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Abstract

In this outlet, I've devised the concept of relation amid two points where these points
are coming up to make situation which in that the set of objects are greed to represent
the story of how to be in whatever situations when these two points have the styles of
being everywhere in the highlights of the concept which are coming from the merits of
these points where are eligible to make capable situation to overcome every situation

when they're participant in the hugely diverse situations which mean too styles of graphs
with have the name or the general results for the general situation as possible as are.
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1 Preliminary On The Concept

I'm going to refer to some books which are cited to the necessary and sufficient erial
which are covering the introduction and the preliminary of this outlet so look [Ref. [1],
Ref. [2], Ref. [3], Ref. [{]| where Ref. [I] is about the textbook, Ref. [2] is common,
. [3] has good ideas and Ref. [{] is kind of disciplinary approaches in the good ways.

pproach for solving problems is an obvious selection for doing research and analysis
the sitnation which may elicit the vague perspectives which we want not to be for
extracting creative and new ideas which we want to be. I simultaneously study two
models. This study is based both research and discussion which the anthor thinks that
E.y be useful for understanding and growing our fantasizing and reality together. The
aim of this expository book i8 to present recent developments in the centuries-old

discussion on the interrelations between several types of domination in graphs. However,

the novelty even more prominent in the newly discovered simplified presentations of
several older results. Domination can be seen as arising from real-world application and

extracting classical results as first described by this article.The main part of this article,

concerning a new domination and older one, is presented in a narrative that answers
two classical questions: (1) To what extend must closing set be dominating? (ii) How
strong is the assumption of domination of a closing set? In a addition, we give an
overview of the results concerning domination. The problem asks how small can a
subset of vertices be and contain no edges or, more generally how can small a subset of
vertices be and contain other ones. Our work was as elegant as it was unexpected being
a departure from the tried and true methods of this theory that had dominated the field
for one fifth a century. This expository article covers all previous definitions. The

1/38

20

21

22

23




mmability of previous definitions in solving even one case of real-world problems due to
the lack of simultaneous attentions to the worthy both of vertices and edges causing us
to make the new one. The concept of domination in a variety of graphs models such as
crisp, weighted and fuzzy, has been in a spotlight. We turn our attention to sets of
vertices in a fuzzy graph that are so close to all vertices, in a variety of ways, and study
minimum such sets and their cardinality. A natural way to introduce and motivate our
subject is to view it as a real-world problem. In its most elementary form, we consider
the problem of reducing waste of time in transport planning. Our goal here is to first
deseribe the previous definitions and the results, and then to provide an overview of the
flows ideas in their articles. The final ontcome of this article is twofold: (i) Solving the
problem of reducing waste of time in transport planning at static state; (ii) Solving and
having a gentle discussions on problem of reducing waste of time in transport planning
at dynamic state. Finally, we discuss the results concerning holding domination that are
independent of fuzzy graphs. We close with a list of currently open problems related to
this subject. Most of our exposition assumes only familiarity with basic linear algebra,
polynomials, fuzzy graph theory and graph theory.

In this study, anthor analyzes the structure of domination in t?norm fuzzy graphs
an ts special case when using Tmin, as fuzzy graphs.

L.A. Zadeh introduced the concept of a fuzzy subset of a set as a way for
representing uncertainty. Zadeh?s ideas stirred the interest of researchers worldwide.
His ideas have been applied to a wide range of scientificlkRas. Theoretical mathematics
has also been touched by the notion of a fuzzy subset. In 1965, Zadeh published his
seminal paper Tfuzzy sets? which described fuzzy set theory and consequently fuzzy
logic. The purpose of Zadeh?s paper was to develop a theory which could deal with
ambiguity and imprecision of certain classes or sets in Human thinking, particularly in
the domains of pattern recognition, communication of information, and observation.
This theory proposed making the grade of membership of an element in a subset of a
universal set a value in the closed interval [0, 1] of real numbers. Zadeh?s idea have
found applications in computer science, artificial intelligence, decision analysis,
information science, system science, control engineering, expert systems, pattern
recognition, management science, operations research, and robotics. Theoretical
mathematies has also been touched by fuzzy set theory. In the classical set theory
introduced by Cantor, values of elements in a set are either 0 or 1. That is for any
element, there are only two possibilities: the element is the set or it is (. Therefore,
Cantor set theory cannot handle data with ambiguity and uncertainty. The ideas of
fuzzy set theory hav n introduced into topology, abstract algebra, geometry, graph
theory, and analysis. Analytical representation of physical phenomena can be fruitful as
models of reality, but are sometimes difficult to understand because they do not explain
much by themselves, and may remain unclear to the non-specialist. Other words,
Zadeh proposed fuzzy theory and introduced fuzzy set theory which can be considered
as the phenon‘aon of ambiguity across all systems displaying this property and its
consequences. Graph theory is one of the branches of modern mathematics having
experienced a most impressive development in recent years. The origin of graph theory
can be traced back to Euler?s work on the Konigsberg bridge problem (1735) which
subsequently led to the concept of an Eulerian graph. The first text book on graph
theory was written by D7enesKonig and published in 1936. A later text book by Frank
Harary published in 1968, was enormously popular and enabled mathematicians,
chemists, electrical engineers and social scientists to have common platform to dialogue
with each other. Graphs are represented graphically by taking a set of points on the
plane and it is desired to find some structure among the points in the form of edges
containing a subset of the pair of poi Graph theory plays a vital role as far as
application side is concerned. Graph ry is intimately related to many branches
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of mathematics including group theory, matrix theory, numerical analysis,
probability, topology and combinamcs becaunse of its diagrammatic representation and
its intuitive and aesthetic appeal. One of the most interesting problems in graph theory

at of Domination Theory. The earliest ideas of dominating sets are found in the

classical problems of covering chess boafffefvith minimmimm number of chess pieces.
Nowadays domination theory ranks to ong the most prominent areas of research in
graph theory and combinatorics. The concept of domination in graphs, with its many
variations, is now well studied in graph theory. The book by Chartrand and Lesniak
includes a chapter on dom- ination. For a more thorough study of domination in graphs,
@) Haynes et al.. The current list of papers on domination has over 1200 entries. The
theory of domination is forma]w by Clauge Berge in his book ?Theory of graphs and
its application? (1962). Berge mentions the strategies of keeping a number of locations
under surveillance, by a set of radar station. Oystein Ore we irst person to use the
term domination number in his book on Graph Theory. The theory of doramtion has
been the nucleus of research activity in graph theory in recent times. The fastest
growing area within graph theory is a study of domination and related subset problems
such independence, covering, matching, decomposition and labelling. Domination boasts
a host of applications to social network theory, land surveying, game theory,
interconnection network, parallel computing and image processing and so on. Today,
this theory gained popularity and remains as a major area of research due to the
contributions of 0.0re, C.Berge, E.J.Cockayne, S.T.Hedetniemi, TE—[a}'nes,
R.C.Laskar, P.J.Slater, V.R.Kulli, E.Sampathkumar, S.Arumugam. Fuzzy graph theory
has numerous applications in various fields like clustering analysis, database theory,
network analysis, information theory, ete. Fuzzy models can be used in problems
handling uncertainty to get more accurate and precise solutions. As in graphs, @
connectivity concepts play a key role in ap- plications related with fuzzy graphs. The
fuzzy definition of fuzzy graphs was proposed by Kanfmann, from the fuzzy relations
introduced by Zadeh. Although Rosenfmintroduced another elaborated definition,
including fuzzy vertex and fuzzy edges. Fuzzy graphs were introduced by Rosenfeld and
Yeh and Bang independently in 1975. Rosenfeld in his paper ?Fuzzy Graphs? presented
the basic structural and connectivity concepts while Yeh and Bang introduced different
connectivity parame- ters of a fuzzy graph and disenssed their applications in the paper
titled ?Fll_a' relations, Fuzzy graphs and their applications to clustering analysis?.
Rosenfeld considered fuzzy relations on fuzzy sets and developed the structure of fuzzy
graphs, obtaining analognes of several graph theoretical concepts. He introduced and
examined such comlts as paths, connectedness and clusters, bridges, cut vertices,
forests and trees. Fuzzy graphs introduced by Rosenfeld are finding an increasing
number of applica- tions in modelling real time systems where the level of information
inherent in the system varies with different levels of precision. Fuzzy models are
becoming useful because of their aim in reducing the difference between the traditional
numerical models used gineering and sciences and the symbolic models nsed in
expert systems and Al After the pioneering work of Rosenfeld and Yeh and Bang in
1975, when some basic fuzzy graph theoretic concepts and applications have been
indicated, several authors have been finding deeper results, and fuzzy analogues of many
other graph theoretic concepts. This include fuzzy trees, fuzzy line graphs, operations
on fuzzy graphs, antomorphism of fuzzy graphs,

fuzzy interm;raphs, cycles and cocyeles of fuzzy graphs, and metric aspects in
fuzzy graphs. Bhutani and Rosenfeld have introduced the concept of strong arcs.
Different parameters like sum distance in fuzzy graphs and chromatic number of fuzzy
graphs were discussed. The work on fuzzyaa.phs was also done by Akram, Samanta,
Nayeem, Pramanik, Rashmanlon and Pal. P.Bhattacharya discussed e properties of
fuzzy graphs and introduced the notion of eccentricity and centre in fizzy graphs.
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K.R.Bhutani introduced the concept of comme fuzzy graphs and concluded that a
complete fuzzy graph has no cut nodes. Xu a.ppm connectivity parameters of fuzzy
graphs to problems in chemical structures. The concept of domination in fuzzy graphs
was investigated by A.Somasundaram and S.Somasundaram. A.Somasundaram
presented t ncepts of independent domination, total domination, connected
domination an ination in cartesian products and composition of fuzzy graphs.
Somasundaram and Somasundaram discussed domination in fuzzy graphs. They defined
domination using effective edges in fuzzy graph. Nagoorgani and Chandrasekharan
defined domination in fuzzy grap]msing strong ares. Manjusha and Sunitha disenssed

some concepts in domination and total domination in fuzzy graphs using strong arcs. A.

Selvam Avadayappan, Gmihadewm, A. Mydeenbibi, T.A. Sub- ramanian, A.
Nagarajan, A. Rajeswari have studied the problem of obtaining an upper bound for the
sum of a domination parameter and a graph theoretic parameter and characterized the
corresponding extremal graphs. Motivated by the notion of dominating sets and their
applicability, we focused on introducing some dominating parameters in fuzzy graph
theory. For fuzzification of the following problems, types of nodes (based on advantages)
and types of connection with nodes can be assigned by different values. So the question
is based on based on values on nodes and ratio of total fvalues of adjacent 7-strong
connections to total of values of adjacent connections? Chess enthusiasts in Europe
considered the problem of determining the minimum number of queens that can be
placed on a chess board so that all the squares are either a.tmed by a queen or
occupied by a queen. Harary et al. explaine? interesting application in voting
situations using the concept of domination. A number of strategic locations are to be
kept under observations. ne of the important areas of applications of domination is
communication network, where a dominating set represents a set of cities which, acting
as transmitting stations, can transmit messages to eveﬂ city in the network. Another
area of application of domination is voting situations. Suppose the commander of the
Army Postal services plans to set up a few post offices in an B:or‘tant region with
minimum number of post offices to control the whole region. Now-a-day almost all
schools operate school buses for trans- porting children to and from schools. Among
many points, three important points to be noted are 1. The running time of a bus
between school and its terminus. 2. Maximum number of students in a bus at any one

e and 3. The maximum distance a student has to walk to board a school bus.
Consider a computer network modeled by a 4-cube. The vertices of the 4-cube
represents computers and edges represent direct communication link between two
computers. So, in this model we have 16 computers or processors to which it is directly
connected. The problem is to collect information from all processors and we like to do it
relatively often and relatively fast. So we identify a small set of

6 HENRY GARRETT processors called collecting processors and ask each processor
to send its information to one of a small set of collecting processors. We assmme that at
most a one-unit delay between the time a processor sends its information and time it
arrives at a nearest collfgfor is allowed. So, we have to find an dominating set among
the set of a processors. Consider the problem of locating a single fire station, police
station or a similar such service facility to serve the communities. Also, we would like to
locate such a service facility in one o@se communities and not at an arbitrary point
along the road, due to some reasons. Let Pn be a set of points in general position on
the plane. The unit distance graph UDG(Pn) associated to Pn is a graph whose vertex
set consists of the elements of Pn, two of which are connected if they are at distance at
most one. Unit distance graphs are nsed to model various types of wireless networks,
including cellular networks, sensor networks, ad-hoc networks and others in which the
nodes represent broadcast stations with a uniform broadcast range we shall refer to
networks that can be modeled using unit distance graphs as unit distance wireless
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networks, abbreviated as UDW networks. We first briefly illustrate our opinion.
Domination are among the most fundamental concepts of graph theory. Also,
domination can hehave in many strange ways. For instance, besides the classical
definitions of domination, there are many characterization of this concept. One of this
characterization due to A, Somasundaram and S. Somasundaram, see also Refs. for
further generalizgons. One the contrary and quite surprisingly, there are nowhere
these definitions Solving the problem of reducing waste of time in transport planning
and also (separately) all others real-world problems. Somehow, a key direction of study
of domination deals with trying to provide a clear structure of what the dominating set
of vertices looks like. The leading theme of this expository article is to discuss the
following two questions concerning fuzzy graphs

Q1: How much closing does dominating imply?

2: How much dominating does closing imply?

They will be addressed. The main narrative presented in these smons is
independent of any results from graph theory and/or calculus. The purpose of this
expository article is to proue an overview of the authors? recent series of work, in
which a positive answer to the problem of reducing waste of time in transport planning
for the our new definition is given. Consider a set of cities connected by communication
paths, Which cities is connected to others by roads? We face with a graph model of this
situation. But the cities are not same and they have different privileges in low traffic
levels and this events also occur for the roads in low-cost levels. So we face with the
weighted graph model, at first. These privileges are not crisp but they are vague in
nature. So we don?t have a weighted graph model. In other words face with a fuzzy
graph model, which must study the concept of domination on it. Next we turn our
attention to sets of vertices in a fuzzy graph G that are close to all vertices of G, in a
ety of ways, and study minimum such sets and their cardinality. In 1998, the
concept of effective dom'ma.ticml fuzzy graphs was introduced by A. Somasundaram
and S. Somasundaram as the cl | problems of covering chess board with minimum
number of chess pieces. In 2010, the concept of 2-strong(weak) domination in fuzzy
or was introduced by

C. Natarajan and S.K. Ayyaswamy as the extension of stlgg (weak) domination in
crisp graphs. In 2014, the concept of 1-strong domination in fuzzy graphs was
introduced by O.T. Manjusha and Mgl Sunitha as the extension of domination in fuzzy
graphs with strong edges. In 2015, the concept of 2-domination in fuzzy graphs was
introduced by A. Nagoor Gani and K. [‘rasanng_)evi as the extension of 2-domination
in crisp graphs. In 2015, the concept of strong domination in fi aphs was
introduced by O.T. Manjusha and M.S. Sunitha as reduction o value of old
domination num- ber and extraction of classic results. In 2016, the concept of
(1,2)7domination in fuzzy graphs was introduced by N. Sarala and T. Kavitha as the
extension of (1,2)7domination in crisp graphs. A few researchers studied other
domination variations which are based on above definitions. So we only compare our
nezllefinition with the fundamental dominations.

