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Abstract

The aim of this expository article is to present recent developments in the centuries-old discussion
on the interrelations between several types of domination in graphs. However, the novelty even more
prominent in the newly discovered simplified presentations of several older results. The main part
of this article, concerning a new domination and older one, is presented in a narrative that answers
two classical questions: (i) To what extend must closing set be dominating? (ii) How strong is the
assumption of domination of a closing set? In a addition, we give an overview of the results concerning
domination. The problem asks how small can a subset of vertices be and contain no edges or, more
generally how can small a subset of vertices be and contain other ones. Our work was as elegant
as it was unexpected being a departure from the tried and true methods of this theory that had
dominated the field for one fifth a century. This expository article covers all previous definitions.
The inability of previous definitions in solving even one case of real-world problems due to the lack
of simultaneous attentions to the worthy both of vertices and edges causing us to make the new one.
The concept of domination in a variety of graphs models such as crisp, weighted and fuzzy, has been
in a spotlight. We turn our attention to sets of vertices in a fuzzy graph that are so close to all
vertices, in a variety of ways, and study minimum such sets and their cardinality. A natural way
to introduce and motivate our subject is to view it as a real-world problem. In its most elementary
form, we consider the problem of reducing waste of time in transport planning. Our goal here is to
first describe the previous definitions and the results, and then to provide an overview of the flows
ideas in their articles. The final outcome of this article is twofold: (i) Solving the problem of reducing
waste of time in transport planning at static state; (ii) Solving and having a gentle discussions on
problem of reducing waste of time in transport planning at dynamic state. Finally, we discuss the
results concerning holding domination that are independent of fuzzy graphs. We close with a list of
currently open problems related to this subject. Most of our exposition assumes only familiarity with
basic linear algebra, polynomials, fuzzy graph theory and graph theory.
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1 Introduction and Overview

Domination are among the most fundamental concepts of graph theory. Also, domination can behave in
many strange ways. For instance, besides the classical definitions of domination, there are many charac-
terization of this concept. One of this characterization due to A. Somasundaram and S. Somasundaram
(Ref.[31]), see also Refs.[23, 14, 22, 13, 30, 15, 17, 24, 8, 32] for further generalizations. One the contrary
and quite surprisingly, there are nowhere these definitions Solving the problem of reducing waste of time
in transport planning and also (separately) all others real-world problems see 4. Somehow, a key direc-
tion of study of domination deals with trying to provide a clear structure of what the dominating set of
vertices looks like. The leading theme of this expository article is to discuss the following two questions
concerning fuzzy graphs
Q1: How much closing does dominating imply?
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Q2: How much dominating does closing imply?
They will be addressed in sections 3 and 4, respectively. The main narrative presented in these sections
is independent of any results from graph theory and/or calculus. The purpose of this expository article is
to provide an overview of the authors’ recent series of work (Refs.[31, 23, 14, 22, 13, 30, 15, 17, 24, 8, 32]),
in which a positive answer to the problem of reducing waste of time in transport planning for the our
new definition is given.

In 1965, Zadeh published his seminal paper “fuzzy sets” (Ref.[34]) as a way for representing un-
certainty. In 1975, fuzzy graphs were introduced by Rosenfeld (Ref.[33]) and Yeh and Bang (Ref.[34])
independently as fuzzy models which can be used in problems handling uncertainty. Domination as a
theoretical area in graph theory was formalized by Berge in 1958, in the chapter 4 with title “ The
fundamental Numbers of the theory of Graphs” (Ref.[1], Theorem 7, p.40) and Ore (Ref.[27], Chapter
13 , pp.206, 207) in 1962. Since 1977, when Cockayne and Hedetniemi (Ref.[7], Section 3, p.249-251)
presented a survey of domination results, domination theory has received considerable attention. A set
S of vertices of G (Ref.[5], Chap.10, p.302) is a dominating set if every vertex in V (G) − S is adjacent
to at least one vertex in S. The minimum cardinality among the dominating sets of G is called the dom-
ination number of G and is denoted by γ(G). A dominating set of cardinality γ(G) is then referred to
as minimum dominationg set. Dominating sets appear to have their origins (Ref.[1], Example 2, p.41)
in the game of chess, where the goal is to cover or dominate various squares of a chessboard by certain
chess pieces. Consider a set of cities connected by communication paths, Which cities is connected to
others by roads? We face with a graph model of this situation. But the cities are not same and they
have different privileges in low traffic levels and this events also occur for the roads in low-cost levels.
So we face with the weighted graph model, at first. These privileges are not crisp but they are vague in
nature. So we don’t have a weighted graph model. In other words, we face with a fuzzy graph model,
which must study the concept of domination on it.
Next we turn our attention to sets of vertices in a fuzzy graph G that are close to all vertices of G, in a
variety of ways, and study minimum such sets and their cardinality.
In 1998, the concept of effective domination in fuzzy graphs was introduced by A. Somasundaram and
S. Somasundaram (Ref. [31]) as the classical problems of covering chess board with minimum number of
chess pieces. In 2010, the concept of 2-strong(weak) domination in fuzzy graphs was introduced by C.
Natarajan and S.K. Ayyaswamy (Ref.[23]) as the extension of strong (weak) domination in crisp graphs.
In 2014, the concept of 1-strong domination in fuzzy graphs was introduced by O.T. Manjusha and M.S.
Sunitha (Ref.[14]) as the extension of domination in fuzzy graphs with strong edges. In 2015, the concept
of 2-domination in fuzzy graphs was introduced by A. Nagoor Gani and K. Prasanna Devi (Ref.[22])
as the extension of 2-domination in crisp graphs. In 2015, the concept of strong domination in fuzzy
graphs was introduced by O.T. Manjusha and M.S. Sunitha (Ref.[13]) as reduction of the value of old
domination number and extraction of classic results. In 2016, the concept of (1, 2)−domination in fuzzy
graphs was introduced by N. Sarala and T. Kavitha (Ref.[30]) as the extension of (1, 2)−domination in
crisp graphs. A few researchers studied other domination variations which are based on above definitions,
e.g. connected domination in Ref.([15], Definition 3.4, p.983), total domination in Ref.([17], Definition
3.4, p. 26), Independent domination in Ref.([24], Definition 3.5, p.16), Complementary nil domination in
Ref.([8],Definition 3.1, p.3), Efficient domination in Ref.([32], Section 1, p. 9966). So we only compare
our new definition with the fundamental dominations.

