

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement nº 958450. This document reflects only the author’s view and the
Commission is not responsible for any use that may be made of the information it contains.

D2.5 – Safety-
critical situation
detection

D2.5 Safety-critical situation detection

2

Project Title
Improving Building Information Modelling by Realtime Tracing of

Construction Processes

Project Acronym BIMprove

Grant Agreement No 958450

Instrument Research & Innovation Action

Topic Industrial Sustainability

Start Date of Project 1st September 2020

Duration of Project 36 Months

Name and Number of the
deliverable

2.5 - Safety-critical situation detection

Related WP number and
name

WP2 - Components, technologies & functionalities

Deliverable
dissemination level

Public

Deliverable due date 28 February 2022

Deliverable submission
date

28 February 2022

Task leader/Main author Anu Purhonen (VTT)

Contributing partners Tommi Aihkisalo (VTT), Ilkka Niskanen (VTT)

Reviewer(s) Christian Dalheim Øien (SINTEF)

Abstract
This deliverable describes how to use the Risk Object Visual Analysis System (ROVAS) for
automatic detection of safety measures, especially safety nets, from photographs taken at
construction sites. Furthermore, it describes the Risk and Image Data Management Service
that has been used to store and provide access to the data created by the ROVAS model. The
document contains the links to the developed software and model.

Keywords
Safety measures, computer vision, convolutional neural network, YOLO

D2.5 Safety-critical situation detection

3

Revisions
Version Submission date Comments Author

v0.1 15th February 2022
Submitted for

internal review

Tommi Aihkisalo (VTT), Ilkka

Niskanen (VTT), Anu Purhonen

(VTT)

v0.2 24th February 2022
Ready for SINTEF

quality check

Tommi Aihkisalo (VTT), Ilkka

Niskanen (VTT), Anu Purhonen

(VTT)

V1.0 28th February 2022
Approved, final

version
Christian Dalheim Øien (SINTEF)

Disclaimer

This document is provided with no warranties whatsoever, including any warranty of merchantability,

non-infringement, fitness for any particular purpose, or any other warranty with respect to any

information, result, proposal, specification or sample contained or referred to herein. Any liability,

including liability for infringement of any proprietary rights, regarding the use of this document or any

information contained herein is disclaimed. No license, express or implied, by estoppel or otherwise,

to any intellectual property rights is granted by or in connection with this document. This document is

subject to change without notice. BIMprove has been financed with support from the European

Commission. This document reflects only the view of the author(s) and the European Commission

cannot be held responsible for any use which may be made of the information contained.

D2.5 Safety-critical situation detection

4

Acronyms and definitions
Acronym Meaning

AI/ML Artificial Intelligence based on Machine Learning

ANN Artificial Neural Network

BIM Building Information Modelling

CNN Convolutional Neural Network

CURL client URL

GPU Graphical Processing Unit

GUI Graphical User Interface

HTML Hypertext Markup Language

JSON JavaScript Object Notation

REST Representational state transfer

RDF Resource Description Framework

YOLO You-Only-Look-Once

D2.5 Safety-critical situation detection

5

BIMprove project

In the past 20 years, productivity in the European construction industry has increased by 1%

annually only, which is at the lower end compared to other industrial sectors. Consequently,

the sector has to step up its digitization efforts significantly, on the one hand to increase its

competitiveness and on the other hand to get rid of its image as dirty, dangerous and physical

demanding working environment. Construction industry clearly needs to progress beyond

Building Information Modelling when it comes to digitizing their processes in such a way that

all stakeholders involved in the construction process can be involved.

The true potential of comprehensive digitization in construction can only be exploited if the

current status of the construction work is digitally integrated in a common workflow. A Digital

Twin provides construction companies with real-time data on the development of their assets,

devices and products during creation and also enables predictions on workforce, material and

costs.

BIMprove facilitates such a comprehensive end-to-end digital thread using autonomous

tracking systems to continuously identify deviations and update the Digital Twin accordingly.

In addition, locations of construction site personnel are tracked anonymously, so that

BIMprove system services are able to optimize the allocation of resources, the flow of people

and the safety of the employees. Information will be easily accessible for all user groups by

providing personalized interfaces, such as wearable devices for alerts or VR visualizations for

site managers. BIMprove is a cloud-based service-oriented system that has a multi-layered

structure and enables extensions to be added at any time.

