
Extended abstract
Interdisciplinary Programming Language Design

Michael Coblenza, Jonathan Aldrichb, Brad A. Myersc, and Joshua Sunshineb
a Computer Science Department, Carnegie Mellon University
b Institute for Software Research, Carnegie Mellon University
c Human-Computer Interaction Institute, Carnegie Mellon University

Abstract Researchers in the programming languages community are accustomed to reasoning about for-
mal properties and performance characteristics. However, recent work has explored how user data can be
incorporated into the language design and evaluation process to aid in the design of languages that make
programmers more effective. In this paper, we describe an interdisciplinary collection of methods that have
been used to incorporate user data into the language design and evaluation process, showing examples of
how these have been used to improve various programming languages.

Keywords programming language design, user-centered design, programming language evaluation

The Art, Science, and Engineering of Programming

Submitted April 19, 2018

Published February 18, 2019

doi 10.22152/programming-journal.org/2019/3/16

© Michael Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 3, Essays, 2019, article 16; 3 pages.

https://doi.org/10.22152/programming-journal.org/2019/3/16
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


Interdisciplinary Programming Language Design

This is an extended abstract of a paper that appeared in Onward! Essays 2018 [1].
Language development typically follows an iterative, two-phase process. First, the

designer identifies requirements and creates artifacts, such as syntax and semantics
specifications, compiler implementations, etc. Then, the designer must evaluate to
what extent the language design meets the requirements. A typical process iterates
between these two phases as the evaluation motivates additional design and imple-
mentation work. In this paper, we argue for the use of user-centered methods at
all stages of development, incorporating both formative and summative methods to
maximize the benefit for users while helping the designer by informing the design
with insight from users.

While designing a language, the designer must obtain evidence regarding three
kinds of properties. Formal properties capture mathematical facts about the language;
observational properties concern real-world execution, such as performance characteris-
tics; effects on programmers describe how language design decisions affect the humans
for whom the language was created. Designers should obtain evidence through a
collection of methods, summarized in the paper. For example, corpus studies can be
useful to assess to what extent a potential problem occurs in the real world; qualitative
user studies can be used to understand how some users behave and why.
The methods that are useful depend both on the phase of development and the

kinds of properties that the designer is interested in reasoning about. Designers also
bring their own perspectives and priorities; for example, an educator might focus
on the pedagogical benefits of a language, whereas a logician might be primarily
concerned with the language’s formal properties. However, we argue that designers
of languages that are most effective for their users combine perspectives and methods
corresponding to several different properties and perspectives. Using multiple methods
enables triangulation, which mitigates limitations of individual methods by using
several complementary ones.

In the paper, we describe several language designs that have benefited from inter-
disciplinary language design methods and explain how they have done so: typestate
in Plaid; transitive class immutability in Glacier; and AppleScript, which also incor-
porated user studies in its design methodology. We also describe situations in which
designers missed opportunities to fruitfully incorporate user data, including in C and
ALGOL.

References

[1] Michael Coblenz, Jonathan Aldrich, Joshua Sunshine, and Brad Myers. “Interdis-
ciplinary Programming Language Design”. In: Onward! 2018 Proceedings of the
2018 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Re-
flections on Programming and Software (Nov. 2018). doi: 10.1145/3276954.3276965.

16:2

https://doi.org/10.1145/3276954.3276965


Michael Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine

About the authors

Michael Coblenz is a fifth-year PhD student at Carnegie Mellon
University, studying how to design programming languages that
make software engineers more effective. Contact him atmcoblenz@
cs.cmu.edu.

Jonathan Aldrich Jonathan Aldrich is a Professor in the School of
Computer Science at Carnegie Mellon University. He develops new
programming language designs that improve software engineering
at scale. Contact him at jonathan.aldrich@cs.cmu.edu.

Brad A. Myers is a Professor at the Human-Computer Interaction
Institute, Carnegie Mellon University. Contact him at bam@cs.cmu.
edu.

Joshua Sunshine is a Systems Scientist at the Institute for Software
Research, Carnegie Mellon University. Contact him at sunshine@cs.
cmu.edu.

16:3

mailto:mcoblenz@cs.cmu.edu
mailto:mcoblenz@cs.cmu.edu
mailto:jonathan.aldrich@cs.cmu.edu
mailto:bam@cs.cmu.edu
mailto:bam@cs.cmu.edu
mailto:sunshine@cs.cmu.edu
mailto:sunshine@cs.cmu.edu

	About the authors

