given
hyperedge. Then µ(e) ≥ mine∈E µ(e). Thus µ(v) ≥ δen. So a neutrosophic
number of hyperedges is at least δen. µ(e) ≤ Σe∈Eµ(e). Thus µ(e) ≤ Sn. So a
neutrosophic number of hyperedges is at most Sn. Hence a neutrosophic number
of hyperedges is at least δen and at most Sn. �

Definition 3.17.18. Assume neutrosophic hypergraph NHG = (V,E, σ, µ).

(i) : A degree of vertex x is the number of hyperedges which are incident to
x.

(ii) : A neutrosophic degree of vertex x is the neutrosophic number of
hyperedges which are incident to x.

(iii) : A degree of hyperedge e is the number of vertices which e is incident to
them.

(iv) : A neutrosophic degree of hyperedge e is the neutrosophic number of
vertices which e is incident to them.

(v) : A co-degree of vertices x1, x2, · · · , xn is the number of hyperedges which
are incident to x1, x2, · · · , xn.

(vi) : A neutrosophic co-degree of vertices x1, x2, · · · , xn is the neutrosophic
number of hyperedges which are incident to x1, x2, · · · , xn.

(vii) : A co-degree of hyperedges e1, e2, · · · , en is the number of vertices which
e1, e2, · · · , en are incident to them.

(viii) : A neutrosophic co-degree of hyperedges e1, e2, · · · , en is the neutro-
sophic number of vertices which e1, e2, · · · , en are incident to them.
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Example 3.17.19. I get some clarifications about new definitions.

(i) : In Figure (3.9), NHG3
4 is shown.

(a) : A degree of any vertex is 3.
(b) : A neutrosophic degree of vertex n1 is (2.07, 1.46, 0.87).
(c) : A degree of hyperedge e where µ(e) = (0.99, 0.98, 0.55) is 3.
(d) : A neutrosophic degree of hyperedge e where µ(e) = (0.99, 0.98, 0.55)

is (2.97, 2.94, 1.65).
(e) : A co-degree of vertices n1, n3 is 2.
(f) : A neutrosophic co-degree of vertices n1, n3 is (1.53, 1.22, 0.71).
(g) : A co-degree of hyperedges e1, e2 where µ(e1) = (0.99, 0.98, 0.55) and

µ(e2) = (0.54, 0.24, 0.16) is 2.
(h) : A neutrosophic co-degree of hyperedges e1, e2 where µ(e1) =

(0.99, 0.98, 0.55) and µ(e2) = (0.54, 0.24, 0.16) is (1.98, 1.96, 1.1).

(ii) : In Figure (3.10), NHG3
3,3,3 = (V,E, σ, µ) is shown.

(a) : A degree of any vertex n1, n2, n4, n6, n8, n9 is 1 and degree of any
vertex n3, n5, n7 is 2.

(b) : A neutrosophic degree of vertex n1, n2, n4, n6, n8, n9 is
(0.99, 0.98, 0.55) and degree of any vertex n3, n5, n7 is (1.98, 1.96, 1.1).

(c) : A degree of any hyperedge is 3.
(d) : A neutrosophic degree of hyperedge is (2.97, 2.94, 1.65).
(e) : A co-degree of vertices n1, n4 is 1.
(f) : A neutrosophic co-degree of vertices n1, n4 is (0.54, 0.24, 0.16).
(g) : A co-degree of hyperedges e1, e2 where µ(e1) = (0.99, 0.98, 0.55) and

µ(e2) = (0.54, 0.24, 0.16) is 1.
(h) : A neutrosophic co-degree of hyperedges e1, e2 where µ(e1) =

(0.99, 0.98, 0.55) and µ(e2) = (0.54, 0.24, 0.16) is (0.99, 0.98, 0.55).

Proposition 3.17.20. Assume neutrosophic complete r−partite hypergraph
NHGrp1,p2,··· ,pr

= (V,E, σ, µ).

(i) : A degree of vertex x is at most

p2 × · · · × pr.

(ii) : A degree of hyperedge e is r.

(iii) : A co-degree of vertices x1, x2, · · · , xt is at most

pt+1 × · · · × pr.

(iv) : A co-degree of hyperedges e1, e2, · · · , et is r − t.
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Proof. (i). Suppose neutrosophic complete r−partite hypergraphNHGrp1,p2,··· ,pr
=

(V,E, σ, µ). Vertex x belongs to part first part. x is chosen so for second part,
there are p2 choices and et cetera. By it’s neutrosophic complete r−partite
hypergraph NHGrp1,p2,··· ,pr

= (V,E, σ, µ), possible choice from every part is
exactly one vertex. It induces for second part, one vertex has to be chosen and
et cetera. Therefore the number of neutrosophic complete r−partite hypergraph
NHGrp1,p2,··· ,pr

= (V,E, σ, µ), when x is chosen, introduces biggest possible
number of degree of x which is p2 × · · · × pr. Hence a degree of vertex x is at
most

p2 × · · · × pr.

(ii). Consider neutrosophic complete r−partite hypergraph NHGrp1,p2,··· ,pr
=

(V,E, σ, µ). Vertex x belongs to part first part. x is chosen so for second part,
there is one choice and et cetera. By it’s neutrosophic complete r−partite
hypergraph NHGrp1,p2,··· ,pr

= (V,E, σ, µ), possible choice from every part
is exactly one vertex. It induces for second part, one vertex has to be
chosen and et cetera. Therefore neutrosophic complete r−partite hypergraph
NHGrp1,p2,··· ,pr

= (V,E, σ, µ) introduces exact number of degree of e which is
r. Hence a degree of hyperedge e is

r.

(iii). Suppose neutrosophic complete r−partite hypergraph NHGrp1,p2,··· ,pr
=

(V,E, σ, µ). Vertices x1, x2, · · · , xt belong to part first part, second part,...., and
part t. x1, x2, · · · , xt are chosen so for part t+ 1, there are pt+1 choices and et
cetera. By it’s neutrosophic complete r−partite hypergraph NHGrp1,p2,··· ,pr

=
(V,E, σ, µ), possible choice from every part is exactly one vertex. It induces for
part t+ 1, one vertex has to be chosen and et cetera. Therefore the number of
neutrosophic complete r−partite hypergraph NHGrp1,p2,··· ,pr

= (V,E, σ, µ),
when x1, x2, · · · , xt are chosen, introduces biggest possible number of co-
degree of x1, x2, · · · , xt which is pt+1 × · · · × pr. Hence a co-degree of vertices
x1, x2, · · · , xt is at most

pt+1 × · · · × pr.

(iv). Consider neutrosophic complete r−partite hypergraph NHGrp1,p2,··· ,pr
=

(V,E, σ, µ). Vertex x belongs to part first part. x is chosen so for second
part, there is one choice and et cetera. By it’s neutrosophic complete
r−partite hypergraph NHGrp1,p2,··· ,pr

= (V,E, σ, µ), possible choice from
every part is exactly one vertex. It induces for second part, one vertex
has to be chosen and et cetera. Therefore neutrosophic complete r−partite
hypergraph NHGrp1,p2,··· ,pr

= (V,E, σ, µ) introduces exact number of co-degree
of e1, e2, · · · , et which is r − t. Hence a co-degree of hyperedges e1, e2, · · · , et is

r − t.

�

Proposition 3.17.21. Assume neutrosophic hypergraph NHG = (V,E, σ, µ)
where E is power set of V. Then the number of hyperedges is

2n.
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Proof. Consider neutrosophic hypergraph NHG = (V,E, σ, µ) where E is power
set of V. The cardinality of E is 2n. The number of hyperedges is

2n.

�

Proposition 3.17.22. Assume neutrosophic hypergraph NHG = (V,E, σ, µ)
where E is power set of V. Then

(i) : A degree of vertex x is
2n−1.

(ii) : A degree of hyperedge e is at most

O

and at least
0.

(iii) : A co-degree of vertices x1, x2, · · · , xt is at most

2n−t.

(iv) : A co-degree of hyperedges e1, e2, · · · , et is at most

O − t

and at least
0.

Proof. (i). Suppose neutrosophic hypergraph NHG = (V,E, σ, µ) where E is
power set of V. Vertex x is chosen. Thus all hyperedges have to have x. It
induces E′ is power set of V \ {x}. The cardinality of E′ is 2n−1. So the number
of hyperedges which are incident to x, is 2n−1. It implies a degree of vertex x is

2n−1.

(ii). Consider neutrosophic hypergraph NHG = (V,E, σ, µ) where E is power
set of V. Hyperedge e is chosen. Thus a hyperedge has either all vertices or
no vertex. It induces for hyperedge e, the number of vertices is either O or 0.
Then a degree of hyperedge e is at most

O

and at least
0.

(iii). Suppose neutrosophic hypergraph NHG = (V,E, σ, µ) where E is power
set of V. Vertices x1, x2, · · · , xt are chosen. Thus all hyperedges have to have
x1, x2, · · · , xt. It induces E′ is power set of V \{x1, x2, · · · , xt}. The cardinality
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of E′ is 2n−t. So the number of hyperedges which are incident to x1, x2, · · · , xt,
is 2n−t. It implies a co-degree of vertices x1, x2, · · · , xt is

2n−t.

(iv). Consider neutrosophic hypergraph NHG = (V,E, σ, µ) where E is power
set of V. Hyperedges e1, e2, · · · , et are chosen. Thus hyperedges e1, e2, · · · , et
don’t have all vertices. Since one edge is incident to all vertices and there’s no
second edge to be incident to all vertices. It implies hyperedges e1, e2, · · · , et
have all vertices excluding only t vertices or no vertex. It induces for hyperedges
e1, e2, · · · , et, the number of vertices is either O − t or 0. Hence a co-degree of
hyperedges e1, e2, · · · , et is at most

O − t

and at least
0.

�

Proposition 3.17.23. Assume neutrosophic hypergraph NHG = (V,E, σ, µ)
where E is power set of V. Then

(i) : Chromatic number is
O;

(ii) : Neutrosophic chromatic number is

On.

Proof. (i). Suppose neutrosophic hypergraph NHG = (V,E, σ, µ) where E is
power set of V. Every hyperedge has either of 0, 1, 2, · · · ,O vertices but for
any of two vertices, there’s at least one hyperedge which is incident to them.
Furthermore, all vertices have at least one common hyperedge which is V.. Since
V ∈ E and V is also a hyperedge. It implies the set of representatives has O
members. Hence chromatic number is

O.

(ii). Consider neutrosophic hypergraph NHG = (V,E, σ, µ) where E is power
set of V. Every hyperedge has either of 0, 1, 2, · · · ,O vertices but for any of two
vertices, there’s at least one hyperedge which is incident to them. Furthermore,
all vertices have at least one common hyperedge which is V.. Since V ∈ E and
V is also a hyperedge. It implies the set of representatives has O members.
Hence neutrosophic chromatic number is

On.

�
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3.18 Applications in Time Table and Scheduling

Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has important to avoid mixing up.

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive section. Beyond that, sometimes sections are not the same.

Step 3. (Model) As Figure (3.12), the situation is designed as a model. The
model uses data to assign every section and to assign to relation amid
section, three numbers belong unit interval to state indeterminacy,
possibilities and determinacy. There’s one restriction in that, the numbers
amid two sections are at least the number of the relation amid them.
Table (4.5), clarifies about the assigned numbers to these situation.

Figure 3.8: Vertices are suspicions about choosing them. nhg8

Table 3.3: Scheduling concerns its Subjects and its Connections as a
Neutrosophic Hypergraph in a Model. tbl1c

Sections of NHG n1 n2· · · n9
Values (0.99, 0.98, 0.55) (0.74, 0.64, 0.46)· · · (0.99, 0.98, 0.55)

Connections of NHG E1, E2 E3 E4
Values (0.54, 0.24, 0.16) (0.99, 0.98, 0.55) (0.74, 0.64, 0.46)
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Step 4. (Solution) As Figure (3.12) shows, NHG3
3,3,3 = (V,E, σ, µ) is neutro-

sophic complete 3−partite hypergraph as model, proposes to use different
types of degree of vertices, degree of hyperedges, co-degree of vertices,
co-degree of hyperedges, neutrosophic number of vertices, neutrosophic
number of hyperedges and et cetera.

(i) : The notions of neutrosophic number are applied on vertices and
hyperedges.

(a) : A neutrosophic number of vertices n1, n2, n3 is

Σ3
i=1σ(ni) = (2.97, 2.94, 1.65).

(b) : A neutrosophic number of hyperedges e1, e2, e3 is

Σ3
i=1σ(ei) = (1.82, 1.12, 0.78).

where e1 = (0.54, 0.24, 0.16), e2 = (0.74, 0.64, 0.46), e3 =
(0.54, 0.24, 0.16).

(ii) : The notions of degree, co-degree, neutrosophic degree and neutro-
sophic co-degree are applied on vertices and hyperedges.

(a) : A degree of any vertex n1, n2, n4, n6, n8, n9 is 1 and degree of
any vertex n3, n5, n7 is 2.

(b) : A neutrosophic degree of vertex n1, n2, n4, n6, n8, n9 is
(0.99, 0.98, 0.55) and degree of any vertex n3, n5, n7 is
(1.98, 1.96, 1.1).

(c) : A degree of any hyperedge is 3.
(d) : A neutrosophic degree of hyperedge is (2.97, 2.94, 1.65).
(e) : A co-degree of vertices n1, n4 is 1.
(f) : A neutrosophic co-degree of vertices n1, n4 is (0.54, 0.24, 0.16).
(g) : A co-degree of hyperedges e1, e2 where µ(e1) = (0.99, 0.98, 0.55)

and µ(e2) = (0.54, 0.24, 0.16) is 1.
(h) : A neutrosophic co-degree of hyperedges e1, e2 where

µ(e1) = (0.99, 0.98, 0.55) and µ(e2) = (0.54, 0.24, 0.16) is
(0.99, 0.98, 0.55).

3.19 Open Problems

The different types of degree of vertices, degree of hyperedges, co-degree of
vertices, co-degree of hyperedges, neutrosophic number of vertices, neutrosophic
number of hyperedges are introduced on neutrosophic hypergraphs. Thus,

Question 3.19.1. Is it possible to use other types neutrosophic hyperedges to
define different types of degree and co-degree in neutrosophic hypergraphs?

Question 3.19.2. Are existed some connections amid degree and co-degree inside
this concept and external connections with other types of neutrosophic degree
and neutrosophic co-degree in neutrosophic hypergraphs?

Question 3.19.3. Is it possible to construct some classes on neutrosophic
hypergraphs which have “nice” behavior?
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Question 3.19.4. Which applications do make an independent study to apply
these types degree, co-degree, neutrosophic degree and neutrosophic co-degree in
neutrosophic hypergraphs?

Problem 3.19.5. Which parameters are related to this parameter?

Problem 3.19.6. Which approaches do work to construct applications to create
independent study?

Problem 3.19.7. Which approaches do work to construct definitions which use
all definitions and the relations amid them instead of separate definitions to
create independent study?

3.20 Conclusion and Closing Remarks

This study introduces different types of degree of vertices, degree of hyperedges,
co-degree of vertices, co-degree of hyperedges, neutrosophic degree of vertices,
neutrosophic degree of hyperedges, neutrosophic co-degree of vertices, neutro-
sophic co-degree of hyperedges, neutrosophic number of vertices, neutrosophic
number of hyperedges in neutrosophic hypergraphs. The connections of neutro-
sophic vertices which are clarified by general hyperedges differ them from each
other and and put them in different categories to represent one representative for
each color. Further studies could be about changes in the settings to compare
this notion amid different settings of neutrosophic hypergraphs theory. One
way is finding some relations amid these definitions of notions to make sensible
definitions. In Table (4.6), some limitations and some advantages of this study
are pointed out.

Table 3.4: A Brief Overview about Advantages and Limitations of this study tbl2c

Advantages Limitations
1. Defining degree 1. General Results

2. Defining co-degree

3. Defining neutrosophic degree 2. Connections With Parameters

4. Applying colortring

5. Defining neutrosophic co-degree 3. Connections of Results

3.21 Beyond Neutrosophic Hypergraphs
Extended

settings are
used to apply
Neutrosophic

ideas.

Third case for the contents is to use the article from [5]. The contents are used
in the way that, usages of new contents are preferences and the preliminaries
are passed in the beginning of first chapter.
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(Neutrosophic)n-SuperHyperGraph
3.22 Closing Numbers and Super-Closing Numbers as

(Dual)Resolving and (Dual)Coloring alongside
(Dual)Dominating in
(Neutrosophic)n-SuperHyperGraph

3.23 Abstract

New setting is introduced to study “closing numbers” and “super-closing
numbers” as optimal-super-resolving number, optimal-super-coloring number
and optimal-super-dominating number. In this way, some approaches are
applied to get some sets from (Neutrosophic)n-SuperHyperGraph and after
that, some ideas are applied to get different types of super-closing numbers
which are called by optimal-super-resolving number, optimal-super-coloring
number and optimal-super-dominating number. The notion of dual is another
new idea which is covered by these notions and results. In the setting
of dual, the set of super-vertices is exchanged with the set of super-edges.
Thus these results and definitions hold in the setting of dual. Setting of
neutrosophic n-SuperHyperGraph is used to get some examples and solutions
for two applications which are proposed. Both setting of SuperHyperGraph
and neutrosophic n-SuperHyperGraph are simultaneously studied but the
results are about the setting of n-SuperHyperGraphs. Setting of neutrosophic
n-SuperHyperGraph get some examples where neutrosophic hypergraphs as
special case of neutrosophic n-SuperHyperGraph are used. The clarifications
use neutrosophic n-SuperHyperGraph and theoretical study is to use n-
SuperHyperGraph but these results are also applicable into neutrosophic n-
SuperHyperGraph. Special usage from different attributes of neutrosophic
n-SuperHyperGraph are appropriate to have open ways to pursue this study.
Different types of procedures including optimal-super-set, and optimal-super-
number alongside study on the family of (neutrosophic)n-SuperHyperGraph
are proposed in this way, some results are obtained. General classes of
(neutrosophic)n-SuperHyperGraph are used to obtains these closing numbers
and super-closing numbers and the representatives of the optimal-super-coloring
sets, optimal-super-dominating sets and optimal-super-resolving sets. Using
colors to assign to the super-vertices of n-SuperHyperGraph and characterizing
optimal-super-resolving sets and optimal-super-dominating sets are applied.
Some questions and problems are posed concerning ways to do further studies
on this topic. Using different ways of study on n-SuperHyperGraph to get
new results about closing numbers and super-closing numbers alongside sets in
the way that some closing numbers super-closing numbers get understandable
perspective. Family of n-SuperHyperGraph are studied to investigate about
the notions, super-resolving and super-coloring alongside super-dominating
in n-SuperHyperGraph. In this way, sets of representatives of optimal-super-
colors, optimal-super-resolving sets and optimal-super-dominating sets have
key role. Optimal-super sets and optimal-super numbers have key points
to get new results but in some cases, there are usages of sets and numbers
instead of optimal-super ones. Simultaneously, three notions are applied
into (neutrosophic)n-SuperHyperGraph to get sensible results about their
structures. Basic familiarities with n-SuperHyperGraph theory and neutrosophic
n-SuperHyperGraph theory are proposed for this article.
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Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 3.23.1. Is it possible to use mixed versions of ideas concerning “super-
domination”, “super-dimension” and “super-coloring” to define some super-
notions which are applied to n-SuperHyperGraph?

It’s motivation to find notions to use in any classes of n-SuperHyperGraph.
Real-world applications about time table and scheduling are another thoughts
which lead to be considered as motivation. Connections amid two items have
key roles to assign super-colors, super-domination and super-dimension. Thus
they’re used to define new super-ideas which conclude to the structure of super-
coloring, super-dominating and super-resolving. The concept of having general
super-edge inspires me to study the behavior of general super-edge in the way
that, three types of “super-closing” numbers, e.g., super-coloring numbers,
super-dominating numbers and super-resolving numbers are the cases of study
in the settings of individuals and in settings of families.
The framework of this study is as follows. In the beginning, I introduced
basic definitions to clarify about preliminaries. In section “New Ideas For n-
SuperHyperGraph”, new notions of super-coloring, super-dominating and super-
resolving are applied to super-vertices of SuperHyperGraph as individuals. In
section “Optimal Numbers For n-SuperHyperGraph”, specific closing numbers
have the key role in this way. Classes of n-SuperHyperGraph are studied
in the terms of different closing numbers in section “Optimal Numbers For
n-SuperHyperGraph” as individuals. In the section “Optimal Sets For n-
SuperHyperGraph”, usages of general sets and special sets have key role in
this study as individuals. In section “Optimal Sets and Numbers For Family
of n-SuperHyperGraph”, both sets and closing numbers have applied into the
family of n-SuperHyperGraph. In section “Applications in Time Table and
Scheduling”, two applications are posed for n-SuperHyperGraph concerning
time table and scheduling when the suspicions are about choosing some subjects.
In section “Open Problems”, some problems and questions for further studies
are proposed. In section “Conclusion and Closing Remarks”, gentle discussion
about results and applications are featured. In section “Conclusion and Closing
Remarks”, a brief overview concerning advantages and limitations of this study
alongside conclusions are formed.

3.24 New Ideas For Setting of Neutrosophic
n-SuperHyperGraph

Question 3.24.1. What-if the notion of complete proposes some classes of
neutrosophic hypergraphs?

In the setting of neutrosophic hypergraphs, the notion of complete have
introduced some classes. Since the vertex could have any number of arbitrary
hyperedges. This notion is too close to the notion of regularity. Thus the idea
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of complete has an obvious structure in that, every hyperedge has n vertices so
there’s only one hyperedge.

Definition 3.24.2. Assume neutrosophic hypergraph NHG = (V,E, σ, µ). It’s
denoted by NHGrn and it’s (r, n)− regular if every hyperedge has exactly r
vertices in the way that, all r−subsets of the vertices have an unique hyperedge
where r ≤ n and |V | = n.

Example 3.24.3. In Figure (3.9), NHG3
4 is shown.

Figure 3.9: NHG3
4 = (V,E, σ, µ) is neutrosophic (3, 4)− regular hypergraph. nhg6

Definition 3.24.4. Assume neutrosophic hypergraph NHG = (V,E, σ, µ).

(i) : Maximum number is maximum number of hyperedges which are
incident to a vertex and it’s denoted by ∆(NHG);

(ii) : Minimum number is minimum number of hyperedges which are incident
to a vertex and it’s denoted by δ(NHG);

(iii) : Maximum value is maximum value of vertices and it’s denoted by
∆n(NHG);

(iv) : Minimum value is minimum value of vertices and it’s denoted by
δn(NHG).

Example 3.24.5. Assume neutrosophic hypergraph NHG = (V,E, σ, µ) as
Figure (3.9).

(i) : ∆(NHG) = 3;

(ii) : δ(NHG) = 3;

(iii) : ∆n(NHG) = (0.99, 0.98, 0.55);

(iv) : δn(NHG) = (0.99, 0.98, 0.55).

Question 3.24.6. What-if the notion of complete proposes some classes of
neutrosophic hypergraphs with some parts?
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In the setting of neutrosophic hypergraphs, when every part has specific
attribute inside and outside, the notion of complete is applied to parts to form
the idea of completeness.

Definition 3.24.7. Assume neutrosophic hypergraph NHG = (V,E, σ, µ).
It’s denoted by NHGrn1,n2,··· ,nr

and it’s complete r−partite if V can be
partitioned into r non-empty parts, Vi, and every hyperedge has only one vertex
from each part where ni is the number of vertices in part Vi.

Example 3.24.8. In Figure (3.10), NHG3
3,3,3 = (V,E, σ, µ) is shown.

Figure 3.10: NHG3
3,3,3 = (V,E, σ, µ) is neutrosophic complete 3−partite

hypergraph. nhg7

Definition 3.24.9. Assume neutrosophic hypergraph NHG = (V,E, σ, µ).

(i) : A neutrosophic number of vertices x1, x2, · · · , xn is

Σni=1σ(xi).

(ii) : A neutrosophic number of hyperedges e1, e2, · · · , en is

Σni=1µ(ei).

Example 3.24.10. I get some clarifications about new definitions.

(i) : In Figure (3.9), NHG3
4 is shown.

(a) : A neutrosophic number of vertices n1, n2, n3 is

Σ3
i=1σ(ni) = (2.97, 2.94, 1.65).

(b) : A neutrosophic number of hyperedges e1, e2, e3 is

Σ3
i=1σ(ei) = (1.82, 1.12, 0.78).

where e1 = (0.54, 0.24, 0.16), e2 = (0.74, 0.64, 0.46), e3 =
(0.54, 0.24, 0.16).
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(ii) : In Figure (3.10), NHG3
3,3,3 = (V,E, σ, µ) is shown.

(a) : A neutrosophic number of vertices n1, n2, n3 is

Σ3
i=1σ(ni) = (2.97, 2.94, 1.65).

(b) : A neutrosophic number of hyperedges e1, e2, e3 is

Σ3
i=1σ(ei) = (1.82, 1.12, 0.78).

where e1 = (0.54, 0.24, 0.16), e2 = (0.74, 0.64, 0.46), e3 =
(0.54, 0.24, 0.16).

Definition 3.24.11. Assume neutrosophic hypergraph NHG = (V,E, σ, µ).

(i) : A degree of vertex x is the number of hyperedges which are incident to
x.

(ii) : A neutrosophic degree of vertex x is the neutrosophic number of
hyperedges which are incident to x.

(iii) : A degree of hyperedge e is the number of vertices which e is incident to
them.

(iv) : A neutrosophic degree of hyperedge e is the neutrosophic number of
vertices which e is incident to them.

(v) : A co-degree of vertices x1, x2, · · · , xn is the number of hyperedges which
are incident to x1, x2, · · · , xn.

(vi) : A neutrosophic co-degree of vertices x1, x2, · · · , xn is the neutrosophic
number of hyperedges which are incident to x1, x2, · · · , xn.

(vii) : A co-degree of hyperedges e1, e2, · · · , en is the number of vertices which
e1, e2, · · · , en are incident to them.

(viii) : A neutrosophic co-degree of hyperedges e1, e2, · · · , en is the neutro-
sophic number of vertices which e1, e2, · · · , en are incident to them.

Example 3.24.12. I get some clarifications about new definitions.

(i) : In Figure (3.9), NHG3
4 is shown.

(a) : A degree of any vertex is 3.
(b) : A neutrosophic degree of vertex n1 is (2.07, 1.46, 0.87).
(c) : A degree of hyperedge e where µ(e) = (0.99, 0.98, 0.55) is 3.
(d) : A neutrosophic degree of hyperedge e where µ(e) = (0.99, 0.98, 0.55)

is (2.97, 2.94, 1.65).
(e) : A co-degree of vertices n1, n3 is 2.
(f) : A neutrosophic co-degree of vertices n1, n3 is (1.53, 1.22, 0.71).
(g) : A co-degree of hyperedges e1, e2 where µ(e1) = (0.99, 0.98, 0.55) and

µ(e2) = (0.54, 0.24, 0.16) is 2.
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(h) : A neutrosophic co-degree of hyperedges e1, e2 where µ(e1) =
(0.99, 0.98, 0.55) and µ(e2) = (0.54, 0.24, 0.16) is (1.98, 1.96, 1.1).

(ii) : In Figure (3.10), NHG3
3,3,3 = (V,E, σ, µ) is shown.

(a) : A degree of any vertex n1, n2, n4, n6, n8, n9 is 1 and degree of any
vertex n3, n5, n7 is 2.

(b) : A neutrosophic degree of vertex n1, n2, n4, n6, n8, n9 is
(0.99, 0.98, 0.55) and degree of any vertex n3, n5, n7 is (1.98, 1.96, 1.1).

(c) : A degree of any hyperedge is 3.
(d) : A neutrosophic degree of hyperedge is (2.97, 2.94, 1.65).
(e) : A co-degree of vertices n1, n4 is 1.
(f) : A neutrosophic co-degree of vertices n1, n4 is (0.54, 0.24, 0.16).
(g) : A co-degree of hyperedges e1, e2 where µ(e1) = (0.99, 0.98, 0.55) and

µ(e2) = (0.54, 0.24, 0.16) is 1.
(h) : A neutrosophic co-degree of hyperedges e1, e2 where µ(e1) =

(0.99, 0.98, 0.55) and µ(e2) = (0.54, 0.24, 0.16) is (0.99, 0.98, 0.55).

Example 3.24.13. Consider Figure (3.11) where the improvements on its super-
edges to have super strong hypergraph.

(a) : The notions of dominating are clarified.

(i) : n1 super-dominates every super-vertex from the set of super-vertices
{n7, n8, n9, n2, n3}. n4 super-dominates every super-vertex from the
set of super-vertices {n6, n5, n3}. n4 doesn’t super-dominate every
super-vertex from the set of super-vertices {n1, n2, n7, n8, n9}.

(ii) : {n1, n3} is super-coloring set but {n1, n4} is optimal-super-
dominating set.

(iii) : (1.53, 1.22, 0.71) is optimal-super-dominating number.

(b) : The notions of resolving are clarified.

(i) : n1 super-resolves two super-vertices n4 and n6.

(ii) : V \{n1, n4} is super-resolves set but V \{n2, n4, n9} is optimal-super-
resolving set.

(iii) : (5, 94, 6.36, 3.3) is optimal-super-resolving number.

(c) : The notions of coloring are clarified.

(i) : n1 super-colors every super-vertex from the set of super-vertices
{n7, n8, n9, n2, n3}. n4 super-colors every super-vertex from the set
of super-vertices {n6, n5, n3}. n4 doesn’t super-dominate every super-
vertex from the set of super-vertices {n1, n2, n7, n8, n9}.

(ii) : {n1, n5, n7, n8, n9, n6, n4} is super-coloring set but {n1, n5, n7, n8, n2, n4}
is optimal-super-coloring set.

(iii) : (5.24, 4.8, 2.82) is optimal-super-coloring number.

Example 3.24.14. Consider Figure (3.3).
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(a) : The notions of dominating are clarified.

(i) : n1 super-dominates every super-vertex from the set of super-vertices
{n5, n6, n2, n3}. n4 super-dominates every super-vertex from the set
of super-vertices {n5, n3}. n4 doesn’t super-dominate every super-
vertex from the set of super-vertices {n1, n2, n6}.

(ii) : {n1, n3} is super-dominating set but {n1, n4} is optimal-super-
dominating set.

(iii) : (1.53, 1.22, 0.71) is optimal-super-dominating number.

(b) : The notions of resolving are clarified.

(i) : n1 super-resolves two super-vertices n4 and n6.

(ii) : V \{n1, n4} is super-resolves set but V \{n2, n4, n6} is optimal-super-
resolving set.

(iii) : (5, 94, 6.36, 3.3) is optimal-super-resolving number.

(c) : The notions of coloring are clarified.

(i) : n1 super-colors every super-vertex from the set of super-vertices
{n5, n6, n2, n3}. n4 super-colors every super-vertex from the set of
super-vertices {n5, n3}. n4 doesn’t super-dominate every super-vertex
from the set of super-vertices {n1, n2, n6}.

(ii) : {n1, n5, n6} is super-coloring set but {n5, n2, n4} is optimal-super-
coloring set.

(iii) : (2.27, 1.86, 1.17) is optimal-super-coloring number.

Preliminaries For Setting of n-SuperHyperGraph

Definition 3.24.15. (n-SuperHyperGraph).
A graph (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is called by n-SuperHyperGraph and
it’s denoted by n-SHG.

3.25 New Ideas For n-SuperHyperGraph

Definition 3.25.1. (Dominating, Resolving and Coloring).
Assume n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).

(a) : Super-dominating set and number are defined as follows.

(i) : A super-vertex Xn super-dominates a super-vertex Yn if there’s
at least one super-edge which have them.

(ii) : A set S is called super-dominating set if for every Yn ∈ Gn \ S,
there’s at least one super-vertex Xn which super-dominates super-
vertex Yn.

(iii) : If S is set of all sets of super-dominating sets, then

|X| = min
S∈S
|{∪Xn|Xn ∈ S}|

is called optimal-super-dominating number and X is called
optimal-super-dominating set.
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(b) : Super-resolving set and number are defined as follows.

(i) : A super-vertex x super-resolves super-vertices y, w if

d(x, y) 6= d(x,w).

.
(ii) : A set S is called super-resolving set if for every Yn ∈ Gn \ S,

there’s at least one super-vertex Xn which super-resolves super-
vertices Yn,Wn.

(iii) : If S is set of all sets of super-resolving sets, then

|X| = min
S∈S
|{∪Xn|Xn ∈ S}|

is called optimal-super-resolving number and X is called
optimal-super-resolving set.

(c) : Super-coloring set and number are defined as follows.

(i) : A super-vertex Xn super-colors a super-vertex Yn differently with
itself if there’s at least one super-edge which is incident to them.

(ii) : A set Sn is called super-coloring set if for every y ∈ Gn \ Sn,
there’s at least one super-vertex Xn which super-colors super-vertex
Yn.