The main goals of BIMprove are a significant reduction in costs, better use of resources and

fewer accidents on construction sites. By providing a complete digital workflow, BIMprove will

help to sustainably improve the productivity and image of the European construction industry.

D2.5 Safety-critical situation detection

6

Contents
1. Introduction .. 7

2. Risk Object Visual Analysis System .. 7

2.1. Utilized Tools, Methods and Materials .. 8

3. Risk and Image Data Management Service .. 12

3.1. Installation of the Risk and Image Data Management Service 13

3.2. Testing the installation and provided functionalities 14

4. References .. 15

Index of Figures
Figure 1: LabelImg tool and VTT sourced image with safety net and barrier labelling. 8

Figure 2: Tiled image samples (3 x 2 tiling) of the augmented data with artificial scaling, shearing,

flipping and mosaic of the original dataset images. .. 10

Figure 3: Risk ontology ... 13

D2.5 Safety-critical situation detection

7

1. Introduction
The images captured from the risk zones can be analysed by the Risk Object Visual Analysis

System, ROVAS, for detecting the existence and placement of the required safety structures. The

safety structures are expected to mitigate various risks on the construction site locations, e.g. fall

risks. The ROVAS can make only positive detections, i.e. confirming the existence of such structures

and thus aid inspecting safety structures’ readiness state in the locations for safe construction

work. The purpose of Risk and Image Data Management Service is to store and provide access to

the results created by ROVAS.

ROVAS will be integrated with the other functionality developed in Work package 2 in BIMprove as

described in the Deliverable 3.3 Proof of Concept System Description and Test Results. Earlier use

of ROVAS has been demonstrated together with the Risk and Image Data Management

Service (See Deliverable 3.1. Technology Demonstrations). However, this service may not be

needed after ROVAS has been integrated with the other BIMprove components as its functionality

may be included in those components.

2. Risk Object Visual Analysis System
Risk Object Visual Analysis System, ROVAS, bases on the convolutional neural networks, CNN, for

its visual object detection task. CNN based AI/ML models are commonly used in modern computer

vision systems and object detection. The deployment of such model as functional part of the ROVAS

requires gathering the potentially suitable data, manually labelling the risk objects in the data set,

installation of suitable tools and frameworks and training and evaluating maturity of it. The maturity

of the model will be evaluated by relational development of the achieved accuracy and loss

indicators. This is since systems to compare to are mostly non-existent and there are no common

publicly shared datasets for rating CNN models in this specific application domain. The capabilities

of the ROVAS with the visual object detection mature model will be exposed through the Internet

accessible service interface.

The applied CNN model type here is You Only Look Once, YOLO, as described in [1]. Specifically,

we applied the further improved open-source implementation of version 5 available from

https://github.com/ultralytics/yolov5. This implementation includes also useful scripting and service

provisioning examples all licensed with GPL-3.0. For the general principles, intended operational

details and limitations see the Deliverable 2.4 Detailed Description of the Safety Functionalities and

Worker Notifications.

However, to improve the spatial detection and position determination of the required safety

structures, object detection or segmentation could be executed directly on the laser scanned point

https://github.com/ultralytics/yolov5

D2.5 Safety-critical situation detection

8

clouds. While processing point clouds requires a vast amount of computing power, storage space

and some point cloud processing limitations it has not been considered at this point of this project, but

it is a worth to investigate later.

2.1. Utilized Tools, Methods and Materials

To implement a ROVAS service, training the AI/ML based computer vision model for object detection

is necessary. Preceding that, however, a data collection and annotation of it is required in supervised

type of machine learning. The original data was provided by the project partners HRS, VIAS and

ZHAW including video recorded by VTT from a construction site in Madrid. The group effort by VTT

produced a sufficient labelling of the safety nets, barriers and trash appearing in the digital imagery

data for the training purposes. The video material was split into individual frames for the labelling

purposes. The publicly available labelled image datasets lacked the required safety related items

required for this application and thus provided no solution.

The collected and labelled BIMprove dataset has over 3500 individual images split to training and

validation sets of 2700 and 800 images, respectively. Each of the images contain one or more

occurrences of the labelled items in bounding boxes including safety net, barrier or trash, totalling

over 5500 individual labels. The labelling tool used for the YOLO formatted annotation and labelling

purposes to classify and draw bounding boxes was the freely available labelImg tool from

https://github.com/tzutalin/labelImg. Figure 1 below illustrates the tool and sample image from the

dataset with associated labels.