This problem was mentioned by Ore. According to the rules of chess a queen can, in
one move, advance any number of squares horizontally, diagonally, or vertically
(assuming that no other chess figure is on its way). How to place a minimum number of
queens on a chessboard so that each square is controlled by at least one queen? See one
of the solutions in (Fig. 77). For fuzzification of this problem, types of square (based on
sensitive place in game of chess, chess pieces) and t}"pof connection can be assigned
by different values. So the question is changed to this. How to place a number of gqueens
on a chessboard so that each square is controlled by at least one queen based on values
on queens and ratio of tog):f values of adjacent 7-strong connections to total of values
of adjacent connections? ating Radar Stations Problem The problem was discussed
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by Berge. A number of strategic locations are to be kept under surveil- lance. The goal
is to locate a radar for the surveillance at as few of these locations as possible. How a
set of locations in which the radar stations are to be placed can be determined? For
fuzzification of this problem, types of radar stations (based on power of them) and types
of connection wifill locations can he assigned by different values. So the question is
changed to this. How a set of locations in which the radar stations are to be placed can
be determined based on values on radar stations and ratio of totof values of adjacent
7-strong connections to total of values of adjacent connections? Problem of
Communications in a Network Suppose that there is a network of cities with
communication links. How to set up transmitting sta- tions at some of the cities so that
every city can receive a message from at least one of the transmitting stations? This
problem was discussed in detail by Liu. For fuzzification of this problem, types of cities
(based on population, structure) and types of connectilh with cities can be assigned by
different val- nes. So the question is changed to this. How to set up transmitting
stations at some of the cities so that every city can receive a message from at least one
of the transmitting stations based on values on cities and ratio of total §Zalues of
adjacent 7-strong connections to total of values of adjacent connections? Nuclear Power
Plants Problem A similar known problem is a nuclear power plants problem. There are
various locations and an arc can be drawn from location x to location y if it is possible
for a watchman stationed at x to observe a warning light located at y. How many
gnards are needed to observe all of the warning lights, and where should they be
located? For fuzzification of this problem, types of guards (based on abilities) and types
of connection Wiguards can be assigned by different values. So the question is
changed to this. How many guards are needed to observe all of the warning lights, and
where should they be located based on values on gnards and ratio of totdif values of
adjacent 7-strong connections to total of values of adjacent connections? At present,
domination is considered to be one of the fundamental concepts in graph theory and its
various applications to ad hoc networks, biological networks, distributed computing,
social networks and web graphs partly explain the increased interest. Such applications
usnally aim to select a subset of nodes that will provide some definite service such that
every node in the network is 7close? to some node in the subset. The following
examples show when the concept of domination can be applied in modelling real-life
problems. Modelling Biological Networks Using graph theory as a modelling tool in
biological networks allows the utilization of the most graph- ical invariants in such a
way that it is possible to identify secondary RNA (Ribonucleic acid) motifs numerically.
Those graphical invariants are variations of the domination number of a graph. The
results of the research carried out show that the variations of the domination number
can be used for correctly distinguishing among the trees that represent native structures
and those that are not likely candidates to represent RNA. For fuzzification of this
problem, types of location (based on advantages) and types of connection with locations
can be assigned by different values. So the question is based on based on values on
locations and ratio of totflof values of adjacent 7-strong connections to total of values
of adjacent connections? Modelling Social Networks Dominating sets can be nsed in
modelling social networks and studying the dynamics of relations among numerons
individuals in different domains. A social network is a social structure made of
individuals (or groups of individuals), which are connected by one or more specific types
of interde- pendency. The choice of initial sets of target individuals is an important
problem in the theory of social networks. In the work of Kelleher and Cozzens, social
networks are modelled in terms of graph theory and it was shown that some of these
sets can be found by using the properties of dominating sets in graphs. For fuzzification
of this problem, types of people (based on abilities) and types of connection with people
can be assigned by different values. So the question is based on based on values on
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people and ratio of totof values of adjacent 7-strong connections to total of values of
adjacent connections? Facility Location Problems The dominating sets in graphs are
natural models for facility location problems in operational re- search. Facility location
problems are concerned with the location of one or more facilities in a way

that optimizes a certain objective such as minimizing transportation cost, providing
equitable ser- vice to customers and capturing the largest market share. For
fuzzification of this problem, types of location (based on advantages) and types of
connection with locations can be assigned by different values. So the question is based
on based on values on locations and ratio of total of vas of adjacent 7-strong
connections to total of values of adjacent connections? Coding Theory The concept of
domination is also applied in coding theory as discussed by Kalbfleisch, Stanton and
Horton and Cockayne and Hedetniemi. If one defines a graph, the vertices of which are
the n- dimensional vectors with coordinates chosen from {1, ...,p},p > 1, and two
vertices are adjacent if they differ in one coordinate, then the sets of vectors which are
(n, p)-covering sets, single error cor- recting codes, or perfect covering sets are all
dominating sets of the graph with determined additional properties. For fuzzification of
this problem, types of codes (based on types of words, different words, same words) and
types of connection with codes can be assigned by different values. So the question is
based on based on values on codes and ratio of total Ofues of adjacent 7-strong
connections to total of values of adjacent connections? Multiple Domination Problems
An important role is played by multiple domination. Multiple domination can be used
to construct hierarchical overlay networks in peer-to-peer applications for more efficient
index searching. The hier- archical overlay networks usnally serve as distributed
databases for index searching, e.g. in modern file sharing and instant messaging
computer network applications. Dominating sets of several kinds are used for balancing
efficiency and fault tolerance as well as in the distributed construction of minimum
spanning trees. Another good example of direct, important and quickly developing
a.pplica.ticm)f multiple domination in modern computer networks is a wireless sensor
network. A wireless sensor net- work (WSN) usually consists of up to several hundred
small autonomous devices to measure some physical parameters. Each device contains a
processing unit and a limited memory as well as a radio transmitter and a receiver to be
able to communicate with its neighbors. Also, it contains a limited power battery and is
constrained in energy consumption. There is a base station, which is a special sensor
node used as a sink to collect information gathered by other sensor nodes and to
provide a connection between the WSN and a usual network. A routing algorithm

ows the sensor nodes to self-organize into a WSN. As stated, an important goal in
WSN design is to maximize the functional lifetime of a sensor network by using energy
efficient distributed algorithms, networking and routing techniques. To maximize the
functional lifetime, it is important to select some sensor nodes to be- have as a
backbone set to support routing communications. The backbone set can be considered
as a dominating set in the corresponding graph. Dominating sets of several different
kinds havefiroved to be useful and effective for modelling backbone sets. In the recent
literature, particular attention has been paid to construction of k-connected k-
dominating sets in WSNs, and several probabilistic and deterministic approaches have
been proposed and analyzed. The backbone set of sensor nodes should be selected as
small as possible and, on the other hand, it should gnarantee high efficiency and

36 HENRY GARRETT reliability of networking and communications. This trade-off
requires construction of multiple dom- inating sets providing energy efficient and
reliable data dissemination and communication protocols. For fuzzification of this
problem, types of sensor nodes (based on advantages) and types of connection with
sensor nodes can be assigned by different values. So the question is based on based on
values on sensor nodes and ratio of total of values of adjacent 7-strong connections to

7/38

284

286

287

288

20

1

22

23

234

25

26

28

29

301

302

3

05

07

kil

i

i1z

33

4

315

36

ur

i1a

319

20

321

322

23

324

325

26

27

328

29

330

331

i3z

333

i34

135




total of values of adjacent connections? A homogeneous WSN consists of wireless sensor
devices of the same kind. All the devices have the same set of limited resources and,
originally, no hierarchy is imposed on the network structure and communications. In a
network of this kind, the only special sensor node is a base station. For all the other
nodes, it is necessary to construct and switch the backbone sets and communications

iciently so that all the network nodes stay in operation as long as possible. Therefore,

in this case, it is important to be able to construct and switch dominating sets and
route communications uniformly and efficiently with respect to the energy consumption
of each particular sensor node. This has to be done to optimize the functional lifetime
of the whole network. Usnally, a WSN is mathematically modelled as a unit or

quasi-unit disk graph. These are the most natural and general graph models for a WSN.

In a unit disk graph model, nodes correspond to sensor locations in the Euclidean plane
and are assumed to have identical (unit) transmission ranges. An edge between two
nodes means that they can communicate directly, i.e. the distance between them is at
most one. A survey of known results on unit disk graphs, including algorithms for
constructing dominating sets, can be found. A quasi-unit disk graph model takes into
consideration possible trans- mission obstacles and is much closer to reality: we are sure
to have an edge between two nodes if the distance between them is at most a parameter
d, 0d;jl Ifthe distance between two nodes is in the range from d to 1, the existence
of an edge is not specified. A description of several more restricted geometric graph
models for WSN design, e.g. the related neighborhood graph, Gabriel graph, Yao graph
ete., can be found. Domination is an area in graph theory with an extensive research
activity. A book by Haynes, Hedet- niemi and Slater on domination published in 1998
lists 1222 articles in this area.

a.ort Serutiny on Background

We introduce a new variation on the domination theme. These concepts are
definitely interesting in the context of networks, as mentioned, the realization that
networks are Teverywhere?, is fundamental to our modern lives. It becomes even more

important now that algorithms are becoming more and more ?prevalent? in everything,

too. The mathematical background of this domination are related to other theoretical
concepts of fuzzy graphs, more than old definitions. Some applications, from the
real-world problems, are better modeled with this definition other than old ones. In one
applications, optimization of transport routes occurs such that the acceptable parts are
higher than on others. In the other application, reducing waste of time in
transportation planning is caused by analyzing data of its fuzzy graph model. From the
transport properties, comparison of cities can be better modeled. So we can assign
assets usefully or change the infrastructures of transport for reducing waste of time. We
hope these concepts are usetul for stud}'inohlerm; of mathematics and real-world
which make the future better as possible. At present, domination is considered to be
one of the fundamental concepts in graph theory and its various applications to ad hoc
networks, biological networks, distributed computing, social networks and web graphs
partly explain the increased interest. t-norm fuzzy graphs are the vast subject which
have the fresh topics and many applications from the real-world problems that make the
future better. So we defined domination which is a strong tools for analyzing data, on
t-norm fuzzy graphs, for the first time. We hope this Conce@s useful for studying
theoretical topics and applications on t-norm fuzzy graphs. Graph theory is one of the
branches of modern mathematics having experienced a most impressive development in
recent years. One of the most interesting problems i ph theory is that of Domina-
tion Theory. Nowadays domination theory ranks to ong the most prominent areas
of research in graph theory and combinatorics. The theory of dor.ma.tion has been the
nucleus of research activity in graph theory in recent times. The fastest growing area
within graph theory is a study of domina- tion and related subset problems such
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independence, covering, matching, decomposition and labelling. Domination boasts a
host of applications to social network theory, land surveying, game theory, in-
terconnection network, parallel computing and image processing anfigo on. Today, this
theory gained popularity and remains as a major area of research. At present,
domination is considered to be one of the fundamental concepts in graph theory and its
various applications to ad hoe networks, biological networks, distributf computing,
social networks and web graphs partly explain the iareased interest. More than 1200
papers already published on domination in graphs. Without a doubt, the literature on
this subject is growing rapidly, and a considerable amount of has been dedicated
to find different bounds for the domination numbers of graphs. However, from practical
point of view, it was necessary to define other types of dominations. t of these new
variations required the dominating set tcmve additional properties. In 1965, Zadeh

lished his seminal paper ?fuzzy sets? as a way for representing uncertainty. [ 75,
127y graphs were introduced by Rosenfeld and Yeh and Bang independently as fuzzy
models

which can be used in problems handling uncertainty. In 1998, the concept of
domination in fuzzy graphs was introduced by A. Somasundaram and S. Somasundaram
as the classical probl@p8 of cov- ering chess board with minimum number of chess
pieces. They defined domination in fuzzy graph by using effective edges. The works on
domination in fuzzy graphs were also done such as domination, strong domination, (1,
2)-vertex domination, 2-domination, connected domination, total domination,
Independent domination, Co: mentary nil domination, Efficient domination, strong
fZ3:k) domi- nation and etc. In 1965, Zadeh pglhed his seminal paper 7fzzy sets?
as a way for representing uncertainty. In 1975, v graphs were introduced by
Rosenfeld and Yeh and Bang innpendently as fnzzy models which can be used in
problems handling uncertainty. Domination as a theoretical area in graph theory was
formalized by Berge in 1958, in the chapter 4 with title ? The fundamental Numbers of
the theory of Graphs? (Theorem 7, p.40) and Ore (Chapter 13 , pp. 206, 207) in 1962.
Sinee 1977, when Cockayne and Hedetniemi (Section 3, p. 249-251) presented a survey
of domination results, domination theory has received considerable attention. A set S of
vertices of G (Chap. 10, p. 302) is a dominating set if every vertexin V (G) 7 S is
adjacent to at least one vertex in S. The minimum cardinality among the dominating
sets of G is called the domination number of G and is denoted by 7(G). A dominating
set of cardinality 7(G) is then referred to as minimum dominationg set. Dominating sets
appear to have their origing (Example 2, p. 41) in the game of chess, where the goal is
to cover or dominate various squares of a chessboard by certain chess pieces. Consider a
set of cities connected by communication paths, Which cities is connected to others by
roads? We face with a graph model of this situation. But the cities are not same and
they have different privileges in low tratfic levels and this events also oceur for the roads
in low-cost levels. So we face with the weighted graph model, at first. These privileges
are not crisp but they are vague in nature. So we don?t have a weighted graph model.
In other words, w e with a fuzzy graph model, which must study the concept of
domination on it. Next we turn our attention to sets of vertices in a fuzzy graph G that
are close to all vertices of G, iva.riety of ways, and study minimum such sets and
their cardinality. In 1998, the concept of effective domination i zy graphs was
introduced by A. Somasundaram and S. Somasundaram as the classi roblems of
covering chess board with minimum number of chess pieces. IfEER10, the concept of
2-strong(weak) domination in fuzzy graphs was introduced by C. Natarajan and S.K.
Ayyaswamy as the extension of stifffflg (weak) domination in crisp graphs. In 2014, the
concept of 1-strong domination in lizzy graphs was introduced by O.T. Manjusha and

. Sunitha as the extension of domination in fuzzy graphs with strong edges. In 2015,
+ concept of 2- domination in fuzzy graphs was introduced by A. Nagoor Gani and K.
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Prasanna Devi as the extension of 2-domination in crispEEBphs. In 2015, gcon{:ept of
strong domination in fuzzy graphs was intro- duced by O.T. Manjusha and M.S.
Sunitha as redu of the value of old domination number and extraction of classic
results. In 2016, the conecept of (1, 2)7domination in fuzzy graphs was introduced by N.
Sarala and T. Kavitha as the extension of (1, 2)?domination in crisp graphs. A few
researchers studied other domination variations which are based on above definitions,
e.g. connected domination, total domination, Independent domination, Complementary
nil domination, Efficient domination. So

we only compare our new definition with the fundamental dominations. In a world
of uncertaintfgiwhere systems are aligned in a complicated and unsuitable manner, a
tradi- tional mathematical tool with its strict boundaries of truth and falsity has not
implanted itself with capability of reflecting the reality. When the convolution of the
real life system increases, the human ability to makefsfrupulous and yet significant
statement about its conduct decreases. However, if a threshold is reached. precaon and
significance become practically exclusive characteristics in a mutual manner. As a
result, our concern with the discernment of problems and efforts of solutions are of a
different order than in the past. As we become aware of how much we know and how
much we do not know, information and uncertainty themselves become the focus of our
concern. This uncertainty will be of particular interest, leading to a different way of
giving structure to the point set, known as fuzzy set.

