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Abstract 
This deliverable describes how to use the Risk Object Visual Analysis System (ROVAS) for 
automatic detection of safety measures, especially safety nets, from photographs taken at 
construction sites. Furthermore, it describes the Risk and Image Data Management Service 
that has been used to store and provide access to the data created by the ROVAS model. The 
document contains the links to the developed software and model. 
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Acronyms and definitions 
Acronym Meaning 

AI/ML  Artificial Intelligence based on Machine Learning  

ANN  Artificial Neural Network  

BIM  Building Information Modelling  

CNN  Convolutional Neural Network  

CURL  client URL  

GPU  Graphical Processing Unit  

GUI  Graphical User Interface  

HTML  Hypertext Markup Language  

JSON JavaScript Object Notation 

REST  Representational state transfer  

RDF  Resource Description Framework  

YOLO  You-Only-Look-Once  
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BIMprove project 

 
In the past 20 years, productivity in the European construction industry has increased by 1% 

annually only, which is at the lower end compared to other industrial sectors. Consequently, 

the sector has to step up its digitization efforts significantly, on the one hand to increase its 

competitiveness and on the other hand to get rid of its image as dirty, dangerous and physical 

demanding working environment. Construction industry clearly needs to progress beyond 

Building Information Modelling when it comes to digitizing their processes in such a way that 

all stakeholders involved in the construction process can be involved. 

The true potential of comprehensive digitization in construction can only be exploited if the 

current status of the construction work is digitally integrated in a common workflow. A Digital 

Twin provides construction companies with real-time data on the development of their assets, 

devices and products during creation and also enables predictions on workforce, material and 

costs.  

BIMprove facilitates such a comprehensive end-to-end digital thread using autonomous 

tracking systems to continuously identify deviations and update the Digital Twin accordingly. 

In addition, locations of construction site personnel are tracked anonymously, so that 

BIMprove system services are able to optimize the allocation of resources, the flow of people 

and the safety of the employees. Information will be easily accessible for all user groups by 

providing personalized interfaces, such as wearable devices for alerts or VR visualizations for 

site managers. BIMprove is a cloud-based service-oriented system that has a multi-layered 

structure and enables extensions to be added at any time. 

The main goals of BIMprove are a significant reduction in costs, better use of resources and 

fewer accidents on construction sites. By providing a complete digital workflow, BIMprove will 

help to sustainably improve the productivity and image of the European construction industry. 
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1. Introduction 
The images captured from the risk zones can be analysed by the Risk Object Visual Analysis 

System, ROVAS, for detecting the existence and placement of the required safety structures. The 

safety structures are expected to mitigate various risks on the construction site locations, e.g. fall 

risks. The ROVAS can make only positive detections, i.e. confirming the existence of such structures 

and thus aid inspecting safety structures’ readiness state in the locations for safe construction 

work. The purpose of Risk and Image Data Management Service is to store and provide access to 

the results created by ROVAS. 

ROVAS will be integrated with the other functionality developed in Work package 2 in BIMprove as 

described in the Deliverable 3.3 Proof of Concept System Description and Test Results. Earlier use 

of ROVAS has been demonstrated together with the Risk and Image Data Management 

Service (See Deliverable 3.1. Technology Demonstrations). However, this service may not be 

needed after ROVAS has been integrated with the other BIMprove components as its functionality 

may be included in those components. 

2. Risk Object Visual Analysis System  
Risk Object Visual Analysis System, ROVAS, bases on the convolutional neural networks, CNN, for 

its visual object detection task. CNN based AI/ML models are commonly used in modern computer 

vision systems and object detection. The deployment of such model as functional part of the ROVAS 

requires gathering the potentially suitable data, manually labelling the risk objects in the data set, 

installation of suitable tools and frameworks and training and evaluating maturity of it. The maturity 

of the model will be evaluated by relational development of the achieved accuracy and loss 

indicators. This is since systems to compare to are mostly non-existent and there are no common 

publicly shared datasets for rating CNN models in this specific application domain. The capabilities 

of the ROVAS with the visual object detection mature model will be exposed through the Internet 

accessible service interface.  

The applied CNN model type here is You Only Look Once, YOLO, as described in [1]. Specifically, 

we applied the further improved open-source implementation of version 5 available from 

https://github.com/ultralytics/yolov5. This implementation includes also useful scripting and service 

provisioning examples all licensed with GPL-3.0. For the general principles, intended operational 

details and limitations see the Deliverable 2.4 Detailed Description of the Safety Functionalities and 

Worker Notifications.   

However, to improve the spatial detection and position determination of the required safety 

structures, object detection or segmentation could be executed directly on the laser scanned point 

https://github.com/ultralytics/yolov5
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clouds. While processing point clouds requires a vast amount of computing power, storage space 

and some point cloud processing limitations it has not been considered at this point of this project, but 

it is a worth to investigate later.  

