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Scope and strategy

In 1997 drug safety stakeholders from 34 countries released the
Erice Declaration stating that "monitoring, evaluating and com-
municating drug safety is a public-health activity with profound
implications" [1, annex 4]. For several reasons, post-marketing drug
safety surveillance is becoming increasingly important; for example
accelerating innovation and pressure to let drugs enter the market
before efficacy is fully established [2, 3] result in less knowledge
about drugs at market entry.

Medicines are used by many: about one in eight Danes (and
more than half of the elderly) uses 5 drugs or more concurrently [4,
fig. 2]. With an ageing population, increasing use of medicines and
accelerated drug-development, strong pharmacovigilant systems to
safeguard patients are growing ever more important.

Indeed, there is a downward trend in the time from market entry
to first adverse drug reaction (ADR) report, in drugs eventually
withdrawn [5]:

Figure 1: The year of first adverse
drug reaction report (x axis) and
time on the market (y axis), for drugs
that were eventually withdrawn.
Observations binned in hexagons to
avoid overplotting; the darker the
colour the more observations. The non-
linear black trend curve uses shrinkage
cubic splines [6]. Data from Onakpoya
et al. [5], layout inspired by Rodríguez
[7].

Albeit an extreme case, the experience with fast development of
curative treatments and vaccines during the COVID-19 pandemic
emphasised the importance of drug safety surveillance systems to
keep up with the development of new drugs and vaccines, and to
ensure safe use of existing drugs when indications change [8, 9].
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Danish data are widely known and recognised for their high
quality, simple (and certain) record linkage, and coverage of many
domains. Therefore, examples of pharmacovigilance studies us-
ing these registers abound. Large-scale combinations of Danish
register data with in-patient data from electronic medical records
(EMRs), however, are far less common and the pharmacovigilant
potential therein was somewhat unexplored despite the New Erice
Report’s calling for observational research and emphasising i.a. that
pharmacovigilance research serve the interest of the public [10].

Scope

This project was part of the BigTempHealth research programme
that collated free text, biochemical and medication data from EMRs
in an operational format and linked these with longitudinal data
from nation-wide registers going back decades. As such, with
this project we sought to understand if and how we can harness
massive, secondary observational clinical and administrative data
for pharmacovigilance, taking point of departure in idiosyncratic
strengths and weaknesses of our infrastructure and setup. Specifi-
cally, we sought qualified answers to the following questions:

• Can observational data cater for pharmacovigilance?

• What are the hindrances?

• Is it worth our while?

Strategy

Due to the immensity of this scope, we chose three use cases for
answering substantial pharmacovigilance questions with machine
learning methods. Each use case became a full study, reported
in its own scientific article. We chose different methodologies
to cover a substantial part of the methodological spectrum of
pharmacovigilance.

Structure

The main content is divided into three parts with three chapters
each. Part I provides the necessary background to read and ap-
praise the rest of the thesis and the manuscripts. I first introduce
concepts central to the scope of this project and, then, our prin-
cipal data sources. This part ends with details on core methods
used in the three studies when such information did not fit in the
manuscripts.

Part II begins with an outline of key methods and main results
in studies at a glance. Then, the discussion addresses select over-
arching challenges and limitations and, to put these into a broader



scope and strategy 11

context of pharmacovigilance. I wrap up this part in concluding re-
marks and outlook with answers to the questions posed above and
pointers to future endeavours, some of which I would like pursue
myself.

Part III has one chapter per study. Prevalence and adverse out-
comes of drug-drug interactions presents descriptive statistics on
the landscape of drug-drug interactions (DDIs) and our attempts
at investigating which be associated with adverse outcomes. Re-
nal dysfunction and risk of inappropriate drug dosing reports on
the development, and internal validation, of prediction models to
identify patients with renal dysfunction at elevated risk of receiving
inappropriate doses of select renal risk drugs. Finally, Language-
agnostic signal detection in clinical notes presents a novel take on
mining clinical narratives for single-drug and DDI safety signals.