Short Discernment on Tools

At first, we compare our new definition with previous definitions about domination
in fuzzy graphs. We do this comparison on constructing both of 7number? and 7set? by
attention to mathematical concepts and applications. Finally, we give mathematical
definitions together some examples which are used them. From the mathematical
aspects, being equivalent the ?-strong ares with the bridges, cause which we use 7-strong
arcs for constructing a ?-strong dominating set. The bridges have deeply concepts and
various results in fuzzy graph theory due to their definition which show that they are
important arcs. These ares are also related to many important concepts of other fuzzy
graphs areas, e.g. fuzzy forest, fuzzy tress, fuzzy cut node, fuzzy cut arcs and etc.
Definition of this concept state that those arcs are changing of strength of
connectedness which is very important from theoretical and applicational aspects.
Because the sensitive roads are effective. These roads will change any decision about
transportation in reality. These arcs are definitely interesting in the context of networks,
the realization that networks are everywhere is fundamental to our modern lives. It
becomes even more important now that algorithms are becoming more and more
prevalent in everything too. Speaking of understanding proteins is a an example.
Analyzing networks, e.g. molecular networks, fmmeb network, protein interactions
network, facebook and other dense networks, for the realization of networks are
Teverywhere?. From social networks such as facebook, the world wide web and the
internet to the complex interactions between proteins in the cells of your bodies, we face
the challenge of understanding their structure and developments. We are also
interesting in the research works in new technologies that can make the future or make
the future better as possible. In reality, if we have a set of cities, then those have
various roads which have various types of both of qualities and numbers. Quality of
locations is different. We use Thridges? which are sensitive paths for 7constructing the
set? of dominating locations and also use ?quality of locations? together quality of
sensitive paths and all paths for 7constructing the mumber? of domination of locations
on other locations. In other words, we construct a new fuzzy graph from previous fuzzy
graph model by assigning a new values with respect to summation their initial values
with a fraction from values of sensitive roads to values of all roads. We want to decrease
the costs. So this mumber must be the minimum, i.e. we must use the locations and the
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roads which have the less values as possible for sel n of the set of interesting
locations. The membership function 7 on the node set of G can be constructed from the
statistical data that represents value of cities with respect to population, locations of
stations, facilities of stations, speed of doing works, number of stations, weather and
climate, uniques properties, available different roads, number of passengers in different
seasons, solving speci@mﬁrementﬁ of passengers, busy time and ete. The membership
function 7 on the arc set of G can be constructed from the statistical data with respect
to less number of crime, accidents, beauty of the roads, suitable weather, lower raining,
lower block of the road, lower road events e.g. falling stones, lower snowing, high
numbers of less raining days, lower number of warming days, number of emergency
locations in the roads, high security in events, quality of facilities in events, lower
number of block of the road due to bad weather. Now the terms 7lower, high, less,
beauty, busy, quality? are vague in nature. Thus we get a fuzzy graph

model. It is interesting to note that a road is of some city to next city and a path
contains some roads. Now, we opt some roads which have a highest privilege between
other paths. In our terminology, we call these roads by 7-strong arcs. If these roads
deleted, the maximum privilege of all paths decrease between two cities. Thus we pay
attentions to these special roads. Every city outside of the set of special cities must be
connected to at least one special cities by the special road. For constructing the number
of this fuzzy model, we assign to each special cities, a new privilege which is obtained
from summation its previous privilege with amount of power of privilege of special roads
to others. Finally, we opt the set which summation of privilege of its cities are the
minimum. We call it by vertex dominating set. We also get a number which state other
presentation of this fuzzy model with respect to privileges of cities, privileges of all
roads and privileges of all special roads. This number is called by vertex domination
number. Now, we will bring the old definitions which serves as a foundation of the rest
comparison with the newest. The comparison between old definitions and our new

ition about domination in fuzzy graphs can be discussed by structures of terms

Tdominating set?, and 7domination number?. Dominating set.: The structure of
?dominating set? only depend on the type arc which is used in constructing it. We use
the type of arc which is equivalent with bridge. This type of arc in comparison to other
type ares which are used in old definition, is more useful from mathematical and
applicational perspective as mentioned in the first of this section. Hence these problems
canse motivation for us to changing the type of arc which construct ?dominating set?.
Domination number.: ?Domination number? are introduced in old definitions, based on
ei- ther the values of nodes or the values of arcs, however we defined the domination
number by both of value of nodes and value of ares. In old definitions, either the values
of locations or the values of path is considered, however these parameters is
simultaneously affected on any decision as mentioned in the first of this section. The

v variables can be defined for the junctions in planning transportation e.g.
Generation variables: Occupation in the res- idence area, Population, Residential space,
Population density, Number of households, Car ownership rate, Average price of one
square meter of land, Students population, Traffic zone space, Number masidential
buildings, Distance to entertainment complexes. Attraction vari- ables: Occupation in
the working area, Business/ Administrative/Agricultural/Industrial Land Space,
Administrative building space, Number of Administrative/Business/Industrial Build-
ings, Schools? space, Number of Students,/Schools/Classes, Number of
Universities/Students, Number of Retailers, Number and Capacity of
Cinemas /Mosques, Exhibitions, Parks/Hospi- tals. These variables can be positive or
negative. Vertex weight of a node in a fuzzy graph can be useful. Another privilege of
this definition can be another modeling of the situation. We can assign a new value to
every junctions by its vertex weight. Now, we have a new fuzzy graph model. In this
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model, the roads have no values but value of junctions is more useful
in transportation planning. We can pay attentions to the cities which have higher
value, for assigning assets, optimization of their routes, or planning of travel and

transportationo this motivated us to improve the definition of ?domination number?.

Applications.: Reducing waste of time in transportation planning and optimization of
trans- port routes are examples of importance of these concepts as mentioned. A case
study on optimization of transport routes is as follows. A bicyclist may prefer a route
where the ac- ceptable parts (for this study, acceptable: the output value is over 0.5;
above the average; the all parts of route are 7-strong by literatures of this research
work.) are higher than on other route-referring to Route 2. Hence this study case
illustrates the importance of choice of roads type, ?-stronmrcs, which are introduced as
the acceptable parts of route in this case. Another ones, Reducing vﬁte of time in
transportation planning by using the concept of vertex domination. It is well known
and generally accepted that the problem of determining the domination number of an
arbitrary graph is a difficult one. Because of this, researchers have turned their
attention to the study of classes of graphs for which the domination problem can be
solved in polynomial time.

2 Results Of New Concepts

Definition 2.1. Hugely diverse situations are said to be named graphs or are called for
the unnamed graphs.

Definition 2.2. In the hugely diverse situations,

e An object is said to be in the set of Dread-greed-hunted set (DGHS) when
'tis called for differentiating amid some couple points where are just done by the
object.

¢ In the special case, differentiating means having different distance from the
intended object so this object is gross to located the mentioned couple.

Proposition 2.3. Every Complete Graph has Dread-greed-hunted set (DGHS)
including all random selection of points with just only exception one point.

Proof. Gross. g
Definition 2.4. In the hugely diverse situations,
e A line is said to be

e In the special case, differentiating means having different distance from the

.intended object so this object is gross to located the mentioned couple.
1
We provide some basic background for the paper in this section.

Definition 2.5. A binary operation @ : [0,1] x [0,1] — [0,1] is a f~norm if it satisfies
the following for z,y,z, w € [0,1]:

l.1@z==x
2 zy=yQx
JreaRz) =Ry @z

4d Hfw<zandy<zthenwoy<zr®:z
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We concern with a f-norm fuzzy graph which is defined on a crisp graph. So we
recall basic concepts of crisp graph.

A graph G is a finite nonempty set of objects called vertices (the singular is vertfez)
together with a (possibly empty) set of unordered pairs of distinct vertices of G called
edges. The vertex s (G is denoted by V(G), while the edge set is denoted by E(G).

We recall that a fuzzy subset of a set S is a function of S into the closed interval
0.1].

la}-' down the preliminary results Wl’m recall some basic concepts of fuzzy graph.

A fuzEEYraph in is denoted by G = (V. o, i) such that u({z,y}) < o(z) A a(y) for all
z,y € V where V is a vertex [, o is a fuzzy subset of V, p is a fuzzy relation on V'
and /A denote the minimum. We call g the fuzzy vertex set of G and u the fuzzy edge
set of G, respectively. We consider fuzzy graph &G with no loops and assume that V' is
finite and nonempty, p is reflexive (i.e., p({z,z}) = o(z), for all x) and symmetric (i.e.,
w({z, vEBE p({y,x}), for all z,y € V). In all the[gmples o and p is chosen suitably.
In any fuzzy graph, the underlying crisgffaph is denoted by G* = (V. E) where V' and
E are domain of o and yu, respectively. The fuzzy graph H = (7, v) is called a partial
fuzzy subgraph of G = (o, p) if v C p and 7 C o. Similarly, the fuzzy graph H = (r,v) is
called a fuzzy subgraph of G = (V, o, ) induced by P in if P C V,7(z) =o(z) for all
x € Pand v({z,y}) = p({z,y}) for all =, §FJ P. For the sake of simplicity, we
sometimes call H a fuzzy subgraph of G. We say that the partial fuzzy subgraph (7, v)
spans the fuzzy graph (o, p) if ¢ = 7. In this case, we call (7,r) a spanning fuzzy
subgraph of (o, ).

IFA the sake of simplicity, we sometimes write zy instead of {x, y}

A path P of length n in is a sequence of distinet vertices wug,uy, -+« , 1, such that
wlwi—r,ui) = 0,i=1,2,--- ,n and the degree of membership of a weakest edge is
defined as its strength. If ug = u,, and n > 3 then P is called a cyele and P is called a
Juzzy eyele, if it contains more than one weakest edge. The strength of a cycle is the
strength of the weakest edge in it. The strength of connectedness between two vertices z
and y in is defined as the maximum of the strengths of all paths between = and y and is
denoted by pg (z,y).

A fuzzy grap = (V,o.pu) is connected in if for every z,y in V, pgF (z,y) = 0.

Definition 2.6. Let G = (V, E) be a graph. Let o be a fuzzy subset of V and p be a
fuzzy subset of E. Then (o, u) is called a fuzzy subgraph of G with respect to a
t-norm @ if for all wv € E, u(uv) < o(u) @ o(v).

Let k be a positive integm:)eﬁne pF(u,v) = V{p(uuy ) @ - @ plu,_v)| P
DU = U, Uy, ugeel u, = v 8 a path of length k from u to v } Let p®(u,v) =
V{p¥F(u,v)|k € N} where N denotes the positive integers.

In this sectio provide the main results.

Definition 2.7. Let G :mu) be a t-norm fuzzy graph with respect to a t-norm .
Let uv € E. all that wv is a-strong edge if p(uv) > p |, (u,v).

Befinition 2.8. Let G = (o, 1) be a t-norm fuzzy graph with respect to a f-norm @.
Let z,y € V. We say that » dominates y in G as a-strong if the edge {z,y} is a-strong.

DefRjition 2.9. Let @ be a t-norm. Let (o, ) be a t-norm fuzzy graph with respect to
. A subset S of V is called a a-strong dominating set in G if for every v € S, there
exists u € § such that v dominates v as a-strong.

Definnon 2.10. Let G = (o, ) be a t-norm fuzzy graph with respect to a f-norm .
Let S be the set of all a-strong dominating sets in G. Tiffertex domination

number of G is defined as minpcg(X,cplo(u) + LfIT{n")J—)] and it is denoted l:n‘rv(G). If
sl

‘fj{;:‘)) equal with 0. The a-strong dominating

d(u) = 0, for some u € V, then we consider
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set that is correspond to +,(() is called by vertex dominating set. We also say
d (u)

Yueplo(u)+ dray ) vertex weight of D, for every D € S and it is denoted by wy (D).
3

Definition 2.11. Let (o, u) be a fuzzy graph with respect to ©@. Then (o, ) is said to
be complete with respect to @, if for all u,v € V, pluv) = a(u) @ a(v).

Proposition 2.12. Let G = (o, ;1) be a complete fuzzy graph with respect to @. Then
1. pE (u,v) = pluw),Yu,v e V

2. G has no cutvertices. .
10

Corollary 2,13. A complete t-norm fuzzy graph with respect to @ is a-strong edgeless.

Proof. Let (o, ) be a complete t-norm fuzzymph with respect to @. For all u,v € V,
(u,'v) = pfu,v) by Proposition (3.13). So for all w,v € V, pg°(u,v) > p(u,v). Hence
uw jg not a-strong edge. The result follows. 0

It is well known and generally accepted that the problem of determining the
domination number of an arbitrary graph is a difficult one. Because of this, researchers
have turned their attention to the study of classes of graphs for which the domination

problem can be solved in polynomial time.
16
Proposition 2.14 (Complete t-norm fuzzy graph). Let G = (o, 1) be a complete

t-norm fuzzy graph with respect to @. Then G = K,,, v,(K,) = p.

