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Optimization Using a Shared and Distributed
X-in-the-Loop Testing Environment

Viktor Schreiber, Valentin Ivanov, Senior Member, IEEE

Abstract—X-in-the-loop (XIL) technologies have been receiving
increased attention in modern automotive development processes.
In particular, collaborative experiments using XIL tools have
efficient applications in the design of multi-actuated, electric, and
automated vehicles. The presented paper introduces results of
such a collaborative study with XIL, which focused on the feasi-
bility of coordinated real-time (RT) simulations for the control of
vehicle dynamics systems. The outcomes are based on extensive
co-simulation tests performed with remote connections among
different geographical locations. The performed study allowed
formulating requirements for further shared and distributed
XIL-experiments for functional validation of automotive control
systems.

Index Terms—X-in-the-loop, co-simulation, vehicle models,
automotive control, remote tests, optimization.

I. INTRODUCTION

IMPROVING functionality is one of key issues in model-
based system engineering. Usually, the development of

novel systems is based on heuristic experience or empirical
data. However, insufficient knowledge about the technical
system can lead to a poor design outcome. To address this
aspect, the paper introduces an approach for optimization in
a multi-domain X-in-the-Loop testing environment according
to Fig. 1, [1], and [2]. In particular, simultaneous perturbation
stochastic approximation (SPSA) was chosen as typical rep-
resentation of recursive, robust optimization and was adapted
to the X-in-the-Loop method. It does not require any explicit
knowledge about the system to create an analytical model for
optimization. Instead, empirical data from the X-in-the-Loop
environment is used to optimize the problem with a generic
loss function. The synergy of these two methods combines
their advantages so that testing and developing a system can
be done simultaneously to save effort and development time.

II. OPTIMIZATION METHOD

Spall et al. introduces in SPSA a user-defined perturbation
ε that simultaneously varies the parameter θ to estimate the
gradient of the loss function. Each gradient estimation is
differentiated by the corresponding loss function Lk(θ ± ξε),
and the finite difference interval ξ is formed. [3], [4]

θk+1 = θk ± ψk gk(θ) (1a)

gk(θ) =
L
(+)
k − L(−)

k

2ξkεk
(1b)

L
(±)
k = Lk(θk ± ξkεk) (1c)
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A. State space representation

Robbins-Monro, Kiefer-Wolfowitz and Spall derived their
original consideration using scalar sequences and a one-
dimensional parameter θ. However, engineering systems are
usually multidimensional problems. Therefore, the scalar prob-
lem is transferred to a state space, which applies in the same
way to one-dimensional systems.

Let there exist a linear state space with the input vector
x ∈ Rn×1 and the output vector y ∈ Rm×1. The input and
output vectors are linearly combined over the parameter space
θ̂ ∈ Rm×n, so that Eq. 2 holds. At each time k there exists a
sample of all states. y1...

ym
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Because of the singularity of θ̂ the method is not applicable
for state space representations. Therefore we reduce the state
space representation to a system of equations with single
outputs.

ym,k =
[
θ̂m1 · · · θ̂mn

]︸ ︷︷ ︸
θ̂m

x1...
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xk

(3)

The corresponding recursive rule of the SPSA optimization is
described in Eq. 4 and Eq. 5.
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B. Tuning

To achieve convergence specific criteria for the sequences of
ξ and ψ, the user-specified distribution of ε and the statistical
relationship between ε and the measurements Y (θ) is required
[4]. Although Kiefer/Wolfowitz and Spall give some hints for
implementation, the methods are formulated generically [5],
[4]. This gap is closed under the framework of XIL, and the
following problems will be correspondingly discussed:

(i) The sequences ξ and ψ have to be chosen, so that the
convergence criteria is satisfied.

(ii) An end condition for seeking θ to an optimal solution
θ̂ has to be carried out. The convergence of sequence ξ
needs to be taken into account for the end condition.
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Fig. 1. Local distributed X-in-the-Loop testing environment built in campus of Technische Universität Ilmenau

(iii) Since the gradient g(θ) might have noise, a suitable
distribution for ε must be chosen.

(iv) Depending on the optimization problem, a suitable loss
function L(θ) must be selected.

(v) For simultaneous running of optimization and testing, the
methods have to be real-time capable.

∞∑
k=0

ψk =∞ (6)

∞∑
k=0

ψkξk <∞ (7)

∞∑
k=0

ψ2
k ξ
−2
k <∞ (8)

For satisfaction the boundary conditions the sequencen ξ
and ψ was chosen according to Eq. 9 und Eq. 10, where γ
musst be smaller than α. ξ and ψ must converge to zero not
too fast and not too slow.