2 Preliminaries

We provide some basic background for the paper in this section.
We shall now list below some basic definitions and results of crisp graph, fuzzy subset and fuzzy graph
from Refs.([5, 25, 20]), respectively.
We concern with a fuzzy graph which is defined on a crisp graph. So we recall the basic concepts of crisp
graph.
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A graph (Ref.[5], p.1) G∗ is a finite nonempty set of objects called vertices (the singular is vertex )
together with a (possibly empty) set of unordered pairs of distinct vertices of G∗ called edges. The vertex
set of G∗ is denoted by V (G∗), while the edge set is denoted by E(G∗). Let G∗ = (V,E) be a finite graph.
Then G∗ is called a simple graph, if it does not contain any loops or multiple edge at its vertices.

We recall that a fuzzy set in Ref.([25], Definition 1.2.1, p.3) of a set S is a function of S into the
closed interval [0, 1].
We lay down the preliminary results which recall some basic concepts of fuzzy graph from Ref.[20].
Let V be a nonempty finite set and E ⊆ V ×V. Then G = (σ, µ) is called a fuzzy graph on V, if ∀uv ∈ E,
µ(uv) = µ(vu) ≤ min{σ(x), σ(y)}, where σ : V → [0, 1] and µ : E → [0, 1] be the fuzzy set and µ is
reflexive. The fuzzy graph H = (τ, ν) is called a partial fuzzy subgraph of G = (σ, µ), if ν ⊆ µ and
τ ⊆ σ. Similarly, the fuzzy graph H = (τ, ν) is called a fuzzy subgraph of G = (σ, µ) on V induced by
P, if P ⊆ V, τ(x) = σ(x) for all x ∈ P and ν(xy) = µ(xy) for all x, y ∈ P. For the sake of simplicity, we
sometimes call H a fuzzy subgraph of G. We say that the partial fuzzy subgraph (τ, ν) spans the fuzzy
graph (σ, µ), if σ = τ. In this case, we call (τ, ν) a spanning fuzzy subgraph of (σ, µ).
A path P of length n is a sequence of distinct vertices u0, u1, · · · , un such that µ(ui−1ui) > 0, i =
1, 2, · · · , n and mini=1,2,··· ,n µ(ui−1ui) is defined as its strength. The strength of connectedness between
two vertices x and y in G is defined as the maximum of the strengths of all paths between x and y and
is denoted by µ∞G (x, y).
A fuzzy graph G = (σ, µ) on V is connected if for every x, y in V, µ∞G (x, y) > 0.
Note that µG′ (x, y) is the strength of connectedness between x and y in the fuzzy graph obtained from
G by deleting the edge xy. An edge xy in G is α-strong if µ(xy) > µG′ (x, y). An edge xy in G is β-strong
if µ(xy) = µG′ (x, y). An edge xy is a strong edge if it is either α−strong or β−strong. An edge uv of
a fuzzy graph is called an M -strong edge, In order to avoid confusion with the notion of strong edges,
we shall call strong in the sense of Mordeson as M-strong, if µ(uv) = σ(u) ∧ σ(v). If µ(uv) > 0, then u
and v are called the neighbors. The set of all neighbors of u is denoted by N(u). Also v is called the
α-strong neighbor of u, if the edge uv is α-strong. The set of all α-strong neighbors of u is denoted by
Ns(u). The degree of a vertex v is defined as d(v) = Σu 6=vµ(uv). The α-strong degree of a vertex v ∈ V
is defined as the sum of membership values of all α-strong edges incident at v; It is denoted by ds(v);
That is ds(v) = Σu∈Ns(v)µ(uv). v is called the effective neighbor of u, if the edge uv is M -strong. The
set of all M -strong neighbors of u is denoted by Ne(u). The M -strong degree of a vertex v ∈ V is defined
as the sum of membership values of all M -strong edges incident at v; It is denoted by de(v); That is
de(v) = Σu∈Ne(v)µ(uv).
A fuzzy graph G = (σ, µ) on V is said complete in Ref.([20], Definition 2.3, p.28) if µ(uv) = σ(x) ∧ σ(y)
for all u, v ∈ V.
The order p and size q of a fuzzy graph G = (σ, µ) on V are defined p = Σx∈V σ(x) and q = Σx,y∈V µ(xy).
The scalar cardinality of S is defined to be Σv∈Sσ(v) and it is denoted by |S|s.
The complement of a fuzzy graph G = (σ, µ) on V, denoted by Ḡ, is defined to Ḡ = (σ, µ̄), where
µ̄(xy) = σ(x) ∧ σ(y)− µ(xy) for all x, y ∈ V.
A fuzzy graph G = (σ, µ) on V is said bipartite if the vertex set V can be partitioned into two nonempty
sets V1 and V2 such that µ(v1v2) = 0 if v1, v2 ∈ V1 or v1, v2 ∈ V2. Moreover, if µ(uv) = σ(u)∧ σ(v) for all
u ∈ V1 and v ∈ V2 then G is called a complete bipartite fuzzy graph and is denoted by Kσ1,σ2 , where σ1
and σ2 are respectively the restrictions of σ to V1 and V2. In this case, If either |V1| = 1 or |V2| = 1 then
the complete bipartite fuzzy graph is said a star fuzzy graph which is denoted by K1,σ.
A vertex u is said isolated if µ(uv) = 0 for all v 6= u.
Now, we will define some special operations on fuzzy graphs. The pages of references will show the proof
of validity of them.
The cartesian product in Ref.([19], Proposition 2.1, pp.160,161) G = G1 × G2 of two fuzzy graphs
Gi = (σi, µi) on Vi, i = 1, 2 is defined as a fuzzy graph G = (σ1 × σ2, µ1 × µ2) on V × V where
E = {{uu2, uv2}|u ∈ V1, u2v2 ∈ E2} ∪ {{u1w, v1w}|u1v1 ∈ E1, w ∈ V2}. Fuzzy sets σ1 × σ2 and µ1 × µ2
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are defined as (σ1 × σ2)(u1, u2) = σ1(u1) ∧ σ2(u2) and ∀u ∈ V1,∀u2v2 ∈ E2, (µ1 × µ2)({uu2, uv2}) =
σ1(u) ∧ µ2(u2v2) and ∀u1v1 ∈ E1,∀w ∈ V2, (µ1 × µ2)({u1w, vw}) = µ1(u1v1) ∧ σ2(w).
The union G = G1 ∪G2 in Ref.([19], Proposition 3.1, pp.166,167) of two fuzzy graphs Gi = (σi, µi) on
Vi, i = 1, 2 is defined as a fuzzy graph G = (σ1 ∪ σ2, µ1 ∪ µ2) on V1 ∪ V2 where E = E1 ∪ E2. Fuzzy sets
σ1 ∪σ2 and µ1 ∪µ2 are defined as (σ1 ∪σ2)(u) = σ1(u) if u ∈ V1−V2, (σ1 ∪σ2)(u) = σ2(u) if u ∈ V2−V1,
and (σ1 ∪ σ2)(u) = σ1(u) ∨ σ2(u) if u ∈ V1 ∩ V2. Also (µ1 ∪ µ2)(uv) = µ1(uv) if uv ∈ E1 − E2 and
(µ1 ∪ µ2)(uv) = µ2(uv) if uv ∈ E2 − E1, and (µ1 ∪ µ2)(uv) = µ1(uv) ∨ µ2(uv) if uv ∈ E1 ∩ E2.
Let G = G1+G2 denote the join in Ref.([19], Proposition 3.3, p.168) of two fuzzy graphs Gi = (σi, µi) on
Vi, i = 1, 2 is defined as a fuzzy graph G = (σ1 +σ2, µ1 +µ2) on V1∪V2 where E = E1∪E2∪E