Proof. Since G = (o, i) be a complete t-norm fuzzy graph with respect to @, none of
edges are a-strong by Corollary (3.14). so we have

TulG) = Elei%[r‘ueﬂg(”)] =Yy evo(u) =p

by Definition (2.10). Hence we can write ~,(f ) =p by our notations. 0

Proposition 2.15 (Empty t-norm fuzzy graph). Let G = (o, ) be a t-norm fuzzy
graph with respect to a t-norm @. Then v,(G) = p, if G be edgeless, i.e G = K,,.
53

of. Since (¢ is edgeless, Hence V' is only a-strong dominating set in G and none of
arcs are a-strong. so we have 7, (G) = p by Definition (2.10). In other words,
Yul# ) = p by our notations. g

It is interesting to note the converse of Proposition (3.17) that does not hold.

inition 2.16. A t-norm fuzzy graph G with respect to a f-norm @ is said
bipartite, if the vertex set V' can be partitioned into two nonempty sets V; and V;
such that p(vive) =01if 1,r1,1,r;m/1 or vy, vz € Va. Moreover, if p(uv) = o(u) @ o(v) for
all uw € V) and v € V, then GG is called a complete bipartite -norm fuzzy graph
and is denoted by K, »,, where o1 and s are reﬂctively the restrictions of o to
and V5. In this case, If |[Vi| =1 or |V,| = 1 then a complete bipartite f-norm fuzzy
graph is said a star t-norm fuzzy grapa ‘hich is denoted by K .

Propogition 2.17. A complete bipartite t-norm fuzzy graph is a-strong edgeless.

Proof. Let G = (o, u) be a compln bipartite f-norm fuzzy graph with respect to a
t-norm @. Let w € V},v € V,. the strength of path P from u to v is of the form
olu)®- @av) < m) @eo(v) = pluv). So pg (u,v) < p(uv). uw is a path from u to v
such that p(u,v) = a(u) @ a(v). So pg (u,v) = p(uv). Hence g (u,v) = pluv). So
p:\;‘,“’(u,i:) > p(uv) that induce ww is not a-strong edge. The result follows. i
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Corollary 2.18. A star t-norm fuzzy graph has no a-strong edges.
Proof. Obviously, the result is hold by using [’r%)sition (3.19). 0

Proposition 2.19 (Star f-norm fuzzy graph). Let G = (o, u) be a star t-norm fuzzy
graph with respect to at-norm @. Then G = K, , and v,(K; ») = o(u) where u is
center of G.

Proof. Let G = (a,p) kni star t-norm fuzzy graph with respect to a f-norm . Let
V = {u,v1,va, -+ ,v,} such that u and v; are center and leaves of G, for i<n,
respectively. The edge uvi,1 <i < n is omly path between u and v;. So {u} is vertex
dominating set in G. G is a-strong edgeless by Corollary (3.21). So

(K = a(u). O
71.( l,n:r) ( )
Proposition 2.20 (Complete bipartite t-norm fuzzy graph). Let G = (o, u) be a star
t-norm fuzzy graph with respect to a t-norm @ which is star t-norm fuzzy graph.
Then G = Kcrl,ch and ‘Tr.-(Kcrl,crz) = minue‘lr’l,r.-e‘lr’z(g(u) + g(’f})),

Proof. Let G # K, be complete bipartite -norm fuzzy graph with respect to ©. Then
both of V7 and Vs incl more than one vertex. In Ky, 4,, none of edges are q-strong
by Proposition (3.19). , each vertex in V] is adjacent with all vertices in V; and
Eversely. Hence in K, ., the a-strong dominating sets are Vi and V, and any sets
containing 2 vertices, one i and other in V. Hence

V(Ko oa) = iy ey vevs (@) + a(v)). So the pro&sition is proved. O

Definition 2.21 (Ref. [1], Definition 3.2., p.131). Let (o, ) be a fuzzy graph with
respect to . Let zy € E. Then ry is called a bridge if ,u;'x" (u,v) < pg (u,v) for some
w,v € V, where i (ry) = 0 and g’ = p otherwise.

3
Theorem 2.22 (Ref. [1]. Theorem 3.3., p.132). Let (o, u) be a fuzzy graph with respect
to . Let zy € E. Let y' be the fuzzy subset of E such that ' (zy) =0 and ' = p
otherwise. Then (3) = (2) & (1) :

(1) zy is a bridge with respect to ®;

(2) pge(x,y) < plzy);

(3) xy is not a wegkest edge of any cycle.
Corollary 2.23. Let G = (o, p) be a t-norm fuzzy graph with respect to &. Lei €E.
Ty is @ a-strong edge if and only if zy is a bridge.

Proof. Obviously, The result is hold by Theorem (3,23). g

&
Definition 2.24 (Ref. [1], Definition 3.2., p.133). Let (o, ) be a fuzzy graph with

respect to @. Then an edge wwv is said to be effective, if pu(uv) = o(u) @ o(v).

Proposition 2.25 (Ref. [1], proposition 3.10., p.133). Let (o, p) be a fuzzy graph with
respect to @. If the edge v is effective, then p(uv) = pg (u,v).

Corollary 2.26. Let (o, ) be a fuzzy graph with respect to @. If the edge uv is
effective, then uv is not a-strong.
I . g

Proof. Let unle a edge of (o, u). So p(uv) = pg (u, v) by Proposition (2.25). Hence
pluv) < pg(u,v). It means the edge uv is not a-strong. O
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Remark 2.27. ﬂcrisp) graph that has no cycles is called acyclic or a forest. A
connected forest is called a tr. A fuzzy graph is called a forest if the graph
consisting of its nonzero edge is a forest and a tree if this graph is also connected. We
call the fuzzy graph G = (o, ) a fuzzy forest if it has a partial fuzzy spanning
subgraph which is a forest, where for all edges zy not in Flv(zy) = 0], we have

plry) < v™(r,y). In other words, if zy is in G, but not F, there is a path in # between
z and y whose strength is greater than p(zy). It is clear that a forest is a fuzzy forest.

Definition 2.28. Let @ be a t-norm. A fuzzy graph (o, ) is a fuzzy tree with
respect to @. If (o, p) has a partial fuzzy spanning subgraph F' = (7, v) which is a tree
and Yy not in Fop(ry) < v (z,y).

Theorem 2.29. Let G = (o, ) be a fuzzy forest with respect to @. Then rhe edges of
F = (7,v) are just the bridges of G.

Corollary 2.30. Let G = (o, ) be a fuzzy tree with respect to 3. Then the edges of
F = (1,v) are just the a-strong edges of G.

of. Obviously, the results follows by Theorem (3.32) and Corollary (2.23). O

Proposition 2.31. Let T = (o, ) be a fuzzy tree with respect to ©. Then
D(T) = D(F)U D(S), where D(T), D(F) and D(S) are vertex dominating sets of T, F
and S, respectively. S is a set of vertices which has no edge with connection to F.

Proof. By Corollary (3.34), the edges of F = (7, v) are just the a-strong edges of G. So
the result follows by using Definition (2.28). O
5

According to some applications of #-norm fuzzy graph increasing numbers of people
from Asia and Africa are seeking to enter the US illegally over the Mexican border. The
vast majority of immigrants detained were from the Americas. However, a significant
number were from Asian and African countries. We can obtain vertex dominating set by
a-strong connections between these countries and vertex domination. In other words,
We can find the countries which dominate others as a-strong from many r.'ountas
which are increasing and they have a significant number. So We can study the main
illen immigration routes to the United States precisely, usefully and deeply.

Many various using of this new-bom fuzzy model for solving real-world problems and
urgent requirements involve introducing new concept for analyzing the situations which
leads to solve them by proper, quick and efficient method based on statistical data.
This gap between the model and its solution cause that we introduce nikfar domination
in neutrosophic graphs as creative and effective tool for studying a few selective vertices
of this model instead of all ones by using special edges. Being special selection of these
edges affect to achieve quick and proper solution to these problems. Domination hasn't
ever been introduced. So we don’t have any comparison with another definitions. The
most used graphs which have properties of being complete, empty, bipartite, tree and
like stuff and they also achieve the names for themselves, are studied as fuzzy models
for getting nikfar dominating set or at least becoming so close to it. We also get the
relations between this special edge which plays main role in doing dominating with
other special types of edges of graph like bridges. Finally, the relation between this

nuffler with other special numbers and characteristic of graph like order are discussed.

Neutrosophy as a newly-born science is a branch of philosophy that studies the
origin, nature and scope of neutralities.

In 1965, Zadeh introduced “fuzzy set” by the concept of degree of truth membership
In 1986, Atanassow introduced “intuitionistic fuzzy set” by adding the concept of degree
of false membership to the fuzzy set In 1995, Smarandache introduced “neutrosophic
set” by adding the concept of degree of indeterminate membership to the intunitionistic
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fuzzy set There are three different types of definitions of a neutrosophic graph Broumi
et al. and Shah-Hussain introduced two different definitions of neutrosophic graph by
generalizations of intuitionistic fuzzy graph Akram and shahzadi introduced
neutrosophic graph by using concept of nentrosophic set They also highlighted some
flaws in the definitions of Broumi ef al. and Shah-Hussain. They introduced some
counterexamples w state the complement of a neutrosophic graph isn't always a
neutrosophic graph by using Shah-Hussain's definition of neutrosophic graph and we
even HERe much bad situations if we used Broumi ef al.’s definition of neutrom?ﬁc
graph beacuse of not only wllllon't have complement of a neutrosophic graphs but also
we don’t have join of them. Moreover, they introduced binary operations cartesian
product, composition, union, join, cross, lexicographic, strong produet and unary
operation complement along with proofs which show these operations hold neutrosophic
property of graphs . In other words, the new graph is produced by these operations, is
also a neutrosophic graph.

Regarding these points, we use the definition of Akram and Shahzadi as the main
Et‘anovork for our own study. The study behaviors of modeling is of spotlight by using
few parameters. Some parameters are so close to others one. if we defined being “so
close” concept properly by adding some extra properties more than existence of edge
between them, we would achieve the useful tool. This tool would cause solving
real-world problems by deleting useless data and focusing on a few one. This leads to
the concept of domination in modeling. Domination hasn't ever been introduced on any
kind of nentrosophic graphs. Regarding these points, the aim of this paper is to
introduce the notion of domination in this new-born fuzzy model. It is a normal
question about effects of dominations in neutrosophic graphs. From here comes the
main motivation for this and in this regard, we have considered some routine and
fundamental framework for studying this concept.

Domination as a theoretical area in graph theory was formalized by Berge in 1958, in
the chapter 4 with title * The fundamental Numbers the theory of Graphs™ and Ore
in 1962. Since 1977, when Cockayne and Hedetniemi presented a survey of domination
resun, domination theory has received considerable attention. A set S of vertices of G
is a dominating set if every vertex in V(G) — S is adjacent to at least one vertex in S.
The minimum ecardinality among the dominating sets of G is called the domination
number of G and is denoted by +(G). A dominating set of cardinality +(G) is then

erred to as minimum dominationg set. Dominating sets appear to have their origins
in the game of chess, where the goal is to cover or dominate various squares of a
chessboard by certain chess pieces.

We provide somggbasic background for the paper in this section.

Definition 2.32. Let V be a given set. The function A : V' — [0,1] is called a fuzzy set
on V.

Definition 2.33. (Neutrosophic Set)

Let V be a given set. A neutrosophic set A in V' is characterized by a truth
membership function Ta(x), an indeterminate membership function 14(z) and a false
membership ﬁmctlc-n Fu(z). The flmctions Talz), I4(z), and F,(x) are fuzzy sets on
V. That is, Ta(x [G l] Ta(z) : V — [G, l] and Fa(z): V — [G, l] and
GSTA(J f/l() f'()S'3

Remark 2.34. Some special notations frequently appear in this paper. In what follows,
we introduce them. Let V' be a given set. For the sake of simplicity, we only use the
notation £ for the representation of the following set on V.

EC{AJACV,|A| =2 It means A has only two elements}, where |A| means
cardinality of A. By Analogous to this points, the notation E; is corresponded to V.

Definition 2.35. (Neutrosophic Graph)
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Let V' be a given set. Also, assume E be a given set with respect to V. A
neutrosophic graph is a pair G = (A4, B), where A: V' — [0, 1] is a neutrosophic set in V
and B : E — [0,1] is a nentrosophic set in £ such that

Tg(xy) < min{Ty(x), Taly)}

-{B('ry) S mén{-{/l(;r)r-{/l(y)}s
-{'-B(Iy) < mm{-{'-/l(;r)sﬁvfl(y)}:

for all {z,y} € E. V is called vertex set of G and E is called edge set of G, respectively.

Definition 2.36. (Complete Neutrosophic Graph)
Let G = (A, B) be a neutrosophic graph on a given set V. (& is called complete if the
following conditions are satisfied:

Tp(zy) = min{Ty(z), Ta(y)}.

(‘I‘Vy) = m@lﬂ{_{/l(;r)_..{/l('y)},
Fg(zy) = maz{Fa(z), Fa(y)},
rall {r,y}eE.

Definition 2.37. (Empty Neutrosophic Graph)
Let G = (A, B) be a neutrosophic graph on a given set V. G is called empty if the
following conditions are satisfied:

Tg(wy) = Ip(ry) = Fp(ey) = 0.
for all {z,y} € E.

Definition 2.38. (Bipartite Neutrosophic Graph)

Let V be a given set. A neutrosophic graph G = (A, B) on V is said bipartite if the
set V' can be partitioned into two nonempty sets V| and V, such that
Tr(zy) = Ip(zy) = Fp(zy) = 0. for all {z,y} € Ey. or {z,y} € E». Moreover, if
T(zy) = min{Ta(z), Ta(y)}. Ip(zy) = min{l(z), 1a(y)}, Fp(zy) =
maz{F(z), Faly)}, for all {z,y} € E then G is called a complete bipartite
neutrosophic graph. In this case, If either |V}| = 1 or |V3| = 1 then the complete
bipartite neutrosophic graph is said a star neutrosophic graph.

Definition 2.39. (Order)
Let G = (A, B) be a neutrosophic graph on a given set V. Then the real number p is
called the

[ﬁ-] T—o*rde*r_. if P= Fft,-(G)T = Eu&‘l.—’TA(u)'I'OMET! if pP= Fft,-((;)f = ZHEV-{A(”)'

F-order, if p = v,(G)r = EyevFalu). order, if was be either of T—order, {—order,

and F'—order.

gefinition 2.40. (Bridge)
Let G = (A, B) be a neutrosophic graph on a given set V. Then an edge ry in G is
called the

a. T-bridge, if the strengths of each T-path P from z to y, not involving zy, were less
than Tg(zy).

b. I-bridge, if the strengths of each T-path P from x to y, not involving zy, were less
than Tg(ry).
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c. F-bridge, if the strengths of each T-path P from = to y, not involving zy, were less
than Tg(zy).

d. bridge, if it was either of T—bridge, I—bridge, and F—bridge.

