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Abstract. The aim of this 9th expository article is to conclude a study on domination in two fuzzy

models, including t−norm fuzzy graphs and fuzzy graphs. All parts are twofold even if we don’t men-

tion, directly. I.e., all results depicts some properties about fuzzy graph and t−norm fuzzy graph.
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1. Introduction and Overview

In this study, author analyze the structure of domination in t−norm fuzzy graphs and a its special

case when using Tmin, as fuzzy graphs.

In Ref. [?], we have a real world application concerning this concept. you can refer it if you need or

are interested. Some issues in Ref. [?], “· · ·The Global Slavery Index is an annual study of world-wide

slavery conditions by country published by the Walk Free Foundation. In 2016, the study estimated

a total of 45.8 million people to be in some form of modern slavery in 167 countries. The report

contains data for countries concerning the estimate of the prevalence of modern slavery, vulnerability

measures, and an assessment of the strength of government response· · · ”

2. Preliminaries

In this work, author always use v if the vertex is specific. Otherwise, author apply its indices, i.e.

vi. So v or vi always refers to vertices and their twofold part refers to edge. The power “′” usually

states that one edge is deleted.

At first, author introduce two types of a fuzzy models concerning t−norm. It is well known that Tmin

is a function (precisely a relation) which is greater than any t− norm.
“Basic Definition’, ’‘Size”, “Order”, “Scalar Cardinality”, “Path”, “Fuzzy Cycle”, “Isolate”, “α−strong”,

“M−strong”, “Bridge”, “Bipartite”, “Star”, “Complete”, “Spanning Subgraph”, “Fuzzy Tree” and

“Operations” are introduced as preliminaries in what follows. Some concepts are not related to choos-

ing any t−norm because they don’t state any relation between two functions µ and σ which are

depended on each other by definition of fuzzy model (precisely using t−norm). So in all fuzzy models

can be the same.
1
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Definition 2.1 (Definitions, Size and Order, Scalar Cardinality). author introduce some elementary

concepts as follows

(i) [Definitions] Let V be a nonempty finite set and E ⊆ V × V. Then G = (σ, µ) is called a

Fuzzy Graph if ∀v1v2 ∈ E, µ(v1v2) = µ(v2v1) ≤ min{σ(v1), σ(v2)}. And is called an t-norm

Fuzzy Graph if ∀v1v2 ∈ E, µ(v1v2) = µ(v2v1) ≤ T (σ(v1), σ(v2)), where σ : V → [0, 1] and

µ : E → [0, 1] be the fuzzy sets, µ is reflexive and T is an arbitrary t−norm.

(ii) [Size and Order] The Order p and the Size q are defined p = Σv∈V σ(v) and q = Σv1v2∈Eµ(v1v2).

(iii) [Scalar Cardinality] The Scalar Cardinality of S is defined to be Σv∈Sσ(v).

Definition 2.2 (Path, Fuzzy Cycle). Let G = (σ, µ) be a fuzzy graph or an t−norm fuzzy graph.

(i) [Path, its Strength] A Path P of length n is a sequence of distinct vertices v0, v1, · · · , vn such

that µ(vi−1vi) > 0, i = 1, 2, · · · , n and T (µ(v0v1), · · · , µ(vi−1vi)) is defined as its Strength.

The Strength of Connectedness between two vertices v1 and v2 in G is defined as the

maximum of the strengths of all paths between v1 and v2 and is denoted by µ∞G (v1, v2).

(ii) [Fuzzy Cycle, its Strength] Let v0, v1, · · · , vn be a path. It is called a Fuzzy Cycle C of length

n If v0 = vn, n ≥ 3 and at least the values of two edges are T (µ(v0v1, · · · , µ(vi−1vi) which is

defined as Strength of a fuzzy cycle.

Definition 2.3 (Types of Vertices). Let G = (σ, µ) be a fuzzy graph or an t−norm fuzzy graph. A

vertex v is said isolated if µ(vv1) = 0 for all v 6= v1.

Definition 2.4 (Types of Edges). Let G = (σ, µ) be a fuzzy graph or an t−norm fuzzy graph. Let

v1v2 ∈ E. Note that µ∞G′(v1, v2) is the strength of connectedness between v1 and v2 in the fuzzy model

which is obtained from G by deleting the edge v1v2.

An edge v1v2 in G is called

(i) α−strong if µ(v1v2) > µ∞G′(v1, v2) and strong if µ(v1v2) ≥ µ∞G′(v1, v2). The case µ(v1v2) =

µ∞G′(v1, v2), is not considered in any study of domination. The case µ(v1v2) < µ∞G′(v1, v2) is

not possible.

(ii) M−strong if both µ(v1v2) = σ(v1)∧σ(v2) and G is a fuzzy graph or both µ(v1v2) = T (σ(v1), σ(v2))

and G is an t−norm fuzzy graph.

(iii) bridge if µ∞
G′ (v3, v4) < µ∞G (v3, v4) for some v3, v4 ∈ V.

Definition 2.5 (Types of Models). Let G = (σ, µ) and G1 = (τ, ν) be a fuzzy graph or an t−norm

fuzzy graph. Then G = (σ, µ) is said to be

(i) Bipartite if V can be partitioned into two nonempty sets V1 and V2 such that µ(v1v2) = 0 if

v1, v2 ∈ V1 or v1, v2 ∈ V2;
(ii) Star which is denoted by K1,σ If it is a bipartite and either |V1| = 1 or |V2| = 1 which imply

that we call its corresponded vertex a center;

(iii) Complete if all edges be M− strong. e.g., Complete bipartite fuzzy graph, Complete fuzzy

graph, Complete bipartite t−norm fuzzy graph, Complete t−norm fuzzy graph.
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(iv) has a Spanning Subgraph G1 = (τ, ν) if τ = σ and ν ⊆ µ.
(v) Fuzzy tree if its spanning subgraph F = (σ, τ) is a tree (Ref. [?]), where for all edges v1v2 is

in G but not F, we have µ(v1v2) < τ∞F (v1, v2).

