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For this work, we explored the benefits and limitations of using DIANNA1 as an
explainable AI tool during a research project in the medical sector. The EU-funded
Examode project aims in particular at improving decision-making adoption of extreme-
scale analysis and tools2. This project includes both image and text modalities and the
subject matter makes the robustness of the AI model critical.

1 Problem description.
Biomedical data often comes in different modalities: images, text or feature data that
attempt to describe the problem as well as possible. However, the models that are
usually deployed for classification or image segmentation consider only one modality.
In this research project, the objective is to develop and investigate methods based on
deep neural networks to use as many modalities as possible to learn compact yet highly
descriptive vector-representations of histopathology multi-modal data. The data size and
network design are complex and done at a large scale, meaning that the training process
can become increasingly expensive. Algorithmic and data parallelism together with
the computational requirements is SURF’s key motivation to explore petaflop scaling
behavior.

1.1 Dataset overview.
The unit of work in this project are so-called whole-slide images (WSI) of biopsies from
the colon, lung or other tissues. Each image is in gigapixel size: images with a dimension
of 80000 by 20000 pixels are not uncommon. At the time of writing, the dataset comprises
about 1500 WSIs collected from five Dutch medical centers for a total size of about 3
TB. A fraction of those images are linked to text diagnostic reports describing the level
of malignancy of the tissue (on a 1 to 5 scale). The raw size of the images and the
technical nature and diversity of writing in the pathology diagnoses (multilingual) are
central challenges to the task.

1https://github.com/dianna-ai/dianna
2https://www.examode.eu
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1.2 Task description.
In this task, the goal is to learn the link between the WSIs and the diagnostic reports.
The neural network learning process provides us with vector-representations of the multi-
modal data, which could in turn be used to classify the degree of malignancy indicated
in the diagnosis. For this purpose we use OpenAI’s CLIP [3] that allows us to to train
visual models with natural language supervision or vice-versa. CLIP can be used for a
wide variety of tasks without directly optimizing it for those tasks: no hard-labels are
required. Additionally, CLIP is easily adaptable for other modalities, which makes the
method lucrative for multi-modal representation learning. As a consequence, we can
perform zero-shot classification and large-scale image retrieval using natural language.
That is, a text description is provided as a substitute for a hard-label to categorize an
image.

2 Explainability.
2.1 Possible applications.
While the task is classification, the goal is to help clinicians with decision making. The
transparency of the classification algorithm or its capacity to explain decisions post-hoc
is therefore important. Saliency maps showing the image features that lead to a specific
categorization could help understand if predictions are robust. This is the approach we
focused on during this work. Further, the saliency maps could potentially be used as a
rough segmentation proxy for classification models. That is, the enormous costs of an-
notating the gigapixel images in a pixel-wise manner by pathologists can be ameliorated
by using simple classification methods, as opposed to deploying expensive segmenta-
tion methods. Additionally, the saliency maps permit machine learning engineers or
researchers to discover any biases that a classification method may pick up due to data
imbalances.

Here is an illustration of this particular problem: in this histopathology project, the
gigapixel whole slide data often comes from several labs. The tissue samples are pho-
tographed using scanners that can differ from each other in terms of staining, brightness
or sharpness. An imbalanced class that is correlated with one of these scanner artifacts
could be picked up by the neural network, leading to feature extraction and classification
of these artifacts rather than the local morphology of the tissue. Having tools like DI-
ANNA embeded in the workflow could really act here as a debugging tool for non-trivial
problems introduced by (biased) data. It serves as a focussed spotlight to highlight and
discover these bias-points and test its robustness against unseen data.

2.2 Explainability in practice.
Using DIANNA, we were able to easily test several model-agnostic, local explanation
methods, which perform well under well-known data sets. LIME learns an interpretable
model locally around the prediction by first using inputs cast in an interpretable rep-
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resentation (bag-of-word for text and super-pixels following meaningful features for im-
ages) [4]. RISE on the other hand generates an importance map indicating how salient
each pixel is for the prediction [2]. It works on black-box models by masking parts of
the input and measuring the variations in predictions. Using vanilla implementations
of those algorithms did not produce a good visual explanation for the results. Explor-
ing hyperparameters for those methods on top of the architecture and hyper-parameter
explorations for the base model proved too time consuming. Part of this is due to the
sheer size of the data which makes systematic search prohibitive, but part is also due to
the complexity of systematically searching that space. The ‘auto-tune‘ feature available
in DIANNA helped us explore the space more efficiently.

Figure 1: Example saliency map obtained for four patches using the ”no abnormalities”
query and the RISE method. We use a number of features of 8 and increase the number
of masks from left (100) to right (1000). Increasing the number of masks even more still
shows no convergence.

The size of the WSI represents another challenge for those algorithms: meaningfully
masking a 20 gigapixel image is not effective and super-pixel segmentation algorithms
were not always designed with medical images in mind. The images were pre-processed
specifically for CLIP and the same preprocessing method had to be applied in the ex-
plainability pipeline. However, the LIME and RISE outputs proved to be difficult to
interpret when dealing with the preprocessing of multiple images. To illustrate this
see, the Figure above with the saliency map of the patches. We chose four patches as
toy-example where one of the classes was visibly apparent. Note that the collection of
patches should be seen as just one image. We can observe that the saliency map is
highlighting regions in an inconsistent manner given different RISE parameter choices,
whereas the neural network is correctly classifying these images with a high probability.

This highlight an issue we had with saliency-based explainability methods: what
constitutes a good explanation? We found it very easy to over-interpret those maps
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and ended up looking for ways to understand the calculations behind that saliency map,
creating the need for an explanation of the explanation. The cause of this inconsis-
tency could be present in either the classification method employed or the ability of
the explainability tool to deal with gigapixel preprocessing approaches. To diagnose
this, LIME and RISE should be tested with a simpler model or dataset, suggesting that
researchers using XAI methods should become expert in explainability on top of their
domain of expertise. DIANNA mitigates this by providing easy access to benchmark
data to help researchers develop a stronger understanding of the methods faster. An
interesting overview of what constitutes a good explanation from the social sciences
perspective can be found in Miller [1].

Finally, while LIME and RISE are known to perform well when the machine learning
algorithm itself performs well (high accuracy), during a research project the accuracy
only slowly rises and the state of the art may be well below 90%. In those cases, what
should be expected from XAI methods? Is failure of the explainability layer an indication
that the model isn’t good enough yet (irrespective of accuracy targets), or can the model
be good enough for its purpose but the XAI method simply not appropriate? Can those
methods be used to decide when the accuracy of a model has reached a reasonable
threshold (i.e., when it can be explained reasonably well)?

3 Conclusion.
Using explainability methods consistently in existing research pipelines requires a non-
negligible effort at this stage. Tools like DIANNA lower the barrier to entry and allow
easy comparison of existing models, which is bound to help. However, the state of the
field suggests that, for research applications, a good understanding of XAI methods is
still needed for explainability to shine, despite the lower technical barrier to entry.
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