Definition 2.41. (Acyclic)
Let G = (A, B) be a neutrosophic graph on a given set V. Then G is called the

a. T-acyclic, if there wasn't a T-path P from = to y, with only exception x = y., for all
el

b. l-acyelic, if there wasn’t a [-path P from z to y, with only exception = = y., for all
z el

c. F-acyclic, if there wasn't a F-path P from x to y, with only exception = = y., for all
z eV

d. acyclic, if it was either of T'—acyclic, /—acyclic, and F—acyclic.

Definition 2.42. (Spanning Neuffpsophic Graph)
Let G = (A, B),G1 = (A1, B1) be a neutrosophic graph on a given set V. Then (7, is
called the spanning neutrosophic graph of G if V =V, but £, C E.

Definition 2.43. (Forest)
Let G = (A, B) be a neutrosophic graph on a given set V. Then G is called the

a. T-forest, if G was T-acyclic and there is a spanning neutrosophic graph F such that
for all edge ry out of F, there is a T-path P from x to y, how whose strength
greater than Tr(zy).

b. I-forest, if G was l-acyclic and there i3 a spanning neutrosophic graph ¥ such that
for all edge ry out of F, there is a I-path P from = to y, how whose strength
greater than Ip(zy).

c. F-forest, if G was F-acyclic and there is a spanning neutrosophic graph F' such that
for all edge ry out of F, there is a F-path P from z to y, how whose strength
greater than Fg(zy).

d. forest, it it was either of neutrosophic T—forest, neutrosophic [—forest, and
neutrosophic #—forest.

Definition 2.44. (Tree)
Let G = (A, B) be a neutrosophic graph on a given set V. Then G is called the

a. T-tree, if G was a T-forest such that there is a T-path P from z to y, for all =,y € V.
b. Itree, it G was a I-forest such that there is a I-path P from = to y, for all z,y € V.
c. F-tree, it G was a F-forest such that there is a F-path P from z to y, for all =,y € V.
d. tree, if it was either of T—tree, I—tree, and F—tree.

Remark 2.45. Let V' be a given set. For the sake of simplicity, we only use the notation
F, p for the representation special spanning neutrosophic graph of a forest andnle order
a given neutrosophic graph. By Analogous to this points, the notation Fj, p; are
corresponded to (7;. Let us remind you consider three special notations in this paper by
three letters. In other words, we have three correspondences for a given set,
neunrsophic graph and a forest, we mean p, E; and F; are corresponded to G, V; and
G, respectively. Final remark is of about writing xy instead of {z,y}.
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Definition 2.46. (Path)
Let G = (A, B) be a neutrosophic graph on V and vy, v, be two given vertices such

that n € M. Then .
1
a. A distinet sequence of vertices P : vy, vy, -, v, in G is called a T-path of lengt]:n
from vy to vy, if Tp{vivigr) > 0, for i =0,1,--- ,n — 1. The min;‘:_ul{TB(i,r,-i,rHl)}
is called the strength of this T—path and is depoted by pg(P)r.

b. A distinet sequence of vertices P : vg, vy, - , v, in G is called a I-path of leng‘t]:n
from vy to v, if Ig(viviy,) >0, fori=0,1,--- ,n— 1. The min;:ﬂl{fg(i:,-i;,-_,_l)}
is called the strength of this I —path and is degoted by pg(P)r.

c. A distinet sequence of vertices P : vy, v, , v, in G is called a F-path of lengﬂ‘n
from vy to vy, if Fplvwi) <1, fori=0,1,--+ ,n— 1. The min;‘z_[}l{f'h(i,r,-i,r,-_,_l)}
is called the strength of this F'—path and is degoted by pc(P)rF.

d. A distinct sequence of vertices P : vy, vy, -+ ,v, in G is called a path of length n
from vy to v, if it be T—path, I—path, and F—path, simultaneously. In this case,
the min{pq(P)r, pc(P)r1, pc(P)r} is called strength of path and is denoted by
e (P).

Definition 2.47. (Strength between Two Vertices)
Let G = (A, B) be a neutrosophic graph on V' and v;,v; be two given vertices such
that ¢ > j and 4, j € M. Then

a. The max{uc(P)r} in G is called the T-strength between v; and v; and is denoted
by pgs (v, v; ).

b. The max{uq(P)r} in G is called the Fstrength between v; and v; is denoted by
pes (v, vj)1.

c. The max{p(P)p} in G is called the F-strength between v; and v; is denoted by
pe (visvg) e

d. The max{ug (vi,vj)T, p& (vi, v5)1, p5 (vi,vj)p} is called the strength between v;
and v; i and is denoted by pgy (v, ;).

Remark 2.48. pugy (e} (@, y) is the strength between = and y in the neutrosophic graph
obtained from G by deleting the edge xy. This is as the same for the notations
G (a5 U)T HG - (oyy (T y)1, and p (2, y)

In what follows, we will define four properties for edges. Based of these properties,
we can construet various kindes of dominations in neutrosophic graphs.

Definition 2.49. (Effective Edges)
Let G = (A, B) be a neutrosophic graph on V. Then An edge ry in G is called the

a. T-effective, if Tp(zy) > pg_(,\(2,y)T.

b. [-effective, if Ig(zy) > pg"_{zy}(:c,y);.

c. F-effective, if Fip(zy) > pg_ (., (2. y)F-

d. effective, if it be either of T'—effective, I—effective, and F—effective.

Let G = (A, B) be a neutrosophic graph on V asgure ??7. In the following table,
we study the properties of edges. For example, vy has not neﬂer of T'—effective,
I —effective, F—effective, and effective property. The edge v4v, s both of T—effective
and [ —effective property. So it is also effective edge. The edges
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{'i,']_ Uy, Volly, Uglly, Uyl } y {'L']_ 'l.':':; g } y {'L']_ g, Uy, Volly } y and
{103, 104, vavg, V304, vavs ) have T—effective, I—effective, F—effective, and effective

m‘opel:ﬁ respectively. {vsvs,v1v2} has no ones.

Edges \ Properties | T—effective | I—effective | F'—effective | Effective
M Ua X X x X
U1l x v v v
Ty \/ * \/ \/
U2ty \/ bl \/ \/
Vally X X X X
Usly \/ \/ > \/
45 v X X v

Definition 2.50. (Nikfar Domination)
Let G = (A, B) be a neutrosophic graph on V' and z,y € V. Then

a. We say that © dominates y in G as T-effective, if the edge zy be T-effective. A

subset S of V' is called the T-effective dominating set in G, if for every v € V' — 5,
there is u € S such that u dominates v as T effective. The T-nikfar wez'gfnzf T is
defined by w, (z)r = T (r) + o gernse e To Gl 165, gy Ta(ay), for

Ty is a edge TB(-“-‘)

Ty is n T-cffective edge 1g (EY)
Ery is a edgeTB{2Y)

S C V, a natural extension of this concept to a set, is as follow@@We also say the

T-nikfar weight of S, it is defined by w,(S)r = X, s (w, (u)r ). Now, let U be the
set of all T-effective dominating sets in G. The T-nikfar domination number of G
is defined as ~+,(G)r = minpep (w, (D) 7). The T-effective dominating set that is
correspond to v, (@) is called by T-nikfar dominating set.

some x € V. Then we consider equal with 0. For any

b. We say that = dominates y in G as I-effective, if the edge ry be L-effective. A subset

S of V' is called the [-effective dominating set in G, if for every v € V — S, there is
u € S such that v dominates v as I-effective. The [-nikfar wm_n of x is defined

by w, (z); = Ia(z) +

r € V. Then we consider

nb.u,a is a edge -{B( ) for some

Ery is a l-cfiective edge L5 (23]
Ty is A .».rl.;nfb‘{w!-f)
natural extension of this concept to a set, is as follow@ll We also say the I-nikfar

weight of S, it is defined by w,(S); = X,e5(w,(u)r). Now, let U be the set of all
[-effective dominating sets in G. The [-nikfar domination number of G is defined
as v, (G)r = minpep (w,(D)y). The l-effective dominating set that is correspond
to v,(G)r is called by [-nikfar dominating set.

equal with 0. For any S C V, a

c. We say that © dominates y in G as F-effective, if the edge xy be F-effective. A

subset S of V is called the F-effective dominating set in G, if for every v € V' — 5,
there is u € S such that u dominates v as F-effecti*ue The F-nikfar weighnf T is

defined by w, (2)r = Fa(z) + Do et sl s G 153, o Fip(ay), for

):n,. is a edge FU(-M-‘

Ty is a Feeffective edge P (2Y)
Z oy is a edge Fu(2Yy)

S C V, a natural extension of this concept to a set, is as follows. We also &8 the

F-nikfar weight of S, it is defined by w,(S)p = B,cs(w,(u)p). Now, let U be the
set of all F-effective dominating setfffh G. The F-nikfar domination number of G
is defined as v, (G)r = minpey (wy(D)F). The F-effective dominating set that is
correspond to v, (G) g is called by F-nikfar dominating set.

some x € V. Then we consider

equal with 0. For any

d. We say that » dominates y in G as effective, if the edge xy be effective. A subset S

of V' is called the effective dominating set in G, if for every v € V' — S, there is
u € S such that u dominates v as effective. We also say the nikfar weight of S, it
is defined by w,(S) = min{w,(S)r,w.(S)r,w,(S)r}. Now, let U be the set of all
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effective dominating sets iffff7. The nikfar domination number of G is defined as
Yu(G) = minp ey (w, (D). The effective dominating set that is correspond to
~u(G) is called by nikfar dominating set.

Let G = (A, B) be a complete neutrosophic graph on a given set V' such that there is

exactly one path between two given vertices, which has
1
a. T-strength. Then ~,(G)r = min,ev(Talu)) + 1.

b. Lstrength. Then ~,(G); = min ey (L4(u)) + 1.

c. F-strength. Then ~,(G)r = mingey (Falu)) + 1. a
1
d. strength. Then ~,(G) = min, ey (Ta(u), La(w), Falu)) + 1.

Proaf. (a). Let G = (A, B) be a neutrosophic graph on a given set V. The T-strength of
path P from w to v is of the form Ta(u) A -+ A Ta(v) < Ta(u) A Talv) = Ts(uv). So
pes (w,v)p < Tp(uv). uv is a path from u to v such that T(uv) = Ta(u) A Ta(v).
Therefore pgy (u,v)r = Tp(uv). Hence pg (u,v)r = Tp(uv). Then
Tpluv) = pg"_[my}((u,v)]ﬂ. It means that the edge wv is T-effective. All edges are
T-effective and each vertex is adjacent to all other vertices. So D = {u} is a T-effective
dominating set and X, i a Tefiective cdeel B(TY) = X4y is a cdged B(2Yy) for each u € V.
The result follows.

By analogues to the proof of (a), the result is obviously hold for (b), (¢}, and (d). O

Let G = (A, B) be an empty neutrosophic graph on a given set V. Then
Y@y = 7, (G); = 7. (G) g = 7, (G) = p where p denotes the order of G.

Proof. Let G be an empty neutrosophic graph on a given set V. Hence V' is only
T-effective dominating set in G and there is also no T-effective ecna So by Definition
2-’0(3')3 we have Fft,-(G)T = minDES[EuEDTA(H)] = EuEVTA(u) =P Therefore

To(G)r = p.
By analogues to the proof of 4, (G)r = p and Definition 2.50, the result is obviously
hold for v, (G)r,v.(G)r and v, (G). o

It is interesting to note that the converse of Propositions 2, does not hold.
We show that the converse of Propositions 2, does not hold. Let G = (o, u) be a
fuzzy graph as Figure 1. The edges {vovs, vavy, v3v4, v1v3} are T-effective, I-effective,

Figure 1. nikfar domination

F-effective, and effective and t edges {v1vy, v1 U2, V45 | are neither of types of being
effective. So the set {w, 13;;} is all types of the effective dominating set. This set is also
all types of nikfar dominating set in neutrosophic graph G. Hence v,(G) = v+ )r =

Yo(G)1 = 10(G)r = L.75+ 0.9+ 0.7 =83.30 = Byev T(u) = Dyey I (u) = Byev F(u) = p.

Therefore (¢ isn't an empty neutrosophic graph but

Yo(G) = 7(G)r = 1(G)1 = 1 (G)p = p. Let G = (A, B) be the complete bipartite
neutrosophic graph on a given set V" such that there is exactly one path between two
given vertices, which has

a. T-strength. Then 7, (G)r is §fher Ta(u) + 1, u € Vor
minn&tﬁ,v&‘l& (TA(”) + TA(”)) +2.

b. I-strength. Then ~,(G); is either@h(u) + 1, u € V or
minu&\r’l,m’:‘lr’z (-{A(”’) + -{/1(”)) +
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c. F-strength. Then ~,(G)F is either Fa(u) +1, u e V or
min, ey pevy (Fa(u) + Fa(v)) + 2.

d. strength. Then =) is either min(T4(u), La(u), Fa(u)) + 1, ue V or
minyev; wevy (Lalw) + Ta(v), Lalu) + La(v), Falu) + Fa(v)) + 2.

Proof. (a). Let G = (A, B) be the complete bipartite nentrosophic graph on a given set

V' such that there is exactly one path which has T-strength between two given vertices.

By analogues to the proof of Theorem 2, all the edges are T-effecti

If G be the star neutrosophic graph with V' = {u, VU1, U, ,Lrn} such that u and v;
are the center and the leaves of G, for 1 < i < n, respectively. Then {u} is the T-nikfar
dominating set of G. Hence ~,(G)r = Ty (u) + 1.

Otherwise, both of V] and V; include more than one vertex. Every vertex in V] is
dominated by every vertices in Vy, as T-effective and conversely. Hence in G, the
T-effective dominating sets are Vi and V, and any set containing 2 vertices, one in V;
a.ncnther in Vy. So v, (G)p = miny, ey, pevy (Talu) +Ta(v)) + 2. The result follows.

By analogues to the proof of (a) and Definition 2.50, the result is obviously hold for
(b), (¢), and (d). g

Proposition 2.51. Let G = (A, B) be a neutrosophic graph on a given set V' and
rye E. oy isa

a. T-effective edge if and only if zy is a T-bridge.
b. I-effective edge if and only if vy is a I-bridge.

c. F-effective edge if and only if zy is a F-bridge.
d. effective edge if and only if Ty is a bridge.

Proof. (a). Let G = (A, B) be a neutrosophic graph on a given set V' and zy € E.
Suppose xy is a T-effective edge. By Definition 2.49(a), T (zy) > pg.c_{my} (z,y)r.
So Tp(xy) = pg (x,y)r- Therefore pg (z.y)r > pg ;. (,y)r. It means zy is a
bridge.
Suppose zy is a bridge. So ug (z,y)r > pg_(,,, (¥, y)7. Hence
Tp(zy) = pg (z.y)r- By pg (z,9)1 > pg_ (., (@ y)7 and Tp(zy) = peg (z,y)r,
Tr(xy) > PG {ayy (@, y)7. By Definition 2.49(a), it means zy is a T-effective edge.
Therefore the result follows.