In addition to this one, two chapters come before the main con-
tent. Summaries contains the scientific abstract and a popularised
summary in Danish. Publications and manuscripts lists scientific
outputs of mine and as co-author in the course of this PhD project.





Summaries

Abstract

A key component of pharmacovigilance is to ascertain that the
medicines we use are safe, and discover if they turn out not to be.
In the past decades, there has been growing interest in leveraging
new data sources for pharmacovigilance, and especially secondary
observational data have received much attention.

Scope

We undertook this project, as part of the BigTempHealth research
programme, to understand if and how we can harness massive,
heterogeneous patient and register data for pharmacovigilance. We
formalised this endeavour with three questions: can observational
data cater for pharmacovigilance? What are the hindrances? Is it
worth our while?

To answer these questions we employed three substantial phar-
macovigilance use cases leveraging data from electronic medical
records and nationwise registers, combining methods from (phar-
maco)epidemiology, machine learning, natural language processing
and data science.

Methods and results

The goal of study I was two-fold. We first described the landscape
of drug-drug interactions in a large Danish cohort of 2.9 million ad-
missions of 945,000 patients. Then, matching on high-dimensional
preference scores, we used Poisson and Cox regression models to
estimate the effect of exposure to discouraged drug pairs on length-
of-stay, mortality and readmission. We found that well-known
potential drug-drug interactions still abound, and our results
suggest, in particular, that prescribing clinicians be alert when us-
ing strong inhibitor/inducer drugs (i.e. clarithromycin, valproic
acid, terbinafine) and prevalent anticoagulants (i.e. warfarin and
NSAIDs) due to their great potential for harmful interactions. Our
finding that 3A4 was the most prominent cytochrom P450 isoen-
zyme involved in mortality and readmission rates agrees well with
empirical evidence and clinical experience.

In study II we developed, and internally validated, 10 prediction
models in a cohort of 52,451 admissions using multilayer percep-



14 pharmacovigilant machine learning in big data?

trons to flag patients with renal dysfunction at elevated risk of
various extents of inappropriate dosing of select renal risk drugs.
The study leveraged in-patient data with high temporal granularity
on drug dispensations and clinical biochemistry to operationalise
the outcome variable. We found that the trained prediction models
can flag patients at high risk of receiving at least one inappropriate
dose daily. The multilayer perceptrons performed slightly better
than their ridge regression counterparts with respect to calibration
while discrimination was similar for the models. Using a method
from the field of explainable artificial intelligence we confirmed
that multilayer perceptron models picked up non-linear effects that
escaped the ridge regression models.

With study III we propose a novel, complementary method for
safety signal mining in structured medication data and clinical free
text, regardless of language and with no need for prior manual
curation. This end-to-end pipeline is based on word embeddings
and uses multilayer perceptrons as the core for association elicita-
tion. We used data from 2.9 million inpatient visits featuring 10.8
million clinical notes and 13.7 million drug prescriptions. In total,
we trained 10,720 multilayer perceptron models using almost 180

million tokens retained from the clinical notes. After manual review
of the safety signals, based on well-established reference sets, we
found the method’s hit rate was in the same order of magnitude as
that in individual case safety reports, the longstanding mainstay of
safety signal detection.

Conclusion

We conjencture that secondary observational data—in particular,
combined data from patient records and from national registers—
are of genuine utility in pharmacovigilance, but only if several
hindrances are overcome or at least accounted for upfront: the
data can be misleading (due to erroneous and/or missing data
for various reasons), disparate (requiring standardisation and
integration), and complex (necessiting particular skillsets and
organisational infrastructures to soundly leverage the data).

Putting these kinds of data on a form appropriate for pharma-
covigilance is worthwhile, but it should be done in a way that
facilitates scrutiny and transparency, reduces the risk of errors,
prevents duplicative work, and enables international collaboration.
To this end, Danish observational data should be readily available
in appropriate common data models.