Definition 2.6 (Types of New Models). If we alter min,max (precisely t-norm Tmin, Tmax) with an

arbitrary t-norm T, we have these concepts for t−norm fuzzy graphs. To avoid confusion, we only

write down for fuzzy graph and the analogues concepts are supposed to be obvious and we use these

names for both models, fuzzy graphs and fuzzy t−norm graphs.

Let G1 = (σ1, µ1) and G2 = (σ2, µ2) be fuzzy graphs on G∗1 = (V1, E1) and G∗2 = (V2, E2), respectively.

Then

(i) [Unary Operation, Complement] A Complement of a fuzzy graph G1 = (σ1, µ1) is denoted

by Ḡ1 and is defined to Ḡ1 = (σ1, µ̄1), where µ̄1(v1v2) = min{σ1(v1), σ1(v2)} − µ1(v1v2), for

all v1, v2 ∈ V1;
(ii) [Binary Operation, Cartesian Product] A Cartesian product G = G1 × G2 is defined as a

fuzzy graph G = (σ1 × σ2, µ1µ2) on G∗ = (V1 × V2, E) where E = {(v, v1)(v, v2)|v ∈ V1, v1v2 ∈
E2} ∪ {(v1, v)(v2, v)}|v1v2 ∈ E1, v ∈ V2}. Fuzzy sets σ1 × σ2 on V1 × V2 and µ1µ2 on E, are

defined as (σ1 × σ2)(v1, v2) = min{σ1(v1), σ2(v2)}, ∀(v1, v2) ∈ V1 × V2 and ∀v ∈ V1,∀v1v2 ∈
E2, µ1µ2((v, v1)(v, v2)) = min{σ1(v), µ2(v1v2)} and ∀v1v2 ∈ E1, ∀v ∈ V2, µ1µ2((v1, v)(v2, v)) =

min{µ1(v1v2), σ2(v)};
(iii) [Binary Operation, Union] An Union G = G1∪G2 is defined as a fuzzy graph G = (σ1∪σ2, µ1∪

µ2) on G∗ = (V1∪V2, E1∪E2). Fuzzy sets σ1∪σ2 and µ1∪µ2 are defined as (σ1∪σ2)(v) = σ1(v)

if v ∈ V1 − V2, (σ1 ∪ σ2)(v) = σ2(v) if v ∈ V2 − V1, and (σ1 ∪ σ2)(v) = max{σ1(v), σ2(v)} if

v ∈ V1 ∩ V2. Also (µ1 ∪µ2)(v1v2) = µ1(v1v2) if v1v2 ∈ E1−E2 and (µ1 ∪µ2)(v1v2) = µ2(v1v2)

if v1v2 ∈ E2 − E1, and (µ1 ∪ µ2)(v1v2) = max{µ1(v1v2), µ2(v1v2)} if v1v2 ∈ E1 ∩ E2;

(iv) [Binary Operation, Join] A Join G = G1+G2 is defined as a fuzzy graph G = (σ1+σ2, µ1+µ2)

on G∗ = (V1 ∪ V2, E = E1 ∪ E2 ∪ E
′
) where E

′
is the set of all edges joining vertices of V1

with the vertices of V2 and we assume that V1 ∩ V2 = ∅. Fuzzy sets σ1 + σ2 and µ1 + µ2 are

defined as (σ1 + σ2)(v) = (σ1 ∪ σ2)(v) and ∀v ∈ V1 ∪ V2; (µ1 + µ2)(v1v2) = (µ1 ∪ µ2)(v1v2) if

v1v2 ∈ E1 ∪ E2 and (µ1 + µ2)(v1v2) = min{σ1(v1), σ2(v2)} if v1v2 ∈ E
′
.

3. Basic Ideas

We choose a name for our new definition as vertex domination and we refer to others with only the

name domination. To avoid confusion, we bring references if it is necessary.

Definition 3.1 (Domination: Edge, Set, Number). Let G = (σ, µ) be a fuzzy graph or an t−norm

fuzzy graph and v, v1 ∈ V. Then

(i) A vertex v α-strongly dominates a vertex v1 in G, if its corresponded edge vv1 is an α-strong

edge;

(ii) D is called an α-strong dominating set in G, if for every v1 ∈ V \D, there is v ∈ D such

that v α-strongly dominates v1.
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(iii) The weight of D is defined by wv(D) =
∑
v∈D

(σ(v) +

∑
vv1∈S

µ(vv1)∑
vv1∈E

µ(vv1)
), where S = {v1v2 ∈

E | µ(v1v2) > µ∞G′(v1, v2)}.
(iv) A vertex domination number of G is defined as γv(G) = min

D∈D
{wv(D)}, where D is the set of

all α-strong dominating sets in G. The α-strong dominating set that corresponds to γv(G)

is called by vertex dominating set.

We give some definitions concerning domination on fuzzy graphs. It can be extended to t−norm

fuzzy graphs. We only use them in some examples for illustrating our concepts and do a comparison

between them with ours. It is worth to note that if we alter min (precisely t-norm Tmin) with any

t-norm T, we have these concepts for t−norm fuzzy graphs. To avoid confusion, we only write down

for fuzzy graph and the analogues concepts are supposed to be obvious.

Definition 3.2. Let G = (σ, µ) be a fuzzy graph, D ⊆ V and D is a set of all dominating sets in G.

Then

(i) (A. Somasundaram and S. Somasundaram (Ref.[?])) D ⊆ V is said to be an domi-

nating set in G, if for every v1 ∈ V \D, there exists v ∈ D such that its corresponded edge

vv1 is an M−strong edge.γ(G) = min
D∈D
{
∑
v∈D

σ(v)} is said to be a domination number of G.