Figure 1: LabelImg tool and VTT sourced image with safety net and barrier labelling.

With the labelled and ready dataset we were able to start training the object detection model. To

save time and effort transfer learning was used. This is done by freezing other layers in the model

except the backbone responsible for the final object detection and classification and only to train and

https://github.com/tzutalin/labelImg

D2.5 Safety-critical situation detection

9

update those. This transfer learning method saves significant amounts of time and computing

resources while producing reasonably accurate models.

The YOLO implementation (https://github.com/ultralytics/yolov5) used is built on the

pyTorch (https://pytorch.org/) machine learning framework capable of accelerating the floating point

and matrix operations with GPU. Installation and other requirements see the relevant documentation

of pyTorch and yolov5. The YOLO implementation provided ready to use models out of which the

base model chosen for this application was large type. This large model has over 4 million trainable

parameters already trained with the COCO dataset. i.e. the model is already capable of detecting

and locating generic objects in the images present in the COCO dataset, which unfortunately lacks

the safety related objects needed here. The transfer learning process will shift the COCO detection

capabilities to detect objects in our own BIMprove dataset. The training of the YOLO v5 based

detection model was started with the following kind of command and parameters:

#python train.py --weights yolov5l.pt --data <path_to_data> --hyp
data\hyps\hyp.finetune.yaml --epochs 400 --imgsz 960 --workers 3 --freeze 10 --name
<name_of_session> --batch-size -1 --optimize AdamW --hyp data\hyps\hyp.finetune.yaml

This command starts the training session with following parameters:

• Model size – large type with 46642120 parameters in total

• Training epochs – 400

• Input image size – 960 x 960 pixels (optionally 640 for 640x640 pixels)

• Freezing of all layers below layer 10 trained on COCO dataset

• Automated batch size search – settles to 10 on the utilized computer

• Optimizer is AdamW

• Hyper parameters – as provided based on optimization with VOC dataset, initial learning rate

is 0.0032

The utilized hyperparameter set activated automated and randomized artificial augmentation of the

training dataset. The general intention is to increase the dataset by creating synthetically

manipulated copies the original data and thus also improve generalization capabilities of the final

model. The hyperparameters activated augmentations with probabilities of 0.898 for scaling, 0.602

for shearing, 0.5 and 0.00856 horizontal and vertical flipping, respectively. Included also was the

mosaic effect, which composes the each of the training images from a set of random augmented

image samples or even empty spaces. See Figure 2 below for some augmentation examples from

our dataset (sample images from VTT and ZHAW) produced by the YOLO implementation and

hyperparameters provided.

https://github.com/ultralytics/yolov5
https://pytorch.org/
http://yolov5l.pt/

D2.5 Safety-critical situation detection

10

Figure 2: Tiled image samples (3 x 2 tiling) of the augmented data with artificial scaling, shearing, flipping and mosaic of the original
dataset images.

The final model’s detection capabilities are provided as a service through a suitable REST interface.

One implementation available at https://github.com/superdupercodez/bimprove_rdc/tree/main/bimprove_rest, in

bimprove_restapi.py file, loads the model and uses it to analyse the images send to it by HTTP

POST. The detection results are returned as JSON text and described in the deliverable D2.4.

Furthermore, additional guidance is provided for unintentional access to the /v1/risk_objects/ URL

with a browser. Some YOLOv5 trained model files are provided in the git repository for testing

purposes. Select the needed model by setting the model_file_name variable name as required in

the bimprove_rest/bimprove_restapi.py file. Provided GPU acceleration is available change the

model loading target to 'gpu'. See Torch documentation for the required GPU setup procedures.

#model = torch.hub.load("ultralytics/yolov5", 'custom', path=model_file_name).to('gpu')

model = torch.hub.load("ultralytics/yolov5", 'custom', path=model_file_name).to('cpu')

A simple request to the service can be made with a sample Python 3 client based on the requests

library as

"""Perform test request"""

import pprint

import requests

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fsuperdupercodez%2Fbimprove_rdc%2Ftree%2Fmain%2Fbimprove_rest&data=04%7C01%7CAnu.Purhonen%40vtt.fi%7C3e858bcdcc4e4046fda208d9efa1be84%7C68d6b592500843b59b0423bec4e86cf7%7C0%7C0%7C637804300236141435%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=3bVqX8%2FefBl%2B3cZhPwoYAbKkS1UW1u0wFcp5p28A%2FJ4%3D&reserved=0