Further, our studies and methodological advances in general
suggest that machine-learning driven safety signal detection, causal
inference and causal discovery are likely viable complements to
safety signal detection in individual case safety reports.
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Populærvidenskabeligt sammendrag

Et centralt mål med pharmacovigilance—den videnskabelige disci-
plin, der beskæftiger sig med medicinbivirkninger—er at forvisse
sig om, at medicin er sikker at bruge og opdage det, hvis det ikke
er tilfældet. Traditionelt bygger dette på såkaldte spontane bivirkn-
ingsindberetninger fra sundhedspersonale, patienter og medici-
nalvirksomheder, men i de senere år er man begyndt at søge efter
alternative og supplerende datakilder. Her har interessen især
været rettet mod såkaldte sekundære observationelle data, der op-
samles som biprodukt af eksempelvis journalregistreringer under
hospitalsindlæggelser og ikke særligt i forskningsøjemed.

Projektets formål

Dette projekt var del af forskningsprogrammet BigTempHealth.
Formålet var at undersøge om og forstå hvordan store, forskelligart-
ede datasæt fra patientjournaler og nationale registre kan udnyttes
i pharmacovigilance. For at indsnævre dette formulerede vi tre
spørgsmål: Kan observationelle data bruges i pharmacovigilance?
Hvilke forhindringer er der? Kan det betale sig?

Til at besvare disse spørgsmål designede vi tre videnskabelige
studier, der gjorde brug af data fra elektroniske patientjournaler og
nationale registre samt analytiske metoder fra (farmako)epidemiologi,
machine learning, natural language processing (statistiske metoder,
der gør os i stand til at bruge tekstdata i kvantitative analyser) og
datavidenskab.

Metoder og resultater

Målet med studie I var todelt. Først kortlagde vi omfanget af
medicininteraktioner i en stor dansk kohorte med 2.9 millioner
indlæggelser af 945,000 patienter. Dernæst undersøgte vi, om ek-
sponering for medicinkombinationer, der bør undgås, var associeret
med henholdvis øget dødelighed, øget risiko for genindlæggelse
og forlænget indlæggelse. Vi fandt, at præparater med velkendte
interaktioner stadig gives sammen i relativt vid udstrækning, og
vore resultater tyder på, at læger særligt bør være opmærksomme
ved brug af stærke hæmmere/inducere (såsom clarithromycin,
valproat og terbinafin) og almindeligt brugte blodfortyndende
stoffer (warfarin og NSAIDs) på grund af det store potentiale for
skadelige bivirkninger. Vi fandt også, at 3A4 var det mest promi-
nente såkaldte CYP-isoenzym (involeret i nedbrydning af medicin
i leveren) i relation til øget mortalitet og risiko for genindlæggelse,
hvilket stemmer fint overens med den videnskabelige litteratur og
kliniske erfaring.

I studie II brugte vi en kohorte på 52.451 indlæggelser til at ud-
vikle og validere 10 prædiktionsmodeller, på basis af klassiske
metoder og neurale netværk, til at identificere patienter med
nyresvigt i øget risiko for at modtage uhensigtsmæssige doser
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af såkaldte renal risk drugs, altså stoffer kendt for at være problema-
tiske i forbindelse med netop nyresvigt. I studiet udnyttede vi den
høje tidsopløsning i indlæggelsesdata for medicinadministrationer
og målinger af nyrefunktionen. Vi fandt, at modellerne kunne
identificere patienter med forhøjet risiko for at modtage mindst 1

uhensigtmæssig dosis dagligt. Vore neurale netværksmodeller var
lidt bedre end de klassiske, og vi kunne vise, at førstnævnte var i
stand til at opfange mere komplekse associationer i vore data end
sidstnævnte.