(iii) : If Sn is set of all sets of super-coloring sets, then

|X| = min
Sn∈Sn

|{∪Xn|Xn ∈ Sn}|

is called optimal-super-coloring number and X is called
optimal-super-coloring set.

3.26 Optimal Numbers For n-SuperHyperGraph

Proposition 3.26.1. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). S is maximum set of super-vertices which form a
super-edge. Then optimal-super-coloring set has as cardinality as S has.

Proof. Assume n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).
Every super-edge has super-vertices which have common super-edge. Thus every
super-vertex has different color with other super-vertices which are incident with
a super-edge. It induces a super-edge with the most number of super-vertices
determines optimal-super-coloring set. S is maximum set of super-vertices
which form a super-edge. Thus optimal-super-coloring set has as cardinality as
S has. �

Proposition 3.26.2. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). If optimal-super-coloring number is

|V |,

then for every super-vertex there’s at least one super-edge which contains has
all members of V.
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Proof. Suppose n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).
Consider optimal-super-coloring number is

|V |.

It implies there’s one super-edge which has all members of V. Since if all members
of V are incident to a super-edge via a super-vertex, then all have different
colors. �

Proposition 3.26.3. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). If there’s at least one super-edge which has all members
of V, then optimal-super-coloring number is

|V |.

Proof. Consider n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).
Suppose there’s at least one super-edge which has all members of V. It implies
there’s one super-edge which has some super-vertices but all members of V. If
all super-vertices are incident to a super-edge, then all have different colors. It
means if some super-vertices have all members of V, in the way that, for every
member of V, there’s a distinct super-vertex which has it and all such these
super-vertices are incident to a super-edge, then all have different colors. So
the set of these super-vertices are V, is optimal-super-coloring set. It induces
optimal-super-coloring number is

|V |.

�

Proposition 3.26.4. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). If optimal-super-dominating number is

|V |,

then there’s one member of V, is contained in, at least one super-vertex which
doesn’t have incident to any super-edge.

Proof. Suppose n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )).Consider optimal-super-dominating number is

|V |.

If for all given super-vertex and all members of V, there’s at least one super-edge,
which the super-vertex has incident to it, then there’s a super-vertex Xn such
that optimal-super-dominating number is

|V | − |Xn|.

It induces contradiction with hypothesis. It implies there’s one member of V,
is contained in, at least one super-vertex which doesn’t have incident to any
super-edge. �

Proposition 3.26.5. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). Then optimal-super-dominating number is <

|V |.
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Proof. Consider n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).
Thus Gn − {Xn}, is a super-dominating set where Xn ∈ Gn . Since if not, Xn

isn’t incident to any given super-edge. This is contradiction with supposition.
It induces that Xn belongs to a super-edge which has another super-vertex X ′n.
It implies X ′n super-dominates Xn. Thus Gn − {Xn} is a super-dominating set.
It induces optimal-super-dominating number is <

|V |.

�

Proposition 3.26.6. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). If optimal-super-resolving number is

|V |.

then every given super-vertex doesn’t have incident to any super-edge.

Proof. Consider n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).
Let optimal-super-resolving number be

|V |.

If it implies there’s a super-vertex is super-resolved by a super-vertex, then
it’s contradiction with hypothesis. So every given super-vertex doesn’t have
incident to any super-edge. �

Proposition 3.26.7. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). Then optimal-super-resolving number is <

|V |.

Proof. Consider n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).
If optimal-super-resolving number is

|V |,

then there’s a contradiction to hypothesis. Since the set Gn − {Xn}, is super-
resolving set. It implies optimal-super-resolving number is <

|V |.

�

Proposition 3.26.8. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). If optimal-super-coloring number is

|V |,

then all super-vertices which have incident to at least one super-edge.
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Proof. Suppose n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).
Consider optimal-super-coloring number is

|V | − |Xn|.

If for all given super-vertices, there’s no super-edge which the super-vertices have
incident to it, then there’s super-vertex Xn such that optimal-super-coloring
number is

|V | − |Xn|.

It induces contradiction with hypothesis. It implies all super-vertices have
incident to at least one super-edge. �

Proposition 3.26.9. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). Then optimal-super-coloring number isn’t <

|V |.

Proof. Consider n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).
Thus Gn − {Xn} isn’t a super-coloring set. Since if not, Xn isn’t incident
to any given super-edge. This is contradiction with supposition. It induces
that Xn belongs to a super-edge which has another super-vertex Sn. It implies
Sn super-colors Xn. Thus Gn − {Xn} isn’t a super-coloring set. It induces
optimal-super-coloring number isn’t <

|V |.

�

Proposition 3.26.10. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). Then optimal-super-dominating set has cardinality
which is greater than n− 1 where n is the cardinality of the set V.

Proof. Consider n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).
The set Gn is super-dominating set. So optimal-super-dominating set has
cardinality which is greater than n − 1 where n is the cardinality of the set
V. But the set Gn \ {Xn}, for every given super-vertex Xn is optimal-super-
dominating set has cardinality which is greater than n − 1 where n is is the
cardinality of the set V. The result is obtained. �

Proposition 3.26.11. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). S is maximum set of super-vertices which form a
super-edge. Then S is optimal-super-coloring set and

|{∪Xn | Xn ∈ S}|

is optimal-super-coloring number.

Proof. Suppose n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).
Consider S is maximum set of super-vertices which form a super-edge. Thus all
super-vertices of S have incident to super-edge. It implies the number of different
colors equals to a cardinality based on S. Therefore, optimal-super-coloring
number ≥

|{∪Xn | Xn ∈ S}|
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In other hand, S is maximum set of super-vertices which form a super-edge. It
induces optimal-super-coloring number ≤

|{∪Xn | Xn ∈ S}|

So S is super-coloring set. Hence S is optimal-super-coloring set and

|{∪Xn | Xn ∈ S}|

is optimal-super-coloring number. �

3.27 Optimal Sets For n-SuperHyperGraph

Proposition 3.27.1. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). If S is super-dominating set, then D contains S is
super-dominating set.

Proof. Consider n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).
Suppose S is super-dominating set. Then all super-vertices are super-dominated.
Thus D contains S is super-dominating set. �

Proposition 3.27.2. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). If S is super-resolving set, then D contains S is
super-resolving set.

Proof. Suppose n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).
Consider S is super-resolving set. Hence All two given super-vertices are
super-resolved by at least one super-vertex of S. It induces D contains S is
super-resolving set. �

Proposition 3.27.3. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). If S is super-coloring set, then D contains S is super-
coloring set.

Proof. Suppose n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).
Consider S is super-coloring set. So all super-vertices which have a common
super-edge have different colors. Thus every super-vertex super-colored by a
super-vertex of S. It induces every super-vertex which has a common super-edge
has different colors with other super-vertices belong to that super-edge. Then
D contains S is super-coloring set. �

Proposition 3.27.4. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). Then Gn is super-dominating set.

Proof. Suppose n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).
Since Gn \ {Xn} is super-dominating set. Then Gn contains Gn \ {Xn} is
super-dominating set. �

Proposition 3.27.5. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )).Then Gn is super-resolving set.
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Proof. Suppose n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )). If
there’s no super-vertex, then all super-vertices are super-resolved. Hence if I
choose Gn, then there’s no super-vertex such that super-vertex is super-resolved.
It implies Gn is super-resolving set but Gn isn’t optimal-super-resolving set.
Since if I construct one set from Gn such that only one super-vertex is out of
S, then S is super-resolving set. It implies Gn isn’t optimal-super-resolving set.
Thus Gn is super-resolving set. �

Proposition 3.27.6. Assume n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )). Then Gn is super-coloring set.

Proof. Suppose n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )).
All super-vertices belong to a super-edge have to color differently. If Gn is
chosen, then all super-vertices have different colors. It induces that t colors are
used where t is the number of super-vertices. Every super-vertex has unique
color. Thus Gn is super-coloring set. �

3.28 Optimal Sets and Numbers For Family of
n-SuperHyperGraph

Proposition 3.28.1. Assume G is a family of n-SuperHyperGraph. Then Gn is
super-dominating set for all members of G, simultaneously.

Proof. Suppose G is a family of n-SuperHyperGraph. Thus Gn is super-
dominating set for every given n-SuperHyperGraph of G. It implies Gn is
super-dominating set for all members of G, simultaneously. �

Proposition 3.28.2. Assume G is a family of n-SuperHyperGraph. Then Gn is
super-resolving set for all members of G, simultaneously.

Proof. Suppose G is a family of n-SuperHyperGraph. Thus Gn is super-resolving
set for every given n-SuperHyperGraph of G. It implies Gn is super-resolving
set for all members of G, simultaneously. �

Proposition 3.28.3. Assume G is a family of n-SuperHyperGraph. Then Gn is
super-coloring set for all members of G, simultaneously.

Proof. Suppose G is a family of n-SuperHyperGraph. Thus Gn is super-coloring
set for every given n-SuperHyperGraph of G. It implies Gn is super-coloring set
for all members of G, simultaneously. �

Proposition 3.28.4. Assume G is a family of n-SuperHyperGraph. Then
Gn \ {Xn} is super-dominating set for all members of G, simultaneously.

Proof. Suppose G is a family of n-SuperHyperGraph. Thus Gn \ {Xn} is super-
dominating set for every given n-SuperHyperGraph of G. One super-vertex is
out of Gn \ {Xn}. It’s super-dominated from any super-vertex in Gn \ {Xn}.
Hence every given two super-vertices are super-dominated from any super-vertex
in Gn \ {Xn}. It implies Gn \ {Xn} is super-dominating set for all members of
G, simultaneously. �
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Proposition 3.28.5. Assume G is a family of n-SuperHyperGraph. Then
Gn \ {Xn} is super-resolving set for all members of G, simultaneously.

Proof. Suppose G is a family of n-SuperHyperGraph. Thus Gn \ {Xn} is super-
resolving set for every given n-SuperHyperGraph of G. One super-vertex is
out of Gn \ {Xn}. It’s super-resolved from any super-vertex in Gn \ {Xn}.
Hence every given two super-vertices are super-resolved from any super-vertex
in Gn \ {Xn}. It implies Gn \ {Xn} is super-resolving set for all members of G,
simultaneously. �

Proposition 3.28.6. Assume G is a family of n-SuperHyperGraph. Then
Gn \ {Xn} isn’t super-coloring set for all members of G, simultaneously.

Proof. Suppose G is a family of n-SuperHyperGraph. Thus Gn \ {Xn} isn’t
super-coloring set for every given n-SuperHyperGraph of G. One super-vertex
is out of Gn \ {Xn}. It isn’t super-colored from any super-vertex in Gn \ {Xn}.
Hence every given two super-vertices aren’t super-colored from any super-vertex
in Gn \ {Xn}. It implies Gn \ {Xn} isn’t super-coloring set for all members of
G, simultaneously. �

Proposition 3.28.7. Assume G is a family of n-SuperHyperGraph. Then union
of super-dominating sets from each member of G is super-dominating set for all
members of G, simultaneously.

Proof. Suppose G is a family of n-SuperHyperGraph. For every chosen n-
SuperHyperGraph, there’s one super-dominating set in the union of super-
dominating sets from each member of G. Thus union of super-dominating
sets from each member of G is super-dominating set for every given n-
SuperHyperGraph of G. Even one super-vertex isn’t out of the union. It’s
super-dominated from any super-vertex in the union. Hence every given two
super-vertices are super-dominated from any super-vertex in union of super-
coloring sets. It implies union of super-coloring sets is super-dominating set for
all members of G, simultaneously. �

Proposition 3.28.8. Assume G is a family of n-SuperHyperGraph. Then union
of super-resolving sets from each member of G is super-resolving set for all
members of G, simultaneously.

Proof. Suppose G is a family of n-SuperHyperGraph. For every chosen n-
SuperHyperGraph, there’s one super-resolving set in the union of super-resolving
sets from each member of G. Thus union of super-resolving sets from each
member of G is super-resolving set for every given n-SuperHyperGraph of G.
Even one super-vertex isn’t out of the union. It’s super-resolved from any super-
vertex in the union. Hence every given two super-vertices are super-resolved
from any super-vertex in union of super-coloring sets. It implies union of super-
coloring sets is super-resolved set for all members of G, simultaneously. �

Proposition 3.28.9. Assume G is a family of n-SuperHyperGraph. Then union
of super-coloring sets from each member of G is super-coloring set for all
members of G, simultaneously.
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3.28. Optimal Sets and Numbers For Family of n-SuperHyperGraph

Proof. Suppose G is a family of n-SuperHyperGraph. For every chosen n-
SuperHyperGraph, there’s one super-coloring set in the union of super-coloring
sets from each member of G. Thus union of super-coloring sets from each member
of G is super-coloring set for every given n-SuperHyperGraph of G. Even one
super-vertex isn’t out of the union. It’s super-colored from any super-vertex
in the union. Hence every given two super-vertices are super-colored from any
super-vertex in union of super-coloring sets. It implies union of super-coloring
sets is super-colored set for all members of G, simultaneously. �

Proposition 3.28.10. Assume G is a family of n-SuperHyperGraph. For every
given super-vertex, there’s one n-SuperHyperGraph such that the super-vertex
has another super-vertex which are incident to a super-edge. If for given super-
vertex, all super-vertices have a common super-edge in this way, then Gn \{Xn}
is optimal-super-dominating set for all members of G, simultaneously.

Proof. Suppose G is a family of n-SuperHyperGraph. For all n-
SuperHyperGraph, there’s no super-dominating set from any of member of G.
Thus Gn \ {Xn} is super-dominating set for every given n-SuperHyperGraph of
G. For every given super-vertex, there’s one n-SuperHyperGraph such that the
super-vertex has another super-vertex which are incident to a super-edge. Only
one super-vertex is out of V \{x}. It’s super-dominated from any super-vertex in
the V \{x}. Hence every given two super-vertices are super-dominated from any
super-vertex in Gn \ {Xn} It implies Gn \ {Xn} is super-dominating set for all
members of G, simultaneously. If for given super-vertex, all super-vertices have
a common super-edge in this way, then Gn \ {Xn} is optimal-super-dominating
set for all members of G, simultaneously. �

Proposition 3.28.11. Assume G is a family of n-SuperHyperGraph. For every
given super-vertex, there’s one n-SuperHyperGraph such that the super-vertex
has another super-vertex which are incident to a super-edge. If for given super-
vertex, all super-vertices have a common super-edge in this way, then Gn \{Xn}
is optimal-super-resolving set for all members of G, simultaneously.

Proof. Suppose G is a family of n-SuperHyperGraph. For all n-
SuperHyperGraph, there’s no super-resolving set from any of member of
G. Thus Gn \ {Xn} is super-resolving set for every given n-SuperHyperGraph of
G. For every given super-vertex, there’s one n-SuperHyperGraph such that the
super-vertex has another super-vertex which are incident to a super-edge. Only
one super-vertex is out of Gn \ {Xn}. It’s super-resolved from any super-vertex
in the Gn \{Xn}. Hence every given two super-vertices are super-resolving from
any super-vertex in Gn \ {Xn}. It implies Gn \ {Xn} is super-resolved set for all
members of G, simultaneously. If for given super-vertex, all super-vertices have
a common super-edge in this way, then Gn \ {Xn} is optimal-super-resolving
set for all members of G, simultaneously. �

Proposition 3.28.12. Assume G is a family of n-SuperHyperGraph. For every
given super-vertex, there’s one n-SuperHyperGraph such that the super-vertex
has another super-vertex which are incident to a super-edge. If for given super-
vertex, all super-vertices have a common super-edge in this way, then Gn is
optimal-super-coloring set for all members of G, simultaneously.
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Proof. Suppose G is a family of n-SuperHyperGraph. For all n-
SuperHyperGraph, there’s no super-coloring set from any of member of
G. Thus Gn is super-coloring set for every given n-SuperHyperGraph of G.
For every given super-vertex, there’s one n-SuperHyperGraph such that the
super-vertex has another super-vertex which are incident to a super-edge. No
super-vertex is out of Gn. It’s super-colored from any super-vertex in the Gn.
Hence every given two super-vertices are super-colored from any super-vertex in
Gn. It implies Gn is super-coloring set for all members of G, simultaneously. If
for given super-vertex, all super-vertices have a common super-edge in this way,
then Gn is optimal-super-coloring set for all members of G, simultaneously. �

3.29 Twin Super-vertices in n-SuperHyperGraph
sec4
prp2 Proposition 3.29.1. Let n-SHG be a n-SuperHyperGraph. An (k− 1)-set from

an k-set of twin super-vertices is subset of a super-resolving set.

Proof. If Xn and X ′n are twin super-vertices, then N(Xn) = N(X ′n). It implies
d(Xn, Tn) = d(X ′n, Tn) for all Tn ∈ Gn. �

cor2 Corollary 3.29.2. Let n-SHG be a n-SuperHyperGraph. The number of twin
super-vertices is n− 1. Then super-resolving number is n− 2.

Proof. Let Xn and X ′n be two super-vertices. By supposition, the cardinality
of set of twin super-vertices is n− 2. Thus there are two cases. If both are twin
super-vertices, then N(Xn) = N(X ′n). It implies d(Xn, Tn) = d(X ′n, Tn) for all
Tn ∈ Gn. Thus suppose if not, then let Xn be a super-vertex which isn’t twin
super-vertices with any given super-vertex and let X ′n be a super-vertex which
is twin super-vertices with any given super-vertex but not Xn. By supposition,
it’s possible and this is only case. Therefore, any given distinct super-vertex
super-resolves Xn and X ′n. Then Gn\{Xn, X

′
n} is super-resolving set. It implies

-super-resolving number is n− 2. �

cor1 Corollary 3.29.3. Let n-SHG be n-SuperHyperGraph. The number of twin
super-vertices is n− 1. Then super-resolving number is n− 2. Every (n− 2)-set
including twin super-vertices is super-resolving set.

Proof. By Corollary (3.29.2), super-resolving number is n− 2. By n-SHG is n-
SuperHyperGraph, one super-vertex doesn’t belong to set of twin super-vertices
and a vertex from that set, are out of super-resolving set. It induces every
(n− 2)-set including twin super-vertices is super-resolving set. �

Proposition 3.29.4. Let n-SHG be n-SuperHyperGraph such that it’s complete.
Then super-resolving number is n− 1. Every (n− 1)-set is super-resolving set.

Proof. In complete, every couple of super-vertices are twin super-vertices. By
n-SHG is complete, every couple of super-vertices are twin super-vertices. Thus
by Proposition (3.29.1), the result follows. �

prp3 Proposition 3.29.5. Let G be a family of n-SuperHyperGraphs with common
super vertex set Gn. Then simultaneously super-resolving number of G is |V | − 1
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Proof. Consider (|V | − 1)-set. Thus there’s no couple of super-vertices to be
super-resolved. Therefore, every (|V |−1)-set is super-resolving set for any given
n-SuperHyperGraph. Then it holds for any n-SuperHyperGraph. It implies it’s
super-resolving set and its cardinality is super-resolving number. (|V |−1)-set has
the cardinality|V | − 1. Then it holds for any n-SuperHyperGraph. It induces
it’s simultaneously super-resolving set and its cardinality is simultaneously
super-resolving number. �

prp4 Proposition 3.29.6. Let G be a family of n-SuperHyperGraphs with common
super-vertex set Gn. Then simultaneously super-resolving number of G is greater
than the maximum super-resolving number of n-SHG ∈ G.

Proof. Suppose t and t′ are simultaneously super-resolving number of G and
super-resolving number of n-SHG ∈ G. Thus t is super-resolving number for
any n-SHG ∈ G. Hence, t ≥ t′. So simultaneously super-resolving number of G
is greater than the maximum super-resolving number of n-SHG ∈ G. �

prp5 Proposition 3.29.7. Let G be a family of n-SuperHyperGraphs with common
super-vertex set Gn. Then simultaneously super-resolving number of G is greater
than simultaneously super-resolving number of H ⊆ G.

Proof. Suppose t and t′ are simultaneously super-resolving number of G and
H. Thus t is -super-resolving number for any n-SHG ∈ G. It implies t is super-
resolving number for any n-SHG ∈ H. So t is simultaneously super-resolving
number of H. By applying Definition about being the minimum number, t ≥ t′.
So simultaneously super-resolving number of G is greater than simultaneously
super-resolving number of H ⊆ G. �

thm1 Theorem 3.29.8. Twin super-vertices aren’t super-resolved in any given n-
SuperHyperGraph.

Proof. Let Xn and X ′n be twin super-vertices. Then N(Xn) = N(X ′n). Thus for
every given super-vertex S′n ∈ Gn, dn-SHG(s′, t) = dn-SHG(s, t) where n-SHG
is a given n-SuperHyperGraph. It means that t and t′ aren’t super-resolved in
any given n-SuperHyperGraph. t and t′ are arbitrary so twin super-vertices
aren’t super-resolved in any given n-SuperHyperGraph. �

prp6 Proposition 3.29.9. Let n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) be a n-
SuperHyperGraph. If n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) is complete, then every couple of super-vertices are twin super-vertices.

Proof. Let Xn and X ′n be couple of given super-vertices. By n-SHG is complete,
N(Xn) = N(X ′n). Thus Xn and X ′n are twin super-vertices. Xn and X ′n are
arbitrary couple of super-vertices, hence every couple of super-vertices are twin
super-vertices. �

thm17 Theorem 3.29.10. Let G be a family of n-SuperHyperGraphs n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) with super-vertex set Gn and n-SHG ∈ G is complete.
Then simultaneously super-resolving number is |V | − 1. Every (n − 1)-set is
simultaneously super-resolving set for G.
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Proof. Suppose n-SHG ∈ G is SuperHyperGraph and it’s complete. So
by Theorem (3.29.9), I get every couple of super-vertices in complete
SuperHyperGraph are twin super-vertices. So every couple of super-vertices, by
Theorem (3.29.8), aren’t super-resolved. �

Corollary 3.29.11. Let G be a family of n-SuperHyperGraphs n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) with super-vertex set Gn and n-SHG ∈ G is complete.
Then simultaneously super-resolving number is |V | − 1. Every (|V | − 1)-set is
simultaneously super-resolving set for G.

Proof. It’s complete. So by Theorem (3.29.10), I get intended result. �

Theorem 3.29.12. Let G be a family of n-SuperHyperGraphs n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) with super-vertex set Gn and for every given couple of
super-vertices, there’s a n-SHG ∈ G such that in that, they’re twin super-vertices.
Then simultaneously super-resolving number is |V | − 1. Every (|V | − 1)-set is
simultaneously super-resolving set for G.

Proof. By Proposition (3.29.5), simultaneously super-resolving number is |V |−1.
Also, every (|V | − 1)-set is simultaneously super-resolving set for G. �

thm19 Theorem 3.29.13. Let G be a family of n-SuperHyperGraphs n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) with super-vertex set Gn. If G contains three super-stars
with different super-centers, then simultaneously super-resolving number is
|V | − 2. Every (|V | − 2)-set is simultaneously super-resolving set for G.

Proof. The cardinality of set of twin super-vertices is |V |−1. Thus by Corollary
(3.29.3), the result follows. �

Corollary 3.29.14. Let G be a family of n-SuperHyperGraphs n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) with super-vertex set Gn. If G contains three super-stars
with different super-centers, then simultaneously super-resolving number is
|V | − 2. Every (|V | − 2)-set is simultaneously super-resolving set for G.

Proof. G be a family of n-SuperHyperGraphs n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) with super-vertex set Gn. It’s complete. So by Theorem (3.29.13), I
get intended result. �

3.30 Antipodal super-vertices in n-SuperHyperGraph
sec5

Even super-cycle

prp5.1 Proposition 3.30.1. Consider two antipodal super-vertices Xn and Yn in
any given even super-cycle. Let Un and Vn be given super-vertices. Then
d(Xn, Un) 6= d(Xn, Vn) if and only if d(Yn, Un) 6= d(Yn, Vn).

Proof. (⇒). Consider d(Xn, Un) 6= d(Xn, Vn). By d(Xn, Un) + d(Un, Yn) =
d(Xn, Yn) = D(n-SHG), D(n-SHG) − d(Xn, Un) 6= D(n-SHG) − d(Xn, Vn).
It implies d(Yn, Un) 6= d(Yn, Vn).
(⇐). Consider d(Yn, Un) 6= d(Yn, Vn). By d(Yn, Un) + d(Un, Xn) = d(Xn, Yn) =
D(n-SHG), D(n-SHG) − d(Yn, Un) 6= D(n-SHG) − d(Yn, Vn). It implies
d(Xn, Un) 6= d(Xn, Vn). �
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Proposition 3.30.2. Consider two antipodal super-vertices Xn and Yn in any
given even cycle. Let Un and Vn be given super-vertices. Then d(Xn, Un) =
d(Xn, Vn) if and only if d(Yn, Un) = d(Yn, Vn).

Proof. (⇒). Consider d(Xn, Un) = d(Xn, Vn). By d(Xn, Un) + d(Un, Yn) =
d(Xn, Yn) = D(n-SHG), D(n-SHG) − d(Xn, Un) = D(n-SHG) − d(Xn, Vn).
It implies d(Yn, Un) = d(Yn, Vn).
(⇐). Consider d(Yn, Un) = d(Yn, Vn). By d(Yn, Un) + d(Un, Xn) = d(Xn, Yn) =
D(n-SHG), D(n-SHG) − d(Yn, Un) = D(n-SHG) − d(Yn, Vn). It implies
d(Xn, Un) = d(Xn, Vn). �

Proposition 3.30.3. The set contains two antipodal super-vertices, isn’t super-
resolving set in any given even super-cycle.

Proof. Let Xn and Yn be two given antipodal super-vertices in any given even
super-cycle. By Proposition (3.30.1), d(Xn, Un) 6= d(Xn, Vn) if and only if
d(Yn, Un) 6= d(Yn, Vn). It implies that if Xn super-resolves a couple of super-
vertices, then Yn super-resolves them, too. Thus eitherXn is in a super-resolving
set or Yn is in. It induces the set contains two antipodal super-vertices, isn’t
super-resolving set in any given even super-cycle. �

Proposition 3.30.4. Consider two antipodal super-vertices Xn and Yn in any
given even super-cycle. Xn super-resolves a given couple of super-vertices, Zn
and Z ′n, if and only if Yn does.

Proof. (⇒). Xn super-resolves a given couple of super-vertices, Zn and Z ′n,
then d(Xn, Zn) 6= d(Xn, Z

′
n). By Proposition (3.30.1), d(Xn, Zn) 6= d(Xn, Z

′
n)

if and only if d(Yn, Zn) 6= d(Yn, Z ′n). Thus Yn super-resolves a given couple of
super-vertices Zn and Z ′n.
(⇐). Yn super-resolves a given couple of super-vertices, Zn and Z ′n, then
d(Yn, Zn) 6= d(Yn, Z ′n). By Proposition (3.30.1), d(Yn, Zn) 6= d(Yn, Z ′n) if and
only if d(Xn, Zn) 6= d(Xn, Z

′
n). Thus Xn super-resolves a given couple of super-

vertices Zn and Z ′n. �

Proposition 3.30.5. There are two antipodal super-vertices aren’t super-resolved
by other two antipodal super-vertices in any given even super-cycle.

Proof. Suppose Xn and Yn are a couple of super-vertices. It implies d(Xn, Yn) =
D(n-SHG). Consider Un and Vn are another couple of super-vertices such that
d(Xn, Un) = D(n-SHG)

2 . It implies d(Yn, Un) = D(n-SHG)
2 . Thus d(Xn, Un) =

d(Yn, Un). Therefore, Un doesn’t super-resolve a given couple of super-vertices
Xn and Yn. By D(n-SHGG) = d(Un, Vn) = d(Un, Xn) + d(Xn, Vn) =
D(n-SHG)

2 +d(Xn, Vn), d(Xn, Vn) = D(n-SHG)
2 . It implies d(Yn, Vn) = D(n-SHG)

2 .
Thus d(Xn, Vn) = d(Yn, Vn). Therefore, Vn doesn’t super-resolve a given couple
of super-vertices Xn and Yn. �

Proposition 3.30.6. For any two antipodal super-vertices in any given even
super-cycle, there are only two antipodal super-vertices don’t super-resolve them.
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Proof. Suppose Xn and Yn are a couple of super-vertices such that they’re
antipodal super-vertices. Let Un be a super-vertex such that d(Xn, Un) =
D(n-SHG)

2 . It implies d(Yn, Un) = D(n-SHG)
2 . Thus d(Xn, Un) = d(Yn, Un).

Therefore, Un doesn’t super-resolve a given couple of super-vertices Xn and Yn.
Let Vn be a antipodal vertex for Un such that Un and Vn are antipodal super-
vertices. Thus Vn d(Xn, Vn) = D(n-SHG)

2 . It implies d(Yn, Vn) = D(n-SHG)
2 .

Therefore, Vn doesn’t super-resolve a given couple of super-vertices Xn and Yn.
If Un is a super-vertex such that d(Xn, Un) 6= D(n-SHG)

2 and Vn is a super-vertex
such that Un and Vn are antipodal super-vertices. Thus d(Xn, Vn) 6= D(n-SHG)

2
It induces either d(Xn, Un) 6= d(Yn, Un) or d(Xn, Vn) 6= d(Yn, Vn). It means
either Un super-resolves a given couple of super-vertices Xn and Yn or Vn
super-resolves a given couple of super-vertices Xn and Yn. �

Proposition 3.30.7. In any given even super-cycle, for any super-vertex, there’s
only one super-vertex such that they’re antipodal super-vertices.

Proof. If d(Xn, Yn) = D(n-SHG), then Xn and Yn are antipodal super-
vertices. �

prp5.8 Proposition 3.30.8. Let n-SuperHyperGraphs n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be an even super-cycle. Then every couple of super-vertices are super-
resolving set if and only if they aren’t antipodal super-vertices.

Proof. If Xn and Yn are antipodal super-vertices, then they don’t super-resolve
a given couple of super-vertices Un and Vn such that they’re antipodal super-
vertices and d(Xn, Un) = D(n-SHG)

2 . Since d(Xn, Un) = d(Xn, Vn) = d(Yn, u) =
d(Yn, Vn) = D(n-SHG)

2 . �

cor5.9 Corollary 3.30.9. Let n-SuperHyperGraphs n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be an even super-cycle. Then super-resolving number is two.

Proof. A set contains one super-vertex Xn isn’t super-resolving set. Since it
doesn’t super-resolve a given couple of super-vertices Un and Vn such that
d(Xn, Un) = d(Xn, Vn) = 1. Thus super-resolving number ≥ 2. By Proposition
(3.30.8), every couple of super-vertices such that they aren’t antipodal super-
vertices, are super-resolving set. Therefore, super-resolving number is 2. �

cor5.10 Corollary 3.30.10. Let n-SuperHyperGraphs n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be an even super-cycle. Then super-resolving set contains couple of
super-vertices such that they aren’t antipodal super-vertices.

Proof. By Corollary (3.30.9), super-resolving number is two. By Proposition
(3.30.8), every couple of super-vertices such that they aren’t antipodal super-
vertices, form super-resolving set. Therefore, super-resolving set contains couple
of super-vertices such that they aren’t antipodal super-vertices. �

cor4.11 Corollary 3.30.11. Let G be a family n-SuperHyperGraphs n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) be an odd super-cycle with common super-vertex set Gn.
Then simultaneously super-resolving set contains couple of super-vertices such
that they aren’t antipodal super-vertices and super-resolving number is two.
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3.31. Extended Results For n-SuperHyperGraph

Odd super-cycle

prp5.11 Proposition 3.30.12. In any given n-SuperHyperGraph n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) which is odd super-cycle, for any super-vertex, there’s no
super-vertex such that they’re antipodal super-vertices.

Proof. if Xn is a given super-vertex. Then there are two super-vertices Un
and Vn such that d(Xn, Un) = d(Xn, Vn) = D(n-SHG). It implies they aren’t
antipodal super-vertices. �

prp5.12 Proposition 3.30.13. Let n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be an odd super-cycle. Then every couple of super-vertices are super-
resolving set.

Proof. Let Xn and X ′n be couple of super-vertices. Thus, by Proposition
(3.30.12), Xn and X ′n aren’t antipodal super-vertices. It implies for every given
couple of super-vertices Tn and T ′n, I get either d(Xn, Tn) 6= d(Xn, T

′
n) or

d(X ′n, Tn) 6= d(X ′n, T ′n). Therefore, Tn and T ′n are super-resolved by either Xn

or X ′n. It induces the set {Xn, X
′
n} is super-resolving set. �

prp5.13 Proposition 3.30.14. Let n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be an odd cycle. Then super-resolving number is two.