2.1. Utilized Tools, Methods and Materials  

To implement a ROVAS service, training the AI/ML based computer vision model for object detection 

is necessary. Preceding that, however, a data collection and annotation of it is required in supervised 

type of machine learning. The original data was provided by the project partners HRS, VIAS and 

ZHAW including video recorded by VTT from a construction site in Madrid. The group effort by VTT 

produced a sufficient labelling of the safety nets, barriers and trash appearing in the digital imagery 

data for the training purposes. The video material was split into individual frames for the labelling 

purposes. The publicly available labelled image datasets lacked the required safety related items 

required for this application and thus provided no solution.  

The collected and labelled BIMprove dataset has over 3500 individual images split to training and 

validation sets of 2700 and 800 images, respectively. Each of the images contain one or more 

occurrences of the labelled items in bounding boxes including safety net, barrier or trash, totalling 

over 5500 individual labels. The labelling tool used for the YOLO formatted annotation and labelling 

purposes to classify and draw bounding boxes was the freely available labelImg tool from 

https://github.com/tzutalin/labelImg. Figure 1 below illustrates the tool and sample image from the 

dataset with associated labels. 

 

Figure 1: LabelImg tool and VTT sourced image with safety net and barrier labelling.  

With the labelled and ready dataset we were able to start training the object detection model. To 

save time and effort transfer learning was used. This is done by freezing other layers in the model 

except the backbone responsible for the final object detection and classification and only to train and 

https://github.com/tzutalin/labelImg
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update those. This transfer learning method saves significant amounts of time and computing 

resources while producing reasonably accurate models.   

The YOLO implementation (https://github.com/ultralytics/yolov5) used is built on the 

pyTorch (https://pytorch.org/) machine learning framework capable of accelerating the floating point 

and matrix operations with GPU. Installation and other requirements see the relevant documentation 

of pyTorch and yolov5. The YOLO implementation provided ready to use models out of which the 

base model chosen for this application was large type. This large model has over 4 million trainable 

parameters already trained with the COCO dataset. i.e. the model is already capable of detecting 

and locating generic objects in the images present in the COCO dataset, which unfortunately lacks 

the safety related objects needed here. The transfer learning process will shift the COCO detection 

capabilities to detect objects in our own BIMprove dataset. The training of the YOLO v5 based 

detection model was started with the following kind of command and parameters:  

#python train.py --weights yolov5l.pt --data <path_to_data> --hyp 
data\hyps\hyp.finetune.yaml --epochs 400 --imgsz 960 --workers 3 --freeze 10 --name 
<name_of_session> --batch-size -1 --optimize AdamW --hyp data\hyps\hyp.finetune.yaml  

This command starts the training session with following parameters:  

• Model size – large type with 46642120 parameters in total  

• Training epochs – 400 

• Input image size – 960 x 960 pixels (optionally 640 for 640x640 pixels) 

• Freezing of all layers below layer 10 trained on COCO dataset  

• Automated batch size search – settles to 10 on the utilized computer 

• Optimizer is AdamW 

• Hyper parameters – as provided based on optimization with VOC dataset, initial learning rate 

is 0.0032  

The utilized hyperparameter set activated automated and randomized artificial augmentation of the 

training dataset. The general intention is to increase the dataset by creating synthetically 

manipulated copies the original data and thus also improve generalization capabilities of the final 

model. The hyperparameters activated augmentations with probabilities of 0.898 for scaling, 0.602 

for shearing, 0.5 and 0.00856 horizontal and vertical flipping, respectively. Included also was the 

mosaic effect, which composes the each of the training images from a set of random augmented 

image samples or even empty spaces. See Figure 2 below for some augmentation examples from 

our dataset (sample images from VTT and ZHAW) produced by the YOLO implementation and 

hyperparameters provided.  

https://github.com/ultralytics/yolov5
https://pytorch.org/
http://yolov5l.pt/
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Figure 2: Tiled image samples (3 x 2 tiling) of the augmented data with artificial scaling, shearing, flipping and mosaic of the original 
dataset images.  

The final model’s detection capabilities are provided as a service through a suitable REST interface. 

One implementation available at https://github.com/superdupercodez/bimprove_rdc/tree/main/bimprove_rest, in 

bimprove_restapi.py file, loads the model and uses it to analyse the images send to it by HTTP 

POST. The detection results are returned as JSON text and described in the deliverable D2.4. 

Furthermore, additional guidance is provided for unintentional access to the /v1/risk_objects/ URL 

with a browser. Some YOLOv5 trained model files are provided in the git repository for testing 

purposes. Select the needed model by setting the model_file_name variable name as required in 

the bimprove_rest/bimprove_restapi.py file. Provided GPU acceleration is available change the 

model loading target to 'gpu'. See Torch documentation for the required GPU setup procedures.  