′
and E

′
is

the set of all edges joining vertices of V1 with the vertices of V2, and we assume that V1∩V2 = ∅. Fuzzy sets
σ1+σ2 and µ1+µ2 are defined as (σ1+σ2)(u) = (σ1∪σ2)(u) and ∀u ∈ V1∪V2; (µ1+µ2)(uv) = (µ1∪µ2)(uv)
if uv ∈ E1 ∪ E2 and (µ1 + µ2)(uv) = σ1(u) ∧ σ2(v) if uv ∈ E′

.

Definition 2.1. Let G = (σ, µ) be a fuzzy graph on V. Then
(i) (Ref.[31], Definition 2.9, p.3). D ⊆ V is said to be effective dominating set, if for every v ∈ V −D,
there exists u in D such that µ(uv) = µ(u) ∧ µ(v). Let S be the set of all effective dominating sets in G.
The effective domination number of G is defined by γ(G) = minD∈S(Σu∈Dσ(u)).
(ii) (Ref.[23],p.1035). D ⊆ V is said to be 2-strong(weak) dominating set, if for every v ∈ V −D, there
exists u in D such that µ(uv) = µ(u) ∧ µ(v) and de(u) ≥ de(v). Let S be the set of all 2-strong(weak)
dominating sets in G. The 2-strong(weak) domination number of G is defined by γsf (G)(γwf (G)) =
minD∈S(Σu∈Dσ(u)).
(iii) (Ref.[14], Definition 4.1(c), p.3208). D ⊆ V is said to be 1-strong dominating set, if for every
v ∈ V −D, there exists u in D such that µ(uv) ≥ µ∞

G′ (u, v). Let S be the set of all 1-strong dominating
sets in G. The 1-strong domination number of G is defined by γSn(G) = minD∈S(Σu∈Dσ(u)).
(iv) (Ref.[22], Definition 3.1, p.120). D ⊆ V is said to be 2-dominating set, if for every v ∈ V −D, there
exists two vertices like u in D such that µ(uv) = µ∞

G′ (u, v). Let S be the set of all 2-dominating sets in
the fuzzy graph G. Then The 2-domination number of G is defined by γ2(G) = minD∈S(Σu∈Dσ(u)).
(v) (Ref.[13], Definition 3.1, p.372). D ⊆ V is said to be strong dominating set, if for every v ∈ V −D,
there exists u in D such that µ(uv) ≥ µ∞

G′ (u, v). Let S be the set of all strong dominating sets in G. The
strong domination number of G is defined by γs(G) = minD∈S(Σu∈Dt(u, v)) where t(u, v) is the minimum
of the membership values (weights) of the edge uv such that µ(uv) ≥ µ∞

G′ (u, v).
(vi) (Ref.[30], Definition 3.1, p.16502). D ⊆ V is said to be (1, 2)−dominating set, if for every v ∈ V −D,
there exists at least one vertex in D at distance 1 from v and a second vertex in D at distance almost 2
from v. Let S be the set of all (1, 2)−dominating sets in G. The (1, 2)−domination number of G is defined
by γ(1,2)(G) = minD∈S(Σu∈Dσ(u)).

Remark 2.2. For the sake of simplicity, we do sometimes saying σ(x) and µ(xy) with different literatures,
e.g. value, weight, membership value and etc.

3 New definition versus other ones: Restrictions, Extension
Theorem and Monstrous examples

Consider a set of cities connected by communication paths. Which cities have these properties? Having
low traffic levels and other cities associating with at least ones by low-cost roads. We call this question as
problem of reducing wast of time in transport planning. As outlined in Section 4, the previous definitions
didn’t consider values of vertices and edges, simultaneously. These parameters are simultaneously affected
on any decision and analysis in transport planning. So those can’t provide the appropriate solution to
the problem. Therefore we decided to provide a new definition for the domination in fuzzy models.
To describe its generalization to fuzzy graph, it is helpful to reformulate this structure in three successive
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steps. The nikfar domination number of a fuzzy graph is defined in a classic way, (Definitions 3.1, 3.3
and 3.4) as reducing waste of time in transportation planning.

