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1. INTRODUCTION
Let L be a finite lattice and K[L] be the polynomial ring over a field K whose variables are the elements of L. The ideal
IL= ({fap:= XaXo — XaVbxaAb | @,b € L}) € K[L]
is called the join-meet ideal of L. It was introduced in 1987 by Hibi in [3]. As shown by [1] or [3], L is distributive if and only if I,
is a prime ideal. It follows from this result that I, is radical when L is distributive. However, it is not yet completely known classes
of non-distributive lattice L with the property that I, is a radical ideal. On the other hand, for instance, it followed from [1] and [2]
that there are some examples of non-distributive modular lattice such that I, is a radical ideal.

Not all, here we briefly introduce three examples. First, the join-meet ideal of the pentagon lattice Nsand diamond lattice Ms is

radical; see [1, Page 157] for detailed proof.

(a) The pentagon lattice Ns(b) The diamond lattice Ms
Figure 1. The Hasse diagram of the pentagon lattice Nsand diamond lattice Ms

Second, for some integer n > 1, it exists a class of the distributive lattice of the divisors of 2 - 3" such that by including just one
small diamond one get a radical join-meet ideal for the new lattice; see [2, Section 3] for detail.

Figure 2. The Hasse diagram of the new non-distributive lattice made by including just one small diamond

In this paper, we introduce two new examples of non-distributive lattices L such that the join-meet ideal I, is radical. Let k be non-
negative integer with k > 0. For non-negative integer ny,--- ,nk> 1, we denote by Li(ny,--- ,nk) the finite lattice with the elements
labeled as in Figure 3.
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Figure 3. The Hasse diagram of new finite lattices

A finite lattice Lx(n1,--- ,nk) looks larger version of finite lattices introduced by [1, Problems 6.13] in the terms of the appearance
of the Hasse diagram.

Figure 4. The Hasse diagram of a finite lattice introduced in [1, Problems 6.13]

Then, the following question arises. Is the join-meet ideal I k(n1,---,nk) radical ? Unfortunately, we couldn’t answer this question.
On the other hand, for k = 2,3, the following results were obtained.
Theorem 1.1. The join-meet ideal 1.2(n1,n2) is radical.
Theorem 1.2. For
(nl,nz,n3)= (kl,l,l), 2<ki<10,
(k2,k3,1),2 <ko<4,2 <ks< 4,
(Ka,ks,ks), 2 < ka,ks,ke < 3,

the join-meet idea I 3(n1,n2,n3) is radical.

By using new examples La(ni,nz), we obtained new non-distributive non-modular lattices La(n1,nz)[K’,i1,iz] for non-negative
integer k’,ny,n, satisfying certain conditions. We also obtained new distribtuive lattices On:. Then, the following results were
obtained.

Theorem 1.3. The join-meet ideal 1 2(n1,n2)[x,i1,i2] is radical.

Theorem 1.4. The join-meet ideal lon is radical.

We checked that Theorem 1.3 and 1.4 are similar to [2, Theorem 3.3] in terms of the opposite approach. Unfortunately, since Ons
is a distributive lattice, note that it not new exmaples. The detailed definition of La(n1,n2)[K',i1,i2] and Ons is given in section 4.

This paper is organized as follows. In section 2, we introduce the proof of Theorem 1.1 and 1.2. In section 3, we introduce the
conjectures that occur naturally by Theorem 1.1 and 1.2. Then, we give some thoughts. In section 4, we introduce the proof of
Theorem 1.3 and 1.4. In section 5, we introduce topics related to On;. The keywords of it are number theory and gorenstein ring.
Note that it has little to do with the gist of this paper.

Below, unless otherwise noted, in order to avoid the complexity of notation, we denote
ari=a; forl<i<ny, azi=hi forl<i<ny, azi=¢i forl<i<ns
Furthermore, in order to match the logical calculation, let a;, biand c; satisfy
aipbi,ci=sfori<0,ai=tforni+1<i,bi=tforny+1<i,ci=tforns+1<i.
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2. THE PROOF OF THEOREM 1.1 AND THEOREM 1.2
In this section, we introduce the proof of theorem 1.1 and theorem 1.2. Hereafter, in order to avoid the complexity of notation,
letni=n,nz=m, nz=r.
2.1. The proof of Theorem 1.1. Let

Gin,m) = {fap=ab—st|abe La(n,m)},
Ay = {aist—arst|1<i<n},
i, =1,
B, - | m
Ihist — st |1 <i<m}, m>1

The outline of the proof of Theorem 1.1 is to show that lo(m) is squarefree with respect to the inverse lexicographic order induced
by

s<al<--<an<bl<--<bm<cl<---<cr<t (2.1.1)
To prove this claim, for n > 1, we show that the set Gnm U AU B is a Grrobner basis of 1o m) with repsect to <. Below, by using
Buchberger’s criterion, we show each case when m = 1 and when it is not. Note that it is clearly that 1.« 1 is radical; see Figure 5
, [1, Theorem 6.10(Dedekind)] and [1, Theorem 6.21].

Figure 5. The Hasse diagram of a finite lattice L»(1,1)
2.1.1. The case m = 1. First, for u and v belonging to Gn1, we show that the S- polynomial S(u,v) reduces to 0. Let i and j be non-
negative integer with 1 <i,j <n. Let u;jdenote the S-polynomial S(aib; — st,ajbs — st). If i = j, then we have u;;= ui;i= 0. On the other
hand, if i =], we have
Ui = aj(aibs — st) — ai(ajby — st) = —ajst + aist. (2.1.2)
Thus, computational result of u;j(i =/j) is as Table 1. Hence, we showed that S(u,v) reduces to 0.

