
Journal of Open Source Software: 
Developing a Software Review Community

Gabriela Alessio Robles, Mikkel Meyer Andersen, Katy Barnhart, Juanjo Bazán, Sebastian Benthall, Eloisa Bentivegna,  

Monica Bobra, Frederick Boehm, Jed Brown, Pierre de Buyl, Patrick Diehl, Elizabeth DuPre, Vissarion Fisikopoulos,  

Martin Fleischmann, Dan Foreman-Mackey, Jarvis Moore Frost, Nikoleta Glynatsi, Jeff Gostick, Richard Gowers, Hugo Gruson,

Olivia Guest, David Hagan, Jayaram Harihan, Chris Hartgerink, Bita Hasheminezhad, Christina Hedges, Luiz Irber,  

Mark A. Jensen, Prashant K. Jha, Daniel S. Katz*, Vincent Knight, Rachel Kurchin, Hugo Ledoux, Christopher R. Madan,  

Brian McFee, Melissa Weber Mendonça, Kevin M. Moerman, Kyle Niemeyer, Juan Nunez-Iglesias, Lorena Pantano,  

Stefan Pfenninger, Viviane Pons, Kristina Riemer, Amy Roberts, Marie E. Rognes, Ariel Rokem, Will Rowe, Kelly Rowland,

David P. Sanders, Mehmet Hakan Satman, Fabian Scheipl, Jacob Schrieber, Adi Singh, Arfon Smith**, Charlotte Soneson,

Øystein Sørensen, Andrew Stewart, Fabian-Robert Stöter, Yuan Tang, George K. Thiruvathukal, Kristen Thyng,  

Tim Tröndle, Leonardo Uieda, Chris Vernon, Marcos Vital, Lucy Whalley, Bruce E. Wilson, Frauke Wiese

 *presenter **some slides https://joss.theoj.org

 https://doi.org/10.5281/zenodo.6305241

Computational Infrastructure for Geodynamics virtual developer meeting, 28 Feb 2022

https://joss.theoj.org
https://doi.org/10.5281/zenodo.6305241

Software isn’t a creditable
research activity

1. Find some way to fit software into
current (paper/book-centric)
system

2. Evolve beyond one-dimensional
credit model

How to better
recognize
software

contributions?

What if we just wrote
papers about software?

Software
papers

Gives us something easy to cite 👍

No changes required to existing
infrastructure 👌

Publishing in existing journals raises
profile of software within a community 🤘

Software
papers

Writing another paper can be a ton of
work 😅

Many journals don’t accept software
papers 🤬

For long-lived software packages, static
authorship presents major issues 😕

Many papers about the same software
may lead to citation dilution 👊

What if we made it as easy as
possible to write and publish a

software paper?

Embracing the hack

A developer friendly journal* for research software
packages

Paper preparation (and submission) for well-documented
software should take no more than an hour

The primary purpose of a JOSS paper is to enable citation
credit to be given to authors of research software

* Other venues exist for publishing papers about software

JOSS  
Process

Make software available in repository
with OSI-approved license

!

:
https://opensource.org/licenses

Author short Markdown
paper: paper.md

"

Submit to JOSS by filling
out short form

#

Editor assigns ≥2 reviewers,
who review submission

$

Reviewer(s) raise comments and
issues following guidelines

%

:
https://joss.readthedocs.io/en/
latest/reviewer_guidelines.html

Authors fix issues

&

Paper published &
receives JOSS DOI

⚡

JOSS 10.21105/joss.#####

JOSS Under review

JOSS Submitted

Editor accepts paper,
authors archive software ✔

Editor-in-chief reviews size and
scope, and assigns an editor

%

rejected
out of scope

https://doi.org/10.6084/m9.figshare.5147773.v2

JOSS  
Review  

Checklist

✓Agree to Conflict of Interest & Code of Conduct

✓General checks: repository URL, license,
contribution and authorship

✓Functionality: installation, functional claims,
performance

✓Documentation: statement of need, installation
instructions, example usage, functionality
documentation, automated tests, community
guidelines

✓Software paper: summary, statement of need,
state of the field, quality of writing, references

JOSS  
Review  

Checklist
Details

Definition of each check in JOSS documentation:
https://joss.readthedocs.io/en/latest/
review_criteria.html

Editor helps reviewer and author come to
agreement, and some criteria have guidance

• Installation

• API documentation

• Community guidelines

• Automated testing

https://joss.readthedocs.io/en/latest/review_criteria.html
https://joss.readthedocs.io/en/latest/review_criteria.html

JOSS  
Review  

Checklist
Details: 

Installation

• Good: The software is simple to install, and
follows established distribution and dependency
management approaches for the language
being used

• OK: A list of dependencies to install, together
with some kind of script to handle their
installation (e.g., a Makefile)

• Bad (not acceptable): Dependencies are unclear,
and/or installation process lacks automation

JOSS  
Review  

Checklist
Details: 

API
Documentation

• Good: All functions/methods are documented
including example inputs and outputs

• OK: Core API functionality is documented

• Bad (not acceptable): API is undocumented

JOSS  
Review  

Checklist
Details: 

Automated
Tests

• Good: An automated test suite hooked up to
continuous integration (GitHub Actions, Circle CI,
or similar)

• OK: Documented manual steps that can be
followed to objectively check the expected
functionality of the software (e.g., a sample input
file to assert behavior)

• Bad (not acceptable): No way for you, the
reviewer, to objectively assess whether the
software works

JOSS  
as a

Community

Cultures change based on rules and incentives

JOSS practices have influenced reviewers and
developers in terms of what's good and what's
minimally acceptable