Proof. Let Xn and X ′n be couple of super-vertices. Thus, by Proposition
(3.30.12), Xn and X ′n aren’t antipodal super-vertices. It implies for every given
couple of super-vertices Tn and T ′n, I get either d(Xn, Tn) 6= d(Xn, T

′
n) or

d(X ′n, Tn) 6= d(X ′n, T ′n). Therefore, Tn and T ′n are super-resolved by either Xn

or X ′n. It induces the set {Xn, X
′
n} is super-resolving set. �

Corollary 3.30.15. Let n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be an odd cycle. Then super-resolving set contains couple of super-
vertices.

Proof. By Proposition (3.30.14), super-resolving number is two. By Proposition
(3.30.13), every couple of super-vertices form super-resolving set. Therefore,
super-resolving set contains couple of super-vertices. �

Corollary 3.30.16. Let G be a family of n-SuperHyperGraphs n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) which are odd super-cycles with common super-vertex set
Gn. Then simultaneously super-resolving set contains couple of super-vertices
and super-resolving number is two.

3.31 Extended Results For n-SuperHyperGraph
sec6

Smallest Super-resolving Number

prp1 Proposition 3.31.1. Let n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be a super-path. Then every super-leaf forms super-resolving set.
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Proof. Let Ln be a super-leaf. For every given a couple of super-vertices Xn and
X ′n, I get d(Ln, Xn) 6= d(Ln, X ′n). Since if I reassign indexes to super-vertices
such that every super-vertex X ′n and Ln have i super-vertices amid themselves.
Thus j ≤ i implies

d(Ln, Xn) + c = d(Ln, X ′n) ≡ d(Ln, Xn) < d(Ln, X ′n).

Therefore, by d(Ln, Xn) < d(Ln, X ′n), I get d(Ln, Xn) 6= d(Ln, X ′n). Xn and
X ′n are arbitrary so Ln super-resolves any given couple of super-vertices Xn

and X ′n which implies {Ln} is a super-resolving set. �

prp7 Proposition 3.31.2. Let n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be a super-path. Then a set including every couple of super-vertices is
super-resolving set.

Proof. Let Xn and X ′n be a couple of super-vertices. For every given a couple
of super-vertices Yn and Y ′n, I get either

d(Xn, Yn) 6= d(Xn, Y
′
n)

or
d(X ′n, Yn) 6= d(X ′n, Y ′n).

�

prp6.2 Proposition 3.31.3. Let n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be a super-path. Then an 1-set contains leaf is super-resolving set and
super-resolving number is one.

Proof. There are two super-leaves. Consider Ln is a given super-leaf. By
n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is a super-path,
there’s only one number to be seen. With rearranging the indexes of super-
vertices, d(Ln, Vn) = i. Further more, d(Ln, Vn) = i 6= j = d(Ln, V ′n). Therefore,
Ln super-resolves every given couple of super-vertices Vn and V ′n. It induces
1-set containing leaf is super-resolving set. Also, super-resolving number is
one. �

cor6.3 Corollary 3.31.4. Let G be a family of n-SuperHyperGraphs n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) are super-paths with common super-vertex set Gn such
that they’ve a common super-leaf. Then simultaneously super-resolving number
is 1, 1-set contains common leaf, is simultaneously super-resolving set for G.

Proof. By Proposition (3.31.3), common super-leaf super-resolves every given
couple of super-vertices Xn and X ′n, simultaneously. Thus 1-set containing
common super-leaf, is simultaneously super-resolving set. Also, simultaneously
super-resolving number is one. �

prp6.4 Proposition 3.31.5. Let G be a family of n-SuperHyperGraphs n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) are super-paths with common super-vertex set Gn such
that for every super-leaf Ln from n-SHG, there’s another n-SHG ∈ G such
that Ln isn’t super-leaf. Then an 2-set contains every couple of super-vertices,
is super-resolving set. An 2-set contains every couple of super-vertices, is
optimal-super-resolving set. Optimal-super-resolving number is two.
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Proof. Suppose Vn is a given super-vertex. If there are two super-vertices
Xn and Yn such that d(Xn, Vn) 6= d(Yn, Vn), then Xn super-resolves Xn and
Yn and the proof is done. If not, d(Xn, Vn) = d(Yn, Vn), but for every given
super-vertex V ′n,

d(Xn, V
′
n) 6= d(Yn, V ′n).

�

Corollary 3.31.6. Let G be a family of n-SuperHyperGraphs n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) are super-paths with common super-vertex set Gn such
that they’ve no common super-leaf. Then an 2-set is simultaneously optimal-
super-resolving set and simultaneously optimal-super-resolving number is 2.

Proof. By Corollary (3.31.4), common super-leaf forms a simultaneously
optimal-super-resolving set but in this case, there’s no common super-leaf.
Thus by Proposition (3.31.5), an 2-set is optimal-super-resolving set for any
n-SHG ∈ G. Then an 2-set is simultaneously optimal-super-resolving set. It
induces simultaneously optimal-super-resolving number is 2. So every 2-set is
simultaneously optimal-super-resolving set for G. �

Largest Optimal-super-resolving Number

Super-t-partite, super-bipartite, super-star, super-wheel are also studied and
they get us two type-results as individual and family.

prp55.11 Proposition 3.31.7. Let n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be a super-t-partite. Then every set excluding couple of super-vertices
in different parts whose cardinalities of them are strictly greater than one, is
optimal-super-resolving set.

Proof. Consider two super-vertices Xn and Yn. Suppose super-vertex Mn has
same part with either Xn or Yn. Without loosing the generality, suppose Mn

has same part with Xn thus it doesn’t have common part with Yn. Therefore,

d(Mn, Xn) = 2 6= 1 = d(Mn, Yn).

�

cor55.12 Corollary 3.31.8. Let n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be a super-t-partite. Let |V | ≥ 3. Then every (|V | − 2)-set excludes two
super-vertices from different parts whose cardinalities of them are strictly greater
than one, is optimal-super-resolving set and optimal-super-resolving number is
|V | − 2.

Proof. By Proposition (3.31.7), every (|V | − 2)-set excludes two super-vertices
from different parts whose cardinalities of them are strictly greater than one, is
optimal-super-resolving set. Since if Xn and Yn are either in same part or in
different parts, then, by any given super-vertex Wn, d(Wn, Xn) = d(Wn, Yn).
Thus 1-set isn’t super-resolving set. There are same arguments for a set
with cardinality ≤ |V | − 3 when pigeonhole principle implies at least two super-
vertices have same conditions concerning either being in same part or in different
parts. �
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cor55.13 Corollary 3.31.9. Let n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be a super-bipartite. Let |V | ≥ 3. Then every (|V | − 2)-set excludes two
super-vertices from different parts, is optimal-super-resolving set and optimal-
super-resolving number is |V | − 2.

Proof. Consider Xn and Yn are excluded by a (|V | − 2)-set. Let Mn be
a given super-vertex which is distinct from them. By n-SuperHyperGraph
n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is a super-bipartite, Mn has a
common part with either Xn or Yn and not with both of them. It implies
d(Xn,Mn) 6= d(Yn,Mn). Since if Mn has a common part with Xn, then
d(Xn,Mn) = 2 6= 1 = d(Yn,Mn). And if Mn has a common part with Yn,
then d(Xn,Mn) = 1 6= 2 = d(Yn,Mn). Thus Mn super-resolves Xn and Yn.
If Wn is another super-vertex which is distinct from them, then pigeonhole
principle induces at least two super-vertices have same conditions concerning
either being in same part or in different parts. It implies (|V |−3)-set isn’t super-
resolving set. It implies (|V | − 2)-set excludes two super-vertices from different
parts, is optimal-super-resolving set and optimal-super-resolving number is
|V | − 2. �

cor55.14 Corollary 3.31.10. Let n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be a super-star. Then every (|V | − 2)-set excludes super-center and a
given super-vertex, is optimal-super-resolving set and optimal-super-resolving
number is (|V | − 2).

Proof. Consider Xn and Yn are excluded by a (|V | − 2)-set. Let Mn be a
given super-vertex which is distinct from them. By n-SuperHyperGraph n-
SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is super-star,Mn has a common part with
either Xn or Yn and not with both of them. It implies d(Xn,Mn) 6= d(Yn,Mn).
Since ifMn has a common part with Xn, then d(Xn,Mn) = 2 6= 1 = d(Yn,Mn).
And if Mn has a common part with Yn, then d(Xn,Mn) = 1 6= 2 = d(Yn,Mn).
Thus Mn -resolves Xn and Yn. If Wn is another super-vertex which is distinct
from them, then pigeonhole principle induces at least two super-vertices have
same conditions concerning either being in same part or in different parts. It
implies (|V | − 3)-set isn’t super-resolving set. Therefore, every (|V | − 2)-set
excludes two super-vertices from different parts, is optimal-super-resolving set
and optimal-super-resolving number is |V | − 2. �

cor55.15 Corollary 3.31.11. Let n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be a super-wheel. Let |V | ≥ 3. Then every (|V | − 2)-set excludes super-
center and a given super-vertex, is optimal-super-resolving set and optimal-
super-resolving number is |V | − 2.

Proof. Consider Xn and Yn are excluded by a (|V | − 2)-set. Let Mn be a given
super-vertex which is distinct from them. By n-SuperHyperGraph n-SHG =
(Gn ⊆ Pn(V ), En ⊆ Pn(V )) is a super-wheel., Mn has a common part with
either Xn or Yn and not with both of them. It implies d(Xn,Mn) 6= d(Yn,Mn).
Since if Xn is super-center, then d(Xn,Mn) = 1 6= 2 = d(Yn,Mn). And if Yn is
super-center, then d(Xn,Mn) = 2 6= 1 = d(Yn,Mn). Thus Mn super-resolves
Xn and Yn. If Wn is another super-vertex which is distinct from them, then
pigeonhole principle induces at least two super-vertices have same conditions
concerning either being in same part (non-center super-vertices) or in different
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parts. It implies (|V |−3)-set isn’t super-resolving set. Therefore, every (|V |−2)-
set super-center and a given super-vertex, is optimal-super-resolving set and
optimal-super-resolving number is |V | − 2. �

Super-t-partite, super-bipartite, super-star, super-wheel are also studied but
they get us one type-result involving family of them.

Corollary 3.31.12. Let G be a family of n-SuperHyperGraphs n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) which are super-t-partite with common super-vertex set
Gn. Let |V | ≥ 3. Then simultaneously optimal-super-resolving number is |V | − 2
and every (|V | − 2)-set excludes two super-vertices from different parts, is
simultaneously optimal-super-resolving set for G.

Proof. By Corollary (3.31.8), every result hold for any given n-
SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) which are
super-t-partite. Thus every result hold for any given n-SuperHyperGraph
n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) which are super-t-partite, simultan-
eously. Therefore, simultaneously super-resolving number is |V | − 2 and every
(|V | − 2)-set excludes two super-vertices from different parts, is simultaneously
optimal-super-resolving set for G. �

Corollary 3.31.13. Let G be a family of n-SuperHyperGraphs n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) which are super-bipartite with common super-vertex set
Gn. Let |V | ≥ 3. Then simultaneously optimal-super-resolving number is |V | − 2
and every (|V | − 2)-set excludes two super-vertices from different parts, is
simultaneously optimal-super-resolving set for G.

Proof. By Corollary (3.31.9), every result hold for any given n-
SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) which are
super-bipartite. Thus every result hold for any given n-SuperHyperGraph
n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) which are super-bipartite, simultan-
eously. Therefore, simultaneously super-resolving number is |V | − 2 and every
(|V | − 2)-set excludes two super-vertices from different parts, is simultaneously
optimal-super-resolving set for G. �

Corollary 3.31.14. Let G be a family of n-SuperHyperGraphs n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) which are super-star with common super-vertex set Gn. Let
|V | ≥ 3. Then simultaneously optimal-super-resolving number is |V |−2 and every
(|V | − 2)-set excludes super-center and a given super-vertex, is simultaneously
optimal-super-resolving set for G.

Proof. By Corollary (3.31.10), every result hold for any given n-
SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) which are
super-star. Thus every result hold for any given n-SuperHyperGraph n-
SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) which are super-star, simultaneously.
Therefore, simultaneously super-resolving number is |V | − 2 and every (|V | − 2)-
set excludes super-center and a given super-vertex, is simultaneously optimal-
super-resolving set for G. �

Corollary 3.31.15. Let G be a family of n-SuperHyperGraphs n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) which are super-wheel with common super-vertex set Gn.
Let |V | ≥ 3. Then simultaneously optimal-super-resolving number is |V | − 2
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and every (|V | − 2)-set excludes super-center and a given super-vertex, is
simultaneously optimal-super-resolving set for G.

Proof. By Corollary (3.31.11), every result hold for any given n-
SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) which are
super-star. Thus every result hold for any given n-SuperHyperGraph n-
SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) which are super-star, simultaneously.
Therefore, simultaneously super-resolving number is |V | − 2 and every (|V | − 2)-
set excludes super-center and a given super-vertex, is simultaneously optimal-
super-resolving set for G. �

3.32 Optimal-super-coloring Number in
n-SuperHyperGraph

sec2
Proposition 3.32.1. Let n-SuperHyperGraphs n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be a super-complete. Then optimal-super-coloring number is |V |.

Proof. It’s complete. It means for any two members of V, there’s at least two
distinct super-vertices contain them. Every super-vertex has edge with at least
|V | − 1 super-vertices. Thus |V | is optimal-super-coloring number. Since any
given member of V has different color in comparison to another member of V.
Then optimal-super-coloring number is |V |. �

Proposition 3.32.2. Let n-SuperHyperGraphs n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be a super-path. Then optimal-super-coloring number is two.

Proof. With alternative colors, super-path has distinct color for every super-
vertices which have one super-edge in common. Thus if Xn and Yn are two super-
vertices which have one super-edge in common, then Xn and Yn have different
color. Therefore, optimal-super-coloring number is two. The representative
of colors are two given super-vertices which have at least one super-edge in
common. �

Proposition 3.32.3. Let n-SuperHyperGraphs n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be an even super-cycle. Then optimal-super-coloring number is two.

Proof. Since even super-cycle has even super-vertices, with alternative coloring
of super-vertices, the super-vertices which have common super-edge, have
different colors. So optimal-super-coloring number is two. �

Proposition 3.32.4. Let n-SuperHyperGraphs n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be an odd super-cycle. Then optimal-super-coloring number is three.

Proof. With alternative coloring on super-vertices, at end, two super-vertices
have same color, and they’ve same super-edge. So, optimal-super-coloring
number is three. �

Proposition 3.32.5. Let n-SuperHyperGraphs n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be a super-star. Then optimal-super-coloring number is two.

160



3.32. Optimal-super-coloring Number in n-SuperHyperGraph

Proof. Super-center has common super-edge with every other super-vertex. So
it has different color in comparison to other super-vertices. So one color has only
one super-vertex which has that color. All other super-vertices have no common
super-edge amid each other. Then they’ve same color. The representative of
this color is a super-vertex which is distinct from super-center. The set of
representative of colors has two representatives which are super-center and a
given super-vertex which isn’t super-center. Optimal-super-coloring number is
two. �

Proposition 3.32.6. Let n-SuperHyperGraphs n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be a super-wheel such that it has even super-cycle. Then optimal-super-
coloring number is Three.

Proof. Super-center has unique color. So it’s only representative of this color.
Other super-vertices form a super-cycle which assigns distinct colors to the
super-vertices which have common super-edge with each other when the number
of colors is two. So a color for super-center and two colors for other super-
vertices, make super-wheel has distinct colors for super-vertices which have
common super-edge. Hence, optimal-super-coloring number is Three. �

Proposition 3.32.7. Let n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be a super-wheel such that it has odd super-cycle. Then optimal-super-
coloring number is four.

Proof. Without super-center, other super-vertices form odd super-cycle. Odd
super-cycle has optimal-super-coloring number which is three. Super-center
has common super-edges with all other super-vertices. Thus super-center has
different colors with all other super-vertices. Therefore, optimal-super-coloring
number is four. Four representatives of colors form optimal-super-coloring
number where one representative is super-center and other three representatives
are from all other super-vertices. So, optimal-super-coloring number is four. �

Proposition 3.32.8. Let n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be a super-complete and super-bipartite. Then optimal-super-coloring
number is two.

Proof. Every given super-vertex has super-edge with all super-vertices from
another part. So the color of every super-vertex which is in a same part is
same. Hence, two parts implies two different colors. It induces optimal-super-
coloring number is two. The any of all super-vertices in every part, identify the
representative of every color. �

Proposition 3.32.9. Let n-SuperHyperGraph n-SHG = (Gn ⊆ Pn(V ), En ⊆
Pn(V )) be a super-complete and super-t-partite. Then optimal-super-coloring
number is t.

Proof. Every part has same color for its super-vertices. Optimal-super-coloring
number is t. Every part introduces one super-vertex as a representative of its
color. �

Proposition 3.32.10. Let n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) be n-
SuperHyperGraph. Then optimal-super-coloring number is 1 if and only if
n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is super-empty.
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Proof. (⇒). Let optimal-super-coloring number be 1. It implies there’s no
super-vertex which has same edge with a vertex. So there’s no super-edge.
Since n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is n-SuperHyperGraph and n-
SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is super-empty.
(⇐). Let n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) be n-SuperHyperGraph and
super-empty. Hence there’s no super-edge. It implies for every given super-
vertex, there’s no common super-edge. It induces there’s only one color for
super-vertices. Hence the representative of this color is chosen from |Gn|
super-vertices. Thus optimal-super-coloring number is 1. �

Proposition 3.32.11. Let n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) be n-
SuperHyperGraph. Then optimal-super-coloring number is 2 if and only if
n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is both super-complete and super-
bipartite.

Proof. (⇒). Let optimal-super-coloring number be two. So every super-vertex
has either one super-vertex or two super-vertices with a common super-edge.
The number of colors are two so there are two sets which each set has the
super-vertices which have same color. If two super-vertices have same color,
then they don’t have a common edge. So every set is a part in that, no super-
vertex has common super-edge. The number of these sets is two. Hence there
are two parts in each of them, every super-vertex has no common super-edge
with other super-vertices. Since n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is
n-SuperHyperGraph, n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is both super-
complete and super-bipartite.
(⇐). Assume n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is n-SuperHyperGraph,
n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is both super-complete and super-
bipartite. Then all super edges are amid two parts. Every part has the
super-vertices which have no super-edge in common. So they’re assigned to
have same color. There are two parts. Thus there are two colors to assign to
the super-vertices in that, the super-vertices with common super-edge, have
different colors. It induces optimal-super-coloring number is 2. �

Proposition 3.32.12. Let n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) be n-
SuperHyperGraph. Then optimal-super-coloring number is |V | if and only
if n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is super-complete.

Proof. (⇒). Let optimal-super-coloring number be |V |. Thus |Gn| colors are
available. So any given super-vertex has |Gn| super-vertices which have common
super-edge with them and every of them have common super-edge with each
other. It implies every super-vertex has |Gn| super-vertices which have common
super-edge with them. Since n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is n-
SuperHyperGraph, SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is super-complete.
(⇐). Suppose n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is super-complete. Every
vertex has |Gn| super-vertices which have common super-edge with them. Since
all possible super-edges are available, the minimum number of colors are |Gn|.
Thus optimal-super-coloring number is |V |. �

General bounds for optimal-super-coloring number are computed.
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Proposition 3.32.13. Let n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) be n-
SuperHyperGraph. Then optimal-super-coloring number is obtained from the
number of super-vertices which is |Gn| and optimal-super-coloring number is at
most |V |.

Proof. When every super-vertex is a representative of each color, optimal-super-
coloring number is the union of number of members of all super-vertices and
it happens in optimal-super-coloring number of super-complete which is |V |.
When all super-vertices have distinct colors, optimal-super-coloring number is
|V | and it’s sharp for super-complete. �

The relation amid optimal-super-coloring number and main parameters of
n-SuperHyperGraph is computed.

Proposition 3.32.14. Let n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) be n-
SuperHyperGraph. Then optimal-super-coloring number is at most ∆ + 1 and
at least 2.

Proof. n-SuperHyperGraph is super-nontrivial. So it isn’t super-empty which
induces there’s no super-edge. It implies optimal-super-coloring number is
two. Since optimal-super-coloring number is one if and only if n-SHG =
(Gn ⊆ Pn(V ), En ⊆ Pn(V )) is super-empty if and only if n-SHG = (Gn ⊆
Pn(V ), En ⊆ Pn(V )) is super-trivial. A super-vertex with degree ∆, has ∆
super-vertices which have common super-edges with them. If these super-vertices
have no super-edge amid each other, then optimal-super-coloring number is
two especially, super-star. If not, then in the case, all super-vertices have
super-edge amid each other, optimal-super-coloring number is ∆ + 1, especially,
super-complete. �

Proposition 3.32.15. Let n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) be n-
SuperHyperGraph and super-r-regular. Then optimal-super-coloring number is
at most r + 1.

Proof. n-SHG = (Gn ⊆ Pn(V ), En ⊆ Pn(V )) is super-r-regular. So any of
super-vertex has r super-vertices which have common super-edge with it. If
these super-vertices have no common super-edge with each other, for instance
super-star, optimal-super-coloring number is two. But since the super-vertices
have common super-edge with each other, optimal-super-coloring number is
r + 1, for instance, super-complete. �

3.33 Applications in Time Table and Scheduling in
Neutrosophic n-SuperHyperGraph

Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has important to avoid mixing up.

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.
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Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive section. Beyond that, sometimes sections are not the same.

First Case

Step 3. (Model) As Figure (3.11), the situation is designed as a model. The
model uses data to assign every section and to assign to relation amid
section, three numbers belong unit interval to state indeterminacy,
possibilities and determinacy. There’s one restriction in that, the numbers
amid two sections are at least the number of the relation amid them.
Table (4.5), clarifies about the assigned numbers to these situation.

Figure 3.11: super-vertices are suspicions about choosing them. nhg1

Table 3.5: Scheduling concerns its Subjects and its Connections as a n-
SuperHyperGraph in a Model. tbl1c

Sections of NHG n1 n2· · · n9
Values (0.99, 0.98, 0.55) (0.74, 0.64, 0.46)· · · (0.99, 0.98, 0.55)

Connections of NHG E1 E2 E3
Values (0.01, 0.01, 0.01) (0.01, 0.01, 0.01) (0.01, 0.01, 0.01)

Step 4. (Solution) As Figure (3.11) shows, super hyper graph as model,
proposes to use different types of coloring, resolving and dominating
as numbers, sets, optimal numbers, optimal sets and et cetera.

(a) : The notions of dominating are applied.
(i) : n1 super-dominates every super-vertex from the set of super-

vertices {n7, n8, n9, n2, n3}. n4 super-dominates every super-
vertex from the set of super-vertices {n6, n5, n3}. n4 doesn’t
super-dominate every super-vertex from the set of super-vertices
{n1, n2, n7, n8, n9}.

(ii) : {n1, n3} is super-coloring set but {n1, n4} is optimal-super-
dominating set.

(iii) : (1.53, 1.22, 0.71) is optimal-super-dominating number.
(b) : The notions of resolving are applied.

(i) : n1 super-resolves two super-vertices n4 and n6.
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(ii) : V \ {n1, n4} is super-resolves set but V \ {n2, n4, n9} is optimal-
super-resolving set.

(iii) : (5, 94, 6.36, 3.3) is optimal-super-resolving number.
(c) : The notions of coloring are applied.

(i) : n1 super-colors every super-vertex from the set of super-
vertices {n7, n8, n9, n2, n3}. n4 super-colors every super-vertex
from the set of super-vertices {n6, n5, n3}. n4 doesn’t super-
dominate every super-vertex from the set of super-vertices
{n1, n2, n7, n8, n9}.

(ii) : {n1, n5, n7, n8, n9, n6, n4} is super-coloring set but {n1, n5, n7, n8, n2, n4}
is optimal-super-coloring set.

(iii) : (5.24, 4.8, 2.82) is optimal-super-coloring number.

Second Case

Step 3. (Model) As Figure (3.12), the situation is designed as a model. The
model uses data to assign every section and to assign to relation amid
section, three numbers belong unit interval to state indeterminacy,
possibilities and determinacy. There’s one restriction in that, the numbers
amid two sections are at least the number of the relation amid them.
Table (4.5), clarifies about the assigned numbers to these situation.

Figure 3.12: Vertices are suspicions about choosing them. nhg8

Step 4. (Solution) As Figure (3.12) shows, NHG3
3,3,3 = (V,E, σ, µ) is neutro-

sophic complete 3−partite hypergraph as model, proposes to use different
types of degree of vertices, degree of hyperedges, co-degree of vertices,
co-degree of hyperedges, neutrosophic number of vertices, neutrosophic
number of hyperedges and et cetera.

(i) : The notions of neutrosophic number are applied on vertices and
hyperedges.
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Table 3.6: Scheduling concerns its Subjects and its Connections as a
Neutrosophic Hypergraph in a Model. tbl1c

Sections of NHG n1 n2· · · n9
Values (0.99, 0.98, 0.55) (0.74, 0.64, 0.46)· · · (0.99, 0.98, 0.55)

Connections of NHG E1, E2 E3 E4
Values (0.54, 0.24, 0.16) (0.99, 0.98, 0.55) (0.74, 0.64, 0.46)

(a) : A neutrosophic number of vertices n1, n2, n3 is

Σ3
i=1σ(ni) = (2.97, 2.94, 1.65).

(b) : A neutrosophic number of hyperedges e1, e2, e3 is

Σ3
i=1σ(ei) = (1.82, 1.12, 0.78).

where e1 = (0.54, 0.24, 0.16), e2 = (0.74, 0.64, 0.46), e3 =
(0.54, 0.24, 0.16).

(ii) : The notions of degree, co-degree, neutrosophic degree and neutro-
sophic co-degree are applied on vertices and hyperedges.

(a) : A degree of any vertex n1, n2, n4, n6, n8, n9 is 1 and degree of
any vertex n3, n5, n7 is 2.

(b) : A neutrosophic degree of vertex n1, n2, n4, n6, n8, n9 is
(0.99, 0.98, 0.55) and degree of any vertex n3, n5, n7 is
(1.98, 1.96, 1.1).

(c) : A degree of any hyperedge is 3.
(d) : A neutrosophic degree of hyperedge is (2.97, 2.94, 1.65).
(e) : A co-degree of vertices n1, n4 is 1.
(f) : A neutrosophic co-degree of vertices n1, n4 is (0.54, 0.24, 0.16).
(g) : A co-degree of hyperedges e1, e2 where µ(e1) = (0.99, 0.98, 0.55)

and µ(e2) = (0.54, 0.24, 0.16) is 1.
(h) : A neutrosophic co-degree of hyperedges e1, e2 where

µ(e1) = (0.99, 0.98, 0.55) and µ(e2) = (0.54, 0.24, 0.16) is
(0.99, 0.98, 0.55).

3.34 Open Problems

The three notions of coloring, resolving and dominating are introduced on
n-SuperHyperGraph. Thus,

Question 3.34.1. Is it possible to use other types super-edges to define different
types of coloring, resolving and dominating on n-SuperHyperGraph?

Question 3.34.2. Are existed some connections amid the coloring, resolving
and dominating inside this concept and external connections with other types of
coloring, resolving and dominating on n-SuperHyperGraph?

Question 3.34.3. Is it possible to construct some classes on n-SuperHyperGraph
which have “nice” behavior?
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Question 3.34.4. Which applications do make an independent study to apply
these three types coloring, resolving and dominating on n-SuperHyperGraph?

Problem 3.34.5. Which parameters are related to this parameter?

Problem 3.34.6. Which approaches do work to construct applications to create
independent study?

Problem 3.34.7. Which approaches do work to construct definitions which use
all three definitions and the relations amid them instead of separate definitions
to create independent study?

3.35 Conclusion and Closing Remarks

This study uses mixed combinations of different types of definitions, including
coloring, resolving and dominating to study on n-SuperHyperGraph. The
connections of super-vertices which are clarified by general super-edges differ
them from each other and put them in different categories to represent one
representative for each color, resolver and dominator. Further studies could be
about changes in the settings to compare this notion amid different settings of
n-SuperHyperGraph theory. One way is finding some relations amid three
definitions of notions to make sensible definitions. In Table (4.6), some
limitations and advantages of this study is pointed out.

Table 3.7: A Brief Overview about Advantages and Limitations of this study tbl2c

Advantages Limitations
1. Defining (Dual) Dimension 1. General Results

2. Defining (Dual) Domination

3. Defining (Dual) Coloring 2. Connections Amid New Notions

4. Applying on Individuals

5. Applying on Family 3. Connections of Results
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CHAPTER 4

Neutrosophic Alliances

4.1 Different Neutrosophic Alliances

The following sections are cited as [3].

4.2 Three Types of Neutrosophic Alliances based on
Connectedness and (Strong) Edges

4.3 Abstract

New setting is introduced to study the alliances. Alliances are about a set of
vertices which are applied into the setting of neutrosophic graphs. Neighborhood
has the key role to define these notions. Also, neighborhood is defined based on
the edges, strong edges and some edges which are coming from connectedness.
These three types of edges get a framework as neighborhood and after that,
too close vertices have key role to define offensive alliance, defensive alliance, t-
offensive alliance, and t-defensive alliance based on three types of edges, common
edges, strong edges and some edges which are coming from connectedness. The
structure of set is studied and general results are obtained. Also, some classes
of neutrosophic graphs containing complete, empty, path, cycle, bipartite, t-
partite, star and wheel are investigated in the terms of set, minimal set, number,
and neutrosophic number. In this study, there’s an open way to extend these
results into the family of these classes of neutrosophic graphs. The family
of neutrosophic graphs aren’t study but it seems that analogous results are
determined. There’s a question. How can be related to each other, two sets
partitioning the vertex set of a graph? The ideas of neighborhood and neighbors
based on different edges illustrate open way to get results. A set is alliance
when two sets partitioning vertex set have uniform structure. All members
of set have different amount of neighbors in the set and out of set. It leads
us to the notion of offensive and defensive. New ideas, offensive alliance,
defensive alliance, t-offensive alliance, t-defensive alliance, strong offensive
alliance, strong defensive alliance, strong t-offensive alliance, strong t-defensive
alliance, connected offensive alliance, connected defensive alliance, connected
t-offensive alliance, and connected t-defensive alliance are introduced. Two
numbers concerning cardinality and neutrosophic cardinality of alliances are
introduced. A set is alliance when its complement make a relation in the terms
of neighborhood. Different edges make different neighborhoods. Three types of
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edges are applied to define three styles of neighborhoods. General edges, strong
edges and connected edges are used where connected edges are the edges arising
from connectedness amid two endpoints of the edges. These notions are applied
into neutrosophic graphs as individuals and family of them. Independent set as
an alliance is a special set which has no neighbor inside and it implies some
drawbacks for this notions. Finding special sets which are well-known, is an
open way to purse this study. Special set which its members have only one
neighbor inside, characterize the connected components where the cardinality
of its complement is the number of connected components. Some problems
are proposed to pursue this study. Basic familiarities with graph theory and
neutrosophic graph theory are proposed for this article.
Keywords: Alliance, Offensive Alliance, Defensive Alliance

AMS Subject Classification: 05C17, 05C22, 05E45 In this section, I use
two subsections to illustrate a perspective about the background of this study.

4.4 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 4.4.1. Is it possible to use mixed versions of ideas concerning
“alliance”, “offensive” and “defensive” to define some notions which are applied
to neutrosophic graphs?

It’s motivation to find notions to use in any classes of neutrosophic graphs.
Real-world applications about time table and scheduling are another thoughts
which lead to be considered as motivation. Connections amid two vertices
have key roles to assign alliances, defensive alliances and offensive alliances.
Thus they’re used to define new ideas which conclude to the structure alliances,
defensive alliances and offensive alliances. The concept of having general edge
inspires me to study the behavior of general, strong edges and connected edge in
the way that, three types of numbers and set, e.g., alliances, defensive alliances
and offensive alliances are the cases of study in the settings of individuals and
in settings of families. Also, there are some extensions into alliances, t-defensive
alliances and t-offensive alliances.
The framework of this study is as follows. In the beginning, I introduced basic
definitions to clarify about preliminaries. In subsection “Preliminaries”, new
notions of (strong/connected)alliances, (strong/connected)t-defensive alliances
and (strong/connected)t-offensive alliances are applied to set of vertices of
neutrosophic graphs as individuals. In section “In the Setting of Set”, specific
sets have the key role in this way. Classes of neutrosophic graphs are studied
in the terms of different sets in section “Classes of Neutrosophic Graphs” as
individuals. In the section “In the Setting of Number”, usages of general
numbers have key role in this study as individuals. In section “Classes of
Neutrosophic Graphs”, both numbers have applied into individuals. And as
a concluding result, there’s one statement about the family of neutrosophic
graphs in this section. In section “Applications in Time Table and Scheduling”,
some applications are posed for alliances concerning time table and scheduling
when the suspicions are about choosing some subjects. In section “Open
Problems”, some problems and questions for further studies are proposed. In
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section “Conclusion and Closing Remarks”, gentle discussion about results and
applications are featured. In section “Conclusion and Closing Remarks”, a
brief overview concerning advantages and limitations of this study alongside
conclusions are formed.