Table 1. Computational result of ui;(i =])

| Value of ¢ | Value of j | A standard expression of u; ;{i # j) |

i=1 =1 0
‘ g=1 —(a;st — ayst)
i =1 i=1 a; 8t — ay 51
‘ =1 (a;st —ayst) — (ajst — ayst)

Second, for u and v belonging to € A, we show that S(u,v) reduces to 0. Let i and j be nonnegative integer with 2 <i,j <n. Let
uij denote the S-polynomial S(aist—aast,ajst—aust). If i = j, then we have u;j = u;i = 0. On the other hand, if i~ j, then we have
uij= aj(aist — aist) — ai(ajst — aist) = —ajaist + ajasst = ay(aist — aist) — ai(ajst — asst).

Hence, we showed that the S(u,v) reduces to 0.
Finally, for (u,v) belonging to Gn1 % An, we show that S(u,v) reduces to 0. Let i and j be non-negative integer with 1 <i<n, 1<
j <n. Let ujjdenote the S- polynomial
S(aiby — st,ajst — asst). If i = j, then we have uj; = st(aib; — st) — by(aist — aist) = abist — s??= st(asb; — st). On the ohter hand, if i =
j, then we have uij= ajst(aibi — st) — aiba(ajst — aist) = —a;s?2 + ajarbsst = asst(aibs — st) — st(a;st — aust).

Hence, we showed that S(u,v) reduces to 0.

Therefore, We showed that the set G mUAzUB1 is a Grobner basis of I 2,1y with repsect to <.
2.1.2. The case m > 1. First, for u and v belonging Gn,m, we show that the S- polynomial S(u,v) reduces to 0. Let i, j, k and r be non-
negative integer with 1 <i<n, 1 <j<m, 1 <kr <m. Let ujjxrdenote the S-polynomial S(aib;— st,abr— st). If i = k, then we have
Uijir= —brst + bjst. Thus, computational result of u;j;r from table 2. Hence, uij;ir reduces to 0.
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Table 2. Computational result of uijr

| WValue of j | Value of r | A standard expression of w; ;; » |
=1 r =1 0
| —(bpst — by st)
j=1 r=1 bist — byst
1 {b‘..'si — byst) — (best — bysi)

On the other hand, for j = r, it follows that u;j,ir reduces to 0 by rewriting bs to bjin (2.1.2) and using table 1. Therefore, we
showed that S(u,v) reduces to 0.

Second, for u and v belonging to A, U Bm, we show that S(u,v) reduces to 0. Since S(u,v)(u,v € Ay) and S(u,v)(u,v € Bn) reduce to
0 from the discussion in case m = 1, it suffices to prove that S(u,v) reduces to 0, where (u,v) € A, X Bp.

Now, let i and j be non-negative integer with 1 <i<n,1 <j<m. Let u;jdenote the S-polynomial S(aist — aist,bjst — bsst). Then,
the polynomial uijis computed as follows: u;; = bj(aist — aist) — ai(bjst — baist) = —asbjst + aibist = st(aiby — st) — st(asb; — st).

Hence, we showed that S(u,v) reduces to 0.

Finally, for (u,v) belonging to GnmxA,UBm, we show that S(u,v) reduces to 0. Let i, j, k and r be non-negative integer with 1 <i

<n, 1<j,<m,1<k<n,1<r<m. Letujjxbe the S-polynomial S(aibj —st,axst—aist) and u;jrthe S-polynomial S(aibj —st,byst—bast).
At first, about computational result of uijx, if k=i > 1, then we have ui ;= st(aibj;— st) — bj(aist — asst) = aibjst — st = st(asb; — st).
Hence, uij;reduces to 0. On the other hand, if i =7k, then it follows that in<(aib; —st) = aibjand in< (axst — aist) = ast are relatively
prime. Hence, for i =k, uijxreduces to 0 with respect to aib;— st, axst — aist.
Next, about the computational result of uij, if r =j > 1, then we have uijx = st(aib; — st) — ai(bjst — bist) = aibist — s?t? = st(aib; — st).
Hence, u;j;reduces to 0. On the other hand, if j =/r, it follows that in<(a;bj— st) = aibjand in< (b,st — bist) = b,st are relatively prime.
Hence, for j =/r, uijr reduces to 0 with respect to aib;— st, byst — bsst.

From the discussion of computational result of u;;xand uij,r, we showed that S(u,v) reduces to 0.

Therefore, We showed that the set Gnm U An U Bry is a Griobner basis of Ipanm) with repsect to <.

2.1.3. Conclusion. The set Gnm U An U Bpy is a Griobner basis of Ianm) with repsect to <.
Thus, we have in< (I.opm) = {aibj| 1 <i<n 1l <j<m}ufast| 1 <i<n}ufbist| 1 <i<m}).
Hence, in<(l2(nm) is squarefree with respect to <. Therefore, I onm)is radical.

2.2. The proof of Theorem 1.2. Let denote the following ideals:

BN = (a) — an, - ya1 —a2,a1 — by a1 — biya1 — oy - e yay — c1, st —al)
Xnm = (s,a1, - ,anb1,-- bm) N (@z, - ,am,b1,-- ,bm,t),

Ym,r = (s,by,-+ ,om,C1,0- ,C) N (by, - ,bm,C1,- - ,Cr 1),

Zn,r = (s,a1, " ,an,C1,"+- ,Cr) N (a1, -+ ,an,C1, -+ ,Crt).