By analogues to the proof of (a) and Definition 2.50, the result is obviously hold for
(b), (<), and (d). 0

Proposition 2.52. Let G = (o, ) be a tree on a given set V. Then the edges of
F = (7,v) are just

a. the T-bridges, I-bridges, F-bridges, and bridges of G.
b. the T-effective, I-effective, F-effective, and effective edges of G.

c. constructed from the vertices of T —efffective, I—effective, F—effective, and effective
dominating sets in G. Hence

YlG)r = Y (F)r, 1 (G = 7(F) 1,7 (G)r = vu(F)E, and v,(G) = v.(F).

Proof. (a). Suppose that zy is an edge in F. If it were not a T-bridge, we would have a
T-path P from z to y, not involving xy, of strength greater than Tz (zy). By bei
special spanning neutrosophic graph F, P t involve edges not in F. Let wyv; be an
edge from P, which don’t belong to F. w;v n be replaced by a T-path P, R F of
strength than Tx(uv). ) cannot involve xy. So by replacing each edge u;v; from P,
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which don’t belong to F, by P, we can construct a T-path in F from = to y that does
not involve zy. But G is T-acyclic. This is a contradiction. The latter of the proof is
obvious. Therefore the result follows.

By Proposition 2.51(a), and (a), the result is obviously hold for (b).

By Definition 2.50(a), and (b), the result holds obviously for (c). O

Proposition 2.53. For any neutrosophic graph G = (A, B) on a given set V, we have
a. 1(G), (G (G)1, 1 (G < p.

Y (G) + 1 (G), 1 (G + 10 (G)rs vo(G)1 + 7(G)1, 1 (G)F + 70 (G)r < 2p.
Let us remind you consider p as the order of this graph.

Proof. (a). By Proposition 2, there is a nentrosophic graph G = (A, B) such that
YolG)r = Y0 (G)1 = 1 (G)F = 7 (G) = p. So the result follows.
(b). By implementing (a) on G and @, the result is obviously hold. O

The concept of nentrosophy are used as the framework in algebraic structures and
fuzzy models. There are three kinds of neutrosophic graphs. As it mentioned, we chose
one kind of them as the framework. In this paper, we introduce the new tool in
new-born fuzzy model for analyzing its structure. In future, we would explore other
elements of this fuzzy model, e. g. binary operations, unary operations and like stuff by
this tool. It's extremely effective to use other tools like coloring and relations between
them. It might be our future work. Also, we would like introducing neutrosophic
structures along with their properties.

oduction and Overview In this study, author analyze the structure of domination in
t—norm fuzzy graphs and a its special case when using T},;,, as fuzzy graphs.

In Ref. [?], we have a real world application concerning this concept. you can refer
it if you need or are interested. Some issues in Ref. [?], “ - The Global Slavery Index is
an annual study of world-wide slavery conditions by country published by the Walk Free
Foundation. In 2016, the study estimated a total of 45.8 million people to be in some
form of modern slavery in 167 countries. The report contains data for countries
concerning the estimate of the prevalence of modern slavery, vulnerability measures, and
an assessment of the strength of government response. - - "

In this work, author always use v if the vertex is specific. Otherwise, author apply
its indices, 1.e. v;. So v or v; always refers to vertices and their twofold part refers to
edge. The power * usually states that one edge is deleted.

At first, author introduce two types of a fuzzy models concerning t—norm. It is well
known that T,,;,, is a function (precisely a relation) which is greater than any ¢ — norm.

“Basic Definition’, “Size”, “Order”, “Scalar Cardinality”, “Path”, “Fuzzy Cycle”,
“Isolate”, “a—strong”, “M —strong”, “Bridge”, “Bipartite”, “Star”, “Complete”,
“Spanning Subgraph”, “Fuzzy Tree” and “Operations” are introduced as preliminaries in
what follows. Some concepts are not related to choosing any t—norm becanse they don’t
state any relation between two functions p and o which are depended on each other by
definition of fuzzy model (precisely using t—norm). So in all fuzzy models can be the
same.

Definition 2.54 (Definitions, Size and Order, Scalar Cardinality). author introduce
some elementary Cﬁepts as follows

(i) [Definitions] Let V be a nonempty finite set and £ C V x V. Then G = (o, ) is
callemFuzzy Graph if Yy v, € E, plvive) = plvgry) < min{e(vy), o(ve) }.
And is called an t-norm Fuzzy Grmif Yuyue € B,
plvvg) = plvgry) < Tla(vy),olva)), reg: V' — [0,1] and p: E— [0,1] be
the fuzzy sets, p is reflexive and T is an arbitrary {—norm.
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(ii) [Size and Order| The Order p and the Size g are defined p = ¥, .y a(v) and
q= Er,-lt.-zEE-'#'(if'].if'Q)'
(11i) [Scalar Cardinality] The Scalar inality of S is defined to be X,cg50(v).
Definition 2.55 (Path, Fuzzy Cycle). Let G = (o, u) be a fuzzy graph or an t—norm
fuzzy graph.
(i) [Path, its StrEEjh] ﬂath P of length n is a sequence of distinct vertices
Vg, U1, + - U, such that Ju(“u,-) =>0,i=1,2,---,n and
T{u(vorr), -, plvi—1vi)) is defined as its Strength. The Strength of

Connectedness between two vertices v, and v, in (7 is defined as the maximum
of the strengths of all paths between v, and vo and is depated by gy (v1, vs).

[Fuzzy Cycle, its Strength] Let vo,v1,- -+ ,vn be a path. It is called a Fuzzy
Cycle C of length n If vy = v,,,n > 3 and at least the values of two edges are
T{p(vguy, -+, p{vy_qv;) which is dafined as Strength of a fuzzy cycle.

Definition 2.56 (Types of Verms). Let G = (o, u) be a fuzzy graph or an t—norm
fuzzy graph. A vertex v is said isol it p(vey) =0 for all v # vy,

Definition 2.57 (Types of Edges). Let G = (nr,,u)a fuzzy graph or an t—norm
fuzzy graph. Let v1ve € E. Note that g (v1,v2) is the strength of connectedness
between vy and v, in the fuzzy model which is obtained from G by deleting the edge

(ii

o,
An edge vy in G is called

(1) a—strong if p(vyvse) > pgh(vy, ve) and strong if p(vive) = piv (v, ve). The case
plvive) = 1 (v, ve), is not considered in any study of domination. The case
plvive) < pgn (v, ve) is not possible.

it) M —strong if both p(vive) = &) A o(ve) and G is a fuzzy graph or bot

ii) M —strong if both ¢ d G is a fuzzy graph or both

plvrve) = Tle(v),o(ve)) and G i8 an t—norm fuzzy graph.
(iii) bridge if ,u.g', (v3,04) < pug (Vs Uglefor some w3, 14 € V.

Definition 2.(1"}"pes of Models). Let G = (o, ) and Gy = (7,v) be a fuzzy graph
or an t—norm fuzzy graph. Then G = (o, p) is said to be

(i) Bipartite if V' can be partitioned into two nonempty sets V| and V; such that
plvive) = 0if vy, ve € Vi or vy, ve € Va;

(i) Star which is denoted by K, If it is a bipartite and either |[Vi| =1 or |Vp| =1
which imply that we call its corresponded vertex a center;

(4i1) Completaf all edges be M — strong. e.g., Complete bipartite fuzzy graph,
Complete fuzzy graph, Complete bipartite {—norm fuzzy graph, Complete

t—norm fuzzy graph.

(iv) has a Spanning Subgraph G1 = (r,v) if 7 = and v C p.

(v) Fuzzy tree if its spanning subgraph F' = (o, 7) is a tree (Ref. [?]), where for all
edges v1vp 18 in G but not F, we have p(viva) < 78 (vy, va).

Definition 2.59 (Types of New Models). If we alter min, max (precisely t-norm
Tnins Dinas ) with an arbitrary t-norm 7', we have these concepts for t—norm fuzzy
graphs. To avoid confusion, we only write down for fuzzy graph and the analogues
concepts are supposed to be obvious and we use these names for both models, fuzzy
graphs and fuzzy f—morm graphs.

t Gy = (o1, 1) and Gy = (09, p2) be tuzzy graphs on "= (Vi, E;) and
G = (Va, Ey), respectively. Then
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(1) ar}' Operation, Complement] A Complement of a fuzzy graph G, = (o1, 1)
is denoted by G| and is defined to G| = (o. 1, ). where
pr(vive) = min{oy (v1), o1 (va) } — pa(vive), for all vy, ve € 11,

(ii) [Binary Operation, Cartesian Product] A Cartesian product G = G x G2 is
defined as a fuzzy graph G = (o7 % go, pype) on G* = (V) x V,, E) where
E ={(v,vn)(v,ve)|v € V1,010 € Ex} U{(v1,v)(va,v) }Hvivs € Er,v € Vi }. Fuzzy
sets ) % mm Vi x Vi and pypp on E, are defined as
(o1 % o9)(vy,v2) = min{ey (v1),02(v2)}, ¥(v1, v2) € V1 X V3 and
Yo € Vi,Yuive € Ep, paps((v,v1) (v, 1)) = min{eo1(v), po(vive)} and
Yoy € By, Vo € Vo, e (1, v) (v, v)) = min{py(viva), o2(v) };

(11i) [Binary Operation, Union] An Union G = G U G5 is defined as a fuzzy graph
G = (o1 Uog,p1 Ups) on G* = (Vi U Vo, By U Ey). Fuzzy sets o1 U o and py U pro
are defined as (o7 Uos)(v) = o1(v) if v € V] — Vo, (o9 Uy )(v) = au(v) if
v e Vo—Vy, and (o7 Uoy)(v) = max{e;(v),02(v)} it v € V1 NV, Also
(pr1 U o) (vyve) = py (vvg) i vyve € By — By and (pg U ps) (vqve) = pa(vyve) if
vive € By — By, and (py U pie) (vive) = max{gy (viva), po(vive) } if vyve € By M Ey;

(i) [Binary Operation, Join| A Joirﬂ = (G + Gy is defined as a fuzzy graph

G=(o1+oo,m+p)on G =(VilVe, E= Ey UE U E‘) where £ is the set of
all edges joirm vertices of V] with the vertices of Vi and we assume that

V1M Va = . Fuzzy sets g1 + 2 and py + po are defined as

(01 +02)(v) = (01 Uoy)(v) and Yu € Vi U Va: (g + pa) (v1va) = (1 U o) (v1vg) if
vive € By U Ey and (1 + po)(vive) = min{oy (v1), oa(ve) } if vy € E.

We choose a name for our new definition as vertex domination and we refer to others
with only the name domination. To avoid confusion, we bring references if it is

HeCessary. @
18

Definition 2.60 (Domination: Edge, Set, Number). Let G = (o, u) be a fuzzy graph
or an t—norm fuzzy graph and v, v € V. Then

(1) A vertex v Eongl}-‘ dominates a vertex vy in G, if its corresponded edge vuy is
an a-strong edge;

(1i) D is called an a-strong dominating set in G, if for every v, € V' \\ D, there is

v € D such tha.ma-strongly dominates ;.

Ty esnlenn)

(iii) The weight of D is defined by w,(D) =3, . plo(v) + SR

S ={vuvge F| plvive) > p(v1,v2) b

], where

(1v) A vz domination number of G is defined as v,(G) = minpep{w, (D)}, where
D is the set of all a-strong dominating sets in G. The a-strong dominating set
that corresponds to 7, (G) is called by vertex dominating set.

We give some definitions concerning domination on fuzzy graphs. It can be extended
to t—norm fuzzy graphs. We only use them in some examples for illustrating our
concepts and do a comparison between them with ours. It is worth to note that if we
alter min (precisely t-norm T, ) with any t-norm T, we have these concepts for
t—norm fuzzy graphs. To avoid confusion, we only write down for fuzzy graph and the

logues concepts are supposed to be obvious.

Definition 2.61. Let G = (o, 1) be a fuzzy graph, D C V and D is a set of all
dominating sets in . Then
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(i) (A. Somasundaram and S. Somasundaram (Ref. [?])) D C V is said to 1178
be an dominating set in G, if for every v, € V' '\ D, there exists v € D such that 1ue
its corresponded edge vy is an M —strong edge.y(G) = minpep{d ., cpo(v)}is  m

said to be a domination number of G. . 1s2

15
(ii) (C. Natarajan and S.K. Ayyaswamy (Ref. [?])) D C V is said to be a 1183
dominating set, if for every v; € V' \ D, there exists v € D such that its 1184
corresponded edgl is an M —strong edge and 1185

de(v) = ZUE‘.:N{"J a(vg) = d.(vy) = Evz\’:N{vl) a(vg) ﬁre for all 1156
veV,Nv) ={v, eV | ,UQ) =min{o(v),a(vi)}}. 1187
’)

G) = minpep{}], . polv)} is said to be a domination number of G. 1138
(#1i) (O.T. Manjusha and M.S. Sunitha (Ref. [?])) D C V is said to be 1189
dominating set if for every v, € V' \ D, there exists v € D such that its 113
corresponded edge vu is a strong edge. v(G) = minpep{}_, .po(v)} is said to  um
be a_domination number of G. 1192

(iv) (A. Nagoor Gani and K. Prasanna Devi (Ref. [?])) D C V is said to be 1
inating set, if for every 11 € V' \ D, there e)dstm'o vertices like v € D 1192

£ that their corresponded edges are strong edges. 115
Y(G) = minpep{}., . polv)} is said to be a domination number; 119

(v) (O.T. Manjusha and M.S. Sunitha (Ref. [?])) D C V is said to be ne7
dominating set, if for every v; € V' Dffhere exists v € D such that its 1198
corresponded edge vy is an strong edge. domination number of G is said to 1

be 4(G) = minD\’:D{ZvEg Milyy,is a strong (.-llg(.-.{,u-(”: 'i"l)}}- 1200

In two upcoming examples, we Hluitrates the concept of our definition. 1201

Example 2.62 (a—strong edge). Let G = (o, u) be a fuzzy graph as Figure 2. Then 12
the edges {vyv5, vovy, v3vy, vivs} are a-strong and the edges {vvy, v1v9, 15} are not 12
a-strong. 1204

(L0005

0.0

v (0.5)
[ERNIIA)

OLOHES

v 0.9) 0008 g (0.7T5)
Figure 2. vertex domination

Example 2.63 (Domination). Let G = (o, u) be a fuzzy graph asmure 2. The set 1205

S = {wg,v3} is an a-strong dominating set. This set is also vertex dominating set in 1206
fuzzy graph G. Hence ., (G) = 1.75 + 0.9 + 0.7 = 3.35. So 4. (G) = 3.35. 1207

In two upcoming examples, we compare our definition with others as theoretic and  1:a
practical aspects. 1208
Example 2.64 (Theoretic Aspect). The following is a t‘ae consist of a brief 120

fundamental comparison between types of domination in fuzzy graphs. There are two  1u
different types of the complete bipartite fuzzy graphs as Figures 3 and 4, which compare 1z2
types of domination in fuzzy graphs. 13
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Types of Edges Types of Numbers | Figure 3 | Figure 4
M —strong Scalar cardinality 0.9 0.9
M —strong and d.(u) > d.(v) | Scalar cardinality 1.9 1.3
Strong Scalar cardinality 0.9 0.9
[F—strong Scalar cardinality 0.9 1.5
Strong Yoeptlu,v) 0.8 0.4
COur new definition vertex weight 1.9 2.4

va{l.4) vzl

o)
0.4 0.5
0.5
vallhG) val.T)

Figure 3. Comparison of Dominations

vy (0.4) va(lLG)

Figure 4. Comparison of Dominations with Different Values

Example 2.65 (Practical Aspect: A Comparison in Real-World Problem). In this
section, we introduce one practical application in related to this concept. In the
following, we will try to solve this problem by previous definitions, too.