4.5 Preliminaries

Definition 4.5.1. (Graph).
G = (V,E) is called a graph if V is a set of objects and E is a subset of V × V
(E is a set of 2-subsets of V ) where V is called vertex set and E is called
edge set. Every two vertices have been corresponded to at most one edge.

Definition 4.5.2. (Neutrosophic Graph).
NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) is called a neutrosophic
graph if it’s graph, σi : V → [0, 1], µi : E → [0, 1], and for every vivj ∈ E,

µ(vivj) ≤ σ(vi) ∧ σ(vj).

(i) : σ is called neutrosophic vertex set.

(ii) : µ is called neutrosophic edge set.

(iii) : |V | is called order of NTG and it’s denoted by O(NTG).

(iv) : Σv∈V σ(v) is called neutrosophic order of NTG and it’s denoted by
On(NTG).

(v) : |E| is called size of NTG and it’s denoted by S(NTG).

(vi) : Σe∈Eµ(e) is called neutrosophic size of NTG and it’s denoted by
Sn(NTG).

Definition 4.5.3. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) : a sequence of vertices P : x0, x1, · · · , xn is called a path where xixi+1 ∈
E, i = 0, 1, · · · , n− 1;

(ii) : strength of path P : x0, x1, · · · , xn is
∧
i=0,··· ,n−1 µ(xixi+1);

(iii) : connectedness amid vertices x0 and xn is

µ∞(x, y) =
∧

P :x0,x1,··· ,xn

∧
i=0,··· ,n−1

µ(xixi+1).

(iv) : a sequence of vertices P : x0, x1, · · · , xn is called a path where xixi+1 ∈
E, i = 0, 1, · · · , n − 1 and there are two edges xy and uv such that
µ(xy) = µ(uv) =

∧
i=0,1,··· ,n−1 µ(vivi+1);

(v) : it’s a t-partite where V is partitioned to t parts, V1, V2, · · · , Vt and the
edge xy implies x ∈ Vi and y ∈ Vj where i 6= j. If it’s complete, then it’s
denoted by Kσ1,σ2,··· ,σt

where σi is σ on Vi instead V which mean x 6∈ Vi
induces σi(x) = 0.

(v) : an t-partite is complete bipartite If t = 2, and it’s denoted by Kσ1,σ2 .
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(vi) : a complete bipartite is star if |V1| = 1, and it’s denoted by S1,σ2 .

(vii) : a vertex in V is center if the vertex joins to all vertices of a cycle. Then
it’s wheel and it’s denoted by W1,σ2 .

(viii) : it’s a complete where ∀uv ∈ V, µ(uv) = σ(u) ∧ σ(v).

(ix) : it’s a strong where ∀uv ∈ E, µ(uv) = σ(u) ∧ σ(v).

Based on different edges, it’s possible to define different neighbors as follows.

Definition 4.5.4. (Different Neighbors).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Suppose x ∈ V.

(i) : N(x) = {y ∈ V | xy ∈ E};

(ii) : Ns(x) = {y ∈ N(x) | µ(xy) = σ(x) ∧ σ(y)};

(iii) : Nc(x) = {y ∈ N(x) | µ(xy) = µ∞(x, y)}.

Definition 4.5.5. Let NTG : (V,E, σ, µ) be a neutrosophic graph. A set S is
called

(i) : offensive alliance if ∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)|;

(ii) : defensive alliance if ∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)|;

(iii) : t-offensive alliance if ∀a ∈ S, |(N(a) ∩ S)− (N(a) ∩ (V \ S))| > t;

(iv) : t-defensive alliance if ∀a ∈ S, |(N(a) ∩ S)− (N(a) ∩ (V \ S))| < t.

Definition 4.5.6. Let NTG : (V,E, σ, µ) be a neutrosophic graph. A set S is
called

(i) : strong offensive alliance if ∀a ∈ S, |Ns(a) ∩ S| > |Ns(a) ∩ (V \ S)|;

(ii) : strong defensive alliance if ∀a ∈ S, |Ns(a) ∩ S| < |Ns(a) ∩ (V \ S)|;

(iii) : strong t-offensive alliance if ∀a ∈ S, |(Ns(a)∩S)−(Ns(a)∩(V \S))| >
t;

(iv) : strong t-defensive alliance if ∀a ∈ S, |(Ns(a)∩S)−(Ns(a)∩(V \S))| <
t.

Definition 4.5.7. Let NTG : (V,E, σ, µ) be a neutrosophic graph. A set S is
called

(i) : connected offensive alliance if ∀a ∈ S, |Nc(a)∩S| > |Nc(a)∩ (V \S)|;

(ii) : connected defensive alliance if ∀a ∈ S, |Nc(a)∩S| < |Nc(a)∩(V \S)|;

(iii) : connected t-offensive alliance if ∀a ∈ S, |(Nc(a)∩S)− (Nc(a)∩ (V \
S))| > t;

(iv) : connected t-defensive alliance if ∀a ∈ S, |(Nc(a)∩S)− (Nc(a)∩ (V \
S))| < t.

Definition 4.5.8. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) : number of NTG is
∧
S is alliance |S|;

(ii) : neutrosophic number of NTG is
∧
S is alliance Σs∈Sσ(s).
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4.6 In the Setting of Set

Proposition 4.6.1. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then V is

(i) : offensive alliance;

(ii) : strong offensive alliance;

(iii) : connected offensive alliance;

(iv) : δ-offensive alliance;

(v) : strong δ-offensive alliance;

(vi) : connected δ-offensive alliance.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph. Consider V. All
members of V have at least one neighbor inside the set more than neighbor out
of set. Thus,
(i). V is offensive alliance since the following statements are equivalent.

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ V, |N(a) ∩ V | > |N(a) ∩ (V \ V )| ≡
∀a ∈ V, |N(a) ∩ V | > |N(a) ∩ ∅| ≡
∀a ∈ V, |N(a) ∩ V | > |∅| ≡
∀a ∈ V, |N(a) ∩ V | > 0 ≡

∀a ∈ V, δ > 0.
(ii). V is strong offensive alliance since the following statements are equivalent.

∀a ∈ S, |Ns(a) ∩ S| > |Ns(a) ∩ (V \ S)| ≡
∀a ∈ V, |Ns(a) ∩ V | > |Ns(a) ∩ (V \ V )| ≡
∀a ∈ V, |Ns(a) ∩ V | > |Ns(a) ∩ ∅| ≡
∀a ∈ V, |Ns(a) ∩ V | > |∅| ≡
∀a ∈ V, |Ns(a) ∩ V | > 0 ≡

∀a ∈ V, δ > 0.
(iii). V is connected offensive alliance since the following statements are

equivalent.

∀a ∈ S, |Nc(a) ∩ S| > |Nc(a) ∩ (V \ S)| ≡
∀a ∈ V, |Nc(a) ∩ V | > |Nc(a) ∩ (V \ V )| ≡
∀a ∈ V, |Nc(a) ∩ V | > |Nc(a) ∩ ∅| ≡
∀a ∈ V, |Nc(a) ∩ V | > |∅| ≡
∀a ∈ V, |Nc(a) ∩ V | > 0 ≡

∀a ∈ V, δ > 0.
(iv). V is offensive alliance since the following statements are equivalent.

∀a ∈ S, |(N(a) ∩ S)− (N(a) ∩ (V \ S))| > δ≡
∀a ∈ V, |(N(a) ∩ V )− (N(a) ∩ (V \ V ))| > δ≡
∀a ∈ V, |(N(a) ∩ V )− (N(a) ∩ (∅))| > δ≡

∀a ∈ V, |(N(a) ∩ V )− (∅)| > δ≡
∀a ∈ V, |(N(a) ∩ V )| > δ.

(v). V is strong offensive alliance since the following statements are equivalent.
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∀a ∈ S, |(Ns(a) ∩ S)− (Ns(a) ∩ (V \ S))| > δ≡
∀a ∈ V, |(Ns(a) ∩ V )− (Ns(a) ∩ (V \ V ))| > δ≡
∀a ∈ V, |(Ns(a) ∩ V )− (Ns(a) ∩ (∅))| > δ≡

∀a ∈ V, |(Ns(a) ∩ V )− (∅)| > δ≡
∀a ∈ V, |(Ns(a) ∩ V )| > δ.

(vi). V is connected offensive alliance since the following statements are
equivalent.

∀a ∈ S, |(Nc(a) ∩ S)− (Nc(a) ∩ (V \ S))| > δ≡
∀a ∈ V, |(Nc(a) ∩ V )− (Nc(a) ∩ (V \ V ))| > δ≡
∀a ∈ V, |(Nc(a) ∩ V )− (Nc(a) ∩ (∅))| > δ≡

∀a ∈ V, |(Nc(a) ∩ V )− (∅)| > δ≡
∀a ∈ V, |(Nc(a) ∩ V )| > δ.

�

Proposition 4.6.2. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then ∅ is

(i) : defensive alliance;

(ii) : strong defensive alliance;

(iii) : connected defensive alliance;

(iv) : δ-defensive alliance;

(v) : strong δ-defensive alliance;

(vi) : connected δ-defensive alliance.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph. Consider ∅. All
members of ∅ have no neighbor inside the set less than neighbor out of set.
Thus,
(i). ∅ is defensive alliance since the following statements are equivalent.

∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡
∀a ∈ ∅, |N(a) ∩ ∅| < |N(a) ∩ (V \ ∅)| ≡
∀a ∈ ∅, |∅| < |N(a) ∩ (V \ ∅)| ≡
∀a ∈ ∅, 0 < |N(a) ∩ V | ≡
∀a ∈ ∅, 0 < |N(a) ∩ V | ≡

∀a ∈ V, δ > 0.
(ii). ∅ is strong defensive alliance since the following statements are equivalent.

∀a ∈ S, |Ns(a) ∩ S| < |Ns(a) ∩ (V \ S)| ≡
∀a ∈ ∅, |Ns(a) ∩ ∅| < |Ns(a) ∩ (V \ ∅)| ≡
∀a ∈ ∅, |∅| < |Ns(a) ∩ (V \ ∅)| ≡
∀a ∈ ∅, 0 < |Ns(a) ∩ V | ≡
∀a ∈ ∅, 0 < |Ns(a) ∩ V | ≡

∀a ∈ V, δ > 0.
(iii). ∅ is connected defensive alliance since the following statements are

equivalent.
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∀a ∈ S, |Nc(a) ∩ S| < |Nc(a) ∩ (V \ S)| ≡
∀a ∈ ∅, |Nc(a) ∩ ∅| < |Nc(a) ∩ (V \ ∅)| ≡
∀a ∈ ∅, |∅| < |Nc(a) ∩ (V \ ∅)| ≡
∀a ∈ ∅, 0 < |Nc(a) ∩ V | ≡
∀a ∈ ∅, 0 < |Nc(a) ∩ V | ≡

∀a ∈ V, δ > 0.
(iv). ∅ is defensive alliance since the following statements are equivalent.

∀a ∈ S, |(N(a) ∩ S)− (N(a) ∩ (V \ S))| < δ≡
∀a ∈ ∅, |(N(a) ∩ ∅)− (N(a) ∩ (V \ ∅))| < δ≡
∀a ∈ ∅, |(N(a) ∩ ∅)− (N(a) ∩ (V ))| < δ≡

∀a ∈ ∅, |∅| < δ≡
∀a ∈ V, 0 < δ.

(v). ∅ is strong defensive alliance since the following statements are equivalent.

∀a ∈ S, |(Ns(a) ∩ S)− (Ns(a) ∩ (V \ S))| < δ≡
∀a ∈ ∅, |(Ns(a) ∩ ∅)− (Ns(a) ∩ (V \ ∅))| < δ≡
∀a ∈ ∅, |(Ns(a) ∩ ∅)− (Ns(a) ∩ (V ))| < δ≡

∀a ∈ ∅, |∅| < δ≡
∀a ∈ V, 0 < δ.

(vi). ∅ is connected defensive alliance since the following statements are
equivalent.

∀a ∈ S, |(Nc(a) ∩ S)− (Nc(a) ∩ (V \ S))| < δ≡
∀a ∈ ∅, |(Nc(a) ∩ ∅)− (Nc(a) ∩ (V \ ∅))| < δ≡
∀a ∈ ∅, |(Nc(a) ∩ ∅)− (Nc(a) ∩ (V ))| < δ≡

∀a ∈ ∅, |∅| < δ≡
∀a ∈ V, 0 < δ.

�

Proposition 4.6.3. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then an
independent set is

(i) : defensive alliance;

(ii) : strong defensive alliance;

(iii) : connected defensive alliance;

(iv) : δ-defensive alliance;

(v) : strong δ-defensive alliance;

(vi) : connected δ-defensive alliance.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph. Consider ∅. All
members of ∅ have no neighbor inside the set less than neighbor out of set.
Thus,
(i). An independent set is defensive alliance since the following statements are
equivalent.
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∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡
∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡
∀a ∈ S, |∅| < |N(a) ∩ (V \ S)| ≡
∀a ∈ S, 0 < |N(a) ∩ V | ≡
∀a ∈ S, 0 < |N(a)| ≡
∀a ∈ V, δ > 0.

(ii). An independent set is strong defensive alliance since the following
statements are equivalent.

∀a ∈ S, |Ns(a) ∩ S| < |Ns(a) ∩ (V \ S)| ≡
∀a ∈ S, |Ns(a) ∩ S| < |Ns(a) ∩ (V \ S)| ≡
∀a ∈ S, |∅| < |Ns(a) ∩ (V \ S)| ≡
∀a ∈ S, 0 < |Ns(a) ∩ V | ≡
∀a ∈ S, 0 < |Ns(a)| ≡
∀a ∈ V, δ > 0.

(iii). An independent set is connected defensive alliance since the following
statements are equivalent.

∀a ∈ S, |Nc(a) ∩ S| < |Nc(a) ∩ (V \ S)| ≡
∀a ∈ S, |Nc(a) ∩ S| < |Nc(a) ∩ (V \ S)| ≡
∀a ∈ S, |∅| < |Nc(a) ∩ (V \ S)| ≡
∀a ∈ S, 0 < |Nc(a) ∩ V | ≡
∀a ∈ S, 0 < |Nc(a)| ≡
∀a ∈ V, δ > 0.

(iv). An independent set is defensive alliance since the following statements are
equivalent.

∀a ∈ S, |(N(a) ∩ S)− (N(a) ∩ (V \ S))| < δ≡
∀a ∈ S, |(N(a) ∩ S)− (N(a) ∩ (V \ S))| < δ≡
∀a ∈ S, |(N(a) ∩ S)− (N(a) ∩ (V ))| < δ≡

∀a ∈ S, |∅| < δ≡
∀a ∈ V, 0 < δ.

(v). An independent set is strong defensive alliance since the following
statements are equivalent.

∀a ∈ S, |(Ns(a) ∩ S)− (Ns(a) ∩ (V \ S))| < δ≡
∀a ∈ S, |(Ns(a) ∩ S)− (Ns(a) ∩ (V \ S))| < δ≡
∀a ∈ S, |(Ns(a) ∩ S)− (Ns(a) ∩ (V ))| < δ≡

∀a ∈ S, |∅| < δ≡
∀a ∈ V, 0 < δ.

(vi). An independent set is connected defensive alliance since the following
statements are equivalent.

∀a ∈ S, |(Nc(a) ∩ S)− (Nc(a) ∩ (V \ S))| < δ≡
∀a ∈ S, |(Nc(a) ∩ S)− (Nc(a) ∩ (V \ S))| < δ≡
∀a ∈ S, |(Nc(a) ∩ S)− (Nc(a) ∩ (V ))| < δ≡

∀a ∈ S, |∅| < δ≡
∀a ∈ V, 0 < δ.

�
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4.7 Classes of Neutrosophic Graphs

Proposition 4.7.1. Let NTG : (V,E, σ, µ) be a neutrosophic graph which is
cycle/path/wheel. Then V is minimal

(i) : offensive alliance;

(ii) : strong offensive alliance;

(iii) : connected offensive alliance;

(iv) : O(NTG)-offensive alliance;

(v) : strong O(NTG)-offensive alliance;

(vi) : connected O(NTG)-offensive alliance.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph which is
cycle/path//wheel.
(i). Consider one vertex is out of S which is alliance. This vertex has one
neighbor in S, i.e, Suppose x ∈ V \ S such that y, z ∈ N(x). By it’s cycle,
|N(x)| = |N(y)| = |N(z)| = 2. Thus

∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡
∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡

∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ (V \ (V \ {x}))| ≡
∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ {x})| ≡

∃y ∈ V \ {x}, |{z}| < |{x})| ≡
∃y ∈ S, 1 < 1.

Thus it’s contradiction. It implies every V \ {x} isn’t offensive alliance in a
given cycle.

Consider one vertex is out of S which is alliance. This vertex has one neighbor
in S, i.e, Suppose x ∈ V \ S such that y, z ∈ N(x). By it’s path,

|N(x)| = |N(y)| = |N(z)| = 2. Thus

∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡
∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡

∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ (V \ (V \ {x}))| ≡
∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ {x})| ≡

∃y ∈ V \ {x}, |{z}| < |{x})| ≡
∃y ∈ S, 1 < 1.

Thus it’s contradiction. It implies every V \ {x} isn’t offensive alliance in a
given path.

Consider one vertex is out of S which is alliance. This vertex has one neighbor
in S, i.e, Suppose x ∈ V \ S such that y, z ∈ N(x). By it’s wheel,

|N(x)| = |N(y)| = |N(z)| = 2. Thus

∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡
∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡

∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ (V \ (V \ {x}))| ≡
∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ {x})| ≡

∃y ∈ V \ {x}, |{z}| < |{x})| ≡
∃y ∈ S, 1 < 1.
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4. Neutrosophic Alliances

Thus it’s contradiction. It implies every V \ {x} isn’t offensive alliance in a
given wheel.

(ii), (iii) are obvious by (i).
(iv). By (i), |V | is minimal and it’s offensive alliance. Thus it’s |V |-offensive

alliance.
(v), (vi) are obvious by (iv). �

Proposition 4.7.2. Let NTG : (V,E, σ, µ) be a neutrosophic graph which is
cycle/path/wheel. Then V is only

(i) : offensive alliance;

(ii) : strong offensive alliance;

(iii) : connected offensive alliance;

(iv) : O(NTG)-offensive alliance;

(v) : strong O(NTG)-offensive alliance;

(vi) : connected O(NTG)-offensive alliance.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph which is
cycle/path//wheel.
(i). Consider one vertex is out of S which is alliance. This vertex has one
neighbor in S, i.e, Suppose x ∈ V \ S such that y, z ∈ N(x). By it’s cycle,
|N(x)| = |N(y)| = |N(z)| = 2. Thus

∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡
∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡

∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ (V \ (V \ {x}))| ≡
∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ {x})| ≡

∃y ∈ V \ {x}, |{z}| < |{x})| ≡
∃y ∈ S, 1 < 1.

Thus it’s contradiction. It implies every V \ {x} isn’t offensive alliance in a
given cycle.

Consider one vertex is out of S which is alliance. This vertex has one neighbor
in S, i.e, Suppose x ∈ V \ S such that y, z ∈ N(x). By it’s path,

|N(x)| = |N(y)| = |N(z)| = 2. Thus

∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡
∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡

∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ (V \ (V \ {x}))| ≡
∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ {x})| ≡

∃y ∈ V \ {x}, |{z}| < |{x})| ≡
∃y ∈ S, 1 < 1.

Thus it’s contradiction. It implies every V \ {x} isn’t offensive alliance in a
given path.

Consider one vertex is out of S which is alliance. This vertex has one neighbor
in S, i.e, Suppose x ∈ V \ S such that y, z ∈ N(x). By it’s wheel,

|N(x)| = |N(y)| = |N(z)| = 2. Thus
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∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡
∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡

∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ (V \ (V \ {x}))| ≡
∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ {x})| ≡

∃y ∈ V \ {x}, |{z}| < |{x})| ≡
∃y ∈ S, 1 < 1.

Thus it’s contradiction. It implies every V \ {x} isn’t offensive alliance in a
given wheel.

(ii), (iii) are obvious by (i).
(iv). By (i), V is minimal and it’s offensive alliance. Thus it’s

O(NTG)-offensive alliance.
(v), (vi) are obvious by (iv). �

Proposition 4.7.3. Let NTG : (V,E, σ, µ) be a neutrosophic graph which is
star/complete bipartite/complete t-partite. Then center and n half +1 vertices
is minimal

(i) : offensive alliance;

(ii) : strong offensive alliance;

(iii) : connected offensive alliance;

(iv) : O(NTG)
2 + 1-offensive alliance;

(v) : strong O(NTG)
2 + 1-offensive alliance;

(vi) : connected O(NTG)
2 + 1-offensive alliance.

Proof. (i). Consider n half +1 vertices are out of S which is alliance. This
vertex has n half neighbor in S. If the vertex is non-center, then

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, 1 > 0.

If the vertex is center, then

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, n

2 >
n
2 − 1.

Thus it’s proved. It implies every S is offensive alliance in a given star.
Consider n half +1 vertices are out of S which is alliance. This vertex has n

half neighbor in S.

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, n

2 >
n
2 − 1.

Thus it’s proved. It implies every S is offensive alliance in a given complete
bipartite which isn’t a star.

Consider n half +1 vertices are out of S which is alliance and they are chosen
from different parts, equally or almost equally as possible. This vertex has n

half neighbor in S.

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, n

2 >
n
2 − 1.

Thus it’s proved. It implies every S is offensive alliance in a given complete
t-partite which isn’t neither a star nor complete bipartite.
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(ii), (iii) are obvious by (i).
(iv). By (i), {xi}

O(NT G)
2 +1

i=1 is minimal and it’s offensive alliance. Thus it’s
O(NTG)

2 + 1-offensive alliance.
(v), (vi) are obvious by (iv). �

Proposition 4.7.4. Let NTG : (V,E, σ, µ) be a neutrosophic graph which is
star/complete bipartite/complete t-partite. Then center and n half +1 vertices
is only

(i) : offensive alliance;

(ii) : strong offensive alliance;

(iii) : connected offensive alliance;

(iv) : δ-offensive alliance;

(v) : strong δ-offensive alliance;

(vi) : connected δ-offensive alliance.

Proof. (i). Consider n half +1 vertices are out of S which is alliance. This
vertex has n half neighbor in S. If the vertex is non-center, then

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, 1 > 0.

If the vertex is center, then

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, n

2 >
n
2 − 1.

Thus it’s proved. It implies every S is offensive alliance in a given star.
Consider n half +1 vertices are out of S which is alliance. This vertex has n

half neighbor in S.

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, n

2 >
n
2 − 1.

Thus it’s proved. It implies every S is offensive alliance in a given complete
bipartite which isn’t a star.

Consider n half +1 vertices are out of S which is alliance and they are chosen
from different parts, equally or almost equally as possible. This vertex has n

half neighbor in S.

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, n

2 >
n
2 − 1.

Thus it’s proved. It implies every S is offensive alliance in a given complete
t-partite which isn’t neither a star nor complete bipartite.

(ii), (iii) are obvious by (i).
(iv). By (i), {xi}

O(NT G)
2 +1

i=1 is minimal and it’s offensive alliance. Thus it’s
O(NTG)

2 + 1-offensive alliance.
(v), (vi) are obvious by (iv). �
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4.8 In the Setting of Number

Proposition 4.8.1. Let NTG : (V,E, σ, µ) be a neutrosophic graph. The number
of connected component is |V − S| if there’s a set which is

(i) : offensive alliance;

(ii) : strong offensive alliance;

(iii) : connected offensive alliance;

(iv) : 1-offensive alliance;

(v) : strong 1-offensive alliance;

(vi) : connected 1-offensive alliance.

Proof. (i). Consider some vertices are out of S which is alliance. This vertex
has n half neighbor in S but no vertex out of S. Thus

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, 1 > 0.

Thus it’s proved. It implies every S is offensive alliance and number of
connected component is |V − S|.

Consider some vertices are out of S which is alliance. This vertex has n half
neighbor in S but no vertex out of S. Thus

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, 1 > 0.

Thus it’s proved. It implies every S is offensive alliance and number of
connected component is |V − S|.

Consider some vertices are out of S which is alliance. This vertex has n half
neighbor in S but no vertex out of S. Thus

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, 1 > 0.

Thus it’s proved. It implies every S is offensive alliance and number of
connected component is |V − S|.

(ii), (iii) are obvious by (i).
(iv). By (i), {x} is minimal and it’s offensive alliance. Thus it’s 1-offensive

alliance.
(v), (vi) are obvious by (iv). �

Proposition 4.8.2. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then the
number is at most O(NTG) and the neutrosophic number is at most On(NTG).

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph. Consider V. All
members of V have at least one neighbor inside the set more than neighbor out
of set. Thus,
V is offensive alliance since the following statements are equivalent.
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∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ V, |N(a) ∩ V | > |N(a) ∩ (V \ V )| ≡
∀a ∈ V, |N(a) ∩ V | > |N(a) ∩ ∅| ≡
∀a ∈ V, |N(a) ∩ V | > |∅| ≡
∀a ∈ V, |N(a) ∩ V | > 0 ≡

∀a ∈ V, δ > 0.
V is strong offensive alliance since the following statements are equivalent.

∀a ∈ S, |Ns(a) ∩ S| > |Ns(a) ∩ (V \ S)| ≡
∀a ∈ V, |Ns(a) ∩ V | > |Ns(a) ∩ (V \ V )| ≡
∀a ∈ V, |Ns(a) ∩ V | > |Ns(a) ∩ ∅| ≡
∀a ∈ V, |Ns(a) ∩ V | > |∅| ≡
∀a ∈ V, |Ns(a) ∩ V | > 0 ≡

∀a ∈ V, δ > 0.
V is connected offensive alliance since the following statements are equivalent.

∀a ∈ S, |Nc(a) ∩ S| > |Nc(a) ∩ (V \ S)| ≡
∀a ∈ V, |Nc(a) ∩ V | > |Nc(a) ∩ (V \ V )| ≡
∀a ∈ V, |Nc(a) ∩ V | > |Nc(a) ∩ ∅| ≡
∀a ∈ V, |Nc(a) ∩ V | > |∅| ≡
∀a ∈ V, |Nc(a) ∩ V | > 0 ≡

∀a ∈ V, δ > 0.
V is offensive alliance since the following statements are equivalent.

∀a ∈ S, |(N(a) ∩ S)− (N(a) ∩ (V \ S))| > δ≡
∀a ∈ V, |(N(a) ∩ V )− (N(a) ∩ (V \ V ))| > δ≡
∀a ∈ V, |(N(a) ∩ V )− (N(a) ∩ (∅))| > δ≡

∀a ∈ V, |(N(a) ∩ V )− (∅)| > δ≡
∀a ∈ V, |(N(a) ∩ V )| > δ.

V is strong offensive alliance since the following statements are equivalent.

∀a ∈ S, |(Ns(a) ∩ S)− (Ns(a) ∩ (V \ S))| > δ≡
∀a ∈ V, |(Ns(a) ∩ V )− (Ns(a) ∩ (V \ V ))| > δ≡
∀a ∈ V, |(Ns(a) ∩ V )− (Ns(a) ∩ (∅))| > δ≡

∀a ∈ V, |(Ns(a) ∩ V )− (∅)| > δ≡
∀a ∈ V, |(Ns(a) ∩ V )| > δ.

V is connected offensive alliance since the following statements are equivalent.

∀a ∈ S, |(Nc(a) ∩ S)− (Nc(a) ∩ (V \ S))| > δ≡
∀a ∈ V, |(Nc(a) ∩ V )− (Nc(a) ∩ (V \ V ))| > δ≡
∀a ∈ V, |(Nc(a) ∩ V )− (Nc(a) ∩ (∅))| > δ≡

∀a ∈ V, |(Nc(a) ∩ V )− (∅)| > δ≡
∀a ∈ V, |(Nc(a) ∩ V )| > δ.

Thus V is alliance and V is the biggest set in NTG. Then the number is at
most O(NTG) and the neutrosophic number is at most On(NTG). �

Proposition 4.8.3. Let NTG : (V,E, σ, µ) be a neutrosophic graph which
is complete. The number is O(NTG)

2 + 1 and the neutrosophic number is
min Σv∈{v1,v2,··· ,vt}

t>
O(NT G)

2
⊆V σ(v), in the setting of

(i) : offensive alliance;

(ii) : strong offensive alliance;
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(iii) : connected offensive alliance;

(iv) : (O(NTG)
2 + 1)-offensive alliance;

(v) : strong (O(NTG)
2 + 1)-offensive alliance;

(vi) : connected (O(NTG)
2 + 1)-offensive alliance.

Proof. (i). Consider n half +1 vertices are out of S which is alliance. This
vertex has n half neighbor in S.

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, n

2 >
n
2 − 1.

Thus it’s proved. It implies every S is offensive alliance in a given complete
graph. Thus the number is O(NTG)

2 + 1 and the neutrosophic number is
min Σv∈{v1,v2,··· ,vt}

t>
O(NT G)

2
⊆V σ(v), in the setting of offensive alliance.

(ii). Consider n half +1 vertices are out of S which is alliance. This vertex has
n half neighbor in S.

∀a ∈ S, |Ns(a) ∩ S| > |Ns(a) ∩ (V \ S)| ≡
∀a ∈ S, n

2 >
n
2 − 1.

Thus it’s proved. It implies every S is strong offensive alliance in a given
complete graph. Thus the number is O(NTG)

2 + 1 and the neutrosophic number
is min Σv∈{v1,v2,··· ,vt}

t>
O(NT G)

2
⊆V σ(v), in the setting of strong offensive alliance.

(iii). Consider n half +1 vertices are out of S which is alliance. This vertex has
n half neighbor in S.

∀a ∈ S, |Nc(a) ∩ S| > |Nc(a) ∩ (V \ S)| ≡
∀a ∈ S, n

2 >
n
2 − 1.

Thus it’s proved. It implies every S is connected offensive alliance in a given
complete graph. Thus the number is O(NTG)

2 + 1 and the neutrosophic number
is min Σv∈{v1,v2,··· ,vt}

t>
O(NT G)

2
⊆V σ(v), in the setting of connected offensive

alliance.
(iv). Consider n half +1 vertices are out of S which is alliance. This vertex has

n half neighbor in S.

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, n

2 >
n
2 − 1.

Thus it’s proved. It implies every S is (O(NTG)
2 + 1)-offensive alliance in a

given complete graph. Thus the number is O(NTG)
2 + 1 and the neutrosophic

number is min Σv∈{v1,v2,··· ,vt}
t>
O(NT G)

2
⊆V σ(v), in the setting of

(O(NTG)
2 + 1)-offensive alliance.

(v). Consider n half +1 vertices are out of S which is alliance. This vertex has
n half neighbor in S.

∀a ∈ S, |Ns(a) ∩ S| > |Ns(a) ∩ (V \ S)| ≡
∀a ∈ S, n

2 >
n
2 − 1.

Thus it’s proved. It implies every S is strong (O(NTG)
2 + 1)-offensive alliance in

a given complete graph. Thus the number is O(NTG)
2 + 1 and the neutrosophic

185



4. Neutrosophic Alliances

number is min Σv∈{v1,v2,··· ,vt}
t>
O(NT G)

2
⊆V σ(v), in the setting of strong

(O(NTG)
2 + 1)-offensive alliance.

(vi). Consider n half +1 vertices are out of S which is alliance. This vertex has
n half neighbor in S.

∀a ∈ S, |Nc(a) ∩ S| > |Nc(a) ∩ (V \ S)| ≡
∀a ∈ S, n

2 >
n
2 − 1.

Thus it’s proved. It implies every S is connected (O(NTG)
2 + 1)-offensive

alliance in a given complete graph. Thus the number is O(NTG)
2 + 1 and the

neutrosophic number is min Σv∈{v1,v2,··· ,vt}
t>
O(NT G)

2
⊆V σ(v), in the setting of

connected (O(NTG)
2 + 1)-offensive alliance. �

Proposition 4.8.4. Let NTG : (V,E, σ, µ) be a neutrosophic graph which is ∅.
The number is 0 and the neutrosophic number is 0, for an independent set in
the setting of

(i) : offensive alliance;

(ii) : strong offensive alliance;

(iii) : connected offensive alliance;

(iv) : 0-offensive alliance;

(v) : strong 0-offensive alliance;

(vi) : connected 0-offensive alliance.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph. Consider ∅. All
members of ∅ have no neighbor inside the set less than neighbor out of set.
Thus,
(i). ∅ is defensive alliance since the following statements are equivalent.

∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡
∀a ∈ ∅, |N(a) ∩ ∅| < |N(a) ∩ (V \ ∅)| ≡
∀a ∈ ∅, |∅| < |N(a) ∩ (V \ ∅)| ≡
∀a ∈ ∅, 0 < |N(a) ∩ V | ≡
∀a ∈ ∅, 0 < |N(a) ∩ V | ≡

∀a ∈ V, δ > 0.
The number is 0 and the neutrosophic number is 0, for an independent set in

the setting of offensive alliance.
(ii). ∅ is strong defensive alliance since the following statements are equivalent.