The outline of proof is to show that all primary ideals appearing in the primary decomposition of I 3(nm, is prime ideal.
First, by using Risa/Asir [4], we have

'Ls(n,1,1) = En1NXnlNY11N2Znl forn=2,3,---,10, (2.2.1)
'Ls(n,1,1) = EnmNXnmnNYm,1NZnl for2<n<4,2<m<4, (2.2.2)
ILs(n,m,r) = EnmrNXnmNYmrNZnr for2 <nm,r<3. (2.2.3)

We comment a little here. The above results were obtained by doing something like the following computation:
Listing 1. The computation of the primary decomposition of I 31,1y with Risa/Asir

[4]

1 load("primdec"}$
2 primadec([a_1 * b_1 — 5 * t , *# c 1 - s #*
* c_1 — 5 *% t a3 * b_1 s ¥t , a3 #*

* t],[t,c_1,b_ 2
3 [[[a_1-a_2,a_1-a_3,a
L]

t ,a2*bl-=s*t , a2
c.l - = #% t B_1 # ¢_1 — =

)3

,t*z—a_1"2],[a_1-a_2,a_1-a_3,a_1-b_1,a_1-
b_1,t],[a_1,a_2,a 3,b_1,t]1]1,[[s,a_1,a_2,
[[a_1
¥

a
c_1,t*s-a_1"2]]
a_3,b_1],[s,a_1,
11,[[s,a_1,a_2,a_3
11, [[s,b_1,c_1],[s

1,a 2,a_3,c_1,t],[a_1,a_2,a_3,c_1,t
a_2,a_3,c_1]1,[[b_1,c_1,t],[b_1,c_1,t

-
oo
i
[y |
el L4
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By (2.2.1), (2.2.2) and (2.2.3), we have

fﬂ;:] = VEnii N/ XnaiN V11N Zng forn=2,3,---,10,
\v:.-'}';__lmj_l:, = VEum1NyXamNYm1MNZny for2<n<4,2<m=<4,
\..-"IIJT!-'IlrE-rH-r'f' = VEpmrN -.,r.-"f."('”_,” MYmeMNEpy for2<nmr=<3.
Then, we have
Jhmuﬂ = VEaaNXaaNYiiNZ,, forn=23---,10, (2.2.4)
\f.-"llff.ml.L.]: = n,.r_.ml'_'l NomMY¥Ypi1MZyy for2<n<4,2<m<4, ([(2.235)
"I.-JIJI"“T = km NX,mN¥,,NZ,, for2<nmr=<3. (2.2.6)

In fact, It is clear from the following lemma.

Lemma 2.1. Let {i,--- ,is} be a subset of L, where i1 < i,< --- </s. Let | be the ideal (i1,--- ,is). Then, | is prime ideal.

Proof. Let a and b be the elemetns of K[L] such that ab belongs to I. Suppose neither a nor b belongs to I. Then, a and b belong to
the polynomial ring over K whose variables are the elements of L\{is,--- ,is}. Therefore, since a and b do not contain the variables
iy,iz,--+ ,iO s, it contradicts that ab belongs to I. Hence, aisin | or b is in I. Therefore, | is prime ideal.

Now, by using Risa/Asir [4] , we computed the prime decomposition of VEnnappearing in the right-hand side of (2.2.4) , (2.2.5)

and (2.2.6). It was as follows:
E?’l,l:l: n=2,3,--- ,10,
VEumr =19 Eami, 2<n<4,2<m <4,
Eymrs 2<n,m,r <3.
Hence, it follows from (2.2.4) , (2.2.5) and (2.2.6) that we have

".-"EII.-.-; n11) = EpiNXpnYnZ,; forn=23,..-,10,
VIamiy = Enmi0XamNYmiNZyy for2<n<4,2<m<4,
.llrl.-"fm.:”_m” = Fopmr N XymNMYpueNZp, for2<nmr <3

Therefore, we proved Theorem 1.2.

3. CRYSTAL CONJECTURE
In this section, we introduce the conjectures that occur naturally by Theorem 1.1 and 1.2. It is as follows:
Conjecture 3.1 (Crystal conjecture). The join-meet ideal I k(n1,n2,--,nk) is radical.

We consider that Conjecture 3.1 is positive. The reason is as follows. By the proof of theorem 1.1, it was confirmed the existence
of monomial order < which is satisfying in (L2(n1,n2)) = Vin<(L2(n1,n2)). Furthermore, the method of constructing < was simple. <
Hence, for k = 3, we can conjecture that there may be such a monomial order. Therefore, the following conjecture naturally occurs:
Conjecture 3.2. For k>3 and (ny,--- ,ny) = (1,--- ,1), it exists a monomial order <’ such that I (n1,---,nk) is squarefree with respect

to <.

Remark 3.3 (Reason for imposing (n,--- ,n) =(1,1,1)). By [1, Theorem 6.10 ( Dedekind)], since we have L3(1,1,1) = Ms, a finite
lattice L(1,1,1,--- ,1) is non-distributive modular lattice. Hence, by [2, Theorem 1.3], it do not exist a monomial order such that
I(1 ---,1is squarefree. From such a fact, it imposes (ng,--- ,nk) =(1,1,1) in Conjecture 3.2.

aii dn, 1

Figure 6. The Hasse diagram of non-distributive modular lattice L«(1,1,1,--- ,1)
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In Conjecture 3.2, if the method of constructing <’ can be formulated as an algorithm that does not depend on k, Conjecture 3.1
be resolved. Hence, it is worth working on Conjecture 3.2. However, in the case k = 3, although we computed a lot with Risa/Asir
[4], we are not yet checked a monomial order <’ which is satisfying in</(Ls(n1,n2,n3)) = Vin<(La(n1,n2,n3)) for (n1,n2,ns) = (1,1,1).
From this calculation experiment, unfortunately, Conjecture 3.2 may be negative. On the other hand, we can consider positively that
it is very important result in terms of squarefree of join-meet ideal.

