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Abstract 

We present the implementation in the Alya code of a method to refine a mesh in parallel while preserving the 
curvature of a target topography. Our approach starts by generating a coarse linear mesh of the computational 
domain. Then, the former coarse mesh is curved to match the curvature of the target geometry. Finally, the 
curved mesh is given to the improved Alya code that now reads the curved mesh, partitions it, and sends the 
subdomain meshes to the slaves. The result is a finer linear mesh obtained in parallel with improved geometric 
accuracy. The main application of the obtained finer linear mesh is to compute a steady state flow solution on 
complex topographies. 
 

Introduction 

Standard commercial linear mesh generators (e.g. ANSYS, GridGen, or GiD,) are designed to approximate 
geometries for simulation. To do this, they feature boundary layer meshing, and local adaptivity. However, they 
are not ready to generate meshes suitable for petascale runs, mainly due to memory constraints. Furthermore, 
they only provide in general piecewise linear (straight-sided tetrahedra) or trilinear (ruled-sided hexahedra) 
approximations of the computational domain and therefore, subdivided meshes do not target to approximate 
curved boundaries. In this project, we have implemented a parallel uniform curved mesh subdivision method, by 
extending a parallel linear subdivision method [1, 2] developed at Barcelona Supercomputing Center on top of 
the Alya code. 
 
The scientific case has been prompted by the interest of combining the research results of two of our ongoing 
projects, awarded in the Horizon 2020 framework of the European commission funded by the Energy oriented 
Centre of Excellence for computer applications (EoCoE, Project ID: 676629) and the Marie Sklodowska-Curie 
Actions (HiPerMeGaFlowS, Project ID: 658853) programs. The goal of this combination is to obtain mesh 
convergence results for the turbulent flow on real curved topographies, with applications to wind farm design. 
 
Our approach starts by generating a coarse linear mesh. Then the coarse mesh is curved to match the boundaries 
of the computational domain [3]. Finally, the curved mesh is given to the improved Alya code [4,5] that now 
reads the curved mesh, partitions it, and sends the subdomain meshes to the slaves. The result is a finer linear 
mesh obtained in parallel with improved geometric accuracy. Then, a steady state flow solution is obtained on 
the finer linear mesh. This methodology adopts the coarse-to-fine paradigm we have proposed before to 
accelerate the mesh curving of moving domains [6] and to insert boundary layers in curved meshes [7]. 
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The advantage of the proposed and implemented strategy is that the subdivision is performed and stored in 
parallel and therefore, there are no memory constraints. Furthermore, the finer linear mesh targets the curvature 
information described by the first curved mesh. Finally, if the original numbering is conserved, then the post-
processing can be performed on the coarse curved mesh. 

Methodology 

In this section, we present the main steps and implementation details of our new method to refine a mesh in 
parallel while preserving the curvature of a target topography. Our approach consists of the following steps: 
 

1. Generating a coarse linear mesh. We assume that a coarse linear mesh has been obtained and that the 
mesh features the required resolution for the current problem (CFD) such as boundary layer elements 
near the wall. Specifically, we generate the coarse linear mesh of the topography using WindMesh [8], 
an in-house mesh generator for Atmospheric Boundary Layer flows in complex topographies.  

2. Curving the coarse mesh. The elements of the former coarse mesh are curved to match the boundaries 
of the computational domain. In this manner, the inherent curvature of the domain can be reproduced 
with more accuracy. To this end, we use a curved meshing method developed by the researchers at the 
BSC and implemented in WindMesh. The method uses piece-wise polynomial representations of the 
elements that can be curved to match the domain boundaries by minimizing the mesh distortion [3]. 

3. Preserving curvature on parallel subdivision. The coarse curved mesh is given to Alya, which is 
based on a master-slave strategy. The master reads the curved mesh, partitions it, and sends the 
subdomain meshes to the slaves. The slaves then refine their corresponding subdomains in parallel, by 
performing the subdivision of the curved elements in finer linear elements. During the process we have 
to ensure that the boundary nodes of the new elements match with the curved elements of the 
neighbouring subdomains. The result is a finer linear mesh obtained in parallel with improved 
geometric accuracy. For standard engineering applications, the computational mesh has between 10M 
and 100M of elements whereas the curved mesh that has to be partitioned and distributed has only 
between 10K and 100K of elements.  