Definition 3.1. Let G = (σ, µ) be a fuzzy graph on V and x, y ∈ V. We say that x dominates y in G as
α-strong, if the edge xy is α-strong.

Example 3.2. Let G = (σ, µ) be a fuzzy graph as Figure 1. Then the edges {v2v5, v2v4, v3v4, v1v3} are
α-strong and the edges {v1v4, v1v2, v4v5} are not α-strong.

Figure 1: nikfar domination

Definition 3.3. Let G = (σ, µ) be a fuzzy graph on V. A subset S of V is called a α-strong dominating
set in G, if for every v ∈ V − S, there is u ∈ S such that u dominates v as α-strong.

Definition 3.4. Let G = (σ, µ) be a fuzzy graph on V. For every u ∈ V, the nikfar weight of u is defined

by wv(u) = σ(u) + ds(u)
d(u) . If d(u) = 0, for some u ∈ V. Then we consider ds(u)

d(u) equal with 0. For any

S ⊆ V, natural extension of this concept to a set, is as follows. We also say the nikfar weight of S, it is
defined by wv(S) = Σu∈S(wv(u)). Now, let U be the set of all α-strong dominating sets in G. The nikfar
domination number of G is defined as γv(G) = minD∈U (wv(D)). The α-strong dominating set that is
correspond to γv(G) is called by nikfar dominating set.

In what follows, we will work under this generality.

Example 3.5. Let G = (σ, µ) be a fuzzy graph as Figure 1. The set S = {v2, v3} is an α-strong
dominating set. This set is also nikfar dominating set in fuzzy graph G. Hence γv(G) = 1.75+0.9+0.7 =
3.35. So γv(G) = 3.35.

Example 3.6. The following is a table consist of a brief fundamental comparison between types of
domination in fuzzy graphs. There are two different types of the complete bipartite fuzzy graphs as Figures
2 and 3, which compare types of domination in fuzzy graphs.

The types of edges Types of Numbers Figure 2 Figure 3
M−strong Scalar cardinality γ(G) = 1 γ(G) = 0.9

M−strong and de(u) ≥ de(v) Scalar cardinality γsf (G) = 1.2 γsf (G) = 1.1
M−strong and de(u) ≥ de(v) Scalar cardinality γwf (G) = 1 γwf (G) = 1.1

strong Scalar cardinality γSn(G) = 0.9 γSn(G) = 1.6
β−strong Scalar cardinality γ2(G) = 2.2 γ2(G) = 1.6

strong Σu∈Dt(u, v) γs(G) = 0.4 γs(G) = 0.2
Distance Scalar cardinality γ(1,2)(G) = 0.9 γ(1,2)(G) = 0.9
α−strong nikfar weight γv(G) = 2.2 γv(G) = 2.1
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Figure 2: Comparison of dominations

Figure 3: Comparison of dominations with different values

It is well known and generally accepted that the problem of determining the domination number of
an arbitrary graph is a difficult one. Because of this, researchers have turned their attention to the study
of classes of graphs for which the domination problem can be solved in polynomial time.
We determine nikfar domination number for several classes of fuzzy graphs consists of complete fuzzy
graph, (Proposition 3.7), empty fuzzy graph, (Proposition 3.8), and complete bipartite fuzzy graph,
(Proposition 3.10).

Proposition 3.7 (Complete fuzzy graph). Let G = (σ, µ) be a complete fuzzy graph on V such that there
is exactly one path with strength of µ∞(u, v). Then γv(G) = minu∈V (σ(u)) + 1.

Proof. Let G be a complete fuzzy graph. The strength of path P from u to v is of the form σ(u) ∧ · · · ∧
σ(v) ≤ σ(u)∧σ(v) = µ(uv). So µ∞(u, v) ≤ µ(uv). uv is a path from u to v such that µ(uv) = σ(u)∧σ(v).
Therefore µ∞(u, v) ≥ µ(uv). Hence µ∞(u, v) = µ(uv). Then µ(uv) > µ

′∞(u, v). It means that the edge
uv is α-strong. All edges are α-strong and each vertex is adjacent to all other vertices. So D = {u} is a
α-strong dominating set and ds(u) = d(u) for each u ∈ V. The result follows.

Proposition 3.8 (Empty fuzzy graph). Let G = (σ, µ) be a edgeless fuzzy graph on V. Then γv(G) = p
where p denotes the order of G.

Proof. G is edgeless. Hence V is only α-strong dominating set in G and there is no α-strong edge. So
by Definition 3.4, we have γv(G) = minD∈S [Σu∈Dσ(u)] = Σu∈vσ(u) = p. Therefore γv(K̄n) = p by our
notations.

It is interesting to note the converse of Proposition 3.8, that does not hold.
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Example 3.9. We show that the converse of Proposition 3.8 does not hold. For this purpose, Let
V = {v1, v2, v3, v4, v5}. We define σ on V by σ : V → [0, 1] such that

σ(v1) = 0.5, σ(v2) = 0.7, σ(v3) = 0.9, σ(v4) = 0.75, σ(v5) = 0.5

Now, The function µ : V × V → [0, 1] is defined by µ(v1v2) = 0.005,

µ(v1v4) = 0.003, µ(v1v3) = 0.009, µ(v2v4) = 0.006, µ(v2v5) = 0.009,

µ(v3v4) = 0.008, µ(v4v5) = 0.003 such that ∀u, v ∈ V, µ(u, v) ≤ σ(u)∧σ(v). Finally, Let V, σ, and µ be the
vertices, value of vertices and value of edges, respectively. The edges {v2v5, v2v4, v3v4, v1v3} are α-strong
and the edges {v1v4, v1v2, v4v5} are not α-strong. So the set {v2, v3} is the α-strong dominating set. This
set is also nikfar dominating set in fuzzy graph G. Hence γv(G) = 1.75+0.9+0.7 = 3.35 = Σu∈vσ(u) = p.
Therefore G 6= K̄5 but γv(G) = p.