4. INVARIANCE OF RADICALITY BY ADDING NEW RELATIONSHIP

In this section, at first, we introduce a new finite lattice La(n1,n2)[K’,i1,iz] and On1 which is created by adding a new relationship to
L2(n1,n2). Next, we prove Theorem 1.3 and 1.4. This result is similar to [2, Theorem 3.3] in terms of the opposite approach and it
claims strongly invariance of radicality by adding a new relationship. Hereafter, we explain each La(n1,n2)[,i1,iz] and Ons Separately.
4.1. A finite lattice La(ng,n2)[K',i1,i2]. Let n1> 5 and n2> 5. Let i1,i» be non-negative integer and let i1 > 1, 4 < i; < nzand i,—i1> 2.
Let k' be non-negative integer which satisfies 3 < k'< n,— 2 and k' =/ ny,nz. We denote Lo(n1,n2)[K',i1,iz] by L2(n1,nz) which satisfies
ai1 < by, b < ai. Figure 7 (A) displays The Hasse diagram of a poset {ai1,--- ,ai2,bx}. By [1, Theorem 6.10 (Dedekind)], note that
L2(n1,n2)[K',iz,iz] be a non-modular lattice. In fact, since by < b, < b3 < -+ < by and since a,az,--+ ,ai1—1 are incomparable to
b1,bo,bs,-- b respectively, it exists a sublattice {s,a1,b1,bz,bi} of La(n1,n2)[K',is,iz] is isomorphic to the pentagon lattice Ns.

by

(a) New additionship (b) A fnite lattice Ly(7,6)[4,2, 5]

Figure 7. The Hasse diagram of a poset {ai1,--- ,ai2,b'} and a finite lattice L(7,6)[4,2,5]

Before introducing the lemma to prove Theorem 1.3, we need to introduce some notation. Let

Ga(iv,k") = {abj—sbe|1<i<i,l <j<k—-1},

Go(iv,i2) = Aaiby —aiyai, |1+ 1 <1 <ig— 1},

Ga(iz k") = Aabj —bpt |ia <i<ny, K +1<j <no}

Au(iz) =  {asby—ashe|2<i<ii},

Az(il,iz) = {aiailaiz— ai1+1ai1ai2| il+2<i<i2- 1},

As(iz) = {aibet —aphit |2+ 1 <i<ni},

Bi(k") = {bishy—bisbe|2<i<k'—1},

Ba(k") = {bibet — be+1lbit | k' +2 <i<ny}

and
Liy g = A{scar, - ai, b, b1, b},
Lil,iz,k' = {('l“l:l-,ai1+1:' t waigflraigvbk’}:

Liz,k" = {aiza tee ,(Inl,bkf,bk!_._], e _‘bﬂg\t}.

Note that a system of generators of IL2(n1,n2)[k’,i1,i2] is G1(i1,k") U G2(i1,i2) U G3(i2,k").

Lemma 4.1. For i;— i1 > 2, the set

Ga(iy,k") U Ga(iy,iz) U Gs(iz,k") U Ax(in) U Ax(ia,iz) U As(iz) U Ba(k') U Ba(k)

is a Grobner basis of 12(n1,n2)[«,i1,i2] with respect to the inverse lexicographic order induced by (2.1.1).

Proof. By Theorem 1.1, Ga(i3,k") U Aa(iz) U B1(K') is a Gr obner basis with respect to < of

Livw and Ga(i1,i2) UA4(is,iz) is a Griobner basis with respect to < of Lizizk. Also, it follows from Theorem 1.1 that Gs(iz,k’) U As(iz)
U B(K') is a Gr"obner basis with respect to < of Lio. Hence, it follows from [1, Lemma 1.27] that the S-polynomials which we only
have to check are
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Slaishy — aysbp ajbpt — apbpt) for 2 <i<ii2+1< 7 <ny, (4.1.1)
Slaisby — aysbp, bibgt — by abpt) for 2 <4 < dp, E4+2<j<nsg, (4.1.2)
Slaiby — a; a5, b8y —bysby) foriy +1<i<ip—1,2<j < E—1 (4.1.3)
Slaiby — ag aiy, bibpt — bpe o bpet) for g +1<d <iz—1, E42<j<ns(414)
Slajbpt — ag, byt bisby — bysbp) foriz+1<i<m,2<j< -1, (4.1.5)
S(bisby — bysbys, bibpt — by 1bpet) for 2 <4 < EF-1LE+2<j<na. (4.1.6)