(ii) (C. Natarajan and S.K. Ayyaswamy (Ref.[?])) D ⊆ V is said to be a dominating set,

if for every v1 ∈ V \D, there exists v ∈ D such that its corresponded edge vv1 is an M−strong

edge and de(v) =
∑

v2∈N(v)

σ(v2) ≥ de(v1) =
∑

v2∈N(v1)

σ(v2) where for all v ∈ V,N(v) = {v1 ∈

V | µ(vv1) = min{σ(v), σ(v1)}}. γ(G) = min
D∈D
{
∑
v∈D

σ(v)} is said to be a domination number

of G.

(iii) (O.T. Manjusha and M.S. Sunitha (Ref.[?])) D ⊆ V is said to be dominating set if

for every v1 ∈ V \D, there exists v ∈ D such that its corresponded edge vv1 is a strong edge.

γ(G) = minD∈D{
∑
v∈D

σ(v)} is said to be a domination number of G.

(iv) (A. Nagoor Gani and K. Prasanna Devi (Ref.[?])) D ⊆ V is said to be dominating

set, if for every v1 ∈ V \D, there exists two vertices like v ∈ D such that their corresponded

edges are strong edges. γ(G) = minD∈D{
∑
v∈D

σ(v)} is said to be a domination number;

(v) (O.T. Manjusha and M.S. Sunitha (Ref.[?])) D ⊆ V is said to be dominating set, if

for every v1 ∈ V \D, there exists v ∈ D such that its corresponded edge vv1 is an strong edge.

domination number of G is said to be γ(G) = minD∈D{
∑
v∈D

min
vv1is a strong edge.

{µ(v, v1)}}.

In two upcoming examples, we illustrates the concept of our definition.

Example 3.3 (α−strong edge). Let G = (σ, µ) be a fuzzy graph as Figure ??. Then the edges

{v2v5, v2v4, v3v4, v1v3} are α-strong and the edges {v1v4, v1v2, v4v5} are not α-strong.
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v2(0.7)

v5(0.5)

v4(0.75)v3(0.9)

v1(0.5)

0.009

0.005

0.006

0.008

0.003

0.009

0.003

Figure 1. vertex domination

Example 3.4 (Domination). Let G = (σ, µ) be a fuzzy graph as Figure ??. The set S = {v2, v3} is

an α-strong dominating set. This set is also vertex dominating set in fuzzy graph G. Hence γv(G) =

1.75 + 0.9 + 0.7 = 3.35. So γv(G) = 3.35.

In two upcoming examples, we compare our definition with others as theoretic and practical aspects.

Example 3.5 (Theoretic Aspect). The following is a table consist of a brief fundamental comparison

between types of domination in fuzzy graphs. There are two different types of the complete bipartite

fuzzy graphs as Figures ?? and ??, which compare types of domination in fuzzy graphs.

Types of Edges Types of Numbers Figure ?? Figure ??

M−strong Scalar cardinality 0.9 0.9

M−strong and de(u) ≥ de(v) Scalar cardinality 1.9 1.3

Strong Scalar cardinality 0.9 0.9

β−strong Scalar cardinality 0.9 1.5

Strong Σu∈Dt(u, v) 0.8 0.4

Our new definition vertex weight 1.9 2.4

v1(0.4)

v3(0.6) v4(0.7)

v2(0.5)

0.4

0.4

0.5

0.5

Figure 2. Comparison of Dominations

v1(0.4)

v3(0.6) v4(0.7)

v2(0.5)

0.4

0.3 0.2

0.5

Figure 3. Comparison of Dominations with Different Values
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Example 3.6 (Practical Aspect: A Comparison in Real-World Problem). In this section, we introduce

one practical application in related to this concept. In the following, we will try to solve this problem

by previous definitions, too.

Suppose the Figure ??, the fuzzy graph model of the hypothetical condition of cities and the paths

between them in a region.

Problem[reducing waste of time in transport planning] Consider a set of cities connected by communi-

cation paths. Which cities have these properties? Having low traffic levels and other cities associating

with at least ones by low-cost roads.

The terms “low traffic” and “low-cost” are vague in nature. So we are faced with a fuzzy graph model.

In other words, Let G be a graph which represents the roads between cities. Let the vertices denote the

cities and the edges denote the roads connecting the cities. From the statistical data that represents

the high traffic flow of cities and high-cost roads, the functions σ and µ on the vertex set and edge

set of G can be constructed by using the standard techniques. In this fuzzy graph, a dominating set D

can be interpreted as a set of cities which have low traffic and every city not in D is connected to a

member in D by a low-cost road. We now look at the answer to the problem raised by using the old

v1(0.1)

v6(0.3)

v5(0.6)

v4(0.7)

v3(0.2)

v2(0.4)

0.009

0.004

0.007 0.006

0.004

0.005

Figure 4. The exemplary scheme of road infrastructure

and the new definitions. As you can see in this model, finding the desirable cities is more important

than finding the domination number. Because the numbers given for the set and each situation are

compared with each others in the context of the same definition, and this number is merely to compare

the different sets of cities in the context of the same definition. Therefore, speaking of the magnitude

of this number is meaningless. The table below illustrates the solutions presented for this problem.

Definitions Given desirable set

A. Somasundaram and S. Somasundaram (Ref. [?]) V

C. Natarajan and S.K. Ayyaswamy (Ref. [?]) V

O.T. Manjusha and M.S. Sunitha (Ref. [?]) {v3, v6}
A. Nagoor Gani and K. Prasanna Devi (Ref. [?]) V

O.T. Manjusha and M.S. Sunitha (Ref. [?]) {v3, v6}
Our new definition {v1, v4}
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It is obvious from the above table and Figure ?? that the desirable cities given by previous definitions,

are not appropriate due to the lack of simultaneous attention to cities and roads.