Proposition 3.10 (Complete bipartite fuzzy graph). Let G = (σ, µ) be the complete bipartite fuzzy graph
on V such that there is exactly one path with strength of µ∞(u, v). Then γv(G) is either σ(u) + 1, u ∈ V
or minu∈V1,v∈V2

(σ(u) + σ(v)) + 2.

Proof. Let G = (σ, µ) be the complete bipartite fuzzy graph on V such that there is exactly one path
with strength of µ∞(u, v). By analogues to the proof of Theorem 3.7, all the edges are α-strong.
If G be the star fuzzy graph with V = {u, v1, v2, · · · , vn} such that u and vi are the center and the leaves
of G, for 1 ≤ i ≤ n, respectively. Then {u} is the nikfar dominating set of G. Hence γv(G) = σ(u) + 1.
Otherwise, both of V1 and V2 include more than one vertex. Every vertex in V1 is dominated by every
vertices in V2, as α-strong and conversely. Hence in Kσ1,σ2

, the α-strong dominating sets are V1 and V2
and any set containing 2 vertices, one in V1 and other in V2. So γv(Kσ1,σ2

) = minu∈V1,v∈V2
(σ(u)+σ(v))+2.

The result follows.

Definition 3.11. (Ref.[20], Section 2.1, p.21) Let G = (σ, µ) be a fuzzy graph on V and xy ∈ E. Then
xy is called a bridge if µ

′∞(u, v) < µ∞(u, v) for some u, v ∈ V, where µ
′
(xy) = 0 and µ

′
= µ otherwise.

Theorem 3.12. (Ref.[20], Theorem 2.4, pp.21,22) Let G = (σ, µ) be a fuzzy graph on V and xy ∈ E.
Let µ

′
be the fuzzy subset of E such that µ

′
(xy) = 0 and µ

′
= µ otherwise. Then (3)⇔ (2)⇔ (1) :

(1) xy is a bridge;

(2) µ
′∞(x, y) < µ(xy);

(3) xy is not the weakest edge of any cycle.

Corollary 3.13. Let G = (σ, µ) be a fuzzy graph on V and xy ∈ E. xy is an α-strong edge if and only
if xy is a bridge.

Proof. By Theorem 3.12, the result is obviously hold.

Definition 3.14. (Ref.[20], Section 2.1, pp.22,23) A (crisp) graph that has no cycles is called acyclic or
a forest. A connected forest is called a tree. A fuzzy graph is called a forest if the graph consisting of its
nonzero edge is a forest and a tree if this graph is also connected. We call the fuzzy graph G = (σ, µ)
a fuzzy forest if it has a partial fuzzy spanning subgraph which is a forest, where for all edges xy not in
F [µ(xy) = 0], we have µ(xy) < µ∞(x, y). In other words, if xy is in G, but not F, there is a path in F
between x and y whose strength is greater than µ(xy). It is clear that a forest is a fuzzy forest. If G is
connected, then so is F since any edge of a path in G is either in F, or can be diverted through F. In this
case, we call G a fuzzy tree.

Theorem 3.15. (Ref.[20], Proposition 2.7, p.24) Let G = (σ, µ) be a fuzzy forest on V. Then the edges
of F = (τ, ν) are just the bridges of G.
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Corollary 3.16. Let G = (σ, µ) be a fuzzy forest on V. Then the edges of F = (τ, ν) are just the α-strong
edges of G.

Proof. By Theorem 3.15 and Corollary 3.13, the result follows.

Proposition 3.17. Let T = (σ, µ) be a fuzzy tree on V. Then D(T ) = D(F ) ∪D(S), where D(T ), D(F )
and D(S) are nikfar dominating sets of T, F and S, respectively. S is a set of edges which has no edges
with connection to F.

Proof. By Corollary 3.16, the edges of F = (τ, ν) are just the α-strong edges of G. So by using Definition
3.4, the result follows.

We give an upper bound for the nikfar domination number of fuzzy graphs, Proposition 3.18.

Proposition 3.18. For any fuzzy graph G = (σ, µ) on V, we have γv ≤ p.

Proof. By Proposition 3.8, γv(K̄n) = p. So the result follows.

The classical paper in Ref.[26] of Nordhaus and Gaddum established the inequalities for the chromatic
numbers of a graph G = (V,E) and its complement Ḡ. We are concerned with analogous inequalities
involving domination parameters in graphs. We begin with a brief overview of Nordhaus-Gaddum (NG)
inequalities for several domination-related parameters. For each generic invariant µ of a graph G, let
µ = µ(G) and µ̄ = µ(Ḡ). Inequalities on µ+ µ̄ and µ.µ̄ exist in the literature for only a few of the many
domination-related parameters and most of these results are of the additive form. In 1972 Jaeger and
Payan (Ref.[9]) published the first NG results involving domination. Cockayne and Hedetniemi in Ref.[7]
sharpened the upper bound for the sum. Laskar and Peters in Ref.[12] improved this bound for the case
when both G and Ḡ are connected. A much improved bound was established for the case when neither G
nor Ḡ has isolated vertices by Bollobás and Cockayne (Ref.[3]) and by Joseph and Arumugam (Ref.[10])
independently.
For any fuzzy graph the Nordhaus-Gaddum(NG)’s result holds, (Theorem 3.19).

Theorem 3.19. For any fuzzy graph G = (σ, µ) on V, the Nordhaus-Gaddum result holds. In other
words, we have γv + γ̄v ≤ 2p.

Proof. Let G be a fuzzy graph. So Ḡ is also fuzzy graph. We implement Theorem 3.18, on G and Ḡ.
Then γv ≤ p and γ̄v ≤ p. Hence γv + γ̄v ≤ 2p.

Definition 3.20. A α-strong dominating set D is called a minimal α-strong dominating set if no proper
subset of D is a α-strong dominating set.