ψk = ψ̂(C + k)−α (9)

ξk = ξ̂(D + k)−γ (10)

The sequence ε is supposed to be independent of the
measurement and symmetrically distributed around zero. The
Bernoulli distribution and Monte Carlo distribution (zero-one
distribution) can satisfy these requirements [3], [6]. Uniform
distributions or normal distributions are not suitable, since
these do not have an inverse moment for all ε.

εk =

{
+1 P (ε ∈ 1) = 0.5

−1 P (ε ∈ −1) = 1− P (ε ∈ 1)
(11)

The parameters for SPSA optimization of ABS were tuned
according to Tab. I.

TABLE I
PARAMETER SETUP FOR SPSA

parameter value/Eq.
α 0.9
γ 0.7
C 1
D 1
ψ1 1−6

θ̂ 109

K 5000

ψ̂ ψ1(C +K)α

ξ̂ θ̂(D + 1)γ

C. Improvement of robustness and constraints

Robustness refers to a fail-safe system or method that
responses resistant against failure, disturbances, and uncertain-
ties. A robust fail-safe system is not aware of any possible
disturbance. It is sufficient if the most likely failure scenarios
are considered in the designing process. Therefore, for a robust
system, its operation in a wide range of possible frequencies
should be usually studied. Looking at the different forms of
excitation, four basic types emerge in Fig. 2: (a) Dirac impulse,
(b) step, (c) (harmonic) sine sweep, and (d) (randomized)

noise. While the frequency range of the Dirac pulse deter-
mines by the duration in time domain, the step response excites
only a low-frequency range. In contrast, the sine sweep and
noise excite almost to the entire frequency range. However,
the realization of the waveforms proves to be challenging.
Since the system must be settled during excitation with sine
sweep the frequency must be increasing slowly. Furthermore,
it is not feasible to optimize problems for low frequencies
using the sine sweep signal. Consequently, the sine sweep
requires experimental design with long periods, the Dirac pulse
cannot be realized for some automotive systems (e.g. ABS)
and the excited frequency range of the step function is not
sufficient. Although the power density of noise is very low in
the frequency domain, the authors recommend to use random-
ization for improving the robustness of optimization problems.
It excites simultaneous the entire bandwidth including low
frequencies, since the duration of experiments is limited.
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Fig. 2. Benchmark of excitation waveforms in time domain and frequency
domain

As an feasible implementation of noise, two experimental
setups will be introduced in a nutshell. This will be considered
in next sections as applied to the anti-lock braking control with
decoupled electro-hydraulic brake system Considering typical
tasks of the ABS control, the reference slip is firstly random-
ized for the controller that enables seeking for its stability.
Second, the friction coefficient of the road tire contact must
be distributed randomly. The combination of these measures
is discussed with reference to Fig. 3.

D. Convergence and termination criterion for SPSA

Compared to FDSA, SPSA does not require at least the
same number of iterations as the number of samples. The
SPSA method can work with only two representative samples
to be able fully functional [7]. However, decreasing as the
number of samples or iteration steps reduce the accuracy
significant. But it saves computational costs.

To reduce the effort the recursion must be abort ahead
of schedule. Therefore an assessment to measure the quality
of parameter optimization must be utilized. Assuming that
no confidential system model can be obtained for the loss
function, the stochastic convergence criterion according to
Eq. 12 can be used. For values below 1 the solution converges,
for values equal 1 no assessment can be made and for values
larger than 1 the solution diverges.

Q =

∑
|yk − θkxk|
|
∑
yk|

(12)

If the quality Q becomes smaller then a certain threshold S,
the solution have reaches the equilibrium. For instance, 5%
is a reasonable value for S. This means the iteration can be
abort, when the boundary condition Q < S is fullfilled.

E. Real-time capability

Regardless of the lack of an implementation method, the
SPSA method offers great potential for real-time systems,
since the number of required iterations can be kept within
reasonable effort. However, SPSA is not designed for real-
time, therefore real-time capability will be investigated briefly.

It can be clearly stated that the number of iterations K
depending on the amount of samples and system dynamics
represented by the highest frequency ω.

K ∝ ωβ (13)

Based on an observation period, the solution of the opti-
mization algorithm must converge within this time slot. The
duration of the observation period T , the number of iterations
K and the sampling rate Ts obtain the real-time capability
according to Eq. 14.

Ts <
T

K
(14)

III. OPTIMIZATION OF BRAKE SYSTEM RELATED
PROBLEMS

A brake blending case study was chosen to demonstrate the
principle of optimization using a shared and distributed XIL
testing environment. Since advanced brake systems allow a
high dynamic brake pressure modulation, a continuous ABS
controller shown in Eq. 15 - 20 is selected in this study.