Suppose the Figure 5, the fuzzy graph model of the hypothetical condition of cities
and the paths between them in a region.

Problem|reducing waste of time in transport planning] Consider a set of cities
connected by communication paths. Which cities have these properties? Having low
traffic levels and other cities associating with at least ones by low-cost roads.

The terms “low traffic” and *l it” are vague in nature. So we are faced with a
fuzzy graph mfm In other words, Let G be a graph which represents the roads
between cities. Let the vertices denote the cities and the edges denote the roads
connecting the cities. From tkm:atistical data that represents the high traffic flow of
cities and high-cost roads, the functions o and p on tifRertex set and edge set of G can
be constructed by using the standard techniques. In this fuzzy grfgih, a dominating set
D can be interpreted as a set of cities which have low traffic and every city not in D is
connected to a member in D by a low-cost road. We now look at the answer to the
problem raised by using the old and the new definitions. As you can see in this model,
finding the desirable cities is more important than finding the domination number.
Because the numbers given for the set and each situation are compared with each others
in the context of the same definition, and this number is merely to compare the
different sets of cities in the context of the same definition. Therefore, speaking of the
magnitude of this number is meaningless. The table below illustrates the solutions
presented for this problem.
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v1(0.1)

RNV 0005

vg(0.3) va (0.4)
(L0

0.007 (L0

Figure 5. The exemplary scheme of road infrastructure

Definitions Given desirable set

A. Somasundaram and S. Somasundaram (Ref. [?]) V

Natarajan and S.K. Ayyaswamy (Ref. [?]) v
. Manjusha and M.S. Sunitha (Ref. [?]) {vs, vs} 17

A.aagoor Gani and K. Prasanna Devi (Ref. [?]) Vv

O.T. Manjusha and M.S. Sunitha (Ref. [?]) {vs, v5}
Our new definition {vi, v}
It is obvious from the above table and Figure 5 that the desirable cities given by 1239
previous definitions, are not appropriate due to the lack of simultaneous attention to 1
cities and roads. 101
We are now presenting the dynamic status of the problem. The dynamic state is the 122
situation in which the fuzzy graph model is found over time. Since over time, changes in = 13
the values of roads are more than changes in the values of cities in the fuzzy graph 124
model of the hypothetical condition of cities and the paths between them in a region.  1us
So values of the roads increases. Values of cities (their traffics) do not change 1246
significantly over time. Because the traffic problem is an infrastructure problem. The 12
Figure 6 depicts the dynamic case of a fuzzy graph model. Over time, the values of the 1
roads increases equally. 18
In this situation, the answer are given by the previous definitions reflects the wrong 1=e
perspectives while the our new definition adapts itself well to the new situation. 151
Previous definitions didn't use simultaneous attentions to cities and roads. 1252
Dynamic analysis of networks in the first row of Figure 6 are the following table. 1253
1354
Definitions Given desirable set
A. Somasundaram and S. Somasundaram (Ref. [?]] VoV —{wgh, V — {vo,u5}
atarajan and S.K. Ayyaswamy (Ref. [7]) V.V —{uwgh, V—{us,v4}

. Manjusha and M.S. Sunitha (Ref. [?]) m{v;;,v“}, {vg, v}, {va, v} 1ms

A. oor Gani and K. Prasanna Devi (Ref. [?])

{v1,vflR }. {v1,u3,v5}, {v1,v3,v5}

O.T. Manjusha and M.S. Sunitha (Ref. [7])

46 ?"fi}, {?"3: ?"ti}, {1'3, vg }

Our new definition

{v1,va}, {vn,va}, {v1, vy}

135

Dynamic analysis of networks in the second row of Figure 6 are the following table.
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v1{0.1)

(.08 .05

\ va(l.4)
vgll.3)

(.04 (.04
vl G)
(0.2
0.07 0.06
0.1
val(0.3)
va(0.4)
.17 017

vy (0.6)

vi(l.1)

0.1

vg(0.3)
val 4]

006 0,06

v 0.6)

0.0

Figure 6. The dynamic scheme of road infrastructure

va(.3)

(L0

0.3

vy ((LG)

v1{0.1)

Definitions

) Given desirable set

A. Somasundaram and S. Somasundaram (Ref. [?])

{?"1 , U3, Us }, {?"1 » U3, Vs }, {1'33 Us }

atarajan and S.K. Ayyaswamy (Ref. [7])

{”2 s Ugy ?"ﬂ} y {”3: Vs, ?"ﬂ} y {”2 , U3, U }

. Manjusha and M.S. Sunitha (Ref. [?])

{1'3, Vg } y {?"3.- ?"ti} y {1'3, l'u} 1259

A oor Gani and K. Prasanna Devi (Ref. [?])

{vi,vs,vs}, {v1,v3,vs}, {v1,v3, 05}

.T. Manjusha and M.S. Sunitha (Ref. [?7])

{?»'3, i'lfi}r {?»'3.- ”H}r {?»'3, l'u}

Our new definition

{vi,vs, v}, {1, 03, 06}, {01, s, '!'[i‘Lﬂ

All parts are twofold even if we don't mention, directly. L.e., all results depicts some
prdfRriies about fuzzy graph and t—norm fuzzy graph.

It is well known and generally accepted that the problem of determining the
domination number of an arbitrary fuzzy model is a difficult one. Because of this,
researchers have turned their attention to the study of classes of fuzzy models for which

the domination problem can be solved in polynomial time.

Proposition 2.66 (Ref. [?], Proposition 3.24. , pp. 135, 136). Let G = (o, ) be a
complete t—norm fuzzy graph. Then

(1) pgs (v ve) = plviwe ), Yo, 00 €V

(2) G has no cut vertices.

Corollary 2.67. Every edges in complete t-norm fuzzy graph are a-strong if
oy, vg € V, there is exactly one path with strength of p™ (vy, va).

Proof. Let G be complete. For all vq, v € V, pg¥ (v1,v9) = p(v1ve) by Proposition

(3.13). So for all 1w € V, }j.}f‘"(‘i.']_,‘i,'g) < pfvr,v2). Hence wv is a-strong edge. The

result follows.

A
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12
Proposition 2.68. Let G = (o, 1) be complete such that Wvi,vs €V, there is exactly

one path with strength of p™ (v, ve). Then, every edges are c-strong.
Proof. We prove it in two cases.

71

Fuzzy Graphs Let GG be a complete fuzzy graph. The strength of path P from v, to
vz is of the form min{o(v1),---o(v2)} < min{e(v),o(ve)} = p(rive). So
pes (v, ve) < p(vi ). vive is a path from v to vy such that
plvive) = min{o (v ), o(vs)}. Therefore }J.%(‘!,’]_,‘Ug),u.(‘i.']_‘i,fg). Hence
pes (v, v2) = pleyvz). Then p(vive) > pgs (vi,v2). It means that the edge vivs is
a-strong. All edges are a-strong, as we wished to show. Its proof works equally
well for the latter.

t—nornm_lzzy Graphs The strength of path P from v, to vs is of the form
T(o(vy), - alve)) < T(a(v),o(vs)). G is complete. By regarding this point, we
have T'(o(1 ), a(ve)) = ,u.(i,r. Therefore, Tio(v1), - o(va)) < plvive). It means
that pgf (vy,ve) < plvyvs). vy, vy is a path from v, to vy such that
plvive) = T(o(w), o(ve)). Therefore pg (vi,ve) = 'i,']_'i,'g). Hence
pes (v, ve) = p(vywe ). Then p(vivs) > Hew (v1,v9). It means that the edge vyv; is
a-strong. All edges are a-strong.

|
12

Corollary 2.69 (Complete). Let G = (o, ) be complete such that Wv,, v, € V, there is
exactly one path with strength of p™(vi,ve). Then, v (G) = minyev(oi(v)) + 1.

Proof. We prove jt in two cases.

Fuzzy Graphs All edges are a-strong and each vertex is adjacent to all other vertices.

So D = {v} is an a-strong dominating set and Y pmes Hlvvr) =30 g plvm)
for each v € V, where S = {vivp € £ | p(viva) > pg(vi, v2)}. The result follows.

t—norm Fuzzy Graphs All edges are a-strong and each vertex is adjacent to all
other vertices. So D = {v} is an a-strong dominating set and
Zm,les plov) = Zm.-le g #(vvy) for each v € V, where
S ={wnuv € E| plvrve) > p&(v1,v2)}. The case where equality holds is of
particular interest.

Prnosition 2,70 (Edgeless). Let G = (o, ) be an edgeless fuzzy graph. Then
Yu(G) = p, where p denotes the order of G.

Proof. We prove it in two cases. .
1
Fuzzy Graphs ( is edgeless. Hence V' is only a-strong dominating set in G and there
is no a-strong edge. So by Definition, we have ~v,(G) = E,cvo(v) = p.

t—norm Fuzzy Graphs The previous proof works equally well for this case.

It is interesting to note that the converse of Proposition 3.17, does not hold.
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1

Example 2.71. We show that the converse of Proposition 3.17 does not hold. For this

B rose, Let G = (o, 1) be a fuzzy graph where

V= {1, 02,03, 04,05}, E = {v1v2, 0104, 0103, V04, Vavs, v3vs, W5} and o, p are fuzzy

sets which are defined on V, E, respectively, as follows. For the fuzzy set o, we have
alv) =0.5,a(vs) =0.7,0(vy) =0.9,0(vy) =0.75,0(vg) = 0.

o

Now, for the fuzzy set p, we have p(vyvg) = 0.005,
plvpvy) = 0.003, (v vg) = 0.009, p(vovy) = 0.006, plvevs) = 0.009,

plvsvy) = 0.008, p(vavs) = 0.003 such that Yo, va € V, p(v1ve) < min{o(v1), o(va)}.
The edges {vavs, vovy, Va1, 103} are a-strong and the edges {vy vy, v1vg, v4v5} are not
a-strong. So the set {i,rg , i,r:z,} is the a-strong dominating set. This set is also vertex
dominating set in fuzzy graph . Hence

Yu(G) =175+ 0.9+ 0.7=3.35 = ¥,cyo(v) = p. So G is not edgeless but v,(G) = p.

Corollary 2.72. Let G = (o, p) be complete bipartite such that Vuvy,ve € V, there is
exactly one path with strength of p°(vy,va). Then, every edges are «-strong.

Proof. The proof ig Proposition (3.15), works equally well for this case. O

Corollary 2.73. Let G = (o, u) be complete star such that Vvy, vy € V, there is exactly
one path with strength of p™ (v, ve). Then, every edges are ce-strong.

Proof. The proof in Proposition (3.151, works equally well for this case. O

Corollary 2.74 (Complete Star). Let G = (o, ) be complete star such that
,i!g € V, there is exactly one path with strength of p™ (v, ve). Then, v.(G) is
a(v) + 1 where v € V is supposed as a center of G.

’roof. We prove it in two cases.

Fuzzy Graphs Let G = (o, ) a star fuzzy graph with V' = {v, vy, ve, -+ , v, } such
that v is a center. Then {v} is a vertex dominating set of G. Hence
Tu(G) = o(v) + L.

t—norm Fuzzy Graphs The previous proof works equally well for this case.

O
12
Corollary 2.75 (Complete Bipartite). Let G = (&, i) be a complete bipartite such that

Vig € V, there is exactly one path with strength of p* (v1,ve). Then v,(G) is either
oglv)+1, v €V orming ey, wpev, (0(v1) + o)) + 2.

Proof. We prove it in two cases.

Fuzzy Graphs Let G = (o, 1) be a complete bipartite fuzzy graph such that
Yoy, v € V, there is exactly one path with strength of p°°(vy,vs). By Corollary
(3.19), all the edges are e-strong.
If ¢ is a complete star fuzzy graph, then by Corollary (3.21), the result follows.
Otherwise, the vertex set V can be partitioned into two nonempty sets V1 and V;
such that both of V) and V; include more than one vertex. Every vertex in V) is
dominated by every vertices in Va, as a-strong and conversely. Hence in Kq, o,
the a-strong dominating sets are V) and V, and any set containing 2 vertices, one
in 1} and other in Va. So 7, (K4, »o) = iy, vy e (0(v1) + (ve)) + 2. The
result follows.
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3

t—norm guzzy Graphs Let G = (o, ) be a complete bipartite f—norm fuzzy graph
such that Yuy,ve € V) there is exactly one path with strength of p> (v, vq). By
Corollary (3.19), all the edges are a-strong,.
If & is a complete star t—norm fuzzy graph, then by Corollary (3.21), the result
follows. Otherwise, the vertex set V' can be partitioned into two nonempty sets vy
and V5 such that both of V| and Vi include more than one vertex. Every vertex in
/) is dominated by every vertices in V5, as a-strong and conversely. Hence in
hgl‘gz, the a-strong dominating sets are V1 and Vo and any set containing 2
vertices, one in V| and other in V5. So
Vol Kay o) = Mile, v, weve(o(v1) + o(v2)) + 2. The result follows.

O
TheoreffR.76. Let G = (o, p) be a fuzzy graph [Ref. [?], Thed@@m 2.4., p.21] or an
t—norm fuzzy graph [Ref /2], Theomm 3.8., p.132]. Let viv, € E. Let pi' be the fuzzy
subset of E -‘nmthatp (zy) =0 Lmdp = p otherwise. Then
-t—norm Fuzzy Graphs: (3) = (2) < (1) -Fuzzy Graphs: (3) < (2) < (1)
3

(1) vyive 18 a bridge;
(2) pgy (uge) < plvrvs):
(3) vive is not akest edge of any cycle.