Theorem 3.21. Let G = (σ, µ) be a fuzzy graph without isolated vertices on V. If D is a minimal α-strong
dominating set then V −D is a α-strong dominating set.

Proof. By attentions to all edges between two sets, which are only α-strong, the result follows.

A domatic partition is a partition of the vertices of a graph into disjoint dominating sets. The
maximum number of disjoint dominating sets in a domatic partition of a graph is called its domatic
number.
Finding a domatic partition of size 1 is trivial and finding a domatic partition of size 2 (or establishing
that none exists) is easy but finding a maximum-size domatic partition (i.e., the domatic number), is
computationally hard. Finding domatic partition of size two in fuzzy graph G of order n ≥ 2 is easy by
the following.

Theorem 3.22. Every connected fuzzy graph G = (σ, µ) of order n ≥ 2 on V has an α-strong dominating
set D such that whose complement V −D is also an α-strong dominating set.
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Proof. For every connected fuzzy graph, V is an α-strong dominating set. By analogous to proof of
Theorem 3.21, we can obtain the result.

We improve the upper bound for the nikfar domination number of fuzzy graphs without isolated
vertices, (Theorem 3.23).

Theorem 3.23. For any fuzzy graph G = (σ, µ) without isolated vertices on V, we have γv ≤ p
2 .

Proof. Let D be a minimal dominating set of G. By Theorem 3.22, V-D is an α-strong dominating set of
G. Hence γv(G) ≤ wv(D) and γv(G) ≤ wv(V −D).
Therefore 2γv(G) ≤ wv(D) + wv(V −D) ≤ p which implies γv ≤ p

2 . Hence the proof is completed.

We also improve Nordhaus-Gaddum (NG)’s result for fuzzy graphs without isolated vertices, (Corol-
lary 3.24).

Corollary 3.24. Let G = (σ, µ) be a fuzzy graph on V such that both of G and Ḡ have no isolated
vertices. Then γv + γ̄v ≤ p, where γ̄v is the nikfar domination number of Ḡ. Moreover, the equality holds
if and only if γv = γ̄v = p

2 .

Proof. By the Implement of Theorem 3.23, on G and Ḡ, we have γv(G) = γv ≤ p
2 , and γv(Ḡ) = γ̄v(G) =

γ̄v ≤ p
2 . So γv + γ̄v ≤ p

2 + p
2 = p. Hence γv + γ̄v ≤ p.

Suppose γv = γ̄v = p
2 . Then obviously, γv + γ̄v = p. Conversely, suppose γv + γ̄v ≤ p. Then we have

γv ≤ p
2 and γ̄v ≤ p

2 . If either γv <
p
2 or γ̄v <

p
2 , then γv + γ̄v < p, which is a contradiction. Hence the

only possible case is γv = γ̄v = p
2 .

Proposition 3.25. Let G = (σ, µ) be a fuzzy graph on V. If all edges have equal value, then G has no
α-strong edge.

Proof. By using Definition of α-strong edge, the result is hold.

The following example illustrates this concept.

Example 3.26. In Figure 4, all edges have the same value but there is no α-strong edges in this fuzzy
graph.

Figure 4: Identical edges and α-strong edges

We give the relationship between M -strong edges and α-strong edges, (Corollary 3.27).

Corollary 3.27. Let G = (σ, µ) be a fuzzy graph on V. If all edges are M -strong, then G has no α-strong
edge.

Proof. By Proposition 3.25, the result follows.
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We give a necessary and sufficient condition for nikfar domination number which is half of order
under the conditions. In fact, the fuzzy graphs which whose nikfar domination number is half of order,
are characterized under the conditions, (Theorem 3.28).

Theorem 3.28. In any fuzzy graph G = (σ, µ) on V such that values of vertices are equal and all edges
have same value, i.e. ∀ui, uj ∈ V and ∀ei, ej ∈ E, we have σ(ui) = σ(uj) and µ(ei) = µ(ej). γv = p

2 if
and only if for any nikfar dominating set D in G, we have |D| = n

2 .

Proof. Suppose D has the conditions. By Proposition 3.25, ds(D) = 0. So by using Definition 3.4,
γv(G) = Σu∈Dσ(u). Since values of vertices are equal and |D| = n

2 , we have γv(G) = Σu∈Dσ(u) =
n
2σ(u) = 1

2 (nσ(u)) = 1
2 (Σu∈V σ(u)) = 1

2 (p) = p
2 . Hence the result is hold in this case.

Conversely, suppose γv = p
2 . Let D = {u1, u2, · · · , un} be a nikfar dominating set. By Proposition

3.25, ds(D) = 0. So by using Definition 3.4, γv(G) = Σu∈Dσ(u). Since γv(G) = Wv(D), we have γv =
p
2 = 1

2 (Σu∈V σ(u)) = Σu∈Dσ(u). Suppose n
′ 6= n

2 . So Σn
′′

i=1σ(vi)) = 0 which is a contradiction with

∀ui ∈ V, σ(ui) > 0. Hence n
′

= n
2 , i.e. |D| = n

′
= n

2 . The result is hold in this case.

The nikfar domination of union of two fuzzy graphs is studied, (Proposition 3.29).

Proposition 3.29. Let G1 and G2 be fuzzy graphs. The nikfar dominating set of G1∪G2 is D = D1∪D2

such that D1 and D2 are the nikfar dominating sets of G1 and G2, respectively. Moreover, γv(G1∪G2) =
γv(G1) + γv(G2).

Proof. By using Definition of union of two fuzzy graphs, the result is obviously hold.

Also the nikfar domination of union of fuzzy graphs family is discussed, (Corollary 3.30).

Corollary 3.30. Let G1, G2, · · · , Gn be fuzzy graphs. The nikfar dominating set of ∪ni=1Gi is D = ∪ni=1Di

such that Di is the nikfar dominating set of Gi. Moreover, γv(∪ni=1Gi) = Σni=1γv(Gi).

Proof. By Proposition 3.29, the result is hold.