Med studie III foreslår vi en ny, supplerende metode til at de-
tektere såkaldte sikkerhedssignaler i strukturerede medicindata og
naturlig tekst fra journalnotater, uafhængigt af sprog og uden be-
hov for forudgående manuel kodning af teksten. Metoden baserer
sig på en såkaldt embeddingmodel, der kan konvertere ord og
sætninger til numeriske data, så eksempelvis ord med samme eller
næsten samme betydning kommer til at "ligne hinanden" uanset
den oprindelige stavemåde (f.eks. vil hovedpine og hovedsmerter ligne
hinanden men være forskellige fra hoste). Vi brugte data fra 2.9 mil-
lioner indlæggelser: 13.7 millioner medicinordinationer og næsten
180 millioner tekstbidder bibeholdt fra 10.8 millioner journalno-
tater efter oprensning og filtrering. I alt brugte vi 10.720 neurale
netværksmodeller til at detektere sikkerhedssignaler. Vor manuelle
kontrol af de vigtigste signaler bekræftede en hit rate i samme stør-
relsesorden som man ser i spontane bivirkningsindberetninger,
der traditionelt har udgjort og stadig udgør den primære kilde til
sikkerhedssignaler.

Konklusion

Vi fandt således holdepunkter for, at sekundære observationelle
data—særligt kombinationen af data fra patientjournaler og na-
tionale registre—kan bruges i pharmacovigilance. Det kræver dog,
at adskillige forhindringer overvindes, eller at der fra starten på an-
den måde tages højde for dem: Sådanne data kan være misvisende
(eksempelvis som følge af fejlagtige og/eller manglende data), ad-
skilte (og derfor skal integreres og standardiseres) og komplekse
(hvilket blandt andet kræver en organisation med forskelligartede
kompetencer og adgang til adækvat hardware).

Vi mener altså, det kan betale sig at gøre brug af sekundære
observationelle data i pharmacovigilance, men det bør ske på en
måde, der faciliterer granskning og gennemsigtighed, sænker
risikoen for fejl, forebygger dobbeltarbejde og giver mulighed for
internationale samarbejder om at lære så meget som muligt fra de
data, vi har adgang til. For at sikre dette, bør danske data være
tilgængelige i standardformater, som ikke kun bruges i Danmark.

Slutteligt tyder resultaterne af vore studier og generelle metodol-
ogiske fremskridt på, at machine learning-drevet detektion af
sikkerhedssignaler, kausalinferens og causal discovery kan udgøre
et reelt supplement til spontane bivirkningsindberetninger.
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https://doi.org/10.5281/zenodo.5598068
https://doi.org/10.5281/zenodo.5609153
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Concepts

In this first chapter, I define key concepts and explain terminology
used throughout. Some concepts are left out because sufficient
details are available in the manuscript(s).
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Adverse drug events and reactions

The common term side effect has two more technical cousins with
specific definitions: adverse drug event (ADE) and adverse drug
reaction (ADR). ADEs comprise any noxious event following expo-
sure to a medicine with their temporal order as the only qualifying
characteristic. ADRs are reactions to drug exposure as a result of
known or plausible biological causal pathways [12, 13] and, as such,
constitute a subset of ADEs.

ADRs are usually classified in 6 groups [14] (ABCDEF, mnemonic
in parentheses):

• Dose-related (augmented)

• Not dose-related (bizarre)

• Dose-related and time-related (chronic)

• Time-related (delayed)

• Withdrawal (end of use)
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• Unexpected failure of therapy (failure)

Dose-related reactions, for example, are somewhat predictable
because we (mostly) know the pharmacodynamic profile of the
drug. This kind of ADR is among the targets of safety studies
as part of the drug development pipeline [15]. In contrast, not
dose-related ADRs are more unpredictable and tend to not be
related to the pharmacological effect of the drug. This makes
them somewhat more interesting from a pharmacovigilance and
safety signal detection point of view because their identification
necessitates systems able to detect unexpected relationships.

Pharmacovigilance

The lack of systematic surveillance of exposures and noxious out-
comes allowed the thalidomide1 scandal to fly under the radar 1 Incidentally, thalidomide was among

the safety signals undergoing manual
review in study III

for years and the disaster to unfold [16]. Although pharmacovig-
ilance really took off at an international scale in the wake of, and
as a response to the thalidomide scandal, Sweden and the United
Kingdom (UK), for example, already had drug safety systems in
place [17]. The concerted effort now widely in place came about
especially with the Europeanisation of drug regulation [17] and
Uppsala Monitoring Centre (UMC)2 has played a key role in build- 2 The World Health Organization

Collaborating Centre for International
Drug Monitoring, established in 1978

ing capacity in national agencies across the globe to maintain drug
reporting systems [1].