This use case introduce a wide range of phenomena and
requires a robust design under consideration of several uncer-
tainties related to the friction brake behaviour, road conditions
and miscellaneous non-linear system responses. At that the ac-
tuation dynamics is also constraint by the decoupled character
of the braking system.

A. Continuous ABS controller

The control philosophy of conventional ABS are rule-based
algorithms, which are typically divided into the three phases
of pressure build-up, pressure hold, and pressure release [8].
However, the complexity of rule-based ABS increased for
advanced brake systems as components of integrated vehicle
dynamics control. Even when the algorithm is tuned optimal,
the wheel can be purposefully locked for a short period to find
the optimal wheel slip with maximum coefficient of adhesion
according to the characteristics from Fig. 4. Alternatively, the
decoupled electro-hydraulic brake systems enable closed-loop
control, since the wheel brake pressure can be determined. In
[9], Savitski et. al present an architecture for electrohydraulic
braking systems and investigate the performance of various
continuous ABS algorithms such as the PI controller, the
sliding mode PI, or the integral sliding mode. Based on
these methods and for the purpose of the PID controller,
the demanded brake pressure p∗ is determined from base
brake pressure p∗BB , which is modulated with the ABS brake
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Fig. 4. Characteristic slip curve

pressure p∗ABS in accordance with Eq. 18. The total demand of
braking torque M∗ derives from wheel brake torque M∗WB and
the torque of the in-wheel motor M∗IWM . Whereby the wheel
brake torque derives from a specific brake rated value B∗

including the friction coefficient, the friction radius, number
of friction pairs, piston area, and others.

M∗ =M∗WB +M∗IWM (15)

M∗WB = B∗p∗ (16)

p∗ = p∗BB − p∗ABS (17)

p∗ABS = KP e+KI

∫
e ∂t+KD

∂e

∂t
(18)

e = λ∗B − λB (19)

λB =
v − ω × rz

v
(20)

The performance of the ABS controller depends on the pa-
rameters KP , KI , KD, and on the estimate of the reference
slip λ∗B , at which the maximum tire-road friction coefficient
can be utilized. Usually, these parameters are determined
empirically. Alternatively, Savitski et. al have also shown in [9]
an experimentally validated method for seeking the reference
slip λ∗B in real-time. For this reason, the authors focus on the
optimization of the parameters KP , KI and KD in this study.

B. Experimental setup

The experimental setup is based on hardware-in-the-loop
(HIL) test methods for the development of electro-hydraulic
brake systems. As Fig. 3 illustrates, in this procedure a low
level controller (embedded ECU) and mechatronic components
(EHB) are integrated in a simulation. In automotive testing,
this procedure is also referred to bus simulation, since com-
munication between ECUs takes place via bus communication.
In the distributed XIL environment the authors are using
UDP communication over VPN as a gateway for exchanging
information corresponding to [2]. This demands hard real-time
requirements for the simulation in a way that a native behavior
of the vehicle can be kept, and the ECU does not notice any
difference between a virtual and physical vehicle. Compared
to road tests, experiments using the HIL methodology can
be performed with high reproducibility. In addition, further
physical phenomena can be taken into account by a brake
dynamometer according to the test-rig-in-the-loop methodol-
ogy [2]. For this purpose, the RT simulation demands brake
pressure from the brake HIL. The measured brake pressure
from the HIL is forwarded to a brake dynamometer, which
sends feedback as the braking torque into the RT simulation,
where the vehicles motion is emulated. The tire-road contact
dynamics is also covered by the simulation. A more detailed
description of this XIL testing environment can be found in
[2].

It should be noted that the reference slip is set as the white
noise in next tests to improve the robustness by optimization
using XIL. The friction coefficient between road and tire is
distributed randomly. This enables an excitation of a wide
frequency bandwidth.
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C. Loss function and optimization problem

A proper definition of the loss function is crucial for
optimization problems. For control applications the control
error e must be minimized. Therefore we define the loss
function as the error to the power of two: L = e2. When the
gradient ∂L∂θ from the control error reaches zero, the minimum
is located.

Brake blending for the considered vehicle configuration
is a combined optimization problem with trade-off between
the operation of the brake system and the in-wheel motor.
Therefore, we reduce the problem to one common function,
as shown in Eq. 21. Here, every unique loss function Li is
normalized and weighted by the weighting factors wi.

L =
1∑
wi

∑
wiLi (21)

For the brake system the loss function L1 is defined accord-
ing Eq. 22, where the noisy brake pressure p∗ABS was chosen
as controller reference y1 on purpose.