Now, the result of computation of (4.1.1),--- ,(4.1.6) is as follows:
Slaisby — ayshp, ajbpt —ai byt) = —saajbpd + saja;,byt
= aj,t(a;shy — a1sby ) — say(ajbpt — aj,biet)
for 2 <i<ij,ip+1=<j < n,
Slaish —aysbp, bjbpt — by sbpet) = —sarbibet 4+ saiby bt
= by atlagsby — aysby ) — say (bjbpt — by byet)
for 2 <i<ip k' +2<j<ns,
Slaiby — a; ai,, bishpy —bhshe) = —so;, 0,05 + sa;byby
shy(agby — a;,a5,) + sag,(a;, by — sbye) — sa;, (a;,b; — sby)
forip +1<i<iz—1,2< <k -1
Slaibye — a; o5, bibpt — b bpet) = —ag a,bit + aibp byt
= bpot(aiby — aiai,) + ai Habe g1 — bE't) — ai t(ai,b; — bE't)
fori; +1<i<i, -1, 4+2<j<n,
Slaibet — a;, bt bishy —bhish) = —sa;,bibpt + sa;by byt
= sby(aibpt — ag,bpet) — o, 8 bjsby — Insby)
fori;+1<i<n;,2<j<k -1,
S(bjsbg — bysbye bibpet — bpebyet) = —sbybybpet + shibpbp 18
= Dpoat(bisby — bysbe ) — sby (bl t — Bt 1 b t)
for2<i<k -1,k +2<j<n,.

Thus, S-polynomials (4.1.1),--- . {4.1.6) reduce to 0. Henee, for ia—i; > 2, the set G1(i, &' U
r;z{n’:l._?:?:l ILJ {;3“2' A.J:l LJ .‘1.1('1‘:1) LJ “1'2{":1-.1.2) ILJ .‘1;';{|’:zjl L Bl{ﬁi:;:l I le{kl} 15 a Grobner basis of
T1a(n1 ma) [k i ia) With respect to = O

Lemma 4.2. For i;— i1 = 2, the set

Ga(i1,k") U Gao(ia,i1+ 2) U Ga(ir + 2,k") U A1(i1) U As(is + 2) U Ba(k") U By(K")
is a Grobner basis of 12(n1,n2)[«,i1,i1+2] with respect to the inverse lexicographic order induced by (2.1.1).
Proof. Since iz = i1 + 2, we have Ga(i1,i1 + 2) = {ainbw — anair+2}. Hence, we have Theorem 4.2 by [1, Lemma 1.27] and the
computational result of (4.1.1),(4.1.2),(4.1.5) and (4.1.6).
Now, we prove Theorem 1.3.
The proof of Theorem 1.3. By Theorem 4.1 and 4.2, the join-meet ideal I2(n1,n2)[«,i1,i2] is squarefree with respect to the inverse
lexicographic order induced by (2.1.1). Hence, it is radical.
4.2. A finite lattice On;. Let n = n;. Let i be odd number. We denote O, by Ly(n,n) which satisfies ai < bi+1 < ai2. Figure 8 (A)
displays the Hasse diagram of {a;,ai+1,ai+2,bi,0i+1,bi+2}, where i is odd number.
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L2 b
;o biso i ¥ by
3 [
41 Biyq &3 [
(] by

LI b =
(a) New additionship (b} A fnite lattice Oy

Figure 8. The Hasse diagram of a poset {ai,ai+1,ai+2,bi,bi+1,bi+2} and a finite lattice Os, where i is odd number

Let prove Therorem 1.4. The outline of proof of it is to show that a system of generators of the join-meet ideal lon is a Gr obner
basis of o with respect to the inverse lexicographic order induced by (2.1.1). In short, we show that O, is a distributive lattice. Note
that < is a rank reverse lexicographic order on K[On]; see [1, Example 6.16] for definitions.

The proof of Therorem 1.4. At first, we clarify a system of generators of the join-meet ideal lo,. Let R be a system of generators of
lon. Since ai,--- ,anare incomparable with by,--- by respectively, then we have

R = {fup|a.be Lsuch that a and b are incomparable}
— {_.lru-_.!'.-I | ]-E-'.,Iii—"r"}"--l""‘--l{fu.,.l'.l_, lf_Jr_”}

rI
= Utfasy 1< <},
i=1
Hence, we must consider the following cases:
Case 1: The calculation of f,bj for i = 0(mod?2),
Case 2:The calculation of fa,b; for i = 1(mod2).
(Case 1) Let i be even nummber. Now, a finite lattice O, satisfies the following inequality: s <bi;<b;<---<bi-2 <ai-1 <ai< a1 <
bi+2 << bnf t. (421)
By (4.2.1), we have
bi<-<bi2<ai<bi<<bn (4.2.2)
Hence, it follows from (4.2.2) that we have f,,bj= 0 for j <i— 2, i + 2 <. On the other hand, since a; is incomparable to bi—1, b;,
bi:1 respectively, we must consider the calculation of ai v b, ai A by, where £ =1 —1,i,i + 1.
First, in the case j =i — 1, since
bi-2 <ai—-1 <ai<ai+l, bi—2 <bi-1 <bi <ai+1,we have
ai Vv bi—1 = aj+1, ai A bi—1 = bi—2. Hence, for j =i — 1, we have
fay,bj = fai,bi— 1 = aibi—1 — ai+1bi-2.
Second, in the case j = i, since
ai—1 <ai<ai+l, ai—1 <bi<ai+l,
we have a;i V bi = ai+1, a A bi=ai—1. Hence, for j = i, we have
fai,bj = fa;,bi = aibi — ai—1ai+1.
Finally, in the case j =i + 1, since
ai—1 <ai<ai+l1 <bi+2, ai—1<bi<bi+l <bi+2,
we have a; V bi+1 = bis, @i A bix1 = a—1. Hence, for j =i + 1, we have
fai,bj = fai,bi+1 = aibi+1 — ai—1bi+2.