 
To implement the proposed approach, we have extended the existing parallel subdivision code in Alya in the 
following manner: 
 

1. Implementing quadratic shape functions in Alya to allow isoparametric mappings of polynomial degree 
two to be represented. These elements feature an additional node in the middle of: the edges, the 
quadrilateral faces, and the hexahedral elements. The coordinates of these new nodes allow the 
curvature of the target geometry to be captured 

2. Representing curved meshes in Alya as a standard linear mesh equipped with a vectorial elemental 
field. On the one hand, the linear mesh determines the topology of the curved mesh. On the other hand, 
the components of the vectorial element field are the coordinates of the nodes of the quadratic elements 
and therefore, determine the geometry of the curved mesh. This approach allows  the ability of Alya to 
refine in parallel linear meshes to be exploited. Specifically, it allows  the functionality that deals with 
the topology of the mesh to be re-used 

3. Incorporating in Alya the possibility to read and write curved meshes represented with quadratical 
elements. 

4. In the previous version of Alya, the coordinates of the new nodes in the middle of edges, faces and cells 
were not preserving the curvature of a target geometry. Accordingly, we have modified the code in such 
a manner that the coordinates of the new nodes interpolate the target geometry. To this end, the target 
geometry is represented by means of a coarse curved mesh composed by isoparametric elements of 
degree two. 

Results 

The PRACE preparatory access mechanism has facilitated the access to the MareNostrum supercomputer, 
required to obtain the results presented in this section. For the success of this proposal it was necessary to utilize 
all the requested computer time and disk storage. The performance of the initial Alya code was almost linear for 
a sufficient number of elements per subdomain, say 20,000. In the new version, we obtain the same performance 
results. However, in the new version, we are able to solve larger problems where the inherent curvature of the 
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topography is now preserved. This was not possible in the previous version of the code where after successive 
refinement, the geometric accuracy of the topography representation was not improved. The following examples 
illustrate this result. 
 
With the previous version of the code, the target geometry is represented by a coarse linear mesh composed of 
24K standard hexahedra, see Figure 1 (a), and we refine it to obtain a finer mesh, see Figure 1 (c). Accordingly, 
the refined mesh reproduces the straight-side geometry represented by the initial mesh. In the new approach, the 
target geometry is represented by a coarse curved mesh composed by 24K curved hexahedra, see Figure 1 (b). 
After four consecutive subdivisions, with both approaches we obtain a finer distributed linear mesh composed by 
98 304 000 elements (24K x 8 x 8 x 8 x 8 elements), few seconds later and completely stored in the memory. 
Now, the resulting refined linear mesh, see Figure 1 (d), targets the curvature of the topography while in the 
previous version of the code this was not possible, see Figures 1 (c). 
 
With the previous version of the code, we are able to converge to a steady state of the flow however, the finer 
representation of the initial straight-sided geometry leads to artificial features in the solution, see Figures 1 (a) 
and 1 (c). These features are visible in those regions where the mesh features sharp edges characterized by large 
changes in the normal vector between contiguous faces.  Using the finer mesh obtained with the new approach, 
we are able to converge to a steady flow state with an improved accuracy of the topography geometry and 
without artificial flow features, see Figures 1 (b) and 1 (d). This is because  the mesh features a smoother 
variation of the normal vector between adjacent faces. 
 
In Figure 2, we present a general and a detailed view of the initial straight-sided coarse mesh used in the 
previous version of the code. In addition, we include a section of the steady state flow solution obtained with the 
standard subdivision approach, see Figures 2 (a) and 2 (c), and with our subdivision approach, see Figures 2 (b) 
and (d). When the standard subdivision approach is used, we observe that the artificial flow features are found 
next to the sharp edges of the initial straight-sided mesh. Instead, in Figures 2 (b) and (d) we observe that the 
flow solution is smoother and without artificial features when our subdivision approach is used. The blank space 
between the initial straight-sided mesh and the flow solution illustrates the error in the approximation of the 
target geometry when a standard subdivision approach is used.  
 
 

Standard subdivision approach Our subdivision approach 

  
(a) Initial approximation to geometry (b) Initial curved approximation to geometry 

  
(c) Final refined mesh (d) Final refined mesh 

 
Figure 1. (a, b) Geometry and (c, d) meshes with the velocity magnitude of the steady state flow solution for: 

(left) standard subdivision approach and, (right) our subdivision approach. 
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Steady state on standard subdivision mesh Steady state on our subdivision mesh 

  
(a) General view (b) General view 

  
(c) Detailed view (d) Detailed view 

 
Figure 2. (a, b) General view and (c, d) detailed view of the standard subdivision mesh and a section of the 

velocity magnitude for the flow steady state on a mesh obtained with: (left) the standard subdivision approach 
and (right) our subdivision approach. 

 

Concluding remarks 

We have proposed and implemented a subdivision strategy performed and stored in parallel and therefore, there 
are no memory constraints. Furthermore, the finer linear mesh targets the curvature information described by the 
initial curved mesh. The mesh can be used to obtain the steady state of a flow solution of interest in simulating 
the generated power of a wind farm. In the near future, this approach could be used to perform the visualization 
of the results in the initial coarse mesh just by preserving the original mesh numbering. 
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