Indeed, since its inception pharmacovigilance has grown in
scope to become "the science and activities relating to the detection,
assessment, understanding and prevention of adverse effects or any
other drug-related problem" [18] with 4 objectives [19]:

• Improve patient care and safety in relation to the use of medicines,
and all medical and paramedical interventions.

• Improve public health and safety in relation to the use of
medicines.

• Contribute to the assessment of benefit, harm, effectiveness and
risk of medicines, encouraging their safe, rational and more
effective (including cost-effective) use.

• Promote understanding, education and clinical training in phar-
macovigilance and its effective communication to health profes-
sionals and the public.

Spontaneous reporting system

Systematic collection of individual case safety reports (ICSRs) still
contitutes the mainstay of post-marketing drug safety surveil-
lance in modern pharmacovigilance [16, 17, 20]; for exampe, as of
November 2019, VigiBase (maintained by UMC) marshalled ICSRs
from more than 130 countries [21]. EudraVigilance, maintained
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Figure 2: Schematic illustration of the
flow of spontaneous case reporting
system, from clinical suspicion until
the ICSR lands in a database (VigiBase
in this example).

by the European Medicines Agency (EMA), collects ICSRs from
relevant authorities in European Union (EU) member states as well
as marketing authorisation holders [22]; the FDA Adverse Event Re-
porting System (FAERS) has a similar mandate in the United States
of America (USA) [23]. Because this system was already in place,
it served the public well amid the COVID-19 pandemic, helping
elicit problems with i.a. hydroxychloroquine [24] and the Vaxzevria
COVID-19 vaccine [25].

Figure 2 depicts the flow of information in spontaneous report-
ing systems (SRSs). Submitting an ICSR is mandatory in certain
cases. In Denmark, for example, reporting is mandatory if the sus-
pected ADR occurs within two years of market authorisation or
when the medicine is subject to so-called stricter reporting require-
ments (e.g. benzodiazepine and opioids); the Danish Medicines
Agency (DMA) maintains a list of medicines that fall in the latter
group3 [28].

3 Incidentally, despite its opioid nature,
tramadol was not subject to stricter
reporting requirements for a long time
as it was believed be less addictive,
a pharmacologically questionable
claim, being a pro-drug with the
active agent binding to µ-receptors [26,
accession number: DB00193] and given
in morphine-equianalgetic doses [27]

It is a key strength of ICSRs that they only exist because some-
one suspected an ADR, but they suffer from several weaknesses.
Two such are their potentially limited longitudinal information and
lack of data on concurrent exposure to other drugs, which may im-
pede causality evaluation and hamper safety signal detection. Thus,
it is often impractical to exhaustively study exposure over time
because not all submitted ICSRs will provide full, or even sufficient
accounts of drug exposure trajectories.

●

●

●

●

●

●

●

●

Figure 3: The number of ICSRs to
DMA (y axis) by year (x axis). Red:
serious reports. Blue: not serious
reports. Data from [29, fig. 1].

Another weakness is the high degree of underreporting, with
one—albeit a bit old—estimate of 94% [30]. More recent data from
DMA (figure 3) show stably few ICSRs in Denmark. The reasons for
underrepoting has been studied intensely over the years, but seem
difficult to remedy. In Denmark, for example, the departments of
clinical pharmacology have established regional ADRs managers,
a mechanism to lower the barrier of reporting suspicions of ADRs
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[31–33].

Safety signals

Several definitions of safety signals exist [34–36], but I have used
the original definition of the World Health Organization (WHO)
even if is unclear whether a safety signal arising from observing
thousands of patients constitutes only a single signal:

"Reported information on a possible causal relationship between
an adverse event and a drug, the relationship being unknown or
incompletely documented previously. Usually more than a single
report is required to generate a signal, depending on the seriousness
of the event and the quality of the information." [37]

Safety signals generally hinge on four data sources: ICSRs [20,
38], online forums (including social media) [39–52], scientific liter-
ature [20] and longitudinal patient data [38, 53–57]. The analytical
approaches are characterised by varying levels of modelling com-
plexity and data structuredness.