∀a ∈ S, |Ns(a) ∩ S| < |Ns(a) ∩ (V \ S)| ≡
∀a ∈ ∅, |Ns(a) ∩ ∅| < |Ns(a) ∩ (V \ ∅)| ≡
∀a ∈ ∅, |∅| < |Ns(a) ∩ (V \ ∅)| ≡
∀a ∈ ∅, 0 < |Ns(a) ∩ V | ≡
∀a ∈ ∅, 0 < |Ns(a) ∩ V | ≡

∀a ∈ V, δ > 0.
The number is 0 and the neutrosophic number is 0, for an independent set in

the setting of strong offensive alliance.
(iii). ∅ is connected defensive alliance since the following statements are

equivalent.
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∀a ∈ S, |Nc(a) ∩ S| < |Nc(a) ∩ (V \ S)| ≡
∀a ∈ ∅, |Nc(a) ∩ ∅| < |Nc(a) ∩ (V \ ∅)| ≡
∀a ∈ ∅, |∅| < |Nc(a) ∩ (V \ ∅)| ≡
∀a ∈ ∅, 0 < |Nc(a) ∩ V | ≡
∀a ∈ ∅, 0 < |Nc(a) ∩ V | ≡

∀a ∈ V, δ > 0.
The number is 0 and the neutrosophic number is 0, for an independent set in

the setting of connected offensive alliance.
(iv). ∅ is defensive alliance since the following statements are equivalent.

∀a ∈ S, |(N(a) ∩ S)− (N(a) ∩ (V \ S))| < δ≡
∀a ∈ ∅, |(N(a) ∩ ∅)− (N(a) ∩ (V \ ∅))| < δ≡
∀a ∈ ∅, |(N(a) ∩ ∅)− (N(a) ∩ (V ))| < δ≡

∀a ∈ ∅, |∅| < δ≡
∀a ∈ V, 0 < δ.

The number is 0 and the neutrosophic number is 0, for an independent set in
the setting of 0-offensive alliance.

(v). ∅ is strong defensive alliance since the following statements are equivalent.

∀a ∈ S, |(Ns(a) ∩ S)− (Ns(a) ∩ (V \ S))| < δ≡
∀a ∈ ∅, |(Ns(a) ∩ ∅)− (Ns(a) ∩ (V \ ∅))| < δ≡
∀a ∈ ∅, |(Ns(a) ∩ ∅)− (Ns(a) ∩ (V ))| < δ≡

∀a ∈ ∅, |∅| < δ≡
∀a ∈ V, 0 < δ.

The number is 0 and the neutrosophic number is 0, for an independent set in
the setting of strong 0-offensive alliance.

(vi). ∅ is connected defensive alliance since the following statements are
equivalent.

∀a ∈ S, |(Nc(a) ∩ S)− (Nc(a) ∩ (V \ S))| < δ≡
∀a ∈ ∅, |(Nc(a) ∩ ∅)− (Nc(a) ∩ (V \ ∅))| < δ≡
∀a ∈ ∅, |(Nc(a) ∩ ∅)− (Nc(a) ∩ (V ))| < δ≡

∀a ∈ ∅, |∅| < δ≡
∀a ∈ V, 0 < δ.

The number is 0 and the neutrosophic number is 0, for an independent set in
the setting of connected 0-offensive alliance. �

Proposition 4.8.5. Let NTG : (V,E, σ, µ) be a neutrosophic graph which is
complete. Then there’s no independent set.

4.9 Classes of Neutrosophic Graphs

Proposition 4.9.1. Let NTG : (V,E, σ, µ) be a neutrosophic graph which is
cycle/path/wheel. The number is O(NTG) and the neutrosophic number is
On(NTG), in the setting of

(i) : offensive alliance;

(ii) : strong offensive alliance;

(iii) : connected offensive alliance;

(iv) : O(NTG)-offensive alliance;
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(v) : strong O(NTG)-offensive alliance;

(vi) : connected O(NTG)-offensive alliance.

Proof. Suppose NTG : (V,E, σ, µ) is a neutrosophic graph which is
cycle/path/wheel.
(i). Consider one vertex is out of S which is alliance. This vertex has one
neighbor in S, i.e, Suppose x ∈ V \ S such that y, z ∈ N(x). By it’s cycle,
|N(x)| = |N(y)| = |N(z)| = 2. Thus

∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡
∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡

∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ (V \ (V \ {x}))| ≡
∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ {x})| ≡

∃y ∈ V \ {x}, |{z}| < |{x})| ≡
∃y ∈ S, 1 < 1.

Thus it’s contradiction. It implies every V \ {x} isn’t offensive alliance in a
given cycle.

Consider one vertex is out of S which is alliance. This vertex has one neighbor
in S, i.e, Suppose x ∈ V \ S such that y, z ∈ N(x). By it’s path,

|N(x)| = |N(y)| = |N(z)| = 2. Thus

∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡
∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡

∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ (V \ (V \ {x}))| ≡
∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ {x})| ≡

∃y ∈ V \ {x}, |{z}| < |{x})| ≡
∃y ∈ S, 1 < 1.

Thus it’s contradiction. It implies every V \ {x} isn’t offensive alliance in a
given path.

Consider one vertex is out of S which is alliance. This vertex has one neighbor
in S, i.e, Suppose x ∈ V \ S such that y, z ∈ N(x). By it’s wheel,

|N(x)| = |N(y)| = |N(z)| = 2. Thus

∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡
∀a ∈ S, |N(a) ∩ S| < |N(a) ∩ (V \ S)| ≡

∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ (V \ (V \ {x}))| ≡
∃y ∈ V \ {x}, |N(y) ∩ S| < |N(y) ∩ {x})| ≡

∃y ∈ V \ {x}, |{z}| < |{x})| ≡
∃y ∈ S, 1 < 1.

Thus it’s contradiction. It implies every V \ {x} isn’t offensive alliance in a
given wheel.

(ii), (iii) are obvious by (i).
(iv). By (i), V is minimal and it’s offensive alliance. Thus it’s

O(NTG)-offensive alliance.
(v), (vi) are obvious by (iv).

Thus the number is O(NTG) and the neutrosophic number is On(NTG), in
the setting of all types of alliance. �

Proposition 4.9.2. Let NTG : (V,E, σ, µ) be a neutrosophic graph which is
star/complete bipartite/complete t-partite. The number is O(NTG)

2 + 1 and the
neutrosophic number is min Σv∈{v1,v2,··· ,vt}

t>
O(NT G)

2
⊆V σ(v), in the setting of
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(i) : offensive alliance;

(ii) : strong offensive alliance;

(iii) : connected offensive alliance;

(iv) : (O(NTG)
2 + 1)-offensive alliance;

(v) : strong (O(NTG)
2 + 1)-offensive alliance;

(vi) : connected (O(NTG)
2 + 1)-offensive alliance.

Proof. (i). Consider n half +1 vertices are out of S which is alliance. This
vertex has n half neighbor in S. If the vertex is non-center, then

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, 1 > 0.

If the vertex is center, then

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, n

2 >
n
2 − 1.

Thus it’s proved. It implies every S is offensive alliance in a given star.
Consider n half +1 vertices are out of S which is alliance. This vertex has n

half neighbor in S.

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, n

2 >
n
2 − 1.

Thus it’s proved. It implies every S is offensive alliance in a given complete
bipartite which isn’t a star.

Consider n half +1 vertices are out of S which is alliance and they are chosen
from different parts, equally or almost equally as possible. This vertex has n

half neighbor in S.

∀a ∈ S, |N(a) ∩ S| > |N(a) ∩ (V \ S)| ≡
∀a ∈ S, n

2 >
n
2 − 1.

Thus it’s proved. It implies every S is offensive alliance in a given complete
t-partite which isn’t neither a star nor complete bipartite.

(ii), (iii) are obvious by (i).
(iv). By (i), {xi}

O(NT G)
2 +1

i=1 is minimal and it’s offensive alliance. Thus it’s
O(NTG)

2 + 1-offensive alliance.
(v), (vi) are obvious by (iv).

Thus the number is O(NTG)
2 + 1 and the neutrosophic number is

min Σv∈{v1,v2,··· ,vt}
t>
O(NT G)

2
⊆V σ(v), in the setting of all alliances. �

Proposition 4.9.3. Let G be a family of NTGs : (V,E, σ, µ) neutrosophic graphs
which are from one-type class which the result is obtained for individual. Then
results also hold for family G of these specific classes of neutrosophic graphs.

Proof. There are neither conditions nor restrictions on the vertices. Thus the
result on individual is extended to the result on family. �
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4.10 Applications in Time Table and Scheduling

Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has important to avoid mixing up.

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive section. Beyond that, sometimes sections are not the same.

Step 3. (Model) The situation is designed as a model. The model uses data to
assign every section and to assign to relation amid section, three numbers
belong unit interval to state indeterminacy, possibilities and determinacy.
There’s one restriction in that, the numbers amid two sections are at least
the number of the relation amid them. Table (4.5), clarifies about the
assigned numbers to these situation.

Table 4.1: Scheduling concerns its Subjects and its Connections as a neutrosophic
graphs and its alliances in a Model. tbl1c

Sections of NTG n1 n2· · · n9
Values (0.99, 0.98, 0.55) (0.74, 0.64, 0.46)· · · (0.99, 0.98, 0.55)

Connections of NTG E1 E2 E3
Values (0.01, 0.01, 0.01) (0.01, 0.01, 0.01) (0.01, 0.01, 0.01)

Step 4. (Solution) The neutrosophic graphs and its alliances as model, propose
to use different types of sets. If the configuration makes complete, the set
is different. Also, it holds for other types such that star, wheel, path, and
cycle.

4.11 Open Problems

14 notions concerning alliances are defined in neutrosophic graphs. Thus,

Question 4.11.1. Is it possible to use other types neighborhood arising from
different types of edges to define new alliances?

Question 4.11.2. Are existed some connections amid different types of alliances
in neutrosophic graphs?

Question 4.11.3. Is it possible to construct some classes of which have “nice”
behavior?

Question 4.11.4. Which mathematical notions do make an independent study
to apply these types in neutrosophic graphs?

Problem 4.11.5. Which parameters are related to this parameter?
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Problem 4.11.6. Which approaches do work to construct applications to create
independent study?

Problem 4.11.7. Which approaches do work to construct definitions which use
all definitions and the relations amid them instead of separate definitions to
create independent study?

4.12 Conclusion and Closing Remarks

This study uses mixed combinations of different types of definitions concerning
alliances to study neutrosophic graphs. The connections of vertices which
are clarified by general edges differ them from each other and put them
in different categories to represent a set which is called. Further studies
could be about changes in the settings to compare this notion amid different
settings of neutrosophic graphs theory. One way is finding some relations amid
all definitions of notions to make sensible definitions. In Table (4.6), some
limitations and advantages of this study are pointed out.

Table 4.2: A Brief Overview about Advantages and Limitations of this study tbl2c

Advantages Limitations
1. Defining Alliances 1. Specific Results

2. Defining Strong Alliances

3. Defining Connected Alliances 2. Specific Connections

4. Applying on Individuals

5. Applying on Family 3. Connections of Results

4.13 Global Offensive Alliances

The following sections are cited as [1].

4.14 Global Offensive Alliance in Strong Neutrosophic
Graphs

4.15 Abstract

New setting is introduced to study the global offensive alliance. Global of-
fensive alliance is about a set of vertices which are applied into the setting of
neutrosophic graphs. Neighborhood has the key role to define this notion. Also,
neighborhood is defined based on strong edges. Strong edge gets a framework
as neighborhood and after that, too close vertices have key role to define
global offensive alliance based on strong edges. The structure of set is studied
and general results are obtained. Also, some classes of neutrosophic graphs
containing complete, empty, path, cycle, star, and wheel are investigated in the
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terms of set, minimal set, number, and neutrosophic number. Neutrosophic
number is defined in new way. It’s first time to define this type of neutrosophic
number in the way that, three values of a vertex are used and they’ve same
share to construct this number. It’s called “modified neutrosophic number”.
Summation of three values of vertex makes one number and applying it to a set
makes neutrosophic number of set. This approach facilitates identifying minimal
set and optimal set which forms minimal-global-offensive-alliance number and
minimal-global-offensive-alliance-neutrosophic number. Two different types
of sets namely global-offensive alliance and minimal-global-offensive alliance
are defined. Global-offensive alliance identifies the sets in general vision but
minimal-global-offensive alliance takes focus on the sets which deleting a vertex
is impossible. Minimal-global-offensive-alliance number is about minimum
cardinality amid the cardinalities of all minimal-global-offensive alliances in
a given neutrosophic graph. New notions are applied in the settings both
individual and family. Family of neutrosophic graphs is studied in the way
that, the family only contains same classes of neutrosophic graphs. Three
types of family of neutrosophic graphs including m-family of neutrosophic
stars with common neutrosophic vertex set, m-family of odd complete graphs
with common neutrosophic vertex set, and m-family of odd complete graphs
with common neutrosophic vertex set are studied. The results are about
minimal-global-offensive alliance, minimal-global-offensive-alliance number and
its corresponded sets, minimal-global-offensive-alliance-neutrosophic number
and its corresponded sets, and characterizing all minimal-global-offensive
alliances. The connection of global-offensive-alliances with dominating set and
chromatic number are obtained. The number of connected components has
some relations with this new concept and it gets some results. Some classes of
neutrosophic graphs behave differently when the parity of vertices are different
and in this case, path, cycle, and complete illustrate these behaviors. Two
applications concerning complete model as individual and family, under the
titles of time table and scheduling conclude the results and they give more
clarifications. In this study, there’s an open way to extend these results into
the family of these classes of neutrosophic graphs. The family of neutrosophic
graphs aren’t study deeply and with more results but it seems that analogous
results are determined. Slight progress is obtained in the family of these models
but there are open avenues to study family of other models as same models
and different models. There’s a question. How can be related to each other,
two sets partitioning the vertex set of a graph? The ideas of neighborhood
and neighbors based on strong edges illustrate open way to get results. A set
is global offensive alliance when two sets partitioning vertex set have uniform
structure. All members of set have more amount of neighbors in the set than
out of set. It leads us to the notion of global offensive alliance. Different edges
make different neighborhoods but it’s used one style edge titled strong edge.
These notions are applied into neutrosophic graphs as individuals and family of
them. Independent set as an alliance is a special set which has no neighbor
inside and it implies some drawbacks for these notions. Finding special sets
which are well-known, is an open way to purse this study. Special set which its
members have only one neighbor inside, characterize the connected components
where the cardinality of its complement is the number of connected components.
Some problems are proposed to pursue this study. Basic familiarities with
graph theory and neutrosophic graph theory are proposed for this article.
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4.16 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 4.16.1. Is it possible to use mixed versions of ideas concerning
“Global Offensive Alliance”, “Modified Neutrosophic Number” and “Complete
Neutrosophic Graph” to define some notions which are applied to neutrosophic
graphs?

It’s motivation to find notions to use in any classes of neutrosophic graphs.
Real-world applications about time table and scheduling are another thoughts
which lead to be considered as motivation. Connections amid two vertices have
key roles to assign global-offensive alliance, minimal-global-offensive alliance,
minimal-global-offensive-alliance number, and minimal-global-offensive-alliance-
neutrosophic number. Thus they’re used to define new ideas which conclude
to the structure global offensive alliance. The concept of having strong edge
inspires me to study the behavior of strong edges in the way that, two types of
numbers and set, e.g., global-offensive alliance, minimal-global-offensive alliance,
minimal-global-offensive-alliance number, and minimal-global-offensive-alliance-
neutrosophic number are the cases of study in the settings of individuals and in
settings of families. Also, there are some avenues to extend these notions.
The framework of this study is as follows. In the beginning, I introduce
basic definitions to clarify about preliminaries. In subsection “Preliminaries”,
new notions of global- offensive alliance, minimal-global-offensive alliance,
minimal-global-offensive-alliance number, and minimal-global-offensive-alliance-
neutrosophic number are introduced and are clarified as individuals. In section
“General Results For Neutrosophic Graphs”, general sets have the key role
in this way. General results are obtained and also, the results about the
connections between dominating set and chromatic number with the notion
of global-offensive alliance are elicited. Classes of neutrosophic graphs are
studied in the terms of global-offensive alliance, minimal-global-offensive alliance,
minimal-global-offensive-alliance number, and minimal-global-offensive-alliance-
neutrosophic number in section “Classes of Neutrosophic Graphs” as individuals.
In section “Classes of Neutrosophic Graphs”, both numbers have applied
into individuals. As a concluding result, there are three statements about
the family of neutrosophic graphs as m-family of neutrosophic stars with
common neutrosophic vertex set, m-family of odd complete graphs with common
neutrosophic vertex set, and m-family of even complete graphs with common
neutrosophic vertex set in section “Family of Neutrosophic Graphs.” The
clarifications are also presented in section “Family of Neutrosophic Graphs” for
introduced results. In section “Applications in Time Table and Scheduling”,
two applications are posed for global-offensive alliance concerning time table
and scheduling when the suspicions are about choosing some subjects and the
mentioned models are complete as individual and uniform family. In section
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“Open Problems”, some problems and questions for further studies are proposed.
In section “Conclusion and Closing Remarks”, gentle discussion about results
and applications is featured. In section “Conclusion and Closing Remarks”, a
brief overview concerning advantages and limitations of this study alongside
conclusions is formed.

4.17 Preliminaries

In this subsection, basic material which is used in this article, is presented.
Also, new ideas and their clarifications are elicited.
Basic idea is about the model which is used. First definition introduces basic
model.

Definition 4.17.1. (Graph).
G = (V,E) is called a graph if V is a set of objects and E is a subset of V × V
(E is a set of 2-subsets of V ) where V is called vertex set and E is called
edge set. Every two vertices have been corresponded to at most one edge.

Neutrosophic graph is the foundation of results in this paper which is defined
as follows. Also, some related notions are demonstrated.

Definition 4.17.2. (Neutrosophic Graph).
NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) is called a neutrosophic
graph if it’s graph, σi : V → [0, 1], µi : E → [0, 1], and for every vivj ∈ E,

µ(vivj) ≤ σ(vi) ∧ σ(vj).

(i) : σ is called neutrosophic vertex set.

(ii) : µ is called neutrosophic edge set.

(iii) : |V | is called order of NTG and it’s denoted by O(NTG).

(iv) : Σv∈V σ(v) is called neutrosophic order of NTG and it’s denoted by
On(NTG).

(v) : |E| is called size of NTG and it’s denoted by S(NTG).

(vi) : Σe∈EΣ3
i=1µi(e) is called neutrosophic size of NTG and it’s denoted by

Sn(NTG).

Some classes of well-known neutrosophic graphs are defined. These classes
of neutrosophic graphs are used to form this study and the most results are
about them.

Definition 4.17.3. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) : a sequence of vertices P : x0, x1, · · · , xn is called path where xixi+1 ∈
E, i = 0, 1, · · · , n− 1;

(ii) : strength of path P : x0, x1, · · · , xn is
∧
i=0,··· ,n−1 µ(xixi+1);

(iii) : connectedness amid vertices x0 and xn is

µ∞(x, y) =
∧

P :x0,x1,··· ,xn

∧
i=0,··· ,n−1

µ(xixi+1);
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(iv) : a sequence of vertices P : x0, x1, · · · , xn is called cycle where xixi+1 ∈
E, i = 0, 1, · · · , n − 1 and there are two edges xy and uv such that
µ(xy) = µ(uv) =

∧
i=0,1,··· ,n−1 µ(vivi+1);

(v) : it’s t-partite where V is partitioned to t parts, V1, V2, · · · , Vt and the
edge xy implies x ∈ Vi and y ∈ Vj where i 6= j. If it’s complete, then it’s
denoted by Kσ1,σ2,··· ,σt where σi is σ on Vi instead V which mean x 6∈ Vi
induces σi(x) = 0;

(vi) : t-partite is complete bipartite if t = 2, and it’s denoted by Kσ1,σ2 ;

(vii) : complete bipartite is star if |V1| = 1, and it’s denoted by S1,σ2 ;

(viii) : a vertex in V is center if the vertex joins to all vertices of a cycle. Then
it’s wheel and it’s denoted by W1,σ2 ;

(ix) : it’s complete where ∀uv ∈ V, µ(uv) = σ(u) ∧ σ(v);

(x) : it’s strong where ∀uv ∈ E, µ(uv) = σ(u) ∧ σ(v).

The notions of neighbor and neighborhood are about some vertices which
have one edge with a fixed vertex. These notions presents vertices which are
close to a fixed vertex as possible. Based on strong edge, it’s possible to define
different neighborhood as follows.

Definition 4.17.4. (Strong Neighborhood).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Suppose x ∈ V. Then

Ns(x) = {y ∈ N(x) | µ(xy) = σ(x) ∧ σ(y)}.

New notion is defined between two types of neighborhoods for a fixed vertex.
A minimal set and some numbers are introduced in this way. The next definition
has main role in every results which are given in this essay.

Definition 4.17.5. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) a set S is called global-offensive alliance if

∀a ∈ V \ S, |Ns(a) ∩ S| > |Ns(a) ∩ (V \ S)|;

(ii) ∀S′ ⊆ S, S is global offensive alliance but S′ isn’t global offensive alliance.
Then S is called minimal-global-offensive alliance;

(iii) minimal-global-offensive-alliance number of NTG is∧
S is a minimal-global-offensive alliance.

|S|

and it’s denoted by Γ;

(iv) minimal-global-offensive-alliance-neutrosophic number of NTG
is ∧

S is a minimal-global-offensive alliance.
Σs∈SΣ3

i=1σi(s)

and it’s denoted by Γs.
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Figure 4.1: The set of black circles is minimal-global-offensive alliance. NTG1

Some clarifications are given for new definition which is presented in the
paper as first time. Using new notions to make familiarity with main part of
this article.

Example 4.17.6. Consider Figure (4.1).

(i) S1 = {s1, s2}, S2 = {s3, s5}, S3 = {s3, s4}, S4 = {s4, s5} are only minimal-
global-offensive alliances but only S3 = {s3, s4} is optimal such that
forms minimal-global-offensive-alliance-neutrosophic number and minimal-
global-offensive-alliance number;

(ii) N = {s2, s5} isn’t global-offensive alliance. Since

∃s1 ∈ V \N, |Ns(s1) ∩N | = 1 < 2 = |Ns(s1) ∩ (V \N)|
∃s1 ∈ V \N, |Ns(s1) ∩N | = 1 6> 2 = |Ns(s1) ∩ (V \N)|
∃s1 ∈ V \N, |Ns(s1) ∩N | 6> |Ns(s1) ∩ (V \N)|;

(iii) Γs = 4.6;

(iv) Γ = 2.

4.18 General Results For Neutrosophic Graphs

In this section, general results are given based on new definition. Some relations
between new definition with dominating set and chromatic number are provided.
The relation amid these two types of new numbers with fundamental numbers
of neutrosophic graphs as order and neutrosophic order are clarified in the terms
of vertices.

Proposition 4.18.1. Let NTG : (V,E, σ, µ) be a strong neutrosophic graph. If
S is global-offensive alliance, then ∀v ∈ V \ S, ∃x ∈ S such that

(i) v ∈ Ns(x);

(ii) vx ∈ E.

Proof. (i). Suppose NTG : (V,E, σ, µ) is a strong neutrosophic graph. Consider
v ∈ V \ S. Since S is global-offensive alliance,
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∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ S, |Ns(v) ∩ S| > |Ns(v) ∩ (V \ S)|

v ∈ V \ S, ∃x ∈ S, v ∈ Ns(x).
(ii). Suppose NTG : (V,E, σ, µ) is a strong neutrosophic graph. Consider

v ∈ V \ S. Since S is global-offensive alliance,

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ S, |Ns(v) ∩ S| > |Ns(v) ∩ (V \ S)|

v ∈ V \ S,∃x ∈ S : v ∈ Ns(x)
v ∈ V \ S,∃x ∈ S : vx ∈ E, µ(vx) = σ(v) ∧ σ(x).

v ∈ V \ S, ∃x ∈ S : vx ∈ E.
�

Definition 4.18.2. Let NTG : (V,E, σ, µ) be a strong neutrosophic graph.
Suppose S is a set of vertices. Then

(i) S is called dominating set if ∀v ∈ V \ S, ∃s ∈ S such that either
v ∈ Ns(s) or vs ∈ E;

(ii) |S| is called chromatic number if ∀v ∈ V, ∃s ∈ S such that either
v ∈ Ns(s) or vs ∈ E implies s and v have different colors.

Example 4.18.3. Consider Figure (4.1).

(i) S = {s3, s4} is minimal dominating set;

(ii) S = {s3, s4} is minimal-global-offensive alliance;

(iii) chromatic number is three.

Proposition 4.18.4. Let NTG : (V,E, σ, µ) be a strong neutrosophic graph. If
S is global-offensive alliance, then

(i) S is dominating set;

(ii) there’s S ⊆ S′ such that |S′| is chromatic number.

Proof. (i). Suppose NTG : (V,E, σ, µ) is a strong neutrosophic graph. Consider
v ∈ V \ S. Since S is global-offensive alliance, either

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ S, |Ns(v) ∩ S| > |Ns(v) ∩ (V \ S)|

v ∈ V \ S, ∃x ∈ S, v ∈ Ns(x)
or

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ S, |Ns(v) ∩ S| > |Ns(v) ∩ (V \ S)|

v ∈ V \ S,∃x ∈ S : v ∈ Ns(x)
v ∈ V \ S, ∃x ∈ S : vx ∈ E, µ(vx) = σ(v) ∧ σ(x)

v ∈ V \ S, ∃x ∈ S : vx ∈ E.
It implies S is dominating set.

(ii). Suppose NTG : (V,E, σ, µ) is a strong neutrosophic graph. Consider
v ∈ V \ S. Since S is global-offensive alliance, either
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∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ S, |Ns(v) ∩ S| > |Ns(v) ∩ (V \ S)|

v ∈ V \ S,∃x ∈ S, v ∈ Ns(x)
or

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ S, |Ns(v) ∩ S| > |Ns(v) ∩ (V \ S)|

v ∈ V \ S,∃x ∈ S : v ∈ Ns(x)
v ∈ V \ S, ∃x ∈ S : vx ∈ E, µ(vx) = σ(v) ∧ σ(x)

v ∈ V \ S, ∃x ∈ S : vx ∈ E.
Thus every vertex v ∈ V \ S, has at least one neighbor in S. The only case

is about the relation amid vertices in S in the terms of neighbors. It implies
there’s S ⊆ S′ such that |S′| is chromatic number. �

Proposition 4.18.5. Let NTG : (V,E, σ, µ) be a strong neutrosophic graph.
Then

(i) Γ ≤ O;

(ii) Γs ≤ On.

Proof. (i). Suppose NTG : (V,E, σ, µ) is a strong neutrosophic graph. Let
S = V.

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ V, |Ns(v) ∩ V | > |Ns(v) ∩ (V \ V )|

v ∈ ∅, |Ns(v) ∩ V | > |Ns(v) ∩ ∅|
v ∈ ∅, |Ns(v) ∩ V | > |∅|
v ∈ ∅, |Ns(v) ∩ V | > 0

It implies V is global-offensive alliance. For all set of vertices S, S ⊆ V. Thus
for all set of vertices S, |S| ≤ |V |. It implies for all set of vertices S, |S| ≤ O.
So for all set of vertices S, Γ ≤ O.
(ii). Suppose NTG : (V,E, σ, µ) is a strong neutrosophic graph. Let S = V.

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ V, |Ns(v) ∩ V | > |Ns(v) ∩ (V \ V )|

v ∈ ∅, |Ns(v) ∩ V | > |Ns(v) ∩ ∅|
v ∈ ∅, |Ns(v) ∩ V | > |∅|
v ∈ ∅, |Ns(v) ∩ V | > 0

It implies V is global-offensive alliance. For all set of neutro-
sophic vertices S, S ⊆ V. Thus for all set of neutrosophic vertices
S, Σs∈SΣ3

i=1σi(s) ≤ Σv∈V Σ3
i=1σi(v). It implies for all set of neutrosophic

vertices S, Σs∈SΣ3
i=1σi(s) ≤ On. So for all set of neutrosophic vertices

S, Γs ≤ On. �

Proposition 4.18.6. Let NTG : (V,E, σ, µ) be a strong neutrosophic graph
which is connected. Then

(i) Γ ≤ O − 1;

(ii) Γs ≤ On − Σ3
i=1σi(x).

Proof. (i). Suppose NTG : (V,E, σ, µ) is a strong neutrosophic graph. Let
S = V − {x} where x is arbitrary and x ∈ V.
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∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ V − {x}, |Ns(v) ∩ (V − {x})| > |Ns(v) ∩ (V \ (V − {x}))|

|Ns(x) ∩ (V − {x})| > |Ns(x) ∩ {x}|
|Ns(x) ∩ (V − {x})| > |∅|
|Ns(x) ∩ (V − {x})| > 0

It implies V − {x} is global-offensive alliance. For all set of vertices
S 6= V, S ⊆ V − {x}. Thus for all set of vertices S 6= V, |S| ≤ |V − {x}|. It
implies for all set of vertices S 6= V, |S| ≤ O − 1. So for all set of vertices
S, Γ ≤ O − 1.
(ii). Suppose NTG : (V,E, σ, µ) is a strong neutrosophic graph. Let S = V −{x}
where x is arbitrary and x ∈ V.

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ V − {x}, |Ns(v) ∩ (V − {x})| > |Ns(v) ∩ (V \ (V − {x}))|

|Ns(x) ∩ (V − {x})| > |Ns(x) ∩ {x}|
|Ns(x) ∩ (V − {x})| > |∅|
|Ns(x) ∩ (V − {x})| > 0

It implies V − {x} is global-offensive alliance. For all set of neutrosophic
vertices S 6= V, S ⊆ V − {x}. Thus for all set of neutrosophic vertices
S 6= V, Σs∈SΣ3

i=1σi(s) ≤ Σv∈V−{x}Σ3
i=1σi(v). It implies for all set of

neutrosophic vertices S 6= V, Σs∈SΣ3
i=1σi(s) ≤ On − Σ3

i=1σi(x). So for all
set of neutrosophic vertices S, Γs ≤ On − Σ3

i=1σi(x). �

4.19 Classes of Neutrosophic Graphs

In this section, behaviors of some classes of neutrosophic graphs are analyzed
when new definition is applied. In this way, the parity of number of vertices
differentiate the results about some classes of neutrosophic graphs. Paths,
cycles and complete are some classes of neutrosophic graphs which the parity
of number of vertices get different results.

Proposition 4.19.1. Let NTG : (V,E, σ, µ) be an odd path. Then

(i) the set S = {v2, v4, · · · , vn−1} is minimal-global-offensive alliance;

(ii) Γ = bn2 c+ 1 and corresponded set is S = {v2, v4, · · · , vn−1};

(iii) Γs = min{Σs∈S={v2,v4,··· ,vn−1}Σ3
i=1σi(s),Σs∈S={v1,v3,··· ,vn−1}Σ3

i=1σi(s)};

(iv) the sets S1 = {v2, v4, · · · , vn−1} and S2 = {v1, v3, · · · , vn−1} are only
minimal-global-offensive alliances.

Proof. (i). Suppose NTG : (V,E, σ, µ) is an odd path. Let S =
{v2, v4, · · · , vn−1} where for all vi, vj ∈ {v2, v4, · · · , vn−1}, vivj 6∈ E and
vi, vj ∈ V.

v ∈ {v1, v3, · · · , vn}, |Ns(v) ∩ {v2, v4, · · · .vn−1}| = 2 > 0 =
|Ns(v) ∩ {v1, v3, · · · , vn}| ∀z ∈ V \ S, |Ns(z) ∩ S| = 2 > 0 = |Ns(z) ∩ (V \ S)|

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ {v2, v4, · · · , vn−1}, |Ns(v) ∩ {v2, v4, · · · .vn−1}| >

|Ns(v) ∩ (V \ {v2, v4, · · · .vn−1})|
It implies S = {v2, v4, · · · , vn−1} is global-offensive alliance. If S =

{v2, v4, · · · , vn−1} − {vi} where vi ∈ {v2, v4, · · · , vn−1}, then
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∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 = 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 6> 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| 6> |Ns(z) ∩ (V \ S)|.