Corollary 2.77. Let G = (nr, be a fuzzy graph or an t—norm fuzzy graph and
nvy € E. vivy s an a-strong edge if and only if vivy is a bridge.

Proof. By Theorem 3.23, the result is obviously hold. O

Theorem 2.78. [Fuzzy Graph: Ref. [?], Propositi@¥®.7, p.24] [t—norm Fuzzy Graph:

Ref. [?], Theorem 3.30, p.137] Let G = (o, u) be a fuzzy tree. Then the edges of
F = (7,v) are just the bridges of G.

Corollary 2.79. Let G = (o, u) be a fuzzy tree. Then edges of F' = (o, 1) are just the
ae-strong edges of G.

Proof. By Theorem 3,32 and Corollary 3.24, the result follows. g

Proposition 2.80. Let G = (o, 1) be a fuzzy tree. Then D(T) = D(F) U D(S), where
D(T), D(F) and D(S) are vertex dominating sets of T, F and S, respectively. S is a set
of edges which has no edges with connection to F.

of. By Corollary 3.26, the edges of F' = (o, 7) are just the a-strong edges of G. The
result follows. (W

In the following result, we will partition the edges of a fuzzy cycle to two types
a—strong and other one.

Proposition 2.81 (Fuzzy Cycle)., Let G = (o, ) be a fuzzy cycle. All edges are
a—strong with the only exceptions of weakest edges.

Proof. We study it in two cases.

Fuzzy Graphs By regarding the definition of a fuzzy cycle, at least two edges have
minimum value between all edges. It implies two cases. The first is of weakest
edges and the latter case is of a—strong edges.
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t—norm Fuzzy Graphs We can say about the weakest edges in t —norm fuzzy graphs
but there is no information about their relations with strength of path which they
are on it. In other words, Is T(vy, va, -+ , v, ) equal with strength of weakest
edges?

A
52
Proposition 2.82. For any fuzzy graph G = (p, @), if there is a path which an edge

vivs 15 only weakest edge on it, then vivs is not a—strong edge.
Proof. We study it in two cases.

Fuzzy Graphs There is a path which an edge 1112 is only weakest edge on it. So by
deleting this edge, the intended path increases the strength of connectedness
between 1y and vy. Then vy is not a—strong edge.

t—norm Fuzzy Graphs We can say about the weakest edges in t—norm fuzzy graphs
but there is no information about their relations with strength of path which they
are on it. In other words, Is T'(vy, va, -+ , v, ) equal with strength of weakest
edges?

a

Example 2.83. LL = (o, 1) and G2 = (o, p2) be fuzzy graphs as Figures 7 and 8.

Then Gy = (o, p1) is a fuzzy tree, but not a tree and not a fuzzy cycle while

Gy = (o, u2) 18 a fuzzy % but not a fuzzy tree.

In Gy = (o, py), the s = {u,} is an a-strong dominating set. This set is also
vertex dominating set in fuzzy tree (but not a fuzzy cycle) ;. Hence

Yo(G1) = 0.7+ 0.77 = 1.47. So 7,(G1) = 1.47.

0.7 0.7

v (L8] va (9]

Figure 7. A Fuzzy Tree, but neither a Tree and nor a Fuzzy Cyele

In Gy = (o, py), the :@ = {1y, v3} I8 an a-strong dominating set. This set is also
vertex dominating set in fuzzy cycle (but not a fuzzy tree) ;. Hence
vo(Ga) = 0.7+ 0.63+ 0.8+ 0 = 2.13. S0 v,(Ga) = 2.13.

0.4
0.7

vy (0.8) 0.4 va (1.9

Figure 8. Aazy Cycle, but not a Fuzzy Tree.
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We give an upper bound for the vertex domination number, Proposition 3.31.

Proposition 2.84. Let G = (o, ) be a fuzzy graph or an t—norm fuzzy graph. Then
we have v, < p.

Proof. By Proposition 3.17, the intended fuzzy graph has vertex domination number
equals p. So the result follows. |

For any fuzzy graph or t—norm fuzzy graph, the Nordhaus-Gaddum(NG)'s result

ds, (Theorem 3.32).

Theorem 2.85. For any fuzzy graph or t—norm fuzzy graph G = (o, ), the
ordhaus- Gaddum result holds. In other words, we have v, + 7, < 2p.

Proof. Let G = (o, p) be a fuzzy graph or an t—norm fuzzy graph. So G is also the
same type. We implement Theorem 3.31, on & and . Then v, < p and ~, < p. Hence
Yo+ T < 2p. O

Definition 2.86. An a-strong dominating set D is called a minimal a-strong
dominating set if no proper subset of D is an a-strong domina‘tiﬁqet.

Theorem 2.87. Let G = (o, u) be a fuzzy graph or an t—norm fuzzy graph, without
isolated vertices. If D is a minimal a-strong dominating set then V' \ D is a a-strong
dominating set.

Proof. By attentions to all edges between two sets, which are only a-strong, the result
follows. O

A domatic partition is a par n of the vertices of a graph into disjoint dominating
sets. The maximum number of disjoint dominating sets in a domatic partition of a
graph is called its domatic number.

Finding a domatic partition of size 1 is trivial and finding a domatic partition of size
2 {or establishing that none exists) is easy but finding a maximum-size domatic
partition (i.e., the domatic number), is computationally hdi/8 Finding domatic
partition of size two in a fuzzy graph or an t—norm fuzzy graph G of order n > 2 is
obtained by the following.

Theorele2.88. Every fuzzy graph or t—norm fuzzy graph G = (o, p), without isolated
vertices, of order n = 2 has an a-strong dominating set D such that whose complement
VA D is also an a-strong dominating set.
5

Proof. For every fuzzy graph or t—norm fuzzy graph G ¥, u), without isolated
vertices, V' is an a-strong dominating set. By analogous to the proof of Theorem 3.34,
we can obtain the result. O

We improve the upper bound for the vertex domination number of fuzzy graphs and
t—norm fuzzy graphs, without isolated vertices, (Theorem 3.30).

Theorem 2.89. For any fuzzyan-ph or t—norm fuzzy graph G = (o, jt), without
isolated vertices, we have ~, < %

Proof. Let D be a minimal dominating set of G. By Theorem 3.35, V' \| D is an a-strong
dominating set of G. Hence ~,(G) gé,,(i)) and v,(G) < w, (V'\ D).

Therefore 2v,(G) < w, (D) +w, (V' \ D) < p which implies ~,, < 5. Hence the proof
is completed. g

We also improve Nordhaus-Gaddum (NG)'s result for fuzzy graphs or f—norm fuzzy
graphs, without isolated vertices, (Corollary 3.37).
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Corollary 2.90. Let G = (o, ) be a fuzzy graph or an t—norm fuzzy graph, such that
both of G and G have no isolated vertices. Then v, + 7, < p, where 7, is the vertex
domination number of G. Moreover, the equality holds if and only if v, = v, = §.

I’Tn By the Implement of Theorem 3.36, on & and G, we have ~, (@) = 7, < £, and
(@) =7ulG) = 7o < 5 7, + 7 <&+ 2 =p. Hencey, + 7, <p.

Suppose v, = 5, = §. Then obviously, . + 5. = p. Conversely, suppose v, + 7, < p.
Then we have v, < & and «, < £. If either v, < & or 4, < £, then v, +, < p, which
is a contradiction. Hence the only possible case is v, =, = £. O
Proposition 2.91. Let G = (o, ) be a fuzzy graph or an t—norm fuzzy graph. If all
edges have equal value, then G has no a-strong edge.

Proof. By using Definition of a-strong edge, the result is hold. O
The following example illustrates this concept.

Example 2.?. In Figure 9, all edges have the same value but there is no a-strong
edges in this fuzzy graph.

v1(0.1) 0.001 v2(0.1)

0.001 0.001

vg (0.1) 0.001 va (0.1
Figure 9. Identical edges and a-strong edges

We give the relationship between M-strong edges and a-strong edges, (Corollary
3.40).
Corollary 2.93. Let G = (o, ) be a fuzzy graph or an t—norm fuzzy graph. If all
edges are M -strong, then G has no a-strong edge.

Proof. By Proposition 3.38, the result follows. O

We give a necessary and sufficient condition for vertex@fmination number which is
half of order, under some specific conditions. In fact, the fuzzy graphs and {—norm
fuzzy graphs, which their vertex domination number is half of order, are characterized
under some specific conditions, (Theorem 3.41).
Theorem 2.94. In any fuzzy graph or any t—norm fuzzy graph G = (o, ), such that
values of vertices are equal and all edges have same values, i.e. é
Yo, ve € V,oli) = alve) and Yurve, vavg € E, p(vive) = plvsia). 40 = 2’ if and only if
for any vertex dominating set D in G, we have |D| = 3.

Progf. Suppose D has the conditions. By Proposition 3.38, ¥v € D,37 o p(vv) =0
where S = {v112 € £ | p(vive) > pg(v1,v2)}: so by using Definition,
Y(G) = E,epa(v). Since values of vertices are equal and |D| = 7, we have
V(@) =B, epo(v) = 5o(v) = %(nﬂ(i:)) = %(E,,.Eyrr(v)) = %(p) = £. Hence the result
is hold in this case.

Conversely, suppose v, = 5. Let D = {vy,va,-++ ,v,} be a vertex dominating set.
By Proposition 3.38, Wv € D, Zm-les p(ver) = 0 where
S ={vwvs € E| plvive) > pg (v, v2) }; so by using Definition, v,(G) = X,epo(v).

1

Sinice 7,(G) = W, (D). we have 7, = & = (,evo(v)) = ¥,epo(v). Suppose n' # &.
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So ¥, 0(v;)) = 0 which is a contradiction with Yu; € V,a(v;) > 0. Hence n = T, le.

ID|=n"= 7. The result is hold in this case. O

The goal of upcoming texts is to prove some results concerning operations and study
some conjectures ari:ﬁg from it.

Proposition 2.95. Let Gy = (1, 1) and Gy = (09, jin) be fuzzy graphs or t—norm
fuzzy graphs. A vertex dominating set in G1 UGz is D = Dy U Dy such that Dy and Ds
are verter dominating sets of Gy and Gy, respectively. Moreover,

YolG1 UG2) =y (G1) + 1 (Ga).
Proof. By using Definition of union, the result is obviously hold. O

Corollary 2.96. Let G; = (o, p;) be fuzzy graphs or t—norm fuzzy graphs, for

i=1,---,n. A vertex dominating set in Ul_ G, is D = UL D; such that D; are vertex

dominating sets in G;,i = 1,-++ ,n. Moreover, v, (U G;) = L, v.(G:).

Proof. By Proposition 3.42, the result is hold. O
12

The concept of monotone decreasing, (Definition 3.44), are introduced.

Definition 2.97. Let G = (o, i) be a fuzzy graph or an t—norm fuzzy graph. A
property is monotone decrgasing if removing an edge, does not destroy the property.

Conjecture (Vizing). For all G and H, 4(G)v(H) < ~(G x H).
By using a-strong edge and monotone decreasing, the result in relation with Vizing's
conjecture is determined, (Theorem 3.45).

Theorem 2.98. The Vizing's conjecture is monotone decreasing property if removed
es are a— strong.

Proof. Let G = (o, ) be a fuzzy graph or an —norm fuzzy graph and G’ be a new one
which is obtained from (7 by removing an edge. For every (1 = (o1, 1), a G x Gy is a
nning subgraph of G x G1. So

(G % G1) > 7,(G x G1) = 1(G)7(G1) = (G )7,(G1). Hence Vizing's conjecture
is also hold for G'. Then the regult follows. O

Corollary 2.99. Suppose the Vizing's conjecture is hold. Let Gy be a spanning
subgraph of G such that v,(G1) = v,(G). Then the Vizing’s conjecture is also hold for

19
Proof. Let G = (o, 1) be a fuzzy graph or an f—norm fuzzy graph and G ga
EJnning subgraph of G such that ~,(G1) = 7. (G). For every Gz = (02, p2), a G1 x Gz
is a spanning subgraph of G x G3. So
TolG1 %X G2) 2 % (G % Ga) 2 7 (G)(G2) = 7, (G1)7,(G2). Hence the Vizing's
conjecture is also hol r (1. So the result follows. O

Proposition 2.100. Let G| = (o1, 1) and Gy = (o9, po) be fuzzy graphs or t—norm
Juzzy graphs. A verter dominating set of G+ Gz is D = D1 U Dy such that Dy and Ds
are verter dominating sets of Gy and Gy, respectively. Moreover,

YolG1 + Ga) = 71 (G1) + 7 (Ga).

Proof. By using Definition of join, M -strong edges between two models are not
a-strong which is a weak edge changing strength of connectedness of G. O

Corollary 2.101. Let G; = (o;, ;) be fuzzy graphs or t—norm fuzzy graphs, for
i=1,---,n, respectively. A vertex dominating set of +_,G; is D =+, D; such that

D; are vertex dominating sets of G;. Moreover, ~v,(+!_ | G;) = X117, (G:).
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Proof. By Proposition 3.47, the result is hold. g

Conjecture (Gravier and Khelladi). For all G and H,

WGy (H) < 29(G + H).

By using a-strong edge and monotone decreasing, the result in relation with the Gravier
and Khelladi's conjecture is determined, (Theorem 3.49).

Theorem 2.102. The Gravier and Khelladi’s conjecture ts monotone decreasing
perty if removed edges are a—strong.

Proof. Let G = (o, p) be a fuzzy graph or {—norm fuzzy graph, and G’ be a new 0
which is obtained from G by removing an edge. For every Gy = (o1,p1), a G + Gy 18 a
spanning subgraph of G + ;. So

27,(G') + G1) = 2%, (G + G1) > 7,(G)70(G1) = 7,(G )7, (G1). Hence the Gravier and
Khelladi’s conjecture is also hold for G'. Then the result follows. O

We conclude this section with some result in relation with the Gravier and
Khelladi’s conjecture, (Corollary 3.50).

Corollary 2.103. Suppose the Gravier and Khelladi’s conjecture is hold. Let G1 be a
spanning subgraph of G such that +,(G1) = 7, (G). Then the Gravier and Khelladi’s
onjecture is hold for Gy

Proof. Let G = (o, ) be a fuzzy graph or t—norm fuzzy graph, and G, be a spanning
subgraph of G such that ~,(G,) = v, (G). For every Gu = (o9, 12), a Gy x Gy is a
spanning subgraph of G x Gs. So

2‘;',,.((:'1 +Go) = 2‘;',,.((;'— (Ga) = ‘y',.(G)‘y',.(GQ) = ‘y',.(Gl]‘y',.(Gg). Hence the Gravier and
Khelladi’s conjecture is also hold for ;. The result follows. O
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