We are now presenting the dynamic status of the problem. The dynamic state is the situation in which

the fuzzy graph model is found over time. Since over time, changes in the values of roads are more

than changes in the values of cities in the fuzzy graph model of the hypothetical condition of cities and

the paths between them in a region. So values of the roads increases. Values of cities (their traffics)

do not change significantly over time. Because the traffic problem is an infrastructure problem. The

Figure ?? depicts the dynamic case of a fuzzy graph model. Over time, the values of the roads increases

equally.

v1(0.1)

v2(0.4)

v3(0.2)

v4(0.7)

v5(0.6)

v6(0.3)

0.09

0.04

0.07 0.06

0.04

0.05

v1(0.1)

v2(0.4)

v3(0.2)

v4(0.7)

v5(0.6)

v6(0.3)

0.07

0.06

0.080.09

0.06

0.1

v1(0.1)

v6(0.3)

v5(0.6)

v4(0.7)

v3(0.2)

v2(0.4)

0.1

0.08

0.11 0.11

0.08

0.1

v1(0.1)

v2(0.4)

v3(0.2)

v4(0.7)

v5(0.6)

v6(0.3)

0.1

0.17

0.2
0.2

0.17

0.1

v1(0.1)

v2(0.4)

v3(0.2)

v4(0.7)

v5(0.6)

v6(0.3)

0.1

0.2

0.20.2

0.2

0.1

v1(0.1)

v2(0.4)

v3(0.2)

v4(0.7)

v5(0.6)

v6(0.3)

0.1

0.2

0.20.2

0.3

0.1

Figure 5. The dynamic scheme of road infrastructure

In this situation, the answer are given by the previous definitions reflects the wrong perspectives while

the our new definition adapts itself well to the new situation. Previous definitions didn’t use simulta-

neous attentions to cities and roads.

Dynamic analysis of networks in the first row of Figure ?? are the following table.
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Definitions Given desirable set

A. Somasundaram and S. Somasundaram (Ref. [?]) V, V − {v6}, V − {v2, v6}
C. Natarajan and S.K. Ayyaswamy (Ref. [?]) V, V − {v6}, V − {v2, v6}
O.T. Manjusha and M.S. Sunitha (Ref. [?]) {v3, v6}, {v3, v6}, {v3, v6}

A. Nagoor Gani and K. Prasanna Devi (Ref. [?]) {v1, v3, v5}, {v1, v3, v5}, {v1, v3, v5}
O.T. Manjusha and M.S. Sunitha (Ref. [?]) {v3, v6}, {v3, v6}, {v3, v6}

Our new definition {v1, v4}, {v1, v4}, {v1, v4}
Dynamic analysis of networks in the second row of Figure ?? are the following table.

Definitions Given desirable set

A. Somasundaram and S. Somasundaram (Ref. [?]) {v1, v3, v5}, {v1, v3, v5}, {v3, v5}
C. Natarajan and S.K. Ayyaswamy (Ref. [?]) {v2, v4, v6}, {v3, v5, v6}, {v2, v3, v5}
O.T. Manjusha and M.S. Sunitha (Ref. [?]) {v3, v6}, {v3, v6}, {v3, v6}

A. Nagoor Gani and K. Prasanna Devi (Ref. [?]) {v1, v3, v5}, {v1, v3, v5}, {v1, v3, v5}
O.T. Manjusha and M.S. Sunitha (Ref. [?]) {v3, v6}, {v3, v6}, {v3, v6}

Our new definition {v1, v3, v6}, {v1, v3, v6}, {v1, v3, v6}

4. General Ideas

All parts are twofold even if we don’t mention, directly. I.e., all results depicts some properties

about fuzzy graph and t−norm fuzzy graph.

It is well known and generally accepted that the problem of determining the domination number of

an arbitrary fuzzy model is a difficult one. Because of this, researchers have turned their attention to

the study of classes of fuzzy models for which the domination problem can be solved in polynomial

time.

Proposition 4.1 (Ref. [?], Proposition 3.24. , pp. 135, 136). Let G = (σ, µ) be a complete t−norm

fuzzy graph. Then

(1) µ∞G (v1, v2) = µ(v1v2),∀v1, v2 ∈ V
(2) G has no cut vertices.

Corollary 4.2. Every edges in complete t-norm fuzzy graph are α-strong if ∀v1, v2 ∈ V, there is exactly

one path with strength of µ∞(v1, v2).

Proof. Let G be complete. For all v1, v2 ∈ V, µ∞G (v1, v2) = µ(v1v2) by Proposition (??). So for all

v1v2 ∈ V, µ
′∞
G (v1, v2) < µ(v1, v2). Hence uv is α-strong edge. The result follows. �

Proposition 4.3. Let G = (σ, µ) be complete such that ∀v1, v2 ∈ V, there is exactly one path with

strength of µ∞(v1, v2). Then, every edges are α-strong.

Proof. We prove it in two cases.
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Fuzzy Graphs: Let G be a complete fuzzy graph. The strength of path P from v1 to v2 is of

the form min{σ(v1), · · ·σ(v2)} ≤ min{σ(v1), σ(v2)} = µ(v1v2). So µ∞G (v1, v2) ≤ µ(v1v2). v1v2

is a path from v1 to v2 such that µ(v1v2) = min{σ(v1), σ(v2)}. Therefore µ∞G (v1, v2) ≥ µ(v1v2).

Hence µ∞G (v1, v2) = µ(v1v2). Then µ(v1v2) > µ∞
G′ (v1, v2). It means that the edge v1v2 is α-

strong. All edges are α-strong, as we wished to show. Its proof works equally well for the

latter.

t−norm Fuzzy Graphs: The strength of path P from v1 to v2 is of the form T (σ(v1), · · ·σ(v2)) ≤
T (σ(v1), σ(v2)). G is complete. By regarding this point, we have T (σ(v1), σ(v2)) = µ(v1v2).