L1 = (y
1
− θ x1)

2 (22a)
y

1
= p∗ABS (22b)

x1 =
[
e
∫
e∂t ∂e

∂t

]
T (22c)

θ1 =
[
KP KI KD

]
(22d)

The loss function of the in-wheel controller is defined by
Eq. 23, where the noisy reference torque M∗IWM was chosen
on purpose.

L2 = (y
2
− θ x2)

2 (23a)
y

2
=M∗IWM (23b)

x2 =
[
e
∫
e∂t ∂e

∂t

]
T (23c)

θ2 =
[
CP CI CD

]
(23d)

Assuming that the braking torque and the motor should engage
likewise, they are weighted by 0.5. Considering that the loss
functions have different measures, they have to be normalized
in addition. Given that the brake torque arrives from the
specific brake value B∗ and the brake pressure, the loss
function for the in-wheel motor is normalized by ( 1

B∗ )
2. It

should be noted that the weighting factors are individually
tailored and must be adapted to the specific requirements for
a particular vehicle. The derived weighting factors w1 = 0.5
and w2 = 0.5( 1

B∗ )
2 are merely examples. The higher the

weighting factor the more the loss function is taken into
account for the optimization.

IV. EXPERIMENTAL RESULTS

Shared and distributed testing domains like Model-in-the-
Loop, Hardware-in-the-Loop, Test-Rig-in-the-Loop and X-in-
the-Loop are intended to compare the optimization perfor-
mance. For proof of concept, a use case for brake systems
will be demonstrated according to Fig. 1.

A. Parameter identification

As indicated in Fig. 5, the optimization process is steady.
The parameters were identified already after approximately
1000 iterations on the front axle. On the rear axle, signifi-
cantly more iteration steps are needed to identify the integral
parameter KI . This result is typical because of vehicle dy-
namics. The parameter KD was not depicted in Fig. 5 because
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Fig. 5. History of SPSA optimization of ABS using XIL

the optimization method did not identified this parameter as
considerable.

During braking the vehicle initiates to pitch due to the major
wheel load redistribution to the front axle. Consequently, the
rear axle is less loaded and the corresponding wheels tend to
lock. This phenomena can be observed in Fig. 6 for the wheel
speeds. Fig. 6 also indicates that the brake pressure is randomly
modulated as proposed for optimization process. To improve
the convergence on the rear axle, the SPSA must be adjust
to it. However, faster convergence could adversely affect the
robustness of the optimization method.

B. Test run after SPSA optimization using xil

In this work, different XIL methodologies derived from
[2] were used for benchmark the optimization of ABS for
electric vehicles. Specifically a parameter optimization using
the model-in-the-loop (RT simulation), hardware-in-the-loop
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(brake HIL), and test-rig-in-the-loop (brake dyno TRIL) were
carried out. The fusion of all methods is referred as X-in-
the-loop. It is remarkable, that the MIL and TRIL methods
delivers the highest values for KP . The reason for this lies in
the fidelity of the model. In this regard the brake system was
considered as reduced order model (ROM). Complex physical
phenomena such as dynamics of the friction coefficient of
brakes, transfer behavior of the brake system, and the dy-
namics of the low level controller are not taken into account
properly. Hence, using the parameter from MIL or TRIL
optimization can cause instabilities of the high level controller
on a real ECU. In general the parameter KP is bigger on the
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Fig. 7. Benchmark of optimization using different XIL methodologies

front axle and the parameter KI is bigger on the rear axle.
Fig. 8 shows that the ABS controller is robust. This experiment
was performed on road conditions with randomized friction
coefficient. The controller stabilize the vehicle and prevent
wheel locks.
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Fig. 8. Test run after SPSA optimization using XIL

V. CONCLUSION

Although optimization problems are often used for analysis
and control, the integration of optimization methods into
a XiL environment can improve outcome, confidence and
robustness of the design. In conclusion the authors contributed
to following topics:

(i) Optimization methods are suitable to improve or support
the development process.

(ii) Stochastic methods like SPSA do not require an explicit
knowledge of the system for optimization in order to
create a loss function of the optimization problem. An
implicit estimation of the relationship between input and
output is sufficient. However, the loss function must map
the optimization problem with adequate accuracy.

(iii) Since empirical data or simulation results are required
to determine the gradient of the loss function, the X-in-
the-Loop approach and optimization methods complete
each other. However, the optimization process must be
recursive or real-time capable rather.

However, further investigation is required to realize a real-time
capable SPSA method for complex systems.
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