Electronic medical records and electronic health records

Although often used interchangeably, electronic medical records
(EMRs) and electronic health records (EHRs) are distinct concepts
[58, 59]. Considering electronic patient records (EPRs) and EMRs
synonyms and leaning on a common definition4 [60, 61], I use the

4 Although many cite Habib [60] (see
e.g. Google Scholar), the article now
seems available only through Wayback
Machinefollowing definitions:

• EMRs: the data recorded during hospital visits5 (such as drug 5 Could also be e.g. at a family doctor,
but we only had in-hospital dataadministrations and biochemical values measured) and stored in

a system underpinning clinical care. These records also serve a
legal purpose in that they document when what was observed
and done, and by whom.

• EHRs: the data recorded in e.g. the national registers, so a col-
lection of (usually structured) data from various sources in a
unified (if possibly idiosyncratic) data model. EMRs serve as a
key data source of EHR data.

Structured and unstructured data

Clinical data come about by highly structured data collection
processes. Many patient data are stored in a structured format, for
example, drug prescriptions (with e.g. timestamps for start and
end of treatment, dosing, and administration instructions) and
biochemistry (e.g. timestamp, specimen, and result) So by structured
data I mean information stored in a tabular format, be it wide or
long.

Defining unstructured data is more challenging and might most
easily be defined as its lack of structure. In the domain of patient

https://scholar.google.com/scholar?cluster=9490631025805357208
http://web.archive.org/web/20100728133252/http://dbt.consultantlive.com:80/display/article/1145628/1581538
http://web.archive.org/web/20100728133252/http://dbt.consultantlive.com:80/display/article/1145628/1581538
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data, clinical notes are the most prominent unstructured data.
Thus, depending on the task at hand, different natural language
processing (NLP) methodologies must be invoked to make free text
play well with methods for quantitative analyses.

Drug-drug interactions
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Figure 4: The number of potential
drug-drug interactions (y axis) in-
creases fast with the drug load (=
number of drugs used concurrently, x
axis).

Drug-drug interactions (DDIs) occur if one drug changes the action
of another when used together [62, ch. 47] and fall in two cate-
gories: pharmacokinetic and pharmacodynamic. The number of po-
tential DDIs grows fast with the number of drugs used concurrently
(figure 4) and DDIs may be involved in 10%-30% of ADRs [62, 63].
DDIs constitute a key facet of pharmacovigilance: they constitute a
minor group of ADRs but are to some extent predictable (making
them somewhat preventable or at least manageable) [63], and their
bidimensional nature poses several challanges to modelling, as
discussed in Outcome modelling and Outcome operationalisation.

Epidemiological enquiry

In the area of machine learning, confusion seems to exist about
epidemiological methods and study designs, seemingly because sta-
tistical models can be (and are) used to answer different questions
depending on the study design [64]. Thus, with this section and
the next (Statistical modelling) I try to disentangle some common
misconceptions in this regard.

The common contrasting of epidemiology with machine learning
is misguided [65, 66]: epidemiological enquiry is defined by its
scope, not its methods, and as such machine learning is one type
of tools to underpin such enquiry. Indeed, epidemiology can be
defined as "the study of the occurrence and distribution of health-
related states or events in specified populations, including the study
of the determinants influencing such states, and the application
of this knowledge to control the health problems" [67] and falls in
three categories: descriptive, analytical and interventional [64, 68].

Controlled trials mimic the laboratory in which the scientist
has full control (apart from aleatoric uncertainty) over the setting
including which subjects are exposed and which are not. This
way, they can elicit truly causal effects of the exposure by (ideally)
keeping all other factors identical or at least identically distributed.
The randomised controlled trial (RCT) is perhaps the most widely
used because we do not have access to "knock-out" humans who
are identical except for the exposure, and so randomisation ensures
that all factors except the exposure be distributed equally: with
a sufficiently large study population, the difference in outcome
between exposed and non-exposed subjects is attributable to the
exposure.