Therefore, T (σ(v1), · · ·σ(v2)) ≤ µ(v1v2). It means that µ∞G (v1, v2) ≤ µ(v1v2). v1, v2 is a path

from v1 to v2 such that µ(v1v2) = T (σ(v1), σ(v2)). Therefore µ∞G (v1, v2) ≥ µ(v1v2). Hence

µ∞G (v1, v2) = µ(v1v2). Then µ(v1v2) > µ∞
G′ (v1, v2). It means that the edge v1v2 is α-strong. All

edges are α-strong.

�

Corollary 4.4 (Complete). Let G = (σ, µ) be complete such that ∀v1, v2 ∈ V, there is exactly one

path with strength of µ∞(v1, v2). Then, γv(G) = minv∈V (σ(v)) + 1.

Proof. We prove it in two cases.

Fuzzy Graphs: All edges are α-strong and each vertex is adjacent to all other vertices. So

D = {v} is an α-strong dominating set and
∑
vv1∈S

µ(vv1) =
∑
vv1∈E

µ(vv1) for each v ∈ V, where

S = {v1v2 ∈ E | µ(v1v2) > µ∞G′(v1, v2)}. The result follows.

t−norm Fuzzy Graphs: All edges are α-strong and each vertex is adjacent to all other vertices.

So D = {v} is an α-strong dominating set and
∑
vv1∈S

µ(vv1) =
∑
vv1∈E

µ(vv1) for each v ∈ V,

where S = {v1v2 ∈ E | µ(v1v2) > µ∞G′(v1, v2)}. The case where equality holds is of particular

interest.

�

Proposition 4.5 (Edgeless). Let G = (σ, µ) be an edgeless fuzzy graph. Then γv(G) = p, where p

denotes the order of G.

Proof. We prove it in two cases.

Fuzzy Graphs: G is edgeless. Hence V is only α-strong dominating set in G and there is no

α-strong edge. So by Definition, we have γv(G) = Σv∈V σ(v) = p.

t−norm Fuzzy Graphs: The previous proof works equally well for this case.

�

It is interesting to note that the converse of Proposition ??, does not hold.

Example 4.6. We show that the converse of Proposition ?? does not hold. For this purpose, Let

G = (σ, µ) be a fuzzy graph where V = {v1, v2, v3, v4, v5}, E = {v1v2, v1v4, v1v3, v2v4, v2v5, v3v4, v4v5}
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and σ, µ are fuzzy sets which are defined on V,E, respectively, as follows. For the fuzzy set σ, we have

σ(v1) = 0.5, σ(v2) = 0.7, σ(v3) = 0.9, σ(v4) = 0.75, σ(v5) = 0.5

Now, for the fuzzy set µ, we have µ(v1v2) = 0.005,

µ(v1v4) = 0.003, µ(v1v3) = 0.009, µ(v2v4) = 0.006, µ(v2v5) = 0.009,

µ(v3v4) = 0.008, µ(v4v5) = 0.003 such that ∀v1, v2 ∈ V, µ(v1v2) ≤ min{σ(v1), σ(v2)}. The edges

{v2v5, v2v4, v3v4, v1v3} are α-strong and the edges {v1v4, v1v2, v4v5} are not α-strong. So the set

{v2, v3} is the α-strong dominating set. This set is also vertex dominating set in fuzzy graph G. Hence

γv(G) = 1.75 + 0.9 + 0.7 = 3.35 = Σv∈V σ(v) = p. So G is not edgeless but γv(G) = p.

Corollary 4.7. Let G = (σ, µ) be complete bipartite such that ∀v1, v2 ∈ V, there is exactly one path

with strength of µ∞(v1, v2). Then, every edges are α-strong.

Proof. The proof in Proposition (??), works equally well for this case. �

Corollary 4.8. Let G = (σ, µ) be complete star such that ∀v1, v2 ∈ V, there is exactly one path with

strength of µ∞(v1, v2). Then, every edges are α-strong.

Proof. The proof in Proposition (??), works equally well for this case. �

Corollary 4.9 (Complete Star). Let G = (σ, µ) be complete star such that ∀v1, v2 ∈ V, there is exactly

one path with strength of µ∞(v1, v2). Then, γv(G) is σ(v) + 1 where v ∈ V is supposed as a center of

G.

Proof. We prove it in two cases.

Fuzzy Graphs: Let G = (σ, µ) be a star fuzzy graph with V = {v, v1, v2, · · · , vn} such that v

is a center. Then {v} is a vertex dominating set of G. Hence γv(G) = σ(v) + 1.

t−norm Fuzzy Graphs: The previous proof works equally well for this case.

�

Corollary 4.10 (Complete Bipartite). Let G = (σ, µ) be a complete bipartite such that ∀v1, v2 ∈
V, there is exactly one path with strength of µ∞(v1, v2). Then γv(G) is either σ(v) + 1, v ∈ V or

minv1∈V1,v2∈V2(σ(v1) + σ(v2)) + 2.

Proof. We prove it in two cases.

Fuzzy Graphs: Let G = (σ, µ) be a complete bipartite fuzzy graph such that ∀v1, v2 ∈ V, there

is exactly one path with strength of µ∞(v1, v2). By Corollary (??), all the edges are α-strong.

If G is a complete star fuzzy graph, then by Corollary (??), the result follows. Otherwise, the

vertex set V can be partitioned into two nonempty sets V1 and V2 such that both of V1 and

V2 include more than one vertex. Every vertex in V1 is dominated by every vertices in V2, as

α-strong and conversely. Hence in Kσ1,σ2 , the α-strong dominating sets are V1 and V2 and any

set containing 2 vertices, one in V1 and other in V2. So γv(Kσ1,σ2) = minv1∈V1,v2∈V2(σ(v1) +

σ(v2)) + 2. The result follows.
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t−norm Fuzzy Graphs: Let G = (σ, µ) be a complete bipartite t−norm fuzzy graph such that

∀v1, v2 ∈ V, there is exactly one path with strength of µ∞(v1, v2). By Corollary (??), all the

edges are α-strong.