Therefore, the polynomial fa;,bj is as follows:
4

0, j<i—2,

aibi—1 — ajv1bi—2, j=i—1, (4.2.3)
Jarp; = § aibi —ai1aiv1,  j =1,

aibiy1 —ai—1biys, j=i+1,

0, j>i+2

Hence, for i =], we have fa,b; = 0 by (4.2.5). On the other hand, for i = j, since ajand b; are incomparable, we have fa,b; = aibi—
bi—1bi:1 by (4.2.4). Hence, the polynomial fa,b;is as follows:
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(Case 2) Let i be odd nummber Now, (2, satisfies the following inequality:
bi1 < o < by (4.2.4)
By (4.2.4), we have
s << 1<a; <hy<---by <L (4.2.5)
Hence, for i # j, we have fg, by =10 by (4.2.5). On the other hand, for i = j, since a; and b

are incomparable, we have f; 5 = aib; — bi_10i11 by (4.2.4). Hence, the polynomial fq, 5 is
as follows: '

) aibi = bi—1biy1, =],
hwj—{o’ it (4.2.6)
Therefore, R consists of (4.2.3) and (4.2.6).
Next, we show that R is Gr obner basis of lo, with respect to compatible monomial order <. Let j and r be non-negative integer. Let
check that S- polynomials
S(fai,bj,fax,be) for i,k = 0(mod2),

S(fai,bj,fax,be) for i,k = 1(mod2),
S(faj,bj,fax,be) for i = 1(mod2),k = 0(mod2).
Reduce to 0 with respect to generators of R.

First, we check that S(fai,bj,fa,b¢) reduces to 0 with respect to generators of R, where i,k = 0 (mod 2). It follows from (4.2.3) that

we have
i

0, j<i-2
aibi_1, j=i—1.
in<(fa,b;) = § @by, J=1i
aibir1, j=i+1.
0, j=i+2

From above equation, for each i = k and i =/k, it is necessary to consider the calculation of
S(fai,bj,fak,bg).
(The case i = k) Since a initial monomial of f.,bjand f4,b,are as follows:

(0, j<i—2, [0, (<i-—2,
aibi_y, j=1i-1, a1, f=1i-1,
ill-r:[f;,‘_ni] = { ab;, i =1, j-“—{[f“‘_f_.r:' = 4 aib;. =1,
aibiy1, j=i+1, by, f=1i4+1,
0, j=i+2, 0. (=i+2.

Thus, for j =f =i—1,i,i+ 1, we have ﬁ[_,l"u‘_i.f . fa, b, ) = 0. Hence, we only have to check out
that S-polynomial

*g[.llru,.ih ]'fu.,.f.l.}' L-f"r':'_ [!_1'1':'
“.;{fﬁ.--b_r'fﬂ,-m] - 1I‘I;[ rJ.J.I’.lJ it rJ.J.I’.I“]:I' L,fn'!:":l— [!I_]--l"l‘l:l- [4.2.7:'
l‘,'f':[JII.rJ.JJ.IJ' .|r4'1‘.f.l‘| 1 ::I- L.fn'!:”:' — [1:- II + l':|.

reduces to 0. Now, it follows from (4.2.7) that we have

@it fai_1,bi 1> (J, 6) = (i — 1,4),
S(fﬂi:bj’fai-hf) = l)i-f—gfﬂ.j_l,bi_l - bi_zvfai+1abi+1? (J. E) - ('I - 172 -+ 1)’
= Qi1 fai i1 by (J,6) = (i,i+ 1).
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Hence, S(fai,b;,fai,bs) reduces to 0.
(The case i =k) Suppose i < k and let ¢ = k — i. Then, a initial monomial of fa;,bjand fa,b,are as follows:

i i

0, j<i—2, 0, f<ite—2
aibi_1, j=i-—1, ey, f=i4+=2-—1,
in_(fa,p,) = ¢ aibi, j=1i, i (fap ) = {4 aivebip., F=i4e,
a1, F=1i+1, ivebiiery, F=i4++1,
[ 0. j=i+2, 0. {>itet2

Then, we must consider that we look for ¢ such thatand ¢ satisfy b;= b, in the above calculation result. Below, we consider the
following cases:

Case 2.1: bi—1 = bi+e— 1,bi+¢, bit+e+1,
Case 2.2 : bi = bi+e— 1,bi+g bit+e+1,
Case 2.3 : bi+1 = bi+e— 1,bi+¢, bit+e+1.

(Case 2.1) In this case, sincei — 1 =i+¢—1,i+¢,1i+¢+ 1, we have ¢ = 0,~1, —2. Since ¢ > 0, then ¢ = 0,—1,—2 can’t satisfy Case
2

(Case 2.2) In this case, since i = i+¢—1,i+¢,i+e+1, we have e = —1,0,1. Since ¢ > 0 and since it is even, then ¢ = —1,0,1 can’t satisfy
Case 2.2.

(Case 2.3) Inthis case, since i+ 1=i+e¢—1,i +¢i+e+ 1, we have ¢ =0,1,2. Since ¢ > 0 and since it is even, then ¢ = 2 only
satisfies Case 2.3.

From three cases, at first, for ¢ > 2, since in< (fa,b;) and in<(fa,be) are relatively prime, S(fai,bj,fa,be) reducess to respect to

fai,bj,fak,be. Next, for & = 2, we have
{

0, j<i—2 0, 0 <i,
aibi—1, j=1—1, aiobir1, £=1i+1 ’
<(faip;) = aibi,  j=1, in<(farbe) = § @ivabiya, £=1i+2
aib,;ﬂ, J =1 + 1,_ (Li+gb.,j+3_. f =1 -+ 3
0, j>i+2, 0, {>i+4.