D2.5 Safety-critical situation detection

11

DETECTION_URL = http://<SERVICE_URL>/v1/risk_objects/

TEST_IMAGE = "20.jpg"

image_data = open(TEST_IMAGE, "rb").read()

response = requests.post(DETECTION_URL, files={"image": image_data}).json()

pprint.pprint(response)

Where <SERVICE_URL> is the address URL of the provided service and TEST_IMAGE a file name

of the sample request image. This sample is also available in
https://github.com/superdupercodez/bimprove_rdc/blob/8e3f1065440e1a8b6790af2cf2ac6afb727f1396/bimprove_rest/bi

mprove_example_request.py. With the sample image the response was:

[{'class': 1,

 'confidence': 0.414974153,

 'name': 'safety_net',

 'xmax': 1620.0979003906,

 'xmin': 0.0,

 'ymax': 1082.6301269531,

 'ymin': 37.0090942383},

{'class': 1,

 'confidence': 0.3516817391,

 'name': 'safety_net',

 'xmax': 1724.8165283203,

 'xmin': 810.5069580078,

 'ymax': 610.0239257812,

 'ymin': 4.0267028809},

{'class': 1,

 'confidence': 0.263441056,

 'name': 'safety_net',

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fsuperdupercodez%2Fbimprove_rdc%2Fblob%2F8e3f1065440e1a8b6790af2cf2ac6afb727f1396%2Fbimprove_rest%2Fbimprove_example_request.py&data=04%7C01%7CAnu.Purhonen%40vtt.fi%7C3e858bcdcc4e4046fda208d9efa1be84%7C68d6b592500843b59b0423bec4e86cf7%7C0%7C0%7C637804300236141435%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=3chCdJFExiTuXH2%2FBPCaA73o%2B3drEDtsfTgReTeRK9U%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fsuperdupercodez%2Fbimprove_rdc%2Fblob%2F8e3f1065440e1a8b6790af2cf2ac6afb727f1396%2Fbimprove_rest%2Fbimprove_example_request.py&data=04%7C01%7CAnu.Purhonen%40vtt.fi%7C3e858bcdcc4e4046fda208d9efa1be84%7C68d6b592500843b59b0423bec4e86cf7%7C0%7C0%7C637804300236141435%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=3chCdJFExiTuXH2%2FBPCaA73o%2B3drEDtsfTgReTeRK9U%3D&reserved=0

D2.5 Safety-critical situation detection

12

 'xmax': 1870.6253662109,

 'xmin': 507.2440185547,

 'ymax': 1088.0,

 'ymin': 525.5383300781}]

The returned ROVAS response contains the detection results encoded as JSON, where

Class – object class: barrier=0 | safety_net=1 | garbage=2

Confidence – detection confidence from 0-1.0

Name – human readable name for the detect object class

x1 – upper left corner x-coordinate of the bounding box

y1 – upper left corner y-coordinate of the bounding box

x2 – lower right corner x-coordinate of the bounding box

y2 – lower right corner y-coordinate of the bounding box

The coordinates are counted as pixels that of the original image dimensions.

All confidence results over 0.5 can be considered quite reliable detections but may vary significantly

in practise as most of the available training data was quite homogeneous in image quality and

scenery composition. The lower end confidence levels in this example ranging from 0.26 to 0.41 are

due to the purposedly challenging sample image used. The sample image is an individual captured

frame from a video with added challenges coming from the equipment used to record, lightning

conditions and distance to the detected nets. See the image in

https://github.com/superdupercodez/bimprove_rdc/blob/8e3f1065440e1a8b6790af2cf2ac6afb727f1

396/bimprove_rest/madrid_test_image.jpg.

3. Risk and Image Data Management Service
The purpose of the BIMprove Risk and Image Data Management Service is to store and provide

access to the data created by the Safety Related Visual Object Detection described above. The Risk

and Image Data Management Service includes three main parts that are:

1. The database used to store the metadata provided by the Safety Related Visual Object

Detection. The selected database solution is Apache Fuseki graph database that supports

RDF (Resource Description Framework) format and SPARQL query language. The database

structure follows the risk data ontology specifically developed to address the requirements of

risk data management. A visualization of the ontology is shown in Figure 3.

https://github.com/superdupercodez/bimprove_rdc/blob/8e3f1065440e1a8b6790af2cf2ac6afb727f1396/bimprove_rest/madrid_test_image.jpg
https://github.com/superdupercodez/bimprove_rdc/blob/8e3f1065440e1a8b6790af2cf2ac6afb727f1396/bimprove_rest/madrid_test_image.jpg

D2.5 Safety-critical situation detection

13

2. REST interface that provides an access to the database. The interface includes two basic

access methods that are insert data and query data. The interface is implemented using

Python language and Tornado web framework with its asynchronous networking library.