#model = torch.hub.load("ultralytics/yolov5", 'custom', path=model_file_name).to('gpu')  

model = torch.hub.load("ultralytics/yolov5", 'custom', path=model_file_name).to('cpu')  

A simple request to the service can be made with a sample Python 3 client based on the requests 

library as 

"""Perform test request"""  

import pprint  

import requests  

  

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fsuperdupercodez%2Fbimprove_rdc%2Ftree%2Fmain%2Fbimprove_rest&data=04%7C01%7CAnu.Purhonen%40vtt.fi%7C3e858bcdcc4e4046fda208d9efa1be84%7C68d6b592500843b59b0423bec4e86cf7%7C0%7C0%7C637804300236141435%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=3bVqX8%2FefBl%2B3cZhPwoYAbKkS1UW1u0wFcp5p28A%2FJ4%3D&reserved=0
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DETECTION_URL = http://<SERVICE_URL>/v1/risk_objects/  

TEST_IMAGE = "20.jpg"  

image_data = open(TEST_IMAGE, "rb").read()  

response = requests.post(DETECTION_URL, files={"image": image_data}).json()  

pprint.pprint(response)   

Where <SERVICE_URL> is the address URL of the provided service and TEST_IMAGE a file name 

of the sample request image. This sample is also available in 
https://github.com/superdupercodez/bimprove_rdc/blob/8e3f1065440e1a8b6790af2cf2ac6afb727f1396/bimprove_rest/bi

mprove_example_request.py. With the sample image the response was:  

[{'class': 1,  

  'confidence': 0.414974153,  

  'name': 'safety_net',  

  'xmax': 1620.0979003906,  

  'xmin': 0.0,  

  'ymax': 1082.6301269531,  

  'ymin': 37.0090942383},  

{'class': 1,  

  'confidence': 0.3516817391,  

  'name': 'safety_net',  

  'xmax': 1724.8165283203,  

  'xmin': 810.5069580078,  

  'ymax': 610.0239257812,  

  'ymin': 4.0267028809},  

{'class': 1,  

  'confidence': 0.263441056,  

  'name': 'safety_net',  

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fsuperdupercodez%2Fbimprove_rdc%2Fblob%2F8e3f1065440e1a8b6790af2cf2ac6afb727f1396%2Fbimprove_rest%2Fbimprove_example_request.py&data=04%7C01%7CAnu.Purhonen%40vtt.fi%7C3e858bcdcc4e4046fda208d9efa1be84%7C68d6b592500843b59b0423bec4e86cf7%7C0%7C0%7C637804300236141435%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=3chCdJFExiTuXH2%2FBPCaA73o%2B3drEDtsfTgReTeRK9U%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fsuperdupercodez%2Fbimprove_rdc%2Fblob%2F8e3f1065440e1a8b6790af2cf2ac6afb727f1396%2Fbimprove_rest%2Fbimprove_example_request.py&data=04%7C01%7CAnu.Purhonen%40vtt.fi%7C3e858bcdcc4e4046fda208d9efa1be84%7C68d6b592500843b59b0423bec4e86cf7%7C0%7C0%7C637804300236141435%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=3chCdJFExiTuXH2%2FBPCaA73o%2B3drEDtsfTgReTeRK9U%3D&reserved=0
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  'xmax': 1870.6253662109,  

  'xmin': 507.2440185547,  

  'ymax': 1088.0,  

  'ymin': 525.5383300781}]  

The returned ROVAS response contains the detection results encoded as JSON, where  

Class – object class: barrier=0 | safety_net=1 | garbage=2  

Confidence – detection confidence from 0-1.0  

Name – human readable name for the detect object class  

x1 – upper left corner x-coordinate of the bounding box  

y1 – upper left corner y-coordinate of the bounding box  

x2 – lower right corner x-coordinate of the bounding box  

y2 – lower right corner y-coordinate of the bounding box   

The coordinates are counted as pixels that of the original image dimensions.  

All confidence results over 0.5 can be considered quite reliable detections but may vary significantly 

in practise as most of the available training data was quite homogeneous in image quality and 

scenery composition. The lower end confidence levels in this example ranging from 0.26 to 0.41 are 

due to the purposedly challenging sample image used. The sample image is an individual captured 

frame from a video with added challenges coming from the equipment used to record, lightning 

conditions and distance to the detected nets. See the image in 

https://github.com/superdupercodez/bimprove_rdc/blob/8e3f1065440e1a8b6790af2cf2ac6afb727f1

396/bimprove_rest/madrid_test_image.jpg.  