The concepts of both monotone increasing fuzzy graph property, (Definition 3.31), and monotone
decreasing fuzzy graph property, (Definition 3.33), are introduced.

Definition 3.31. We call a fuzzy graph property P monotone increasing if G ∈ P implies G + e ∈ P,
i.e., adding an edge e to a fuzzy graph G does not destroy the property.

Example 3.32. Connectivity and Hamiltonicity are monotone increasing properties. A monotone in-
creasing property is nontrivial if the empty fuzzy graph K̄σ 6∈ P and the complete fuzzy graph Kσ ∈ P.

Definition 3.33. A fuzzy graph property is monotone decreasing if G ∈ P implies G − e ∈ P, i.e.,
removing an edge from a graph does not destroy the property.

Example 3.34. Properties of a fuzzy graph not being connected or being planar are examples of monotone
decreasing fuzzy graph properties.

Remark 3.35. Obviously, a fuzzy graph property P is monotone increasing if and only if its complement
is monotone decreasing. Clearly not all fuzzy graph properties are monotone. For example having at
least half of the vertices having a given fixed degree d is not monotone.

In graph theory, Vizing’s conjecture (Ref.[6]) concerns a relation between the domination number
and the cartesian product of graphs. While the full conjecture remains open, Clark and Suen (2000)
(Ref.[29]) have proved the looser result γ(G)γ(H) ≤ 2γ(G×H).
Vizing stated the still open conjecture:

Conjecture (Vizing Ref.[6]). For all graphs G and H, γ(G)γ(H) ≤ γ(G×H).

By using α-strong edge and monotone decreasing fuzzy graph property, the result in relation with Vizing’s
conjecture is determined, (Theorem 3.36).
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Theorem 3.36. The Vizing’s conjecture is monotone decreasing property in fuzzy graph G, if the edge
e be α-strong and γv(G− e) = γv(G).

Proof. The fuzzy graph (G− e)×H is the spanning fuzzy subgraph of G×H, for all fuzzy graph H. So
γv((G − e) ×H) ≥ γv(G ×H) ≥ γv(G)γv(H) = γv(G − e)γv(H). Hence Vizing’s conjecture is also hold
for G− e. Then the result follows.

By α-strong edge and spanning fuzzy subgraph, some results in relation with Vizing’s conjecture is
studied, (Corollary 3.37).

Corollary 3.37. Suppose the Vizing’s conjecture is hold for G. Let K be the spanning fuzzy subgraph of
G such that γv(K) = γv(G). Then the Vizing’s conjecture is hold for K.

Proof. The fuzzy graph K × H is the spanning fuzzy subgraph of G × H, for all fuzzy graph H. So
γv(K ×H) ≥ γv(G×H) ≥ γv(G)γv(H) = γv(K)γv(H). Hence the Vizing’s conjecture is also hold for K.
So the result follows.

The nikfar domination of join of two fuzzy graphs is studied, (Proposition 3.38).

Proposition 3.38. Let G1 and G2 be fuzzy graphs. The nikfar dominating set of G1+G2 is D = D1∪D2

such that D1 and D2 are the nikfar dominating set of G1 and G2, respectively. Moreover, γv(G1 +G2) =
γv(G1) + γv(G2).

Proof. By using Definition of join of two fuzzy graphs in this case, M -strong edges between two fuzzy
graphs is not α-strong which is a weak edge changing strength of connectedness of G.

Also the nikfar domination of join of fuzzy graphs family is discussed, (Corollary 3.39).

Corollary 3.39. Let G1, G2, · · · , Gn be fuzzy graphs. The nikfar dominating set of +n
i=1Gi is D =

+n
i=1Di such that Di is the nikfar dominating set of Gi. Moreover, γv(+

n
i=1Gi) = Σni=1γv(Gi).

Proof. By Proposition 3.38, the result is hold.

Gravier and Khelladi in Ref.[34] conjectured a Vizing-like inequality for the domination number of
the join product of graphs; However, a counterexample was found by Klavz̆ar Zmazek (1996) (Ref.[11]).
For a more detailed overview of these results, see Bres̆ar et al. (2012) (Ref.[4]).
Gravier and Khelladi stated the still open conjecture:
Conjecture (Gravier and Khelladi Ref.[34]). For all graphs G and H,

γ(G)γ(H) ≤ 2γ(G+H).

By using α-strong edge and monotone decreasing fuzzy graph property, the result in relation with the
Gravier and Khelladi’s conjecture is determined, (Theorem 3.40).

Theorem 3.40. The Gravier and Khelladi’s conjecture is monotone decreasing property in fuzzy graph
G, if the edge e be α-strong and γv(G− e) = γv(G).

Proof. The fuzzy graph (G − e) + H is the spanning fuzzy subgraph of G + H, for all fuzzy graph H.
So 2γv((G− e) +H) ≥ 2γv(G+H) ≥ γv(G)γv(H) = γv(G− e)γv(H). Hence the Gravier and Khelladi’s
conjecture is also hold for G− e. Then the result follows.

We conclude this section with some result in relation with the Gravier and Khelladi’s conjecture,
(Corollary 3.41).

Corollary 3.41. Suppose the Gravier and Khelladi’s conjecture is hold for G. Let K be the spanning
fuzzy subgraph of G such that γv(K) = γv(G). Then the Gravier and Khelladi’s conjecture is hold for K.
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Proof. The fuzzy graph K + H is the spanning fuzzy subgraph of G + H, for all fuzzy graph H. So
2γv(K + H) ≥ 2γv(G + H) ≥ γv(G)γv(H) = γv(K)γv(H). Hence the Gravier and Khelladi’s conjecture
is also hold for K. The result follows.