\
Hence, for

GO=(0-1i+1),G0-2,i+2),>0—1,i+3),(>ii+1),3,i+2),>i+3),>(i+1i+2),Gi+1,i+3),
since in< (fa,bj) and in<(fa,be) are relatively prime, S(f.i,bj,fa,be) reduces to 0 with respect to fa;,bj,fa,be. On the other hand, for (5,€)
= (i +1,i +1), since we have

S(fai,bi+1,fai+2,bi+1) = ai+3fai,bi — ai—1fai+2,bi+2,

S(fai,bis1,fais2,bi+1) reduces to 0 with respect to fai,bi, fair2,bi+2. Therefore, we checked that S(f.i,bj,fak,be) reduces to 0 with respect to
generators of R.

Second, we check that S(fai,bj,fa,be) reduces to 0 with respect to generators of R, where i,k = 1 (mod 2). For i &/j or k =/ ¢, it
follows from (4.2.6) that S(fa;,bj,fak,be) reduces to 0 with respect to fa;,bj,fa,be. On the other hand, for i = j and k = ¢, since in<(fai,bi)
= aibiand in< (fa,bk) = akbx, we have to consider the calculation of S(fai,bi,fa,bk) for each i = k and i k.

(The case i = k) It follows from i = k that we have S(fai,bi,fa,,bk) = 0. (The case i k) It follow from i =k that in (fai,bi) and in<(fax,bx)
are relatively prime. Hence, S(fai,bi,fak,bk) reduces to 0 with respect to fai,bi, fax,bx.
Therefore, we checked that S(fa;,bj,fa,bs) reduces to 0 with respect to generators of R.

Finally, we check that S(fai,bj,fabs) reduces to O with respect to generators of R, where i = 1 (mod 2) and k = 0 (mod 2). By

(4.2.3) and (4.2.6), we have

0, E<k-—2

; ) ) apb_1, f=k—-1
in<(fon) = {:;g iy »‘ ;J in(fo, p) = ¢ arbe, f =k,

' it apbpiy. =k+1,
0, f=k4+2

9

From above result, if i =], then we have S(fa b,fa ) = —fa ». On the other hand, for i = j, we have
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—bi_of(ap,bg), 1=j=(=k—1"
S(frl-g;,bj:fﬂk,b.r_) = . ) Y

7bk+2j(a'kabk)s ?_j_(/_k+1
Hence, we checked that S(fai,b;j,fa,bs) reduces to 0 with respect to generators of R.

Therefore, we showed that R is a Gr obner basis of lon with respect to <. By [1, Theorem 6.17], O, is a distributive lattice. Hence,
it follows from [1, Theorem 6.21] that loy is radical.

5. TOPICS RELATED TO SPECIAL FINITE LATTICE

In this section, we introduce topics related to a distributive lattice On1. Note that it has little to do with the gist of this paper.
5.1. Number-theoretic characterization. In this subsection, we introduce the relationship between On; and number theory. By
Theorem 1.4, a finite lattice Oy is distributive lattice. On the other hand, it looks abstract as the structure of the set and it has a
difficult shape. However, it is not. By the following theorem, we can see On as number-theoretic finite lattice whose shape is very
easy.
Theorem 5.1. Let p and q be prime number with p =q. For non-negative integer Kk, let

ke
L.r.l.l,l.ﬂ.' - U (-vp.r;..l'

r=1
ordered by divisibility, where

] 2 2 . r—1_r r r 1+l 1, r—1
Cpgr =ALpa.p",pg.p7qt, Cogr =1 4" 0" 0 g p g hr> 1

Then, Oz is isomorphic to Ly g

pigh
'y
pled1gh=1
pJ..qu 1 ,I'.I'L :IU.L
Py
Py

Figure 9. The Hasse diagram of Ly qx

Proof. At first, we prepare some things necessary to prove Theorem 5.1.
Let Lpqk= L« Let define the map hyx: Ox— Lk by setting

hipls) =1, hyglay) =p,

by plas,) = p"_]gr_ L

fr]_g_.(ug,+|} — f.l[_,l,-[u'g,-} \-".Ir.l[_,l,-”)-_:-r:l. iy g(bey) = .i'.']_,l,-{ﬂgr._]:l \-".Ir.l[__g_-[figr._ﬂ forr=1,--- k.

By plbogp_y) =p " Yg" forr=1,--- K,

We define the map hax: Lk — Oz by setting
hop(l) =21, hoglp) =al,
ha i (p
hy g (p
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Now, we prove Theorem 5.1. First, we show that hy x is bijective. Since

k
L, = {l-p-f;-Pj-m-ij;}d(UE“,,..,..)

r=2
J‘.

= {hye(s). hyglar), fba), flaz), f(b2) = flar) v fibr), flas) = flaz) v f[l’;g}}L,( U (.‘},_,;_J-).

the mapping hykis bijective for k = 1. On the other hand, in the case k > 1, since
E-‘.I.I.I.I.r'
= {hyplaz), by g(bor_1), oy kiber) = by plage_1) V By ge(bar 1), by glase ) = by glage) Vg (b ) }

forr=2,--- k, the set Cyqrcan be described inductively by {h1x(s),hik(a1),h1k(01),hik(az),hix(b2),hik(azand Cpg,r,
where 1 < r'<r-1. Hence, for k > 1, hy«is bijective. Therefore, hiis bijective.
Second, we show that hyx is order-preserving. By definition of hyy, it follows from a subset {(li},?il of O, that we have

hglm)=p=< pj = hiplaz), higlaz) = pj < hyplag) = qu.

coe Ly g, ) = p""q'l"_] < p'l""']gj‘_] = iy (s ).