If G is a complete star t−norm fuzzy graph, then by Corollary (??), the result follows. Oth-

erwise, the vertex set V can be partitioned into two nonempty sets V1 and V2 such that

both of V1 and V2 include more than one vertex. Every vertex in V1 is dominated by

every vertices in V2, as α-strong and conversely. Hence in Kσ1,σ2 , the α-strong dominat-

ing sets are V1 and V2 and any set containing 2 vertices, one in V1 and other in V2. So

γv(Kσ1,σ2) = minv1∈V1,v2∈V2(σ(v1) + σ(v2)) + 2. The result follows.

�

Theorem 4.11. Let G = (σ, µ) be a fuzzy graph [Ref.[?], Theorem 2.4., p.21] or an t−norm fuzzy

graph [Ref.[?], Theorem 3.3., p.132]. Let v1v2 ∈ E. Let µ
′

be the fuzzy subset of E such that µ
′
(xy) = 0

and µ
′

= µ otherwise. Then

-t−norm Fuzzy Graphs: (3)⇒ (2)⇔ (1) -Fuzzy Graphs: (3)⇔ (2)⇔ (1)

(1) v1v2 is a bridge;

(2) µ∞
G′ (v1, v2) < µ(v1v2);

(3) v1v2 is not a weakest edge of any cycle.

Corollary 4.12. Let G = (σ, µ) be a fuzzy graph or an t−norm fuzzy graph and v1v2 ∈ E. v1v2 is an

α-strong edge if and only if v1v2 is a bridge.

Proof. By Theorem ??, the result is obviously hold. �

Theorem 4.13. [Fuzzy Graph: Ref.[?], Proposition 2.7, p.24] [t−norm Fuzzy Graph: Ref.[?], The-

orem 3.30, p.137] Let G = (σ, µ) be a fuzzy tree. Then the edges of F = (τ, ν) are just the bridges of

G.

Corollary 4.14. Let G = (σ, µ) be a fuzzy tree. Then edges of F = (σ, τ) are just the α-strong edges

of G.

Proof. By Theorem ?? and Corollary ??, the result follows. �

Proposition 4.15. Let G = (σ, µ) be a fuzzy tree. Then D(T ) = D(F ) ∪ D(S), where D(T ), D(F )

and D(S) are vertex dominating sets of T, F and S, respectively. S is a set of edges which has no

edges with connection to F.

Proof. By Corollary ??, the edges of F = (σ, τ) are just the α-strong edges of G. The result follows. �

In the following result, we will partition the edges of a fuzzy cycle to two types α−strong and other

one.

Proposition 4.16 (Fuzzy Cycle). Let G = (σ, µ) be a fuzzy cycle. All edges are α−strong with the

only exceptions of weakest edges.
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Proof. We study it in two cases.

Fuzzy Graphs: By regarding the definition of a fuzzy cycle, at least two edges have minimum

value between all edges. It implies two cases. The first is of weakest edges and the latter case

is of α−strong edges.

t−norm Fuzzy Graphs: We can say about the weakest edges in t−norm fuzzy graphs but there

is no information about their relations with strength of path which they are on it. In other

words, Is T (v1, v2, · · · , vn) equal with strength of weakest edges?

�

Proposition 4.17. For any fuzzy graph G = (µ, σ), if there is a path which an edge v1v2 is only

weakest edge on it, then v1v2 is not α−strong edge.

Proof. We study it in two cases.

Fuzzy Graphs: There is a path which an edge v1v2 is only weakest edge on it. So by deleting

this edge, the intended path increases the strength of connectedness between v1 and v2. Then

v1v2 is not α−strong edge.

t−norm Fuzzy Graphs: We can say about the weakest edges in t−norm fuzzy graphs but there

is no information about their relations with strength of path which they are on it. In other

words, Is T (v1, v2, · · · , vn) equal with strength of weakest edges?

�

Example 4.18. Let G1 = (σ, µ1) and G2 = (σ, µ2) be fuzzy graphs as Figures ?? and ??. Then

G1 = (σ, µ1) is a fuzzy tree, but not a tree and not a fuzzy cycle while G2 = (σ, µ2) is a fuzzy cycle,

but not a fuzzy tree.

In G1 = (σ, µ1), the set S = {v1} is an α-strong dominating set. This set is also vertex dominating

set in fuzzy tree (but not a fuzzy cycle) G1. Hence γv(G1) = 0.7 + 0.77 = 1.47. So γv(G1) = 1.47.

v1(0.7)

v2(0.9)v3(0.8)

0.7

0.4

0.7

Figure 6. A Fuzzy Tree, but neither a Tree and nor a Fuzzy Cycle

In G2 = (σ, µ2), the set S = {v1, v3} is an α-strong dominating set. This set is also vertex dominating

set in fuzzy cycle (but not a fuzzy tree) G2. Hence γv(G2) = 0.7 + 0.63 + 0.8 + 0 = 2.13. So

γv(G2) = 2.13.

We give an upper bound for the vertex domination number, Proposition ??.

Proposition 4.19. Let G = (σ, µ) be a fuzzy graph or an t−norm fuzzy graph. Then we have γv ≤ p.
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v1(0.7)

v2(0.9)v3(0.8)

0.7

0.4

0.4

Figure 7. A Fuzzy Cycle, but not a Fuzzy Tree.

Proof. By Proposition ??, the intended fuzzy graph has vertex domination number equals p. So the

result follows. �

For any fuzzy graph or t−norm fuzzy graph, the Nordhaus-Gaddum(NG)’s result holds, (Theorem

??).

Theorem 4.20. For any fuzzy graph or t−norm fuzzy graph G = (σ, µ), the Nordhaus-Gaddum result

holds. In other words, we have γv + γ̄v ≤ 2p.