Descriptive epidemiology makes no attempt at eliciting causal
factors of exposures but solely describes trends, patterns or (co)occurrences
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of phenomena. Descriptive studies aid hypothesis generation and
can hint at interesting associations but temporality must be con-
sidered to gauge the strength and relevance of associations in
observational studies.

Analytical epidemiology, essentially, comes in two forms: ae-
tiological and predictive. Aetiological studies seek to answer the
same questions as RCTs but in settings where the scientists holds
no sway over exposure status, i.e. they must resort to observational
data. This can be used when planning an RCT to obtain realistic
effect-size estimate to inform study planning or when there is no
ethically, financially or logistically defensible way to conduct an
RCT to gauge the effect size.

Statistical modelling

"All models are wrong but some are useful"6 and, conceptually, 6 Often attributed to George E. P. Box

we can think of statistical models in a modular fashion with three
components. The first component consists of data transformations
to put data in an operational format, most often by submitting the
raw data to (hefty) preprocessing. This is usually called feature
engineering in machine learning contexts. I use the term feature
to refer to the transformed data variable appropriate as input
in machine learning models. Sometimes, data transformation is
subsumed into the full model, for example when using embeddings
[69–71].

The second component models the data-generating process in
some way. In aetiological epidemiology, when we build models to
elicit effect-size estimates (risk ratios, odds ratio, hazard ratios, etc.),
this can be called explanatory modelling [72]. In contrast, predictive
epidemiology uses models that seek not to to mimic the world but,
rather, to approximate it sufficiently well to make predictions as
close to the observations as possible [72].

Binary (death/survival)

Continuous (biomarkers)

Discrete numeric (counts)

Multivariate (time-to-event)

Generalised linear models

Penalised regression

Artificial neural networks

Tree-based models

Support vector machines

Raw data

Data transformation Process modelling Outcome modelling

Contrast coding

One-hot-encoding

Embedding

Mean encoding

Figure 5: Conceptual, modular ap-
proach to statistical modelling. Ex-
amples of outcomes in parentheses.
Inspired by i.a. Shmueli [72].

Most applications of machine learning in epidemiology are
purely predictive. In recent years researchers increasingly seek to
explain how results of prediction models come about, often referred
to as opening the black box, with technologies from explainable
artificial intelligence (xAI) such as SHapley Additive exPlanation
(SHAP) values [73]. Even the best explanations, however, will not
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render the models explanatory and alternative methodologies, e.g
causal discovery, are required to bridge this gap.

The final component is the outcome. A classic logistic regression,
for example, models a binary outcome on the log-odds scale instead
of the probability scale directly (see page 40) while modelling dis-
crete, non-negative numeric outcomes (e.g. length-of-stay) requires
the model to handle this restriction correctly. Outcome modelling
also entails deciding whether to use e.g. maximum likelihood esti-
mation [74] or other loss functions (often, nonetheless, based on the
likelihood function [75, ch. 6]). The term label means the observed
value in the outcome variable for a given unit, for example that
patient A deceased in the follow-up peirod.

Machine learning

Statistics and machine learning have similar objectives but ow-
ing to their different origins (mathematics and computer science),
equivalent or similar concepts have taken on different names [74].
The term machine learning came about in 1959, in a paper on pro-
gramming a computer program to play checkers better than its
creator [76], and usually divides problems into unsupervised and
supervised [77].

Machine learning models, and no less neural network models,
are trained by minimising the loss [70]. The loss function deter-
mines entirely what the model will learn and what it will focus on
while learning. These models are ruthless learners so defining the The term ruthless learners due to Stuart

Russell [78]right loss function is crucial: unless explicitly specificed not to, for
example, mistaking one benign tumor from another will be consid-
ered no worse than mistaking a malignant tumor from a benign
[78]. One immediate consequence is that machine learning models
will learn, and thus perpetuate or even corroborate, biases captured
in the input data [79, 80].