So {v2, v4, · · · , vn−1} − {vi} where vi ∈ {v2, v4, · · · , vn−1} isn’t global-
offensive alliance. It induces S = {v2, v4, · · · , vn−1} is minimal-global-offensive
alliance.
(ii) and (iii) are trivial.
(iv). By (i), S1 = {v2, v4, · · · , vn−1} is minimal-global-offensive alliance. Thus
it’s enough to show that S2 = {v1, v3, · · · , vn−1} is minimal-global-offensive
alliance. Suppose NTG : (V,E, σ, µ) is an odd path. Let S = {v1, v3, · · · , vn−1}
where for all vi, vj ∈ {v1, v3, · · · , vn−1}, vivj 6∈ E and vi, vj ∈ V.

v ∈ {v2, v4, · · · , vn}, |Ns(v) ∩ {v1, v3, · · · .vn−1}| = 2 > 0 =
|Ns(v) ∩ {v2, v4, · · · , vn}| ∀z ∈ V \ S, |Ns(z) ∩ S| = 2 > 0 = |Ns(z) ∩ (V \ S)|

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ {v1, v3, · · · , vn−1}, |Ns(v) ∩ {v1, v3, · · · .vn−1}| >

|Ns(v) ∩ (V \ {v1, v3, · · · .vn−1})|
It implies S = {v1, v3, · · · , vn−1} is global-offensive alliance. If S =

{v1, v3, · · · , vn−1} − {vi} where vi ∈ {v1, v3, · · · , vn−1}, then

∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 = 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 6> 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| 6> |Ns(z) ∩ (V \ S)|.

So {v1, v3, · · · , vn−1} − {vi} where vi ∈ {v1, v3, · · · , vn−1} isn’t global-
offensive alliance. It induces S = {v1, v3, · · · , vn−1} is minimal-global-offensive
alliance. �

Example 4.19.2. Consider Figure (4.2).

(i) S1 = {s1, s3, s4} and S2 = {s2, s4} are only minimal-global-offensive
alliances;

(ii) S1 = {s1, s3, s4} is optimal such that only forms minimal-global-offensive-
alliance-neutrosophic number but not minimal-global-offensive-alliance
number;

(iii) S2 = {s2, s4} is optimal such that only forms minimal-global-offensive-
alliance number but not minimal-global-offensive-alliance-neutrosophic
number;

(iv) N = {s1, s3} isn’t global-offensive alliance. Since there are two instances
but only one of them is enough;

(a) First counterexample for the statement “N = {s1, s3} is global-
offensive alliance.”;

∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 = 1 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 6> 1 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | 6> |Ns(s4) ∩ (V \N)|;

(b) second counterexample for the statement “N = {s1, s3} is global-
offensive alliance.”.
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Figure 4.2: The set of black circles is minimal-global-offensive alliance. NTG2

∃s5 ∈ V \N, |Ns(s5) ∩N | = 0 < 1 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | = 0 6> 1 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | 6> |Ns(s5) ∩ (V \N)|.

(v) Γs = 3.1 and corresponded set is S1 = {s1, s3, s4};

(vi) Γ = 2 and corresponded set is S2 = {s2, s4}.

Proposition 4.19.3. Let NTG : (V,E, σ, µ) be an even path. Then

(i) the set S = {v2, v4, · · · .vn} is minimal-global-offensive alliance;

(ii) Γ = bn2 c and corresponded sets are {v2, v4, · · · .vn} and {v1, v3, · · · .vn−1};

(iii) Γs = min{Σs∈S={v2,v4,··· ,vn}Σ3
i=1σi(s),Σs∈S={v1,v3,··· .vn−1}Σ3

i=1σi(s)};

(iv) the sets S1 = {v2, v4, · · · .vn} and S2 = {v1, v3, · · · .vn−1} are only
minimal-global-offensive alliances.

Proof. (i). Suppose NTG : (V,E, σ, µ) is an even path. Let S = {v2, v4, · · · , vn}
where for all vi, vj ∈ {v2, v4, · · · , vn}, vivj 6∈ E and vi, vj ∈ V.

v ∈ {v1, v3, · · · , vn−1}, |Ns(v) ∩ {v2, v4, · · · .vn}| = 2 > 0 =
|Ns(v)∩{v1, v3, · · · , vn−1}| ∀z ∈ V \S, |Ns(z)∩S| = 2 > 0 = |Ns(z)∩ (V \S)|

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ {v2, v4, · · · , vn}, |Ns(v) ∩ {v2, v4, · · · .vn}| >

|Ns(v) ∩ (V \ {v2, v4, · · · .vn})|
It implies S = {v2, v4, · · · , vn} is global-offensive alliance. If S =

{v2, v4, · · · , vn} − {vi} where vi ∈ {v2, v4, · · · , vn}, then

∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 = 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 6> 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| 6> |Ns(z) ∩ (V \ S)|.

So {v2, v4, · · · , vn} − {vi} where vi ∈ {v2, v4, · · · , vn} isn’t global-offensive
alliance. It induces S = {v2, v4, · · · , vn} is minimal-global-offensive alliance.
(ii) and (iii) are trivial.
(iv). By (i), S1 = {v2, v4, · · · , vn} is minimal-global-offensive alliance. Thus it’s
enough to show that S2 = {v1, v3, · · · , vn−1} is minimal-global-offensive alliance.
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Suppose NTG : (V,E, σ, µ) is an even path. Let S = {v1, v3, · · · , vn−1} where
for all vi, vj ∈ {v1, v3, · · · , vn−1}, vivj 6∈ E and vi, vj ∈ V.

v ∈ {v2, v4, · · · , vn}, |Ns(v) ∩ {v1, v3, · · · .vn−1}| = 2 > 0 =
|Ns(v) ∩ {v2, v4, · · · , vn}| ∀z ∈ V \ S, |Ns(z) ∩ S| = 2 > 0 = |Ns(z) ∩ (V \ S)|

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ {v1, v3, · · · , vn−1}, |Ns(v) ∩ {v1, v3, · · · .vn−1}| >

|Ns(v) ∩ (V \ {v1, v3, · · · .vn−1})|
It implies S = {v1, v3, · · · , vn−1} is global-offensive alliance. If S =

{v1, v3, · · · , vn−1} − {vi} where vi ∈ {v1, v3, · · · , vn−1}, then

∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 = 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 6> 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| 6> |Ns(z) ∩ (V \ S)|.

So {v1, v3, · · · , vn−1} − {vi} where vi ∈ {v1, v3, · · · , vn−1} isn’t global-
offensive alliance. It induces S = {v1, v3, · · · , vn−1} is minimal-global-offensive
alliance. �

Example 4.19.4. Consider Figure (4.3).

(i) S1 = {s1, s3, s5} and S2 = {s2, s4, s6} are only minimal-global-offensive
alliances;

(ii) S2 = {s2, s4, s6} is optimal such that forms both minimal-global-offensive-
alliance-neutrosophic number and minimal-global-offensive-alliance num-
ber;

(iii) S1 = {s1, s3, s5} is optimal such that only forms minimal-global-offensive-
alliance number but not minimal-global-offensive-alliance-neutrosophic
number;

(iv) N = {s1, s3} isn’t global-offensive alliance. Since there are three instances
but only one of them is enough;

(a) First counterexample for the statement “N = {s1, s3} is global-
offensive alliance.”;

∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 = 1 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 6> 1 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | 6> |Ns(s4) ∩ (V \N)|.

(b) second counterexample for the statement “N = {s1, s3} is global-
offensive alliance.”;

∃s5 ∈ V \N, |Ns(s5) ∩N | = 0 < 1 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | = 0 6> 1 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | 6> |Ns(s5) ∩ (V \N)|;

(c) third counterexample for the statement “N = {s1, s3} is global-
offensive alliance.”;

∃s6 ∈ V \N, |Ns(s6) ∩N | = 0 < 1 = |Ns(s6) ∩ (V \N)|
∃s6 ∈ V \N, |Ns(s6) ∩N | = 0 6> 1 = |Ns(s6) ∩ (V \N)|
∃s6 ∈ V \N, |Ns(s6) ∩N | 6> |Ns(s6) ∩ (V \N)|.

(v) Γs = 4.5 and corresponded set is S2 = {s2, s4, s6};
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Figure 4.3: The set of black circles is minimal-global-offensive alliance. NTG3

(vi) Γ = 3 and corresponded sets are S1 = {s1, s3, s5} and S2 = {s2, s4, s6}.

Proposition 4.19.5. Let NTG : (V,E, σ, µ) be an even cycle. Then

(i) the set S = {v2, v4, · · · , vn} is minimal-global-offensive alliance;

(ii) Γ = bn2 c and corresponded sets are {v2, v4, · · · , vn} and {v1, v3, · · · , vn−1};

(iii) Γs = min{Σs∈S={v2,v4,··· ,vn}σ(s),Σs∈S={v1,v3,··· ,vn−1}σ(s)};

(iv) the sets S1 = {v2, v4, · · · , vn} and S2 = {v1, v3, · · · , vn−1} are only
minimal-global-offensive alliances.

Proof. (i). SupposeNTG : (V,E, σ, µ) is an even cycle. Let S = {v2, v4, · · · , vn}
where for all vi, vj ∈ {v2, v4, · · · , vn}, vivj 6∈ E and vi, vj ∈ V.

v ∈ {v1, v3, · · · , vn−1}, |Ns(v) ∩ {v2, v4, · · · .vn}| = 2 > 0 =
|Ns(v)∩{v1, v3, · · · , vn−1}| ∀z ∈ V \S, |Ns(z)∩S| = 2 > 0 = |Ns(z)∩ (V \S)|

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ {v2, v4, · · · , vn}, |Ns(v) ∩ {v2, v4, · · · .vn}| >

|Ns(v) ∩ (V \ {v2, v4, · · · .vn})|
It implies S = {v2, v4, · · · , vn} is global-offensive alliance. If S =

{v2, v4, · · · , vn} − {vi} where vi ∈ {v2, v4, · · · , vn}, then

∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 = 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 6> 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| 6> |Ns(z) ∩ (V \ S)|.

So {v2, v4, · · · , vn} − {vi} where vi ∈ {v2, v4, · · · , vn} isn’t global-offensive
alliance. It induces S = {v2, v4, · · · , vn} is minimal-global-offensive alliance.
(ii) and (iii) are trivial.
(iv). By (i), S1 = {v2, v4, · · · , vn} is minimal-global-offensive alliance. Thus it’s
enough to show that S2 = {v1, v3, · · · , vn−1} is minimal-global-offensive alliance.
Suppose NTG : (V,E, σ, µ) is an odd path. Let S = {v1, v3, · · · , vn−1} where
for all vi, vj ∈ {v1, v3, · · · , vn−1}, vivj 6∈ E and vi, vj ∈ V.
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v ∈ {v2, v4, · · · , vn}, |Ns(v) ∩ {v1, v3, · · · .vn−1}| = 2 > 0 =
|Ns(v) ∩ {v2, v4, · · · , vn}| ∀z ∈ V \ S, |Ns(z) ∩ S| = 2 > 0 = |Ns(z) ∩ (V \ S)|

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ {v1, v3, · · · , vn−1}, |Ns(v) ∩ {v1, v3, · · · .vn−1}| >

|Ns(v) ∩ (V \ {v1, v3, · · · .vn−1})|
It implies S = {v1, v3, · · · , vn−1} is global-offensive alliance. If S =

{v1, v3, · · · , vn−1} − {vi} where vi ∈ {v1, v3, · · · , vn−1}, then

∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 = 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 6> 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| 6> |Ns(z) ∩ (V \ S)|.

So {v1, v3, · · · , vn−1} − {vi} where vi ∈ {v1, v3, · · · , vn−1} isn’t global-
offensive alliance. It induces S = {v1, v3, · · · , vn−1} is minimal-global-offensive
alliance. �

Example 4.19.6. Consider Figure (4.4).

(i) S1 = {s1, s3, s5} and S2 = {s2, s4, s6} are only minimal-global-offensive
alliances;

(ii) S2 = {s2, s4, s6} is optimal such that forms both minimal-global-offensive-
alliance-neutrosophic number and minimal-global-offensive-alliance num-
ber;

(iii) S1 = {s1, s3, s5} is optimal such that only forms minimal-global-offensive-
alliance number but not minimal-global-offensive-alliance-neutrosophic
number;

(iv) N = {s1, s3} isn’t global-offensive alliance. Since there are three instances
but only one of them is enough;

(a) First counterexample for the statement “N = {s1, s3} is global-
offensive alliance.”;

∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 = 1 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 6> 1 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | 6> |Ns(s4) ∩ (V \N)|.

(b) second counterexample for the statement “N = {s1, s3} is global-
offensive alliance.”;

∃s5 ∈ V \N, |Ns(s5) ∩N | = 0 < 1 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | = 0 6> 1 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | 6> |Ns(s5) ∩ (V \N)|;

(c) third counterexample for the statement “N = {s1, s3} is global-
offensive alliance.”;

∃s6 ∈ V \N, |Ns(s6) ∩N | = 0 < 1 = |Ns(s6) ∩ (V \N)|
∃s6 ∈ V \N, |Ns(s6) ∩N | = 0 6> 1 = |Ns(s6) ∩ (V \N)|
∃s6 ∈ V \N, |Ns(s6) ∩N | 6> |Ns(s6) ∩ (V \N)|.

(v) Γs = 3.2 and corresponded set is S2 = {s2, s4, s6};

(vi) Γ = 3 and corresponded sets are S1 = {s1, s3, s5} and S2 = {s2, s4, s6}.
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Figure 4.4: The set of black circles is minimal-global-offensive alliance. NTG4

Proposition 4.19.7. Let NTG : (V,E, σ, µ) be an odd cycle. Then

(i) the set S = {v2, v4, · · · , vn−1} is minimal-global-offensive alliance;

(ii) Γ = bn2 c+ 1 and corresponded set is S = {v2, v4, · · · , vn−1};

(iii) Γs = min{Σs∈S={v2,v4,··· .vn−1}Σ3
i=1σi(s),Σs∈S={v1,v3,··· .vn−1}Σ3

i=1σi(s)};

(iv) the sets S1 = {v2, v4, · · · .vn−1} and S2 = {v1, v3, · · · .vn−1} are only
minimal-global-offensive alliances.

Proof. (i). Suppose NTG : (V,E, σ, µ) is an odd cycle. Let S =
{v2, v4, · · · , vn−1} where for all vi, vj ∈ {v2, v4, · · · , vn−1}, vivj 6∈ E and
vi, vj ∈ V.

v ∈ {v1, v3, · · · , vn}, |Ns(v) ∩ {v2, v4, · · · .vn−1}| = 2 > 0 =
|Ns(v) ∩ {v1, v3, · · · , vn}| ∀z ∈ V \ S, |Ns(z) ∩ S| = 2 > 0 = |Ns(z) ∩ (V \ S)|

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ {v2, v4, · · · , vn−1}, |Ns(v) ∩ {v2, v4, · · · .vn−1}| >

|Ns(v) ∩ (V \ {v2, v4, · · · .vn−1})|
It implies S = {v2, v4, · · · , vn−1} is global-offensive alliance. If S =

{v2, v4, · · · , vn−1} − {vi} where vi ∈ {v2, v4, · · · , vn−1}, then

∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 = 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 6> 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| 6> |Ns(z) ∩ (V \ S)|.

So {v2, v4, · · · , vn−1} − {vi} where vi ∈ {v2, v4, · · · , vn−1} isn’t global-
offensive alliance. It induces S = {v2, v4, · · · , vn−1} is minimal-global-offensive
alliance.
(ii) and (iii) are trivial.
(iv). By (i), S1 = {v2, v4, · · · , vn−1} is minimal-global-offensive alliance. Thus
it’s enough to show that S2 = {v1, v3, · · · , vn−1} is minimal-global-offensive
alliance. Suppose NTG : (V,E, σ, µ) is an odd cycle. Let S = {v1, v3, · · · , vn−1}
where for all vi, vj ∈ {v1, v3, · · · , vn−1}, vivj 6∈ E and vi, vj ∈ V.

v ∈ {v2, v4, · · · , vn}, |Ns(v) ∩ {v1, v3, · · · .vn−1}| = 2 > 0 =
|Ns(v) ∩ {v2, v4, · · · , vn}| ∀z ∈ V \ S, |Ns(z) ∩ S| = 2 > 0 = |Ns(z) ∩ (V \ S)|
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∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
v ∈ V \ {v1, v3, · · · , vn−1}, |Ns(v) ∩ {v1, v3, · · · .vn−1}| >

|Ns(v) ∩ (V \ {v1, v3, · · · .vn−1})|
It implies S = {v1, v3, · · · , vn−1} is global-offensive alliance. If S =

{v1, v3, · · · , vn−1} − {vi} where vi ∈ {v1, v3, · · · , vn−1}, then

∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 = 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| = 1 6> 1 = |Ns(z) ∩ (V \ S)|
∃vi+1 ∈ V \ S, |Ns(z) ∩ S| 6> |Ns(z) ∩ (V \ S)|.

So {v1, v3, · · · , vn−1} − {vi} where vi ∈ {v1, v3, · · · , vn−1} isn’t global-
offensive alliance. It induces S = {v1, v3, · · · , vn−1} is minimal-global-offensive
alliance. �

Example 4.19.8. Consider Figure (4.5).

(i) S1 = {s1, s3, s4} and S2 = {s2, s4} are only minimal-global-offensive
alliances;

(ii) S2 = {s2, s4} is optimal such that forms both minimal-global-offensive-
alliance-neutrosophic number and minimal-global-offensive-alliance num-
ber;

(iii) S1 = {s1, s3, s5} is optimal such that not only doesn’t form minimal-
global-offensive-alliance number but also doesn’t form minimal-global-
offensive-alliance-neutrosophic number;

(iv) N = {s1, s3} isn’t global-offensive alliance. Since there are two instances
but only one of them is enough;

(a) First counterexample for the statement “N = {s1, s3} is global-
offensive alliance.”;

∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 = 1 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 6> 1 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | 6> |Ns(s4) ∩ (V \N)|;

(b) second counterexample for the statement “N = {s1, s3} is global-
offensive alliance.”;

∃s5 ∈ V \N, |Ns(s5) ∩N | = 0 < 1 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | = 0 6> 1 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | 6> |Ns(s5) ∩ (V \N)|.

(v) Γs = 3.5 and corresponded set is S2 = {s2, s4};

(vi) Γ = 2 and corresponded set is S2 = {s2, s4}.

Proposition 4.19.9. Let NTG : (V,E, σ, µ) be star. Then

(i) the set S = {c} is minimal-global-offensive alliance;

(ii) Γ = 1;

(iii) Γs = Σ3
i=1σi(c);

(iv) the sets S = {c} and S ⊂ S′ are only global-offensive alliances.
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Figure 4.5: The set of black circles is minimal-global-offensive alliance. NTG5

Proof. (i). Suppose NTG : (V,E, σ, µ) is a star.

∀v ∈ V \ {c}, |Ns(v) ∩ {c}| = 1 > 0 = |Ns(v) ∩ (V \ {c})|
∀z ∈ V \ S, |Ns(z) ∩ S| = 1 > 0 = |Ns(z) ∩ (V \ S)|
∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|

v ∈ V \ {c}, |Ns(v) ∩ {c}| > |Ns(v) ∩ (V \ {c})|
It implies S = {c} is global-offensive alliance. If S = {c} − {c} = ∅, then

∃v ∈ V \ S, |Ns(z) ∩ S| = 0 = 0 = |Ns(z) ∩ (V \ S)|
∃v ∈ V \ S, |Ns(z) ∩ S| = 0 6> 0 = |Ns(z) ∩ (V \ S)|
∃v ∈ V \ S, |Ns(z) ∩ S| 6> |Ns(z) ∩ (V \ S)|.

So S = {c} − {c} = ∅ isn’t global-offensive alliance. It induces S = {c} is
minimal-global-offensive alliance.
(ii) and (iii) are trivial.
(iv). By (i), S = {c} is minimal-global-offensive alliance. Thus it’s enough
to show that S ⊆ S′ is minimal-global-offensive alliance. Suppose NTG :
(V,E, σ, µ) is a star. Let S ⊆ S′.

∀v ∈ V \ {c}, |Ns(v) ∩ {c}| = 1 > 0 = |Ns(v) ∩ (V \ {c})|
∀z ∈ V \ S′, |Ns(z) ∩ S′| = 1 > 0 = |Ns(z) ∩ (V \ S′)|
∀z ∈ V \ S′, |Ns(z) ∩ S′| > |Ns(z) ∩ (V \ S′)|

It implies S′ ⊆ S is global-offensive alliance. �

Example 4.19.10. Consider Figure (4.6).

(i) S = {s1} is only minimal-global-offensive alliance;

(ii) S = {s1} is optimal such that forms both minimal-global-offensive-alliance-
neutrosophic number and minimal-global-offensive-alliance number;

(iii) S′ including S = {s1} only forms global-offensive-alliance but not minimal-
global-offensive-alliance;

(iv) N = {s3, s4} isn’t global-offensive alliance. Since there are three instances
but only one of them is enough;

(a) First counterexample for the statement “N = {s3, s4} is global-
offensive alliance.”;
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Figure 4.6: The set of black circles is minimal-global-offensive alliance. NTG6

∃s1 ∈ V \N, |Ns(s1) ∩N | = 2 = 2 = |Ns(s1) ∩ (V \N)|
∃s1 ∈ V \N, |Ns(s1) ∩N | = 2 6> 2 = |Ns(s1) ∩ (V \N)|
∃s1 ∈ V \N, |Ns(s1) ∩N | 6> |Ns(s1) ∩ (V \N)|;

(b) second counterexample for the statement “N = {s3, s4} is global-
offensive alliance.”;

∃s2 ∈ V \N, |Ns(s2) ∩N | = 0 < 1 = |Ns(s2) ∩ (V \N)|
∃s2 ∈ V \N, |Ns(s2) ∩N | = 0 6> 1 = |Ns(s2) ∩ (V \N)|
∃s2 ∈ V \N, |Ns(s2) ∩N | 6> |Ns(s2) ∩ (V \N)|;

(c) third counterexample for the statement “N = {s3, s4} is global-
offensive alliance.”;

∃s5 ∈ V \N, |Ns(s5) ∩N | = 0 < 1 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | = 0 6> 1 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | 6> |Ns(s5) ∩ (V \N)|.

(v) Γs = 1.9 and corresponded set is S = {s1};

(vi) Γ = 1 and corresponded set is S = {s1}.

Proposition 4.19.11. Let NTG : (V,E, σ, µ) be wheel. Then

(i) the set S = {v1, v3} ∪ {v6, v9 · · · , vi+6, · · · , vn}6+3(i−1)≤n
i=1 is minimal-

global-offensive alliance;

(ii) Γ = |{v1, v3} ∪ {v6, v9 · · · , vi+6, · · · , vn}6+3(i−1)≤n
i=1 |;

(iii) Γs = Σ{v1,v3}∪{v6,v9··· ,vi+6,··· ,vn}6+3(i−1)≤n
i=1

Σ3
i=1σi(s);

(iv) the set {v1, v3} ∪ {v6, v9 · · · , vi+6, · · · , vn}6+3(i−1)≤n
i=1 is only minimal-

global-offensive alliance.

Proof. (i). Suppose NTG : (V,E, σ, µ) is a wheel. Let S = {v1, v3} ∪
{v6, v9 · · · , vi+6, · · · , vn}6+3(i−1)≤n

i=1 . There are either

∀z ∈ V \ S, |Ns(z) ∩ S| = 2 > 1 = |Ns(z) ∩ (V \ S)|
∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|

or

208



4.19. Classes of Neutrosophic Graphs

∀z ∈ V \ S, |Ns(z) ∩ S| = 3 > 0 = |Ns(z) ∩ (V \ S)|
∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|

It implies S = {v1, v3} ∪ {v6, v9 · · · , vi+6, · · · , vn}6+3(i−1)≤n
i=1 is global-

offensive alliance. If S′ = {v1, v3} ∪ {v6, v9 · · · , vi+6, · · · , vn}6+3(i−1)≤n
i=1 − {z}

where z ∈ S = {v1, v3} ∪ {v6, v9 · · · , vi+6, · · · , vn}6+3(i−1)≤n
i=1 , then There are

either

∀z ∈ V \ S′, |Ns(z) ∩ S′| = 1 < 2 = |Ns(z) ∩ (V \ S′)|
∀z ∈ V \ S′, |Ns(z) ∩ S′| < |Ns(z) ∩ (V \ S′)|
∀z ∈ V \ S′, |Ns(z) ∩ S′| 6> |Ns(z) ∩ (V \ S′)|

or

∀z ∈ V \ S′, |Ns(z) ∩ S′| = 1 = 1 = |Ns(z) ∩ (V \ S′)|
∀z ∈ V \ S′, |Ns(z) ∩ S′| = |Ns(z) ∩ (V \ S′)|
∀z ∈ V \ S′, |Ns(z) ∩ S′| 6> |Ns(z) ∩ (V \ S′)|

So S′ = {v1, v3} ∪ {v6, v9 · · · , vi+6, · · · , vn}6+3(i−1)≤n
i=1 − {z} where z ∈ S =

{v1, v3} ∪ {v6, v9 · · · , vi+6, · · · , vn}6+3(i−1)≤n
i=1 isn’t global-offensive alliance. It

induces S = {v1, v3} ∪ {v6, v9 · · · , vi+6, · · · , vn}6+3(i−1)≤n
i=1 is minimal-global-

offensive alliance.
(ii), (iii) and (iv) are obvious. �

Example 4.19.12. Consider Figure (4.7).

(i) S = {s1, s3, s5} is only minimal-global-offensive alliance;

(ii) S = {s1, s3, s5} is optimal such that forms both minimal-global-offensive-
alliance-neutrosophic number and minimal-global-offensive-alliance num-
ber;

(iii) S′ including S = {s2.s4, s5} only forms global-offensive-alliance but not
minimal-global-offensive-alliance;

(iv) N = {s1, s3} isn’t global-offensive alliance. Since there is one instance
and only one instance is enough;

(a) First counterexample for the statement “N = {s1, s3} is global-
offensive alliance.”;

∃s5 ∈ V \N, |Ns(s5) ∩N | = 1 = 1 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | = 1 6> 1 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | 6> |Ns(s5) ∩ (V \N)|;

(v) Γs = 4.9 and corresponded set is S = {s1, s3, s5};

(vi) Γ = 3 and corresponded set is S = {s1, s3, s5}.

Proposition 4.19.13. Let NTG : (V,E, σ, µ) be an odd complete. Then

(i) the set S = {vi}
bn

2 c+1
i=1 is minimal-global-offensive alliance;

(ii) Γ = bn2 c+ 1;

(iii) Γs = min{Σs∈SΣ3
i=1σi(s)}S={vi}

bn
2 c+1

i=1
;
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Figure 4.7: The set of black circles is minimal-global-offensive alliance. NTG7

(iv) the set S = {vi}
bn

2 c+1
i=1 is only minimal-global-offensive alliances.

Proof. (i). Suppose NTG : (V,E, σ, µ) is odd complete. Let S = {vi}
bn

2 c+1
i=1 .

Thus

∀z ∈ V \ S, |Ns(z) ∩ S| = bn2 c+ 1 > bn2 c − 1 = |Ns(z) ∩ (V \ S)|
∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|

It implies S = {vi}
bn

2 c+1
i=1 is global-offensive alliance. If S′ = {vi}

bn
2 c+1

i=1 −{z}
where z ∈ S = {vi}

bn
2 c+1

i=1 , then

∀z ∈ V \ S, |Ns(z) ∩ S| = bn2 c = bn2 c = |Ns(z) ∩ (V \ S)|
∀z ∈ V \ S, |Ns(z) ∩ S| 6> |Ns(z) ∩ (V \ S)|

So S′ = {vi}
bn

2 c+1
i=1 − {z} where z ∈ S = {vi}

bn
2 c+1

i=1 isn’t global-offensive
alliance. It induces S = {vi}

bn
2 c+1

i=1 is minimal-global-offensive alliance.
(ii), (iii) and (iv) are obvious. �

Example 4.19.14. Consider Figure (4.8).

(i) S1 = {s1, s2, s3}, S2 = {s1, s2, s4}, S3 = {s1, s2, s5}, S4 =
{s1, s3, s4}, S5 = {s1, s3, s5}, S6 = {s2, s3, s4}, S7 = {s2, s3, s5}, S8 =
{s3, s4, s5} are only minimal-global-offensive alliances;

(ii) S6 = {s2, s3, s4} is optimal such that forms both minimal-global-offensive-
alliance-neutrosophic number and minimal-global-offensive-alliance num-
ber;

(iii) S = {s3, s4, s5} only forms minimal-global-offensive-alliance number but
not minimal-global-offensive-alliance-neutrosophic;

(iv) N = {s3, s4} isn’t global-offensive alliance. Since there is three instances
and only one instance is enough;

(a) First counterexample for the statement “N = {s3, s4} is global-
offensive alliance.”;

∃s1 ∈ V \N, |Ns(s1) ∩N | = 2 = 2 = |Ns(s1) ∩ (V \N)|
∃s1 ∈ V \N, |Ns(s1) ∩N | = 2 6> 2 = |Ns(s1) ∩ (V \N)|
∃s1 ∈ V \N, |Ns(s1) ∩N | 6> |Ns(s1) ∩ (V \N)|;
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Figure 4.8: The set of black circles is minimal-global-offensive alliance. NTG10

(b) second counterexample for the statement “N = {s3, s4} is global-
offensive alliance.”;

∃s2 ∈ V \N, |Ns(s2) ∩N | = 2 = 2 = |Ns(s2) ∩ (V \N)|
∃s2 ∈ V \N, |Ns(s2) ∩N | = 2 6> 2 = |Ns(s2) ∩ (V \N)|
∃s2 ∈ V \N, |Ns(s2) ∩N | 6> |Ns(s2) ∩ (V \N)|;

(c) third counterexample for the statement “N = {s3, s4} is global-
offensive alliance.”.

∃s5 ∈ V \N, |Ns(s5) ∩N | = 2 = 2 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | = 2 6> 2 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | 6> |Ns(s5) ∩ (V \N)|;

(v) Γs = 3.3 and corresponded set is S6 = {s2, s3, s4};

(vi) Γ = 3 and corresponded sets are S1 = {s1, s2, s3}, S2 = {s1, s2, s4}, S3 =
{s1, s2, s5}, S4 = {s1, s3, s4}, S5 = {s1, s3, s5}, S6 = {s2, s3, s4}, S7 =
{s2, s3, s5}, S8 = {s3, s4, s5} which are only minimal-global-offensive
alliances.

Proposition 4.19.15. Let NTG : (V,E, σ, µ) be an even complete. Then

(i) the set S = {vi}
bn

2 c
i=1 is minimal-global-offensive alliance;

(ii) Γ = bn2 c;

(iii) Γs = min{Σs∈SΣ3
i=1σi(s)}S={vi}

bn
2 c

i=1
;

(iv) the set S = {vi}
bn

2 c
i=1 is only minimal-global-offensive alliances.

Proof. (i). Suppose NTG : (V,E, σ, µ) is even complete. Let S = {vi}
bn

2 c
i=1 . Thus

∀z ∈ V \ S, |Ns(z) ∩ S| = bn2 c > b
n
2 c − 1 = |Ns(z) ∩ (V \ S)|

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
It implies S = {vi}

bn
2 c

i=1 is global-offensive alliance. If S′ = {vi}
bn

2 c
i=1 − {z}

where z ∈ S = {vi}
bn

2 c
i=1 , then
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∀z ∈ V \ S, |Ns(z) ∩ S| = bn2 c − 1 < bn2 c+ 1 = |Ns(z) ∩ (V \ S)|
∀z ∈ V \ S, |Ns(z) ∩ S| 6> |Ns(z) ∩ (V \ S)|

So S′ = {vi}
bn

2 c
i=1 − {z} where z ∈ S = {vi}

bn
2 c

i=1 isn’t global-offensive alliance.
It induces S = {vi}

bn
2 c

i=1 is minimal-global-offensive alliance.
(ii), (iii) and (iv) are obvious. �

Example 4.19.16. Consider Figure (4.17).

(i) S1 = {s1, s2}, S2 = {s1, s3}, S3 = {s1, s4}, S4 = {s2, s3}, S5 =
{s2, s4}, S6 = {s3, s4} are only minimal-global-offensive alliances;

(ii) S6 = {s3, s4} is optimal such that forms both minimal-global-offensive-
alliance-neutrosophic number and minimal-global-offensive-alliance num-
ber;

(iii) S = {s1, s3} only forms minimal-global-offensive-alliance number but not
minimal-global-offensive-alliance-neutrosophic;

(iv) N = {s1} isn’t global-offensive alliance. Since there is three instances and
only one instance is enough;

(a) First counterexample for the statement “N = {s1} is global-offensive
alliance.”;

∃s2 ∈ V \N, |Ns(s2) ∩N | = 1 < 2 = |Ns(s2) ∩ (V \N)|
∃s2 ∈ V \N, |Ns(s2) ∩N | = 1 6> 2 = |Ns(s2) ∩ (V \N)|
∃s2 ∈ V \N, |Ns(s2) ∩N | 6> |Ns(s2) ∩ (V \N)|;

(b) second counterexample for the statement “N = {s1} is global-
offensive alliance.”;

∃s3 ∈ V \N, |Ns(s3) ∩N | = 1 < 2 = |Ns(s3) ∩ (V \N)|
∃s3 ∈ V \N, |Ns(s3) ∩N | = 1 6> 2 = |Ns(s3) ∩ (V \N)|
∃s3 ∈ V \N, |Ns(s3) ∩N | 6> |Ns(s3) ∩ (V \N)|;

(c) third counterexample for the statement “N = {s1} is global-offensive
alliance.”.

∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 < 2 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 6> 2 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | 6> |Ns(s4) ∩ (V \N)|;

(v) Γs = 2.3 and corresponded set is S6 = {s3, s4};

(vi) Γ = 2 and corresponded set is S6 = {s3, s4}.

4.20 Family of Neutrosophic Graphs

In this section, new definition is applied into family of some classes of
neutrosophic graphs which in this family, all neutrosophic graphs have common
neutrosophic vertex set. In the case of complete model, the parity of number of
vertices concludes to have different results. Clarifications and demonstrations
are given for every result as usual.
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4.20. Family of Neutrosophic Graphs

Figure 4.9: The set of black circles is minimal-global-offensive alliance. NTG8

Proposition 4.20.1. Let G be a m-family of neutrosophic stars with common
neutrosophic vertex set. Then

(i) the set S = {c1, c2, · · · , cm} is minimal-global-offensive alliance for G;

(ii) Γ = m for G;

(iii) Γs = Σmi=1Σ3
j=1σj(ci) for G;

(iv) the sets S = {c1, c2, · · · , cm} and S ⊂ S′ are only minimal-global-offensive
alliances for G.

Proof. (i). Suppose NTG : (V,E, σ, µ) is a star.

∀v ∈ V \ {c}, |Ns(v) ∩ {c}| = 1 > 0 = |Ns(v) ∩ (V \ {c})|
∀z ∈ V \ S, |Ns(z) ∩ S| = 1 > 0 = |Ns(z) ∩ (V \ S)|
∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|

v ∈ V \ {c}, |Ns(v) ∩ {c}| > |Ns(v) ∩ (V \ {c})|
It implies S = {c1, c2, · · · , cm} is global-offensive alliance or G. If S =

{c} − {c} = ∅, then

∃v ∈ V \ S, |Ns(z) ∩ S| = 0 = 0 = |Ns(z) ∩ (V \ S)|
∃v ∈ V \ S, |Ns(z) ∩ S| = 0 6> 0 = |Ns(z) ∩ (V \ S)|
∃v ∈ V \ S, |Ns(z) ∩ S| 6> |Ns(z) ∩ (V \ S)|.

So S = {c} − {c} = ∅ isn’t global-offensive alliance for G. It induces
S = {c1, c2, · · · , cm} is minimal-global-offensive alliance for G.
(ii) and (iii) are trivial.
(iv). By (i), S = {c1, c2, · · · , cm} is minimal-global-offensive alliance for G.
Thus it’s enough to show that S ⊆ S′ is minimal-global-offensive alliance for G.
Suppose NTG : (V,E, σ, µ) is a star. Let S ⊆ S′.

∀v ∈ V \ {c}, |Ns(v) ∩ {c}| = 1 > 0 = |Ns(v) ∩ (V \ {c})|
∀z ∈ V \ S′, |Ns(z) ∩ S′| = 1 > 0 = |Ns(z) ∩ (V \ S′)|
∀z ∈ V \ S′, |Ns(z) ∩ S′| > |Ns(z) ∩ (V \ S′)|

It implies S′ ⊆ S is global-offensive alliance for G. �

Example 4.20.2. Consider Figure (4.10).

(i) S = {s1} is only minimal-global-offensive alliance for G;
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4. Neutrosophic Alliances

Figure 4.10: The set of black circles is minimal-global-offensive alliance. NTG9

(ii) S = {s1} is optimal such that forms both minimal-global-offensive-alliance-
neutrosophic number and minimal-global-offensive-alliance number for
G;

(iii) S′ including S = {s1} only forms global-offensive-alliance but not minimal-
global-offensive-alliance for G;

(iv) N = {s3, s4} isn’t global-offensive alliance for G. Since there are two
instances for every member of G but only one of them is enough; for every
member of G, we have same following instances;

(a) First counterexample for the statement “N = {s3, s4} is global-
offensive alliance for G.”;

∃s1 ∈ V \N, |Ns(s1) ∩N | = 2 = 2 = |Ns(s1) ∩ (V \N)|
∃s1 ∈ V \N, |Ns(s1) ∩N | = 2 6> 2 = |Ns(s1) ∩ (V \N)|
∃s1 ∈ V \N, |Ns(s1) ∩N | 6> |Ns(s1) ∩ (V \N)|;

(b) second counterexample for the statement “N = {s3, s4} is global-
offensive alliance for G.”;

∃s2 ∈ V \N, |Ns(s2) ∩N | = 0 < 1 = |Ns(s2) ∩ (V \N)|
∃s2 ∈ V \N, |Ns(s2) ∩N | = 0 6> 1 = |Ns(s2) ∩ (V \N)|
∃s2 ∈ V \N, |Ns(s2) ∩N | 6> |Ns(s2) ∩ (V \N)|;

(v) Γs = 0.7 and corresponded set is S = {s1};

(vi) Γ = 1 and corresponded set is S = {s1}.

Proposition 4.20.3. Let G be a m-family of odd complete graphs with common
neutrosophic vertex set. Then

(i) the set S = {vi}
bn

2 c+1
i=1 is minimal-global-offensive alliance for G;

(ii) Γ = bn2 c+ 1 for G;

(iii) Γs = min{Σs∈SΣ3
i=1σi(s)}S={vi}

bn
2 c+1

i=1
for G;

(iv) the sets S = {vi}
bn

2 c+1
i=1 are only minimal-global-offensive alliances for G.

214



4.20. Family of Neutrosophic Graphs

Proof. (i). Suppose NTG : (V,E, σ, µ) is odd complete. Let S = {vi}
bn

2 c+1
i=1 .

Thus

∀z ∈ V \ S, |Ns(z) ∩ S| = bn2 c+ 1 > bn2 c − 1 = |Ns(z) ∩ (V \ S)|
∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|

It implies S = {vi}
bn

2 c+1
i=1 is global-offensive alliance for G. If S′ =

{vi}
bn

2 c+1
i=1 − {z} where z ∈ S = {vi}

bn
2 c+1

i=1 , then

∀z ∈ V \ S, |Ns(z) ∩ S| = bn2 c = bn2 c = |Ns(z) ∩ (V \ S)|
∀z ∈ V \ S, |Ns(z) ∩ S| 6> |Ns(z) ∩ (V \ S)|

So S′ = {vi}
bn

2 c+1
i=1 − {z} where z ∈ S = {vi}

bn
2 c+1

i=1 isn’t global-offensive
alliance for G. It induces S = {vi}

bn
2 c+1

i=1 is minimal-global-offensive alliance for
G.
(ii), (iii) and (iv) are obvious. �

Example 4.20.4. Consider Figure (4.18).

(i) S1 = {s1, s2, s3}, S2 = {s1, s2, s4}, S3 = {s1, s2, s5}, S4 =
{s1, s3, s4}, S5 = {s1, s3, s5}, S6 = {s2, s3, s4}, S7 = {s2, s3, s5}, S8 =
{s3, s4, s5} are only minimal-global-offensive alliances;

(ii) S3 = {s1, s2, s5} is optimal such that forms both minimal-global-offensive-
alliance-neutrosophic number and minimal-global-offensive-alliance num-
ber for G;

(iii) S8 = {s3, s4, s5} only forms minimal-global-offensive-alliance number but
not minimal-global-offensive-alliance-neutrosophic for G;

(iv) N = {s1, s2} isn’t global-offensive alliance. Since there is three instances
and only one instance is enough for G;

(a) First counterexample for the statement “N = {s1, s2} is global-
offensive alliance.”for G;

∃s3 ∈ V \N, |Ns(s3) ∩N | = 2 = 2 = |Ns(s3 ∩ (V \N)|
∃s3 ∈ V \N, |Ns(s3) ∩N | = 2 6> 2 = |Ns(s3) ∩ (V \N)|
∃s3 ∈ V \N, |Ns(s3) ∩N | 6> |Ns(s3) ∩ (V \N)|;

(b) second counterexample for the statement “N = {s1, s2} is global-
offensive alliance.” for G;

∃s4 ∈ V \N, |Ns(s4) ∩N | = 2 = 2 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | = 2 6> 2 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | 6> |Ns(s4) ∩ (V \N)|;

(c) third counterexample for the statement “N = {s1, s2} is global-
offensive alliance.” for G.

∃s5 ∈ V \N, |Ns(s5) ∩N | = 2 = 2 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | = 2 6> 2 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | 6> |Ns(s5) ∩ (V \N)|;

(v) Γs = 4 and corresponded set is S3 = {s1, s2, s5} for G;
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4. Neutrosophic Alliances

Figure 4.11: The set of black circles is minimal-global-offensive alliance. NTG11

(vi) Γ = 3 and corresponded sets are S1 = {s1, s2, s3}, S2 = {s1, s2, s4}, S3 =
{s1, s2, s5}, S4 = {s1, s3, s4}, S5 = {s1, s3, s5}, S6 = {s2, s3, s4}, S7 =
{s2, s3, s5}, S8 = {s3, s4, s5} which are only minimal-global-offensive
alliances for G.

Proposition 4.20.5. Let G be a m-family of even complete graphs with common
neutrosophic vertex set. Then

(i) the set S = {vi}
bn

2 c
i=1 is minimal-global-offensive alliance for G;

(ii) Γ = bn2 c for G;

(iii) Γs = min{Σs∈SΣ3
i=1σi(s)}S={vi}

bn
2 c

i=1
for G;

(iv) the sets S = {vi}
bn

2 c
i=1 are only minimal-global-offensive alliances for G.

Proof. (i). Suppose NTG : (V,E, σ, µ) is even complete. Let S = {vi}
bn

2 c
i=1 . Thus

∀z ∈ V \ S, |Ns(z) ∩ S| = bn2 c > b
n
2 c − 1 = |Ns(z) ∩ (V \ S)|

∀z ∈ V \ S, |Ns(z) ∩ S| > |Ns(z) ∩ (V \ S)|
It implies S = {vi}

bn
2 c

i=1 is global-offensive alliance for G. If S′ = {vi}
bn

2 c
i=1 −{z}

where z ∈ S = {vi}
bn

2 c
i=1 , then

∀z ∈ V \ S, |Ns(z) ∩ S| = bn2 c − 1 < bn2 c+ 1 = |Ns(z) ∩ (V \ S)|
∀z ∈ V \ S, |Ns(z) ∩ S| 6> |Ns(z) ∩ (V \ S)|

So S′ = {vi}
bn

2 c
i=1 − {z} where z ∈ S = {vi}

bn
2 c

i=1 isn’t global-offensive alliance
for G. It induces S = {vi}

bn
2 c

i=1 is minimal-global-offensive alliance for G.
(ii), (iii) and (iv) are obvious. �

Example 4.20.6. Consider Figure (4.12).

(i) S1 = {s1, s2}, S2 = {s1, s3}, S3 = {s1, s4}, S4 = {s2, s3}, S5 =
{s2, s4}, S6 = {s3, s4} are only minimal-global-offensive alliances for G;

(ii) S1 = {s1, s2} is optimal such that forms both minimal-global-offensive-
alliance-neutrosophic number and minimal-global-offensive-alliance num-
ber for G;

(iii) S = {s1, s3} only forms minimal-global-offensive-alliance number but not
minimal-global-offensive-alliance-neutrosophic for G;
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Figure 4.12: The set of black circles is minimal-global-offensive alliance. NTG12

(iv) N = {s1} isn’t global-offensive alliance. Since there is three instances and
only one instance is enough for G;

(a) First counterexample for the statement “N = {s1} is global-offensive
alliance.” for G;

∃s2 ∈ V \N, |Ns(s2) ∩N | = 1 < 2 = |Ns(s2) ∩ (V \N)|
∃s2 ∈ V \N, |Ns(s2) ∩N | = 1 6> 2 = |Ns(s2) ∩ (V \N)|
∃s2 ∈ V \N, |Ns(s2) ∩N | 6> |Ns(s2) ∩ (V \N)|;

(b) second counterexample for the statement “N = {s1} is global-
offensive alliance.” for G;

∃s3 ∈ V \N, |Ns(s3) ∩N | = 1 < 2 = |Ns(s3) ∩ (V \N)|
∃s3 ∈ V \N, |Ns(s3) ∩N | = 1 6> 2 = |Ns(s3) ∩ (V \N)|
∃s3 ∈ V \N, |Ns(s3) ∩N | 6> |Ns(s3) ∩ (V \N)|;

(c) third counterexample for the statement “N = {s1} is global-offensive
alliance.” for G.

∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 < 2 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 6> 2 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | 6> |Ns(s4) ∩ (V \N)|;

(v) Γs = 2.6 and corresponded set is S1 = {s1, s2} for G;

(vi) Γ = 2 and corresponded sets are S1 = {s1, s2}, S2 = {s1, s3}, S3 =
{s1, s4}, S4 = {s2, s3}, S5 = {s2, s4}, S6 = {s3, s4} for G.

4.21 Applications in Time Table and Scheduling

In this section, two applications for time table and scheduling are provided
where the models are complete models which mean complete connections are
formed as individual and family of complete models with common neutrosophic
vertex set.
Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has importantance to avoid mixing up.

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive section. Beyond that, sometimes sections are not the same.
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Step 3. (Model) The situation is designed as a model. The model uses data to
assign every section and to assign to relation amid section, three numbers
belong unit interval to state indeterminacy, possibilities and determinacy.
There’s one restriction in that, the numbers amid two sections are at least
the number of the relation amid them. Table (4.5), clarifies about the
assigned numbers to these situation.

Table 4.3: Scheduling concerns its Subjects and its Connections as a neutrosophic
graph and its alliances in a Model. tbl1c

Sections of NTG n1 n2· · · n9
Values (0.99, 0.98, 0.55) (0.74, 0.64, 0.46)· · · (0.99, 0.98, 0.55)

Connections of NTG E1 E2 E3
Values (0.01, 0.01, 0.01) (0.01, 0.01, 0.01) (0.01, 0.01, 0.01)

4.22 Case 1: Complete Model as Individual

Step 4. (Solution) The neutrosophic graph and its global offensive alliance as
model, propose to use specific set. Every subject has connection with
every given subject. Thus the connection is applied as possible and the
model demonstrates full connections as possible. Using the notion of
strong on the connection amid subjects, causes the importance of subject
goes in the highest level such that the value amid two consecutive subjects,
is determined by those subjects. If the configuration is complete, the set
is different. Also, it holds for other types such that star, wheel, path,
and cycle. The collection of situations is another application of global
offensive alliance when the notion of family is applied in the way that
all members of family are from same classes of neutrosophic graphs. As
follows, There are four subjects which are represented as Figure (4.17).
This model is strong. And the study proposes using specific set of objects
which is called minimal-global-offensive alliance. There are also some
analyses on other sets in the way that, the clarification is gained about
being special set or not. Also, in the last part, there are two numbers to
assign to this model and situation to compare them with same situations
to get more precise. Consider Figure (4.17).

(i) S1 = {s1, s2}, S2 = {s1, s3}, S3 = {s1, s4}, S4 = {s2, s3}, S5 =
{s2, s4}, S6 = {s3, s4} are only minimal-global-offensive alliances;

(ii) S6 = {s3, s4} is optimal such that forms both minimal-global-
offensive-alliance-neutrosophic number and minimal-global-offensive-
alliance number;

(iii) S = {s1, s3} only forms minimal-global-offensive-alliance number but
not minimal-global-offensive-alliance-neutrosophic;

(iv) N = {s1} isn’t global-offensive alliance. Since there is three instances
and only one instance is enough;
(a) First counterexample for the statement “N = {s1} is global-

offensive alliance.”;

218
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Figure 4.13: The set of black circles is minimal-global-offensive alliance. NTG8

∃s2 ∈ V \N, |Ns(s2) ∩N | = 1 < 2 = |Ns(s2) ∩ (V \N)|
∃s2 ∈ V \N, |Ns(s2) ∩N | = 1 6> 2 = |Ns(s2) ∩ (V \N)|
∃s2 ∈ V \N, |Ns(s2) ∩N | 6> |Ns(s2) ∩ (V \N)|;

(b) second counterexample for the statement “N = {s1} is global-
offensive alliance.”;
∃s3 ∈ V \N, |Ns(s3) ∩N | = 1 < 2 = |Ns(s3) ∩ (V \N)|
∃s3 ∈ V \N, |Ns(s3) ∩N | = 1 6> 2 = |Ns(s3) ∩ (V \N)|
∃s3 ∈ V \N, |Ns(s3) ∩N | 6> |Ns(s3) ∩ (V \N)|;

(c) third counterexample for the statement “N = {s1} is global-
offensive alliance.”.
∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 < 2 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 6> 2 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | 6> |Ns(s4) ∩ (V \N)|;

(v) Γs = 2.3 and corresponded set is S6 = {s3, s4};
(vi) Γ = 2 and corresponded set is S6 = {s3, s4}.

4.23 Case 2: Family of Complete Models

Step 4. (Solution) The neutrosophic graph and its global offensive alliance as
model, propose to use specific set. Every subject has connection with
every given subject. Thus the connection is applied as possible and the
model demonstrates full connections as possible. Using the notion of
strong on the connection amid subjects, causes the importance of subject
goes in the highest level such that the value amid two consecutive subjects,
is determined by those subjects. If the configuration is complete, the set
is different. Also, it holds for other types such that star, wheel, path,
and cycle. The collection of situations is another application of global
offensive alliance when the notion of family is applied in the way that
all members of family are from same classes of neutrosophic graphs. As
follows, There are five subjects which are represented in the formation of
family of models as Figure (4.17). These models are strong in family. And
the study proposes using specific set of objects which is called minimal-
global-offensive alliance for this family of models. There are also some
analyses on other sets in the way that, the clarification is gained about
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Figure 4.14: The set of black circles is minimal-global-offensive alliance. NTG11

being special set or not. Also, in the last part, there are two numbers to
assign to this family of models and collection of situations to compare
them with collection of situations to get more precise. Consider Figure
(4.18).

(i) S1 = {s1, s2, s3}, S2 = {s1, s2, s4}, S3 = {s1, s2, s5}, S4 =
{s1, s3, s4}, S5 = {s1, s3, s5}, S6 = {s2, s3, s4}, S7 = {s2, s3, s5}, S8 =
{s3, s4, s5} are only minimal-global-offensive alliances;

(ii) S3 = {s1, s2, s5} is optimal such that forms both minimal-global-
offensive-alliance-neutrosophic number and minimal-global-offensive-
alliance number for G;

(iii) S8 = {s3, s4, s5} only forms minimal-global-offensive-alliance number
but not minimal-global-offensive-alliance-neutrosophic for G;

(iv) N = {s1, s2} isn’t global-offensive alliance. Since there is three
instances and only one instance is enough for G;
(a) First counterexample for the statement “N = {s1, s2} is global-

offensive alliance.”for G;
∃s3 ∈ V \N, |Ns(s3) ∩N | = 2 = 2 = |Ns(s3 ∩ (V \N)|
∃s3 ∈ V \N, |Ns(s3) ∩N | = 2 6> 2 = |Ns(s3) ∩ (V \N)|
∃s3 ∈ V \N, |Ns(s3) ∩N | 6> |Ns(s3) ∩ (V \N)|;

(b) second counterexample for the statement “N = {s1, s2} is global-
offensive alliance.” for G;
∃s4 ∈ V \N, |Ns(s4) ∩N | = 2 = 2 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | = 2 6> 2 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | 6> |Ns(s4) ∩ (V \N)|;

(c) third counterexample for the statement “N = {s1, s2} is global-
offensive alliance.” for G.
∃s5 ∈ V \N, |Ns(s5) ∩N | = 2 = 2 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | = 2 6> 2 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | 6> |Ns(s5) ∩ (V \N)|;

(v) Γs = 4 and corresponded set is S3 = {s1, s2, s5} for G;
(vi) Γ = 3 and corresponded sets are S1 = {s1, s2, s3}, S2 =

{s1, s2, s4}, S3 = {s1, s2, s5}, S4 = {s1, s3, s4}, S5 = {s1, s3, s5}, S6 =
{s2, s3, s4}, S7 = {s2, s3, s5}, S8 = {s3, s4, s5} which are only
minimal-global-offensive alliances for G.
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4.24 Open Problems

In this section, some questions and problems are proposed to give some avenues
to pursue this study. The structures of the definitions and results give some
ideas to make new settings which are eligible to extend and to create new study.
Notion concerning alliance is defined in neutrosophic graphs. Neutrosophic
number is also introduced. Thus,

Question 4.24.1. Is it possible to use other types neighborhood arising from
different types of edges to define new alliances?

Question 4.24.2. Are existed some connections amid different types of alliances
in neutrosophic graphs?

Question 4.24.3. Is it possible to construct some classes of which have “nice”
behavior?

Question 4.24.4. Which mathematical notions do make an independent study
to apply these types in neutrosophic graphs?

Problem 4.24.5. Which parameters are related to this parameter?

Problem 4.24.6. Which approaches do work to construct applications to create
independent study?

Problem 4.24.7. Which approaches do work to construct definitions which use
all definitions and the relations amid them instead of separate definitions to
create independent study?

4.25 Conclusion and Closing Remarks

In this section, concluding remarks and closing remarks are represented. The
drawbacks of this article are illustrated. Some benefits and advantages of this
study are highlighted.
This study uses one definition concerning global offensive alliance to study
neutrosophic graphs. New neutrosophic number is introduced which is too close
to the notion of neutrosophic number but it’s different since it uses all values
as type-summation on them. The connections of vertices which are clarified by
general edges differ them from each other and put them in different categories
to represent a set which is called global offensive alliance. Further studies
could be about changes in the settings to compare this notion amid different
settings of neutrosophic graphs theory. One way is finding some relations amid
all definitions of notions to make sensible definitions. In Table (4.6), some
limitations and advantages of this study are pointed out.

4.26 Global Powerful Alliance in Strong Neutrosophic
Graphs

The following sections are cited as [2].
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Table 4.4: A Brief Overview about Advantages and Limitations of this study tbl2c

Advantages Limitations
1. Defining Global Offensive Alliances 1. General Results

2. Applying on Strong Neutrosophic Graphs

3. Study on Complete Models 2. Deeply More Connections

4. Applying on Individuals

5. Applying on Family 3. Same Models in Family

4.27 Abstract

New setting is introduced to study the global powerful alliance. Global
powerful alliance is about a set of vertices which are applied into the setting of
neutrosophic graphs. Neighborhood has the key role to define this notion. Also,
neighborhood is defined based on strong edges. Strong edge gets a framework
as neighborhood and after that, too close vertices have key role to define
global powerful alliance based on strong edges. The structure of set is studied
and general results are obtained. Also, some classes of neutrosophic graphs
excluding empty, path, star, and wheel and containing complete, cycle and
r-regular-strong are investigated in the terms of set, minimal set, number, and
neutrosophic number. Neutrosophic number is used in this way. It’s applied to
use the type of neutrosophic number in the way that, three values of a vertex
are used and they’ve same share to construct this number. It’s called “modified
neutrosophic number”. Summation of three values of vertex makes one number
and applying it to a set makes neutrosophic number of set. This approach
facilitates identifying minimal set and optimal set which forms minimal-global-
powerful-alliance number and minimal-global-powerful-alliance-neutrosophic
number. Two different types of sets namely global-powerful alliance and minimal-
global-powerful alliance are defined. Global-powerful alliance identifies the sets
in general vision but minimal-global-powerful alliance takes focus on the sets
which deleting a vertex is impossible. Minimal-global-powerful-alliance number
is about minimum cardinality amid the cardinalities of all minimal-global-
powerful alliances in a given neutrosophic graph. New notions are applied in the
settings both individual and family. Family of neutrosophic graphs has an open
avenue, in the way that, the family only contains same classes of neutrosophic
graphs. The results are about minimal-global-powerful alliance, minimal-global-
powerful-alliance number and its corresponded sets, minimal-global-powerful-
alliance-neutrosophic number and its corresponded sets, and characterizing
all minimal-global-powerful alliances, minimal-t-powerful alliance, minimal-t-
powerful-alliance number and its corresponded sets, minimal-t-powerful-alliance-
neutrosophic number and its corresponded sets, and characterizing all minimal-
t-powerful alliances. The connections amid t-powerful-alliances are obtained.
The number of connected components has some relations with this new concept
and it gets some results. Some classes of neutrosophic graphs behave differently
when the parity of vertices are different and in this case, cycle, and complete
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illustrate these behaviors. Two applications concerning complete model as
individual and family, under the titles of time table and scheduling conclude
the results and they give more clarifications and closing remarks. In this study,
there’s an open way to extend these results into the family of these classes of
neutrosophic graphs. The family of neutrosophic graphs aren’t study deeply
and with more results but it seems that analogous results are determined. Slight
progress is obtained in the family of these models but there are open avenues to
study family of other models as same models and different models. There’s a
question. How can be related to each other, two sets partitioning the vertex set
of a graph? The ideas of neighborhood and neighbors based on strong edges
illustrate open way to get results. A set is global powerful alliance when two sets
partitioning vertex set have uniform structure. All members of set have more
amount of neighbors in the set than out of set and reversely for non-members
of set with less members in the way that the set is simultaneously t-offensive
and (t-2)-defensive. A set is global if t=0. It leads us to the notion of global
powerful alliance. Different edges make different neighborhoods but it’s used
one style edge titled strong edge. These notions are applied into neutrosophic
graphs as individuals and family of them. Independent set as an alliance is
a special set which has no neighbor inside and it implies some drawbacks for
these notions. Finding special sets which are well-known, is an open way to
purse this study. Special set which its members have only one neighbor inside,
characterize the connected components where the cardinality of its complement
is the number of connected components. Some problems are proposed to pursue
this study. Basic familiarities with graph theory and neutrosophic graph theory
are proposed for this article.
Keywords: Modified Neutrosophic Number, Global Powerful Alliance, R-

Regular-Strong
AMS Subject Classification: 05C17, 05C22, 05E45

4.28 Motivation and Contributions

In this study, there’s an idea which could be considered as a motivation.

Question 4.28.1. Is it possible to use mixed versions of ideas concerning
“Global Powerful Alliance”, “Modified Neutrosophic Number” and “Complete
Neutrosophic Graph” to define some notions which are applied to neutrosophic
graphs?

It’s motivation to find notions to use in any classes of neutrosophic graphs.
Real-world applications about time table and scheduling are another thoughts
which lead to be considered as motivation. Connections amid two vertices have
key roles to assign global-powerful alliance, minimal-global-powerful alliance,
minimal-global-powerful-alliance number, and minimal-global-powerful-alliance-
neutrosophic number. Thus they’re used to define new ideas which conclude
to the structure global powerful alliance. The concept of having strong edge
inspires me to study the behavior of strong edges in the way that, two types of
numbers and set, e.g., global-powerful alliance, minimal-global-powerful alliance,
minimal-global-powerful-alliance number, and minimal-global-powerful-alliance-
neutrosophic number are the cases of study in the settings of individuals and in
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settings of families. Also, there are some avenues to extend these notions.
The framework of this study is as follows. In the beginning, I introduce
basic definitions to clarify about preliminaries. In subsection “Preliminaries”,
new notions of global- powerful alliance, minimal-global-powerful alliance,
minimal-global-powerful-alliance number, and minimal-global-powerful-alliance-
neutrosophic number are introduced and are clarified as individuals. In section
“Preliminaries”, general sets have the key role in this way. General results
are obtained and also, the results about the basic notions of global-powerful
alliance are elicited. Two classes of neutrosophic graphs are studied in the terms
of global-powerful alliance, minimal-global-powerful alliance, minimal-global-
powerful-alliance number, and minimal-global-powerful-alliance-neutrosophic
number in section “r-Regular-Strong-Neutrosophic Graph’ as individuals. In
section “r-Regular-Strong-Neutrosophic Graph”, both numbers have applied
into individuals. As a concluding result, there are three statements and remarks
about r-regular-strong-neutrosophic graphs which are either cycle or complete.
The clarifications are also presented in section “r-Regular-Strong-Neutrosophic
Graph” for introduced results. In section “Applications in Time Table and
Scheduling”, two applications are posed for global-powerful alliance concerning
time table and scheduling when the suspicions are about choosing some subjects
and the mentioned models are complete as individual and uniform family. In
section “Open Problems”, some problems and questions for further studies
are proposed. In section “Conclusion and Closing Remarks”, gentle discussion
about results and applications is featured. In section “Conclusion and Closing
Remarks”, a brief overview concerning advantages and limitations of this study
alongside conclusions is formed.

4.29 Preliminaries

In this subsection, basic material which is used in this article, is presented.
Also, new ideas and their clarifications are elicited.
Basic idea is about the model which is used. First definition introduces basic
model.

Definition 4.29.1. (Graph).
G = (V,E) is called a graph if V is a set of objects and E is a subset of V × V
(E is a set of 2-subsets of V ) where V is called vertex set and E is called
edge set. Every two vertices have been corresponded to at most one edge.

Neutrosophic graph is the foundation of results in this paper which is defined
as follows. Also, some related notions are demonstrated.

Definition 4.29.2. (Neutrosophic Graph And Its Special Case).
NTG = (V,E, σ = (σ1, σ2, σ3), µ = (µ1, µ2, µ3)) is called a neutrosophic
graph if it’s graph, σi : V → [0, 1], µi : E → [0, 1]. We add one condition on
it and we use special case of neutrosophic graph but with same name. The
added condition is as follows, for every vivj ∈ E,

µ(vivj) ≤ σ(vi) ∧ σ(vj).

(i) : σ is called neutrosophic vertex set.

(ii) : µ is called neutrosophic edge set.
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(iii) : |V | is called order of NTG and it’s denoted by O(NTG).

(iv) : Σv∈V σ(v) is called neutrosophic order of NTG and it’s denoted by
On(NTG).

(v) : |E| is called size of NTG and it’s denoted by S(NTG).

(vi) : Σe∈EΣ3
i=1µi(e) is called neutrosophic size of NTG and it’s denoted by

Sn(NTG).

Some classes of well-known neutrosophic graphs are defined. These classes
of neutrosophic graphs are used to form this study and the most results are
about them.

Definition 4.29.3. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) : a sequence of vertices P : x0, x1, · · · , xn is called path where xixi+1 ∈
E, i = 0, 1, · · · , n− 1;

(ii) : strength of path P : x0, x1, · · · , xn is
∧
i=0,··· ,n−1 µ(xixi+1);

(iii) : connectedness amid vertices x0 and xn is

µ∞(x, y) =
∧

P :x0,x1,··· ,xn

∧
i=0,··· ,n−1

µ(xixi+1);

(iv) : a sequence of vertices P : x0, x1, · · · , xn is called cycle where xixi+1 ∈
E, i = 0, 1, · · · , n − 1 and there are two edges xy and uv such that
µ(xy) = µ(uv) =

∧
i=0,1,··· ,n−1 µ(vivi+1);

(v) : it’s t-partite where V is partitioned to t parts, V1, V2, · · · , Vt and the
edge xy implies x ∈ Vi and y ∈ Vj where i 6= j. If it’s complete, then it’s
denoted by Kσ1,σ2,··· ,σt where σi is σ on Vi instead V which mean x 6∈ Vi
induces σi(x) = 0;

(vi) : t-partite is complete bipartite if t = 2, and it’s denoted by Kσ1,σ2 ;

(vii) : complete bipartite is star if |V1| = 1, and it’s denoted by S1,σ2 ;

(viii) : a vertex in V is center if the vertex joins to all vertices of a cycle. Then
it’s wheel and it’s denoted by W1,σ2 ;

(ix) : it’s complete where ∀uv ∈ V, µ(uv) = σ(u) ∧ σ(v);

(x) : it’s strong where ∀uv ∈ E, µ(uv) = σ(u) ∧ σ(v).

The notions of neighbor and neighborhood are about some vertices which
have one edge with a fixed vertex. These notions present vertices which are
close to a fixed vertex as possible. Based on strong edge, it’s possible to define
different neighborhood as follows.

Definition 4.29.4. (Strong Neighborhood).
Let NTG : (V,E, σ, µ) be a neutrosophic graph. Suppose x ∈ V. Then

Ns(x) = {y ∈ N(x) | µ(xy) = σ(x) ∧ σ(y)}.

225



4. Neutrosophic Alliances

New notion is defined between two types of neighborhoods for a fixed vertex.
A minimal set and some numbers are introduced in this way. The next definition
has main role in every results which are given in this essay.