3. Risk and Image Data Management Service  
The purpose of the BIMprove Risk and Image Data Management Service is to store and provide 

access to the data created by the Safety Related Visual Object Detection described above. The Risk 

and Image Data Management Service includes three main parts that are: 

1. The database used to store the metadata provided by the Safety Related Visual Object 

Detection. The selected database solution is Apache Fuseki graph database that supports 

RDF (Resource Description Framework) format and SPARQL query language. The database 

structure follows the risk data ontology specifically developed to address the requirements of 

risk data management. A visualization of the ontology is shown in Figure 3.   

https://github.com/superdupercodez/bimprove_rdc/blob/8e3f1065440e1a8b6790af2cf2ac6afb727f1396/bimprove_rest/madrid_test_image.jpg
https://github.com/superdupercodez/bimprove_rdc/blob/8e3f1065440e1a8b6790af2cf2ac6afb727f1396/bimprove_rest/madrid_test_image.jpg
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2. REST interface that provides an access to the database. The interface includes two basic 

access methods that are insert data and query data. The interface is implemented using 

Python language and Tornado web framework with its asynchronous networking library. 

3. HTML based GUI that enables examining the content of the database (as well as the results 

of the Safety Related Visual Object Detection). The GUI is supported by the Flask micro web 

framework written in Python.  

 

Figure 3: Risk ontology  

The source code implementing the aforementioned modules is available at 

https://github.com/superdupercodez/bimprove_rdc. In the following sections the installation and usage of the 

Risk and Image Data Management Service is explained.   

3.1. Installation of the Risk and Image Data Management Service  

As a prerequisite you should install Python3 into your deployment machine.   

Fuseki database and the interface implementing the provided functionalities can be installed with the 

following instructions:  

1. Install and start Fuseki  

a) Download Fuseki database deployment files from https://jena.apache.org/documentation/fuseki2/  

b) Navigate to the folder you saved the files and start Fuseki with the following command:  

‘command ./fuseki-server --mem /ds’  

https://github.com/superdupercodez/bimprove_rdc
https://jena.apache.org/documentation/fuseki2/
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c) Navigate to http://localhost:3030/ (or whatever URL your Fuseki instance is deployed on) 

and create a new Dataset called "constructionSiteRiskData"  

 2. Install and start Risk and Image Data Management Service  

a) Download  the Github repository https://github.com/superdupercodez/bimprove_rdc, unzip the files 

and navigate to folder ImageMetadataStorage/DatabaseInterface 

b) Execute command:   

python3 fusekiProxy.py  

c) Open folder ImageMetadataStorage/html and execute command:   

python3 app.py  

d) Open your web browser and navigate to URL http://localhost:8081/ (in case your are 

running the code in your local machine). If you see an empty table with the title "Safety factor 

and risk detection results" you have installed the service successfully.  

3.2. Testing the installation and provided functionalities  

To verify the interfaces of the service, you can add test data to the database. The interfaces can be 

accessed using e.g. CURL tool. The following scripts can be used (please note that the examples 

are valid for localhost installation):  

1. Add data   

The add data functionality enables simulating how results generated by the Safety Related 

Visual Object Detection service are inserted into the database.   

curl -iX POST \  

'http://localhost:8084/fusekiAddImage' \  

-H 'Content-Type: text/plain' \  

-d '{"imageID": "2MppzXLWeT", "name":"Safetynet", "confidence": "0.44544", "xmax": 
"675.44312", "xmin": "345.86625", "ymax": "876.31249", "ymin": "436.5287", 
"imageURL": "https://bit.ly/3glwtiH", "anchorBoxImageURL": 
"https://bit.ly/3glwtiH_2"}'  

As can be seen, many of the elements of the input JSON are similar to the data elements of 

the ROVAS response. In addition, the input data contains a unique id of the image and two 

URLs. The first URL leads to a web location where the analysed image is stored. The second 

image URL points to another version of the same image where the bounding boxes of labelled 

https://github.com/superdupercodez/bimprove_rdc
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items (safety net, barrier or trash) are shown. You can verify the data insert operation by 

navigating to http://localhost:8081/, the table should now contain one data instance.  

2. Free query  

The free query enables executing SPARQL queries against the database.   

curl -iX POST \  

'http://localhost:8084/fusekiQueryData' \  

-H 'Content-Type: text/plain' \  

-d 'SELECT ?imageId  WHERE { ?image  <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> <http://www.semanticweb.org/safetyOntology#Image>. ?image 
<http://www.semanticweb.org/safetyOntology#hasRiskRelatedObject> "Safetynet".?image 
<http://www.semanticweb.org/safetyOntology#hasImageId> ?imageId}'  

The shown SPARQL query statement retrieves the IDs of all database objects that a) are 

instances of the class ‘Image’ and b) have “Safetynet” as detected safety related object.    

4. References 
[1] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A., “You Only Look Once: Unified, Real-Time Object Detection”, 

http://arxiv.org/abs/1506.02640, 2015.  
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