Hence, hik(ai) < hik(ai+1) fori=1,2,--- ,2k — 1). Also, it follows from a subset {b,{-}?ilthat we get
Ty pibn) =g < pg=higlba), hip(be) = pg < hag(bs) = ;Mf.
oo by (baroy) = PN < pRg = By (bog).
Hence, fori=1,--- ,2k — 1, we have hy k(bi) < hik(bi+1). On the other hand, L satisfies the following inequality:

hplay)=o < pg = hig(ba). hp(bs) =pg < Y = oy (as),
I FL o=y

b p"g" = hyp(besr). Big(besr) = p"g" < p" g = hyplaees).

k—1

coe Ly plag) = p"g"
coo L hpglask—1) = ptg < pq" = hy (b)), hog(bar) = p*g" < " g% = hy ()

forr=1.3,---.2k-1

Hence, we have hyx(ar) < hyk(br+1) < hix(ars) fori=1,3,--- ,2k — 1. Thus, for a and b belonging to Oz with a < b, we have hyx(a)
< hyx(b). Therefore, we showed that h; x is order-preserving.
Third, we show that hy is the inverse mapping of hyy. Let hoix be the composite mapping hzx chikand let hiox the composite
mapping hix °ha. For an arbitrary element belonging to O, we have the following result:
h21,K(S) = h2,k(h1k(s)) =h2,k(1) =s,
hz1,k(al) h2,k(h1,k(al)) = h2,k(p) = al,
h21,k(a2r) h2,k(h1,k(a2r)) = h2,k(pr+1gr-1) = a2r forr=1,2,--- k,
h21,k(a2r+1) r+1 r h2,k(hl,k(@2r+l)) =h2k(pq) =a2r+lforr=1,2,---
h21,k(b2r-1) =k hax(hix(bz—1)) = ho(p —1q") = ba—1 forr=1,2,--- k,
h21,k(b2r) rrhax(hik(bar)) =hax(pq) =baforr=1.2,--- k.

Hence, we have hz1x = idoz. On the other hand, for an arbitrary element belonging to Lk, we have the following result:
hiz,k(1) = hi1k(h2,k(1)) =h1k(s) =1,

h12,k(p) = hlk(h2,k(p)) = hlk(@al)=p,

T2x(pr+1gr—1) = hlk(h2k(pr+1gr-1)) = hl,k(a2r) = pr+1lgr-1, forr =1,2,--- |k,

h12,k(pr-1qr) = =11) = hye(ba—1) = p™ig™—=t  forr=1,2,--- k, hy,k(hz,k(p q

h12 k(pr+1qr) = hlk(h2k(pr+lqgr)) = hlk(a2r+1) = pr+iqr forr=1,2,--- Kk, hix(hax(p'q")) = hax(b2r) = p'q"
h12,k(prqr) = forr=1,2,--- k.

Hence, we have hizx = idw. Therefore, haxis the inverse mapping of hyy.
Finally, we show that his order-preserving. Since s<a; < --- <ax<tands<b;<--- < by <t, we have
ha k(1) < hok(p),

b gy forr=1,2,--- k.

g V) < har(p” g < hap(p™g") forr=1.2,--- k.

hop(p"q" ') < hop(p™ g™ < hox(p

hap(p™ !
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On the other hand, for r =1,3,--- 2k — 1, since ar < br.1 < ar+2, We have ha(p'q"—?) <hy 1 (p"q") < hax(p*'q"). Hence, hyis order-

preserving. Therefore, Oy is isomorphic to Ly
In terms of appearance of shape, Theorem 5.1 means that pulling each two vertex 1 and p“*'g* of hasse diagram of Ly qx deformes
the appearance of shape from L qxto Oa. We can consider that this deformation in appearance of shape is very natural in everyday

life. Figure 10 displays the deformation in appearance of shape from L4210 Oa.

p*q

3 2
Pull up 1 P

Deformation

Pull d 1
ull down 1 1

Figure 10. Deformation by pulling each two vertex 1 and p3g?

5.2. Gorenstein ring. In this subsection, we give a non-trivial answer to the question of whether the Hibi ring Rk[On1] = K[On1]/1onl
is Gorenstein. Let ny = n. Let P, denote the subposet of O, consisting of all join-irreducible elements of O,. By [1, Theorem 6.4
(Birkhoff)], we have O, = J(Py). Then, we obtain the following result.

Theorem 5.2. For n > 4, the Hibi ring Rk[Ox] is not Gorenstein.
Proof. Suppose that
Ps= {a1,a2,a4,b1,b3}
is pure. Then, it follows from [1, Lemma 6.12] that P4 possesses a rank function p. Since a4 covers a; and a, covers a; in P4, we have
plas) =p(az) +1=plar) +2=2. (5.2.1)
On the other hand, since by < by < az < asin O4, as covers by in P4. Thus, we have
plas) =p(by) +1=1. (5.2.2)

g Iy
[F 5] j’-‘i a4
az b o
a1 I by
3?[
(a) A finite lattice Oy (b) A chain {by, be, a3, a0} of Oy

Figure 11. The Hasse diagram of O4and a chain {b1,b,,as,a+}

Hence, (5.2.1) and (5.2.2) contradict the uniqueness of p. Therefore, P4 is not pure.
For n >4, P4is a subposet of Pn. Since Pa4is not pure,> Py is not pure for n > 4. Hence,o it follows from [3] that Rk[Oy] is not
Gorenstein for n 4.
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