Definition 4.29.5. Let NTG : (V,E, σ, µ) be a neutrosophic graph. Then

(i) a set S of vertices is called t-offensive alliance if

∀a ∈ V \ S, |Ns(a) ∩ S| − |Ns(a) ∩ (V \ S)| > t;

(ii) a t-offensive alliance is called global-offensive alliance if t = 0;

(iii) a set S of vertices is called t-defensive alliance if

∀a ∈ S, |Ns(a) ∩ S| − |Ns(a) ∩ (V \ S)| < t;

(iv) a t-defensive alliance is called global-defensive alliance if t = 0;

(v) a set S of vertices is called t-powerful alliance if it’s both t-offensive
alliance and (t-2)-defensive alliance;

(vi) a t-powerful alliance is called global-powerful alliance if t = 0;

(vii) ∀S′ ⊆ S, S is global-powerful alliance but S′ isn’t global-powerful alliance.
Then S is called minimal-global-powerful alliance;

(viii) minimal-global-powerful-alliance number of NTG is∧
S is a minimal-global-powerful alliance.

|S|

and it’s denoted by Γ;

(ix) minimal-global-powerful-alliance-neutrosophic number of NTG
is ∧

S is a minimal-global-offensive alliance.
Σs∈SΣ3

i=1σi(s)

and it’s denoted by Γs.

In the next result, the notions of t-defensive alliance and t-offensive alliance
have been extended to present the classes of defensive alliance and offensive
alliance which hold when one type of them holds for a given set of vertices.

Proposition 4.29.6. Let NTG : (V,E, σ, µ) be a strong neutrosophic graph.
Then following statements hold;

(i) if s ≥ t and a set S of vertices is t-defensive alliance, then S is s-defensive
alliance;

(ii) if s ≤ t and a set S of vertices is t-offensive alliance, then S is s-offensive
alliance.

Proof. (i). Suppose NTG : (V,E, σ, µ) is a strong neutrosophic graph. Consider
a set S of vertices is t-defensive alliance. Then
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∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < t;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < t ≤ s;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < s.

Thus S is s-defensive alliance.
(ii). Suppose NTG : (V,E, σ, µ) is a strong neutrosophic graph. Consider a set
S of vertices is t-offensive alliance. Then

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > t;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > t ≥ s;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > s.

Thus S is s-offensive alliance. �

As a consequence of previous result, the relations amid a set which is both t-
offensive alliance and t-defensive alliance lead us toward the notion of t-powerful
alliance.

Proposition 4.29.7. Let NTG : (V,E, σ, µ) be a strong neutrosophic graph.
Then following statements hold;

(i) if s ≥ t + 2 and a set S of vertices is t-defensive alliance, then S is
s-powerful alliance;

(ii) if s ≤ t and a set S of vertices is t-offensive alliance, then S is t-powerful
alliance.

Proof. (i). Suppose NTG : (V,E, σ, µ) is a strong neutrosophic graph. Consider
a set S of vertices is t-defensive alliance. Then

∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < t;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < t ≤ t+ 2 ≤ s;

∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < s.
Thus S is (t+2)-defensive alliance. By S is s-defensive alliance and S is

(s+2)-offensive alliance, S is s-powerful alliance.
(ii). Suppose NTG : (V,E, σ, µ) is a strong neutrosophic graph. Consider a set
S of vertices is t-offensive alliance. Then

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > t;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > t ≥ s > s− 2;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > s− 2.

Thus S is (s-2)-defensive alliance. By S is (s-2)-defensive alliance and S is
s-offensive alliance, S is s-powerful alliance. �

4.30 r-Regular-Strong-Neutrosophic Graph

r-regular is an attribute. This property facilitates the results when the condition
is about the neighbors inside fixed set to determine 2-defensive alliance and
2-offensive alliance. Also, a condition about the neighbors outside of fixed set
determines some results about r-defensive alliance and r-offensive alliance.

Proposition 4.30.1. Let NTG : (V,E, σ, µ) be a r-regular-strong-neutrosophic
graph. Then following statements hold;
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(i) if ∀a ∈ S, |Ns(a) ∩ S| < b r2c+ 1, then NTG : (V,E, σ, µ) is 2-defensive
alliance;

(ii) if ∀a ∈ V \S, |Ns(a)∩S| > b r2c+1, then NTG : (V,E, σ, µ) is 2-offensive
alliance;

(iii) if ∀a ∈ S, |Ns(a) ∩ V \ S| = 0, then NTG : (V,E, σ, µ) is r-defensive
alliance;

(iv) if ∀a ∈ V \ S, |Ns(a) ∩ V \ S| = 0, then NTG : (V,E, σ, µ) is r-offensive
alliance.

Proof. (i). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph.
Then

∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < b r2c+ 1− (b r2c − 1);
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < b r2c+ 1− (b r2c − 1) < 2;

∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2.
Thus S is 2-defensive alliance.

(ii). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph. Then

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > b r2c+ 1− (b r2c − 1);
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > b r2c+ 1− (b r2c − 1) > 2;

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2.
Thus S is 2-offensive alliance.

(iii). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph. Then

∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < r − 0;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < r − 0 = r;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < r.

Thus S is r-defensive alliance.
(iv). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph. Then

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > r − 0;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > r − 0 = r;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > r.

Thus S is r-offensive alliance.
�

2-defensive alliance and 2-offensive alliance get some results about the
neighbors inside fixed set. Also, r-defensive alliance and r-offensive alliance get
some results about the neighbors outside of fixed set.

Proposition 4.30.2. Let NTG : (V,E, σ, µ) be a r-regular-strong-neutrosophic
graph. Then following statements hold;

(i) ∀a ∈ S, |Ns(a)∩S| < b r2c+1 if NTG : (V,E, σ, µ) is 2-defensive alliance;

(ii) ∀a ∈ V \ S, |Ns(a) ∩ S| > b r2c + 1 if NTG : (V,E, σ, µ) is 2-offensive
alliance;

(iii) ∀a ∈ S, |Ns(a) ∩ V \ S| = 0 if NTG : (V,E, σ, µ) is r-defensive alliance;

(iv) ∀a ∈ V \S, |Ns(a)∩V \S| = 0 if NTG : (V,E, σ, µ) is r-offensive alliance.
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Proof. (i). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph
and 2-defensive alliance. Then

∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2 = b r2c+ 1− (b r2c − 1);
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < b r2c+ 1− (b r2c − 1);
∀t ∈ S, |Ns(t) ∩ S| = b r2c+ 1, |Ns(t) ∩ (V \ S)| = b r2c − 1.

(ii). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph
and 2-offensive alliance. Then

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2 = b r2c+ 1− (b r2c − 1);
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > b r2c+ 1− (b r2c − 1);
∀t ∈ V \ S, |Ns(t) ∩ S| = b r2c+ 1, |Ns(t) ∩ (V \ S) = b r2c − 1.

(iii). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph
and r-defensive alliance.

∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < r;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < r = r − 0;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < r − 0;
∀t ∈ S, |Ns(t) ∩ S| = r, |Ns(t) ∩ (V \ S)| = 0.

(iv). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph
and r-offensive alliance. Then

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > r;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > r = r − 0;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > r − 0;
∀t ∈ V \ S, |Ns(t) ∩ S| = r, |Ns(t) ∩ (V \ S)| = 0.

�

As a special case, complete neutrosophic graph gets specific result excerpt
from r-regular neutrosophic graph. 2-defensive alliance and 2-offensive alliance
get some results about the neighbors inside fixed set depending on order. Also,
(O − 1)-defensive alliance and (O − 1)-offensive alliance get some results about
the neighbors outside of fixed set depending on order.

Proposition 4.30.3. Let NTG : (V,E, σ, µ) be a r-regular-strong-neutrosophic
graph which is complete. Then following statements hold;

(i) ∀a ∈ S, |Ns(a) ∩ S| < bO−1
2 c + 1 if NTG : (V,E, σ, µ) is 2-defensive

alliance;

(ii) ∀a ∈ V \ S, |Ns(a) ∩ S| > bO−1
2 c+ 1 if NTG : (V,E, σ, µ) is 2-offensive

alliance;

(iii) ∀a ∈ S, |Ns(a) ∩ V \ S| = 0 if NTG : (V,E, σ, µ) is (O − 1)-defensive
alliance;

(iv) ∀a ∈ V \ S, |Ns(a)∩ V \ S| = 0 if NTG : (V,E, σ, µ) is (O− 1)-offensive
alliance.

Proof. (i). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph
and 2-defensive alliance. Then
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∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2 = bO−1

2 c+ 1− (bO−1
2 c − 1);

∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < bO−1
2 c+ 1− (bO−1

2 c − 1);
∀t ∈ S, |Ns(t) ∩ S| = bO−1

2 c+ 1, |Ns(t) ∩ (V \ S)| = bO−1
2 c − 1.

(ii). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph
and 2-offensive alliance. Then

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2 = bO−1

2 c+ 1− (bO−1
2 c − 1);

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > bO−1
2 c+ 1− (bO−1

2 c − 1);
∀t ∈ V \ S, |Ns(t) ∩ S| = bO−1

2 c+ 1, |Ns(t) ∩ (V \ S) = bO−1
2 c − 1.

(iii). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph
and (O − 1)-defensive alliance.

∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < O − 1;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < O − 1 = O − 1− 0;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < O − 1− 0;
∀t ∈ S, |Ns(t) ∩ S| = O − 1, |Ns(t) ∩ (V \ S)| = 0.

(iv). Suppose NTG : (V,E, σ, µ) is a (O − 1)-regular-strong-neutrosophic
graph and r-offensive alliance. Then

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > O − 1;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > O − 1 = O − 1− 0;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > O − 1− 0;
∀t ∈ V \ S, |Ns(t) ∩ S| = O − 1, |Ns(t) ∩ (V \ S)| = 0.

�

As a special case of r-regular, complete is an attribute. This property
facilitates the results when the condition is about the neighbors inside fixed
set to determine 2-defensive alliance and 2-offensive alliance. Also, a condition
about the neighbors outside of fixed set determines some results about (O − 1)-
defensive alliance and (O − 1)-offensive alliance.

Proposition 4.30.4. Let NTG : (V,E, σ, µ) be a r-regular-strong-neutrosophic
graph which is complete. Then following statements hold;

(i) if ∀a ∈ S, |Ns(a)∩S| < bO−1
2 c+1, then NTG : (V,E, σ, µ) is 2-defensive

alliance;

(ii) if ∀a ∈ V \ S, |Ns(a) ∩ S| > bO−1
2 c + 1, then NTG : (V,E, σ, µ) is

2-offensive alliance;

(iii) if ∀a ∈ S, |Ns(a)∩V \S| = 0, then NTG : (V,E, σ, µ) is (O−1)-defensive
alliance;

(iv) if ∀a ∈ V \ S, |Ns(a) ∩ V \ S| = 0, then NTG : (V,E, σ, µ) is (O − 1)-
offensive alliance.

Proof. (i). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph.
Then
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∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < bO−1
2 c+ 1− (bO−1

2 c − 1);
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < bO−1

2 c+ 1− (bO−1
2 c − 1) < 2;

∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2.
Thus S is 2-defensive alliance.

(ii). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph. Then

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > bO−1
2 c+ 1− (bO−1

2 c − 1);
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > bO−1

2 c+ 1− (bO−1
2 c − 1) > 2;

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2.
Thus S is 2-offensive alliance.

(iii). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph. Then

∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < O − 1− 0;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < O − 1− 0 = O − 1;

∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < O − 1.
Thus S is (O − 1)-defensive alliance.

(iv). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph. Then

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > O − 1− 0;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > O − 1− 0 = O − 1;

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > O − 1.
Thus S is (O − 1)-offensive alliance.

�

In next example, the concept of r-defensive alliance and r-offensive alliance
are applied into a r-regular-strong-neutrosophic graph which is complete and
its order is five, it means O = 5.

Example 4.30.5. Consider Figure (4.15). In this section, 1-powerful alliance is
studied in the way that more clarifications are represented.

(i) Every 3-set of vertices, e.g.,

S1 = {s1, s2, s3}, S2 = {s1, s3, s5}, S3 = {s2, s3, s4}, S4 = {s3, s4, s5}

is minimal-1-powerful alliance and it forms a minimal-1-powerful-alliance
number but only S3 = {s3, s4, s5} is optimal such that forms both minimal-
1-powerful-alliance-neutrosophic number and minimal-1-powerful-alliance
number;

(ii) N = {s2, s5} isn’t 1-powerful alliance. Since

∃s1 ∈ V \N, |Ns(s1) ∩N | − |Ns(s1) ∩ (V \N)| = 2− 2 = 0 < 1
∃s1 ∈ V \N, |Ns(s1) ∩N | − |Ns(s1) ∩ (V \N)| = 2− 2 = 0 6> 1

∃s1 ∈ V \N, |Ns(s1) ∩N | − |Ns(s1) ∩ (V \N)| 6> 1;
it implies N = {s2, s5} isn’t 1-offensive alliance. So N = {s2, s5} isn’t
1-powerful alliance. Also,

∃s2 ∈ N, |Ns(s1) ∩N | − |Ns(s1) ∩ (V \N)| = 1− 3 = −2 < 1
∃s2 ∈ N, |Ns(s1) ∩N | − |Ns(s1) ∩ (V \N)| = 1− 3 = −2 < 1

∃s2 ∈ N, |Ns(s1) ∩N | − |Ns(s1) ∩ (V \N)| < 1;
it implies N = {s2, s5} 1-defensive alliance but N = {s2, s5} isn’t 1-
powerful alliance.

231



4. Neutrosophic Alliances

Figure 4.15: Black circles form a set which is 1-powerful alliance. NTG13

(iii) Γs = 3.3;

(iv) Γ = 3.

As a special case, cycle neutrosophic graph gets specific result excerpt from
2-regular neutrosophic graph. 2-defensive alliance and 2-offensive alliance get
some results about the neighbors inside fixed set which their number is at most
2. Also, 2-defensive alliance and 2-offensive alliance get some results about the
neighbors outside of fixed set which their number is at most 2.

Proposition 4.30.6. Let NTG : (V,E, σ, µ) be a r-regular-strong-neutrosophic
graph which is cycle. Then following statements hold;

(i) ∀a ∈ S, |Ns(a) ∩ S| < 2 if NTG : (V,E, σ, µ) is 2-defensive alliance;

(ii) ∀a ∈ V \ S, |Ns(a) ∩ S| > 2 if NTG : (V,E, σ, µ) is 2-offensive alliance;

(iii) ∀a ∈ S, |Ns(a) ∩ V \ S| = 0 if NTG : (V,E, σ, µ) is 2-defensive alliance;

(iv) ∀a ∈ V \ S, |Ns(a) ∩ V \ S| = 0 if NTG : (V,E, σ, µ) is 2-offensive
alliance.

Proof. (i). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph
and 2-defensive alliance. Then

∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2 = 2− 0;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2;
∀t ∈ S, |Ns(t) ∩ S| < 2, |Ns(t) ∩ (V \ S)| = 0.

(ii). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph
and 2-offensive alliance. Then

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2 = 2− 0;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2;
∀t ∈ V \ S, |Ns(t) ∩ S| > 2, |Ns(t) ∩ (V \ S) = 0.

(iii). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph
and 2-defensive alliance.
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∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2 = 2− 0;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2− 0;
∀t ∈ S, |Ns(t) ∩ S| < 2, |Ns(t) ∩ (V \ S)| = 0.

(iv). Suppose NTG : (V,E, σ, µ) is a 2-regular-strong-neutrosophic graph
and r-offensive alliance. Then

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2 = 2− 0;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2− 0;
∀t ∈ V \ S, |Ns(t) ∩ S| > 2, |Ns(t) ∩ (V \ S)| = 0.

�

As a special case of r-regular, cycle is an attribute. This property facilitates
the results when the condition is about the neighbors inside fixed set to
determine 2-defensive alliance and 2-offensive alliance. Also, a condition about
the neighbors outside of fixed set determines some results about 2-defensive
alliance and 2-offensive alliance.

Proposition 4.30.7. Let NTG : (V,E, σ, µ) be a r-regular-strong-neutrosophic
graph which is cycle. Then following statements hold;

(i) if ∀a ∈ S, |Ns(a)∩S| < 2, then NTG : (V,E, σ, µ) is 2-defensive alliance;

(ii) if ∀a ∈ V \ S, |Ns(a) ∩ S| > 2, then NTG : (V,E, σ, µ) is 2-offensive
alliance;

(iii) if ∀a ∈ S, |Ns(a) ∩ V \ S| = 0, then NTG : (V,E, σ, µ) is 2-defensive
alliance;

(iv) if ∀a ∈ V \ S, |Ns(a) ∩ V \ S| = 0, then NTG : (V,E, σ, µ) is 2-offensive
alliance.

Proof. (i). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph.
Then

∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2− 0;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2− 0 = 2;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2.

Thus S is 2-defensive alliance.
(ii). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph. Then

∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2− 0;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2− 0 = 2;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2.

Thus S is 2-offensive alliance.
(iii). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph. Then

∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2− 0;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2− 0 = 2;
∀t ∈ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| < 2.

Thus S is 2-defensive alliance.
(iv). Suppose NTG : (V,E, σ, µ) is a r-regular-strong-neutrosophic graph. Then
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∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2− 0;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2− 0 = 2;
∀t ∈ V \ S, |Ns(t) ∩ S| − |Ns(t) ∩ (V \ S)| > 2.

Thus S is 2-offensive alliance.
�

Example 4.30.8. Consider Figure (4.16). In this section, 3-powerful alliance is
studied in the way that more clarifications are represented.

(i) Every 3-set of vertices, e.g.,

S1 = {s1, s2, s3}, S2 = {s1, s3, s5}, S3 = {s2, s3, s4}, S4 = {s3, s4, s5}

is minimal-3-powerful alliance and it forms a minimal-3-powerful-alliance
number but only S3 = {s3, s4, s5} is optimal such that forms both minimal-
3-powerful-alliance-neutrosophic number and minimal-3-powerful-alliance
number; since

∃s3 ∈ S4, |Ns(s3) ∩ S4| − |Ns(s3) ∩ (V \ S4)| = 1− 1 = 0 < 3
∃s3 ∈ S4, |Ns(s3) ∩ S4| − |Ns(s3) ∩ (V \ S4)| = 1− 1 = 0 < 3

∃s3 ∈ S4, |Ns(s3) ∩ S4| − |Ns(s3) ∩ (V \ S4)| < 3;

∃s5 ∈ S4, |Ns(s5) ∩ S4| − |Ns(s5) ∩ (V \ S4)| = 1− 1 = 0 < 3
∃s5 ∈ S4, |Ns(s5) ∩N | − |Ns(s5) ∩ (V \ S4)| = 1− 1 = 0 < 3

∃s5 ∈ S4, |Ns(s5) ∩ S4| − |Ns(s5) ∩ (V \ S4)| < 3;

∃s4 ∈ S4, |Ns(s4) ∩ S4| − |Ns(s4) ∩ (V \ S4)| = 2− 0 = 2 < 3
∃s4 ∈ S4, |Ns(s4) ∩ S4| − |Ns(s4) ∩ (V \ S4)| = 2− 0 = 2 < 3

∃s4 ∈ S4, |Ns(s4) ∩ S4| − |Ns(s4) ∩ (V \N)| < 3;
It implies S4 is 3-defensive alliance. Also,

∃s1 ∈ V \ S4, |Ns(s1) ∩ S4| − |Ns(s1) ∩ (V \ S4)| = 1− 1 = 0 > −1
∃s1 ∈ V \ S4, |Ns(s1) ∩ S4| − |Ns(s1) ∩ (V \ S4)| = 1− 1 = 0 > −1

∃s1 ∈ V \ S4, |Ns(s1) ∩ S4| − |Ns(s1) ∩ (V \ S4)| > −1;

∃s2 ∈ S4, |Ns(s2) ∩N | − |Ns(s2) ∩ (V \N)| = 1− 1 = 0 > −1
∃s2 ∈ N, |Ns(s2) ∩N | − |Ns(s2) ∩ (V \N)| = 1− 1 = 0 > −1

∃s2 ∈ N, |Ns(s2) ∩N | − |Ns(s2) ∩ (V \N)| > −1;
It implies S4 is (-1)-offensive alliance. S4 isn’t (-1)-powerful alliance.

(ii) Every 4-set of vertices, e.g.,

S1 = {s1, s2, s3, s4}, S2 = {s1, s2, s3, s5}, S3 = {s2, s3, s4, s5}

is minimal-3-powerful alliance and it forms a minimal-3-powerful-alliance
number but only S = {s2, s3, s4, s5} is optimal such that forms both
minimal-3-powerful-alliance-neutrosophic number and minimal-3-powerful-
alliance number; since

∃s3 ∈ S, |Ns(s3) ∩ S| − |Ns(s3) ∩ (V \ S)| = 2− 0 = 2 < 3
∃s3 ∈ S, |Ns(s3) ∩ S| − |Ns(s3) ∩ (V \ S)| = 2− 0 = 0 < 3

∃s3 ∈ S, |Ns(s3) ∩ S| − |Ns(s3) ∩ (V \ S)| < 3;
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Figure 4.16: Black circles form a set which is 1-powerful alliance. NTG14

∃s4 ∈ S, |Ns(s4) ∩ S| − |Ns(s4) ∩ (V \ S)| = 2− 0 = 2 < 3
∃s4 ∈ S, |Ns(s4) ∩ S| − |Ns(s4) ∩ (V \ S)| = 2− 0 = 2 < 3

∃s4 ∈ S, |Ns(s4) ∩ S| − |Ns(s4) ∩ (V \ S)| < 3;

∃s5 ∈ S, |Ns(s5) ∩ S| − |Ns(s5) ∩ (V \ S)| = 1− 1 = 0 < 3
∃s5 ∈ S, |Ns(s5) ∩ S| − |Ns(s5) ∩ (V \ S)| = 1− 1 = 0 < 3

∃s5 ∈ S, |Ns(s5) ∩ S| − |Ns(s5) ∩ (V \ S)| < 3;

∃s2 ∈ S, |Ns(s2) ∩ S| − |Ns(s2) ∩ (V \ S)| = 1− 1 = 0 < 3
∃s2 ∈ S, |Ns(s2) ∩ S| − |Ns(s2) ∩ (V \ S)| = 1− 1 = 0 < 3

∃s2 ∈ S, |Ns(s2) ∩ S| − |Ns(s2) ∩ (V \ S)| < 3;
it implies S is 3-defensive alliance. Also,

∃s1 ∈ V \ S, |Ns(s1) ∩ S| − |Ns(s1) ∩ (V \ S)| = 2− 0 = 2 > 1
∃s1 ∈ V \ S, |Ns(s1) ∩ S| − |Ns(s1) ∩ (V \ S)| = 2− 0 = 2 > 1

∃s1 ∈ V \ S, |Ns(s1) ∩ S| − |Ns(s1) ∩ (V \ S)| > 1;
it implies S4 is 1-offensive alliance. S4 isn’t 1-powerful alliance.

(iii) Γs isn’t well-defined;

(iv) Γ isn’t well-defined.

4.31 Applications in Time Table and Scheduling

In this section, two applications for time table and scheduling are provided
where the models are complete models which mean complete connections are
formed as individual and family of complete models with common neutrosophic
vertex set.
Designing the programs to achieve some goals is general approach to apply on
some issues to function properly. Separation has key role in the context of this
style. Separating the duration of work which are consecutive, is the matter and
it has importantance to avoid mixing up.

235



4. Neutrosophic Alliances

Step 1. (Definition) Time table is an approach to get some attributes to do
the work fast and proper. The style of scheduling implies special attention
to the tasks which are consecutive.

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid
consecutive section. Beyond that, sometimes sections are not the same.

Step 3. (Model) The situation is designed as a model. The model uses data to
assign every section and to assign to relation amid section, three numbers
belong unit interval to state indeterminacy, possibilities and determinacy.
There’s one restriction in that, the numbers amid two sections are at least
the number of the relation amid them. Table (4.5), clarifies about the
assigned numbers to these situation.

Table 4.5: Scheduling concerns its Subjects and its Connections as a neutrosophic
graph and its alliances in a Model. tbl1c

Sections of NTG n1 n2· · · n9
Values (0.99, 0.98, 0.55) (0.74, 0.64, 0.46)· · · (0.99, 0.98, 0.55)

Connections of NTG E1 E2 E3
Values (0.01, 0.01, 0.01) (0.01, 0.01, 0.01) (0.01, 0.01, 0.01)

4.32 Case 1: Complete Model as Individual

Step 4. (Solution) The neutrosophic graph and its global offensive alliance as
model, propose to use specific set. Every subject has connection with
every given subject. Thus the connection is applied as possible and the
model demonstrates full connections as possible. Using the notion of
strong on the connection amid subjects, causes the importance of subject
goes in the highest level such that the value amid two consecutive subjects,
is determined by those subjects. If the configuration is complete, the set
is different. Also, it holds for other types such that star, wheel, path,
and cycle. The collection of situations is another application of global
offensive alliance when the notion of family is applied in the way that
all members of family are from same classes of neutrosophic graphs. As
follows, There are four subjects which are represented as Figure (4.17).
This model is strong. And the study proposes using specific set of objects
which is called minimal-global-offensive alliance. There are also some
analyses on other sets in the way that, the clarification is gained about
being special set or not. Also, in the last part, there are two numbers to
assign to this model and situation to compare them with same situations
to get more precise. Consider Figure (4.17).

(i) S1 = {s1, s2}, S2 = {s1, s3}, S3 = {s1, s4}, S4 = {s2, s3}, S5 =
{s2, s4}, S6 = {s3, s4} are only minimal-global-offensive alliances;

(ii) S6 = {s3, s4} is optimal such that forms both minimal-global-
offensive-alliance-neutrosophic number and minimal-global-offensive-
alliance number;
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Figure 4.17: The set of black circles is minimal-global-offensive alliance. NTG8

(iii) S = {s1, s3} only forms minimal-global-offensive-alliance number but
not minimal-global-offensive-alliance-neutrosophic;

(iv) N = {s1} isn’t global-offensive alliance. Since there is three instances
and only one instance is enough;
(a) First counterexample for the statement “N = {s1} is global-

offensive alliance.”;
∃s2 ∈ V \N, |Ns(s2) ∩N | = 1 < 2 = |Ns(s2) ∩ (V \N)|
∃s2 ∈ V \N, |Ns(s2) ∩N | = 1 6> 2 = |Ns(s2) ∩ (V \N)|
∃s2 ∈ V \N, |Ns(s2) ∩N | 6> |Ns(s2) ∩ (V \N)|;

(b) second counterexample for the statement “N = {s1} is global-
offensive alliance.”;
∃s3 ∈ V \N, |Ns(s3) ∩N | = 1 < 2 = |Ns(s3) ∩ (V \N)|
∃s3 ∈ V \N, |Ns(s3) ∩N | = 1 6> 2 = |Ns(s3) ∩ (V \N)|
∃s3 ∈ V \N, |Ns(s3) ∩N | 6> |Ns(s3) ∩ (V \N)|;

(c) third counterexample for the statement “N = {s1} is global-
offensive alliance.”.
∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 < 2 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | = 1 6> 2 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | 6> |Ns(s4) ∩ (V \N)|;

(v) Γs = 2.3 and corresponded set is S6 = {s3, s4};
(vi) Γ = 2 and corresponded set is S6 = {s3, s4}.

4.33 Case 2: Family of Complete Models

Step 4. (Solution) The neutrosophic graph and its global offensive alliance as
model, propose to use specific set. Every subject has connection with
every given subject. Thus the connection is applied as possible and the
model demonstrates full connections as possible. Using the notion of
strong on the connection amid subjects, causes the importance of subject
goes in the highest level such that the value amid two consecutive subjects,
is determined by those subjects. If the configuration is complete, the set
is different. Also, it holds for other types such that star, wheel, path,
and cycle. The collection of situations is another application of global
offensive alliance when the notion of family is applied in the way that
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all members of family are from same classes of neutrosophic graphs. As
follows, There are five subjects which are represented in the formation of
family of models as Figure (4.17). These models are strong in family. And
the study proposes using specific set of objects which is called minimal-
global-offensive alliance for this family of models. There are also some
analyses on other sets in the way that, the clarification is gained about
being special set or not. Also, in the last part, there are two numbers to
assign to this family of models and collection of situations to compare
them with collection of situations to get more precise. Consider Figure
(4.18).

(i) S1 = {s1, s2, s3}, S2 = {s1, s2, s4}, S3 = {s1, s2, s5}, S4 =
{s1, s3, s4}, S5 = {s1, s3, s5}, S6 = {s2, s3, s4}, S7 = {s2, s3, s5}, S8 =
{s3, s4, s5} are only minimal-global-offensive alliances;

(ii) S3 = {s1, s2, s5} is optimal such that forms both minimal-global-
offensive-alliance-neutrosophic number and minimal-global-offensive-
alliance number for G;

(iii) S8 = {s3, s4, s5} only forms minimal-global-offensive-alliance number
but not minimal-global-offensive-alliance-neutrosophic for G;

(iv) N = {s1, s2} isn’t global-offensive alliance. Since there is three
instances and only one instance is enough for G;
(a) First counterexample for the statement “N = {s1, s2} is global-

offensive alliance.”for G;
∃s3 ∈ V \N, |Ns(s3) ∩N | = 2 = 2 = |Ns(s3 ∩ (V \N)|
∃s3 ∈ V \N, |Ns(s3) ∩N | = 2 6> 2 = |Ns(s3) ∩ (V \N)|
∃s3 ∈ V \N, |Ns(s3) ∩N | 6> |Ns(s3) ∩ (V \N)|;

(b) second counterexample for the statement “N = {s1, s2} is global-
offensive alliance.” for G;
∃s4 ∈ V \N, |Ns(s4) ∩N | = 2 = 2 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | = 2 6> 2 = |Ns(s4) ∩ (V \N)|
∃s4 ∈ V \N, |Ns(s4) ∩N | 6> |Ns(s4) ∩ (V \N)|;

(c) third counterexample for the statement “N = {s1, s2} is global-
offensive alliance.” for G.
∃s5 ∈ V \N, |Ns(s5) ∩N | = 2 = 2 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | = 2 6> 2 = |Ns(s5) ∩ (V \N)|
∃s5 ∈ V \N, |Ns(s5) ∩N | 6> |Ns(s5) ∩ (V \N)|;

(v) Γs = 4 and corresponded set is S3 = {s1, s2, s5} for G;
(vi) Γ = 3 and corresponded sets are S1 = {s1, s2, s3}, S2 =

{s1, s2, s4}, S3 = {s1, s2, s5}, S4 = {s1, s3, s4}, S5 = {s1, s3, s5}, S6 =
{s2, s3, s4}, S7 = {s2, s3, s5}, S8 = {s3, s4, s5} which are only
minimal-global-offensive alliances for G.

4.34 Open Problems

In this section, some questions and problems are proposed to give some avenues
to pursue this study. The structures of the definitions and results give some
ideas to make new settings which are eligible to extend and to create new study.
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Figure 4.18: The set of black circles is minimal-global-offensive alliance. NTG11

Notion concerning alliance is defined in neutrosophic graphs. Neutrosophic
number is also introduced. Thus,

Question 4.34.1. Is it possible to use other types neighborhood arising from
different types of edges to define new alliances?

Question 4.34.2. Are existed some connections amid different types of alliances
in neutrosophic graphs?

Question 4.34.3. Is it possible to construct some classes of which have “nice”
behavior?

Question 4.34.4. Which mathematical notions do make an independent study
to apply these types in neutrosophic graphs?

Problem 4.34.5. Which parameters are related to this parameter?

Problem 4.34.6. Which approaches do work to construct applications to create
independent study?

Problem 4.34.7. Which approaches do work to construct definitions which use
all definitions and the relations amid them instead of separate definitions to
create independent study?

4.35 Conclusion and Closing Remarks

In this section, concluding remarks and closing remarks are represented. The
drawbacks of this article are illustrated. Some benefits and advantages of this
study are highlighted.
This study uses one definition concerning global powerful alliance to study
neutrosophic graphs. New neutrosophic number is introduced which is too close
to the notion of neutrosophic number but it’s different since it uses all values
as type-summation on them. The connections of vertices which are clarified by
general edges differ them from each other and put them in different categories
to represent a set which is called global powerful alliance. Further studies
could be about changes in the settings to compare this notion amid different
settings of neutrosophic graphs theory. One way is finding some relations amid
all definitions of notions to make sensible definitions. In Table (4.6), some
limitations and advantages of this study are pointed out.
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Table 4.6: A Brief Overview about Advantages and Limitations of this study tbl2c

Advantages Limitations
1. Defining Global Powerful Alliances 1. General Results

2. Applying on Strong Neutrosophic Graphs

3. Study on Complete Models 2. Study On Classes

4. Applying on Individuals

5. Applying on Family 3. Same Models in Family
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This book is based on neutrosophic 
graph theory which is designed to 
study different types of coloring in that 
graphs to get new ideas and new 
results. The results concern specific 
classes of neutrosophic graphs. New 
notions are defined in the comparable 
structures on these models to 
understand the behaviors of these 
models according to the notions.
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