Proof. Let G = (σ, µ) be a fuzzy graph or an t−norm fuzzy graph. So Ḡ is also the same type. We

implement Theorem ??, on G and Ḡ. Then γv ≤ p and γ̄v ≤ p. Hence γv + γ̄v ≤ 2p. �

Definition 4.21. An α-strong dominating set D is called a minimal α-strong dominating set if no

proper subset of D is an α-strong dominating set.

Theorem 4.22. Let G = (σ, µ) be a fuzzy graph or an t−norm fuzzy graph, without isolated vertices.

If D is a minimal α-strong dominating set then V \D is a α-strong dominating set.

Proof. By attentions to all edges between two sets, which are only α-strong, the result follows. �

A domatic partition is a partition of the vertices of a graph into disjoint dominating sets. The

maximum number of disjoint dominating sets in a domatic partition of a graph is called its domatic

number.

Finding a domatic partition of size 1 is trivial and finding a domatic partition of size 2 (or establishing

that none exists) is easy but finding a maximum-size domatic partition (i.e., the domatic number),

is computationally hard. Finding domatic partition of size two in a fuzzy graph or an t−norm fuzzy

graph G of order n ≥ 2 is obtained by the following.

Theorem 4.23. Every fuzzy graph or t−norm fuzzy graph G = (σ, µ), without isolated vertices, of

order n ≥ 2 has an α-strong dominating set D such that whose complement V \D is also an α-strong

dominating set.

Proof. For every fuzzy graph or t−norm fuzzy graph G = (σ, µ), without isolated vertices, V is an

α-strong dominating set. By analogous to the proof of Theorem ??, we can obtain the result. �
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We improve the upper bound for the vertex domination number of fuzzy graphs and t−norm fuzzy

graphs, without isolated vertices, (Theorem ??).

Theorem 4.24. For any fuzzy graph or t−norm fuzzy graph G = (σ, µ), without isolated vertices, we

have γv ≤ p
2 .

Proof. Let D be a minimal dominating set of G. By Theorem ??, V \ D is an α-strong dominating

set of G. Hence γv(G) ≤ wv(D) and γv(G) ≤ wv(V \D).

Therefore 2γv(G) ≤ wv(D) + wv(V \D) ≤ p which implies γv ≤ p
2 . Hence the proof is completed. �

We also improve Nordhaus-Gaddum (NG)’s result for fuzzy graphs or t−norm fuzzy graphs, without

isolated vertices, (Corollary ??).

Corollary 4.25. Let G = (σ, µ) be a fuzzy graph or an t−norm fuzzy graph, such that both of G

and Ḡ have no isolated vertices. Then γv + γ̄v ≤ p, where γ̄v is the vertex domination number of Ḡ.

Moreover, the equality holds if and only if γv = γ̄v = p
2 .

Proof. By the Implement of Theorem ??, on G and Ḡ, we have γv(G) = γv ≤ p
2 , and γv(Ḡ) = γ̄v(G) =

γ̄v ≤ p
2 . So γv + γ̄v ≤ p

2 + p
2 = p. Hence γv + γ̄v ≤ p.

Suppose γv = γ̄v = p
2 . Then obviously, γv + γ̄v = p. Conversely, suppose γv + γ̄v ≤ p. Then we have

γv ≤ p
2 and γ̄v ≤ p

2 . If either γv <
p
2 or γ̄v <

p
2 , then γv + γ̄v < p, which is a contradiction. Hence the

only possible case is γv = γ̄v = p
2 . �

Proposition 4.26. Let G = (σ, µ) be a fuzzy graph or an t−norm fuzzy graph. If all edges have equal

value, then G has no α-strong edge.

Proof. By using Definition of α-strong edge, the result is hold. �

The following example illustrates this concept.

Example 4.27. In Figure ??, all edges have the same value but there is no α-strong edges in this

fuzzy graph.

v1(0.1)

v3(0.1) v4(0.1)

v2(0.1)

0.001

0.001

0.001

0.001

Figure 8. Identical edges and α-strong edges

We give the relationship between M -strong edges and α-strong edges, (Corollary ??).

Corollary 4.28. Let G = (σ, µ) be a fuzzy graph or an t−norm fuzzy graph. If all edges are M -strong,

then G has no α-strong edge.
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Proof. By Proposition ??, the result follows. �

We give a necessary and sufficient condition for vertex domination number which is half of order,

under some specific conditions. In fact, the fuzzy graphs and t−norm fuzzy graphs, which their vertex

domination number is half of order, are characterized under some specific conditions, (Theorem ??).

Theorem 4.29. In any fuzzy graph or any t−norm fuzzy graph G = (σ, µ), such that values of vertices

are equal and all edges have same values, i.e. ∀v1, v2 ∈ V, σ(v1) = σ(v2) and ∀v1v2, v3v4 ∈ E,µ(v1v2) =

µ(v3v4). γv = p
2 if and only if for any vertex dominating set D in G, we have |D| = n

2 .

Proof. Suppose D has the conditions. By Proposition ??, ∀v ∈ D,
∑

vv1∈S µ(vv1) = 0 where S =

{v1v2 ∈ E | µ(v1v2) > µ∞G′(v1, v2)}; so by using Definition, γv(G) = Σv∈Dσ(v). Since values of vertices

are equal and |D| = n
2 , we have γv(G) = Σv∈Dσ(v) = n

2σ(v) = 1
2(nσ(v)) = 1

2(Σv∈V σ(v)) = 1
2(p) = p

2 .

Hence the result is hold in this case.