4 Practical Application

In this section, we introduce one practical application in related to this concept. In the following, we
will try to solve this problem by previous definitions. We show that these definitions are incapable of
solving this problem and the new definition of this paper can give us a more realistic view of the situation
and make it easier to understand the situation. In other words, this definition provides a solution to the
problem that is consistent with reality. In the end, we will give a dynamic analysis of the status of this
issue. In the dynamic state of this problem, we show that the previous definitions are even incapable of
understanding the problem and we present dynamic and reality-based analysis by using the new defini-
tion.
Problem[reducing wast of time in transport planning] Consider a set of cities connected by communi-
cation paths. Which cities have these properties? Having low traffic levels and other cities associating
with at least ones by low-cost roads.
The terms “low traffic” and “low-cost” are vague in nature. So we are faced with a fuzzy graph model.
In other words, Let G be a graph which represents the roads between cities. Let the vertices denote the
cities and the edges denote the roads connecting the cities. From the statistical data that represents the
high traffic flow of cities and high-cost roads, the membership functions σ and µ on the vertex set and
edge set of G can be constructed by using the standard techniques given in Bobrowicz et al. in Ref.[2],
Reha Civanlar and Joel Trussel Ref.[28]. In this fuzzy graph, a dominating set S can be interpreted as
a set of cities which have low traffic and every city not in S is connected to a member in S by a low-cost
road. Suppose the Figure 5, the fuzzy graph model of the hypothetical condition of cities and the paths
between them in a region. We now look at the answer to the problem raised by using the old and the

Figure 5: The exemplary scheme of road infrastructure

new definitions. As you can see in this model, finding the desirable cities is more important than finding
the domination number. Because the numbers given for the set and each situation are compared with
each others in the context of the same definition, and this number is merely to compare the different sets
of cities in the context of the same definition. Therefore, speaking of the magnitude of this number in
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other definitions is meaningless. The table below illustrates the solutions presented for this problem.

Definitions Given desirable set
A. Somasundaram and S. Somasundaram (Ref.[31]) V

C. Natarajan and S.K. Ayyaswamy (Ref.[23]) V
O.T. Manjusha and M.S. Sunitha (Ref.[14]) {v3, v6}

A. Nagoor Gani and K. Prasanna Devi (Ref.[22]) V
O.T. Manjusha and M.S. Sunitha (Ref.[13]) {v3, v6}

N. Sarala and T. Kavitha (Ref.[30]) {v3, v6}
Our new definition {v1, v4}

It is obvious from the above table and Figure 5 that the desirable cities given by previous definitions,
are meaningless due to the lack of simultaneous attention to cities and roads. We are now presenting the
dynamic status of the problem. The dynamic state is the situation in which the fuzzy graph model is
found over time. Since over time, roads are becoming more affected and more precisely, they get worse, so
the value of the roads increases, but cities do not change significantly over time, in their traffic. Because
the traffic problem is an infrastructure problem. So in the Figure 6 presented by the dynamic fuzzy
graph model, we present a situation in which, and over time, the value of the paths increases equally. In

Figure 6: The dynamic scheme of road infrastructure

this situation, the answer given by the previous definitions reflects their inability to solve this problem,
while the new definition adapts itself well to the new situation. The ineffectiveness and meaninglessness
of previous definitions due to the lack of simultaneous attention to cities and roads.
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Dynamic analysis of networks in the first row of Figure 6 are the following table.

Definitions Given desirable set
A. Somasundaram and S. Somasundaram (Ref.[31]) V, V − {v6}, V − {v2, v6}

C. Natarajan and S.K. Ayyaswamy (Ref.[23]) V, V − {v6}, V − {v2, v6}
O.T. Manjusha and M.S. Sunitha (Ref.[14]) {v3, v6}, {v3, v6}, {v3, v6}

A. Nagoor Gani and K. Prasanna Devi (Ref.[22]) V, V, V
O.T. Manjusha and M.S. Sunitha (Ref.[13]) {v3, v6}, {v3, v6}, {v3, v6}

N. Sarala and T. Kavitha (Ref.[30]) {v3, v6}, {v3, v6}, {v3, v6}
Our new definition {v1, v4}, {v1, v4}, {v1, v4}

According to the upper and lower tables, the desirable set given over time by using of the previous def-
initions, either provided the same solutions such as O.T. Manjusha and M.S. Sunitha (Ref.[14]), O.T.
Manjusha and M.S. Sunitha (Ref.[13]) and N. Sarala and T. Kavitha (Ref.[30]) or in spite of a tangible
change in their solutions to different situations, the general solutions have given. Additionally, the solu-
tions of these definitions to the problem is not consistent with reality.
Dynamic analysis of networks in the second row of Figure 6 are the following table.

Definitions Given desirable set
A. Somasundaram and S. Somasundaram (Ref.[31]) {v1, v4}, {v1, v3, v6}, {v3, v6}

C. Natarajan and S.K. Ayyaswamy (Ref.[23]) {v1, v4}, {v1, v3, v6}, {v3, v6}
O.T. Manjusha and M.S. Sunitha (Ref.[14]) {v3, v6}, {v3, v6}, {v3, v6}

A. Nagoor Gani and K. Prasanna Devi (Ref.[22]) V − {v1}, V − {v1}, V − {v1}
O.T. Manjusha and M.S. Sunitha (Ref.[13]) {v3, v6}, {v3, v6}, {v3, v6}

N. Sarala and T. Kavitha (Ref.[30]) {v3, v6}, {v3, v6}, {v3, v6}
Our new definition {v3, v6}, {v3, v6}, {v3, v6}

5 Conclusion

The concept of domination in a variety of graphs models such as crisp, weighted and fuzzy graph models,
has been in a spotlight. Due to the inability of previous definitions in solving the problem of reducing
waste of time in transport planning due to the lack of simultaneous attention to cities and roads, we
turn our attention to sets of vertices in a fuzzy graph G that are close to all vertices of G, in a variety
of ways, and study minimum such sets and their cardinality. We introduce a new variation on the
domination theme, along with algebraic properties and mathematical results of it. This definition can
give us a more realistic view of the situation and make it easier to understand the situation. In other
words, this definition provides a solution to the problem that is consistent with reality. We also gave a
dynamic analysis of the status of this problem. We hope these concepts are useful for studying problems
of mathematics and real-world which make the future better as possible.
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