Similar to rOpenSci's influence in the R community

JOSS provides rules, and at a high-level, tries to
nudge incentives

Accepted software = accepted paper

If software was cited directly, JOSS papers wouldn't
be needed, but JOSS reviews and JOSS
community would still have great value

Interacts with authors, reviewers, and editors
in review ‘issues’ on GitHub

Compiles papers (Pandoc)

Conducts automated ‘healthchecks’ for
incoming submissions (e.g. license checks,
search for missing DOIs)

Sends automated reminders

Deposits metadata and

registers DOIs with Crossref

Our bot: @editorialbot

editorialbot
produces final

proofs of paper
and Crossref

metadata

AEiC asks editorialbot
to do a ‘dry run’ of
accepting paper

Some
observations

It seems to be working (i.e. we’re meeting
a demand that exists)…

People enjoy editing, reviewing, and being
reviewed at JOSS

Year 1: 110 (9.2 papers/month)

Year 2: 184 (15.3 papers/month)

Year 3: 291 (24.3 papers/month)
Year 4: 325* (27.1 papers/month)
Year 5: 362 (30.2 papers/month)
Year 6 (partial): 280 (31.1 papers/month)

* Includes 2-month pause in submissions due to

 COVID-19, start of more rigorous scholarly contribution 
 enforcement

JOSS is a collaboration

between author, editor and

reviewer

Guest Post — The Evolving Role of Scientific Editing 
https://scholarlykitchen.sspnet.org/2021/09/23/guest-post-the-evolving-role-of-scientific-editing/

https://scholarlykitchen.sspnet.org/2021/09/23/guest-post-the-evolving-role-of-scientific-editing/

Thanks!

@danielskatz

d.katz@ieee.org

https://joss.theoj.org

mailto:d.katz@ieee.org
https://joss.theoj.org

More details

JOSS  
Scope and
Rejections

We rejected papers that were out of scope (not
research software) from the start

From 2020 we enforced our substantial scholarly
contribution criteria much more rigorously

• Now rejecting about 25% of submissions before
review for scope

• Plus another 2-3% during review

Balancing peer-review & credit for authors

 and

academic trust in JOSS papers being equal to
peer-reviewed journal papers

https://blog.joss.theoj.org/2020/07/minimum-publishable-unit

https://blog.joss.theoj.org/2020/07/minimum-publishable-unit

Scaling JOSS
Most of our challenges are about scaling
people processes:

• AEiC/managing editor rotations

• More editors

• Term limits for editors (to avoid burnout)

Technology improvements:

• Smarter reviewer assignments

• Better monitoring tools for editors

• Tools to help authors prepare their

submissions

https://blog.joss.theoj.org/2019/07/scaling

https://blog.joss.theoj.org/2019/07/scaling

Some
observations

It seems to be working (i.e. we’re meeting
a demand that exists)…

People enjoy editing, reviewing, and being
reviewed at JOSS

Some
observations

It seems to be working (i.e. we’re meeting
a demand that exists)…

People enjoy editing, reviewing, and being
reviewed at JOSS

Some
observations

It seems to be working (i.e. we’re meeting
a demand that exists)…

People enjoy editing, reviewing, and being
reviewed at JOSS

Some
observations

It seems to be working (i.e. we’re meeting
a demand that exists)…

People enjoy editing, reviewing, and being
reviewed at JOSS

Some
observations

It seems to be working (i.e. we’re meeting
a demand that exists)…

People enjoy editing, reviewing, and being
reviewed at JOSS

Some
observations

People like the robot*…

* Does cause occasional confusion

Some
observations

People like the robot*…

* Does cause occasional confusion

JOSS Costs
JOSS depends on volunteers

Actual costs we pay:

• Annual Crossref membership: $275/year

• JOSS paper DOIs: $1/accepted paper

• JOSS website hosting: $19/month

• JOSS domain name registration: $10/year

$2/paper, at 500 papers/year

Doesn't include $50k infrastructure development paid by

Sloan grant, GitHub usage, user donations, AAS fees

https://blog.joss.theoj.org/2019/06/cost-models-for-running-an-online-
open-journal

http://32%20pt
http://32%20pt

JOSS
Collaborations

When AAS articles include new software,
authors can jointly submit

• Science paper to AAS

• Software paper to JOSS

Reviews done in parallel; published papers cite/
linked via DOIs; AAS pays JOSS $50/paper

JOSS infrastructure also used by Journal of
Open Source Education (JOSE), JuliaCon
Proceedings (& open to more)

https://blog.joss.theoj.org/2018/12/a-new-collaboration-with-aas-
publishing

https://blog.joss.theoj.org/2018/12/a-new-collaboration-with-aas-publishing
https://blog.joss.theoj.org/2018/12/a-new-collaboration-with-aas-publishing

Unexpected
consequences

of working
openly

Semi-regular emails from people annoyed
they haven’t been asked to review yet

Generally need relatively small number of
invites to identify reviewers (~2 invites per
reviewer)

Vanity software package ‘pile-on’ - for high-
profile open source projects, often have
many reviewers volunteering

Some awesome
things about

working openly

Zero privileged information in the system:
Reviewer reports, editorial decisions available
to all

Increase transparency:

• Public declarations of potential conflicts

• Editorial decisions documented in the open

• Clear expectations of authors

Reduces complexity of infrastructure

People can link to their reviews

Zero privileged information in the system: So
sometimes authors chase reviewers, editors
etc.

Good reviewers become well known quickly
potentially leading to reviewer burnout

Potential cultural barriers to entry for some
and negative dynamics for junior staff

Some
not-so-awesome

things about
working openly