3. HTML based GUI that enables examining the content of the database (as well as the results

of the Safety Related Visual Object Detection). The GUI is supported by the Flask micro web

framework written in Python.

Figure 3: Risk ontology

The source code implementing the aforementioned modules is available at

https://github.com/superdupercodez/bimprove_rdc. In the following sections the installation and usage of the

Risk and Image Data Management Service is explained.

3.1. Installation of the Risk and Image Data Management Service

As a prerequisite you should install Python3 into your deployment machine.

Fuseki database and the interface implementing the provided functionalities can be installed with the

following instructions:

1. Install and start Fuseki

a) Download Fuseki database deployment files from https://jena.apache.org/documentation/fuseki2/

b) Navigate to the folder you saved the files and start Fuseki with the following command:

‘command ./fuseki-server --mem /ds’

https://github.com/superdupercodez/bimprove_rdc
https://jena.apache.org/documentation/fuseki2/

D2.5 Safety-critical situation detection

14

c) Navigate to http://localhost:3030/ (or whatever URL your Fuseki instance is deployed on)

and create a new Dataset called "constructionSiteRiskData"

 2. Install and start Risk and Image Data Management Service

a) Download the Github repository https://github.com/superdupercodez/bimprove_rdc, unzip the files

and navigate to folder ImageMetadataStorage/DatabaseInterface

b) Execute command:

python3 fusekiProxy.py

c) Open folder ImageMetadataStorage/html and execute command:

python3 app.py

d) Open your web browser and navigate to URL http://localhost:8081/ (in case your are

running the code in your local machine). If you see an empty table with the title "Safety factor

and risk detection results" you have installed the service successfully.

3.2. Testing the installation and provided functionalities

To verify the interfaces of the service, you can add test data to the database. The interfaces can be

accessed using e.g. CURL tool. The following scripts can be used (please note that the examples

are valid for localhost installation):

1. Add data

The add data functionality enables simulating how results generated by the Safety Related

Visual Object Detection service are inserted into the database.

curl -iX POST \

'http://localhost:8084/fusekiAddImage' \

-H 'Content-Type: text/plain' \

-d '{"imageID": "2MppzXLWeT", "name":"Safetynet", "confidence": "0.44544", "xmax":
"675.44312", "xmin": "345.86625", "ymax": "876.31249", "ymin": "436.5287",
"imageURL": "https://bit.ly/3glwtiH", "anchorBoxImageURL":
"https://bit.ly/3glwtiH_2"}'

As can be seen, many of the elements of the input JSON are similar to the data elements of

the ROVAS response. In addition, the input data contains a unique id of the image and two

URLs. The first URL leads to a web location where the analysed image is stored. The second

image URL points to another version of the same image where the bounding boxes of labelled

https://github.com/superdupercodez/bimprove_rdc

D2.5 Safety-critical situation detection

15

items (safety net, barrier or trash) are shown. You can verify the data insert operation by

navigating to http://localhost:8081/, the table should now contain one data instance.

2. Free query

The free query enables executing SPARQL queries against the database.

curl -iX POST \

'http://localhost:8084/fusekiQueryData' \

-H 'Content-Type: text/plain' \

-d 'SELECT ?imageId WHERE { ?image <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> <http://www.semanticweb.org/safetyOntology#Image>. ?image
<http://www.semanticweb.org/safetyOntology#hasRiskRelatedObject> "Safetynet".?image
<http://www.semanticweb.org/safetyOntology#hasImageId> ?imageId}'

The shown SPARQL query statement retrieves the IDs of all database objects that a) are

instances of the class ‘Image’ and b) have “Safetynet” as detected safety related object.

4. References
[1] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A., “You Only Look Once: Unified, Real-Time Object Detection”,

http://arxiv.org/abs/1506.02640, 2015.

http://arxiv.org/abs/1506.02640

	1. Introduction
	2. Risk Object Visual Analysis System
	2.1. Utilized Tools, Methods and Materials

	3. Risk and Image Data Management Service
	3.2. Testing the installation and provided functionalities

	4. References