Conversely, suppose γv = p
2 . Let D = {v1, v2, · · · , vn} be a vertex dominating set. By Proposition

??, ∀v ∈ D,
∑

vv1∈S µ(vv1) = 0 where S = {v1v2 ∈ E | µ(v1v2) > µ∞G′(v1, v2)}; so by using Definition,

γv(G) = Σv∈Dσ(v). Since γv(G) = Wv(D), we have γv = p
2 = 1

2(Σv∈V σ(v)) = Σv∈Dσ(v). Suppose

n
′ 6= n

2 . So Σn
′′

i=1σ(vi)) = 0 which is a contradiction with ∀vi ∈ V, σ(vi) > 0. Hence n
′

= n
2 , i.e.

|D| = n
′

= n
2 . The result is hold in this case. �

The goal of upcoming texts is to prove some results concerning operations and study some conjec-

tures arising from it.

Proposition 4.30. Let G1 = (σ1, µ1) and G2 = (σ2, µ2) be fuzzy graphs or t−norm fuzzy graphs. A

vertex dominating set in G1 ∪G2 is D = D1 ∪D2 such that D1 and D2 are vertex dominating sets of

G1 and G2, respectively. Moreover, γv(G1 ∪G2) = γv(G1) + γv(G2).

Proof. By using Definition of union, the result is obviously hold. �

Corollary 4.31. Let Gi = (σi, µi) be fuzzy graphs or t−norm fuzzy graphs, for i = 1, · · · , n. A vertex

dominating set in ∪ni=1Gi is D = ∪ni=1Di such that Di are vertex dominating sets in Gi, i = 1, · · · , n.
Moreover, γv(∪ni=1Gi) = Σn

i=1γv(Gi).

Proof. By Proposition ??, the result is hold. �

The concept of monotone decreasing, (Definition ??), are introduced.

Definition 4.32. Let G = (σ, µ) be a fuzzy graph or an t−norm fuzzy graph. A property is monotone

decreasing if removing an edge, does not destroy the property.

Conjecture (Vizing). For all G and H, γ(G)γ(H) ≤ γ(G×H).

By using α-strong edge and monotone decreasing, the result in relation with Vizing’s conjecture is

determined, (Theorem ??).

Theorem 4.33. The Vizing’s conjecture is monotone decreasing property if removed edges are α−strong.
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Proof. Let G = (σ, µ) be a fuzzy graph or an t−norm fuzzy graph and G
′

be a new one which is

obtained from G by removing an edge. For every G1 = (σ1, µ1), a G
′ ×G1 is a spanning subgraph of

G × G1. So γv(G
′ × G1) ≥ γv(G × G1) ≥ γv(G)γv(G1) = γv(G

′
)γv(G1). Hence Vizing’s conjecture is

also hold for G
′
. Then the result follows. �

Corollary 4.34. Suppose the Vizing’s conjecture is hold. Let G1 be a spanning subgraph of G such

that γv(G1) = γv(G). Then the Vizing’s conjecture is also hold for G1.

Proof. Let G = (σ, µ) be a fuzzy graph or an t−norm fuzzy graph and G1 be a spanning subgraph of

G such that γv(G1) = γv(G). For every G2 = (σ2, µ2), a G1 ×G2 is a spanning subgraph of G ×G2.

So γv(G1 ×G2) ≥ γv(G ×G2) ≥ γv(G)γv(G2) = γv(G1)γv(G2). Hence the Vizing’s conjecture is also

hold for G1. So the result follows. �

Proposition 4.35. Let G1 = (σ1, µ1) and G2 = (σ2, µ2) be fuzzy graphs or t−norm fuzzy graphs. A

vertex dominating set of G1 +G2 is D = D1 ∪D2 such that D1 and D2 are vertex dominating sets of

G1 and G2, respectively. Moreover, γv(G1 +G2) = γv(G1) + γv(G2).

Proof. By using Definition of join, M -strong edges between two models are not α-strong which is a

weak edge changing strength of connectedness of G. �

Corollary 4.36. Let Gi = (σi, µi) be fuzzy graphs or t−norm fuzzy graphs, for i = 1, · · · , n, respec-

tively. A vertex dominating set of +n
i=1Gi is D = +n

i=1Di such that Di are vertex dominating sets of

Gi. Moreover, γv(+
n
i=1Gi) = Σn

i=1γv(Gi).

Proof. By Proposition ??, the result is hold. �

Conjecture (Gravier and Khelladi). For all G and H,

γ(G)γ(H) ≤ 2γ(G+H).

By using α-strong edge and monotone decreasing, the result in relation with the Gravier and Khelladi’s

conjecture is determined, (Theorem ??).

Theorem 4.37. The Gravier and Khelladi’s conjecture is monotone decreasing property if removed

edges are α−strong.

Proof. Let G = (σ, µ) be a fuzzy graph or t−norm fuzzy graph, and G
′

be a new one which is obtained

from G by removing an edge. For every G1 = (σ1, µ1), a G
′
+G1 is a spanning subgraph of G+G1.

So 2γv(G
′
) + G1) ≥ 2γv(G + G1) ≥ γv(G)γv(G1) = γv(G

′
)γv(G1). Hence the Gravier and Khelladi’s

conjecture is also hold for G
′
. Then the result follows. �

We conclude this section with some result in relation with the Gravier and Khelladi’s conjecture,

(Corollary ??).

Corollary 4.38. Suppose the Gravier and Khelladi’s conjecture is hold. Let G1 be a spanning subgraph

of G such that γv(G1) = γv(G). Then the Gravier and Khelladi’s conjecture is hold for G1
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Proof. Let G = (σ, µ) be a fuzzy graph or t−norm fuzzy graph, and G1 be a spanning subgraph of

G such that γv(G1) = γv(G). For every G2 = (σ2, µ2), a G1 ×G2 is a spanning subgraph of G ×G2.

So 2γv(G1 + G2) ≥ 2γv(G + G2) ≥ γv(G)γv(G2) = γv(G1)γv(G2). Hence the Gravier and Khelladi’s

conjecture is also hold for G1. The result follows. �
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