Unsupervised learning

Unsupervised problems have no ground truth: there are no labels
to predict, making the exercise one of characterising such data as
well as possible. Clustering and embeddings—such as the one in
study III—are two common examples of unsupervised learning.
With clustering, we do not have a specific label to assign subjects
but rather seek to match subjects in groups with something in
common. Figure 6 shows a very simple conceptual example.

Supervised learning

Supervised learning covers classification and regression [74]: we
have features and labels, and seek to train a model to make correct
predictions for new subjects for whom we only have feature data.
More technically, we seek the best possible model mapping the
features to the outcome [82]. Consider figure 7 illustrating a very
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Figure 6: An example of clustering
data points. Clustering on colour
yields different clusters than by
shape. If we consider both shape
and colur we get more clusters. With
2 dimensions clustering is not too
difficult, but in real-life scenarious
with hundreds of dimensions the task
becomes much more difficult. Some
algorithms find also the best number
of clusters, e.g. hierarchical DBSCAN
[81].

simplistic classification problem: most would likely agree that the
model should predict A = 1, B = 5, C = 8, D = 11.

So, this type of learning is supervised because we have a ground
truth to learn from, and against which we can compare model
performance. More details will follow in Methods.
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Figure 7: An example of classification
of the same data points as in figure 6

but with labels and new observations
whose labels we would like to predict.
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The Danish registers are well-know internationally for holding rich
and linkable data on many axes "from cradle to grave" [83, 84] and
have been used by many researchers to answer myriad research
questions.

Therefore, in addition to using register data only, the BigTemp-
Health research programme collated in-hospital data on all patients
at public hospitals in the Capital Region and Region Zealand be-
tween 1 January 2006 and 1 July 2016, as detailed below. The two
regions comprise approximately 2.6 million citizens, about half
the Danish population. These additional data domains include
in-hospital medication data, results of biochemical analyses and
free text from clinical notes. This heterogeneity of data with long-
ranging longitudinal data from national registers and very granular
in-hospital data allows for detailed studies of what happens during
hospital visits.

This chapter introduces our data sources including their quirks
and challenges we faced. The full documentation of the registers is
maintained by the Danish Healthcare Data Authority and available
(in Danish) online [85].
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The Civil Registration System

Every resident in Denmark has a unique civil registration number
(CRN), registered in the National Civil Registration System (CRS).
The CRN was put in place in 1968 and now almost all imaginable
data are linked to it [83]. A person’s CRN consists of their date of
birth and 4 arbitrary digits, the last of which indicates their sex.
Because the CRNs were scrampled in our data dump to prevent
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identification, demographic information—namely sex and date of
birth—were extracted from the CRS table with demographic data.
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Figure 8: Proportion of full population
covered by year and data source.
Population sizes computed as the
means of quarterly counts [86]. The
regions did not exist before 2008, so
population counts for 2006 and 2007

set to those of 2008. Red: Diagnoses,
procedures, etc. Blue: Medication.
Olive: Biochemistry.

The Danish National Patient Register

The Danish National Patient Register (NPR) captures data from
a wide range of sources, including clinical quality databases. It
is probably the most fundamental register used for observational
epidemiological research in Denmark, as it holds various adminis-
trative data from all public hospitals,7 and so makes for an excellent 7 It does capture data from some

private clinics and hospitals, but
reporting is optional. Due to universal
healthcare coverage in Denmark, the
private sector is little and the missing
data generally of little importance.

source to characterise patients in terms of e.g. comorbidity and
procedures (diagnostic and curative) they have undergone [83]. The
register is star-shaped with the main table holding metainformation
on each visit at the centre. The temporal resolution differs across
subsidiary tables.

Diagnostic data are recorded and timestamped at discharge and
so hold no information about at what point during an admission
each diagnosis was confirmed. Discharge in the context of the
NPR is end-of-stay at the patient’s principal department.8 This 8 Stamafdeling in Danish

entails, for example, that the primary diagnosis is not necessarily
the reason for the admission in the first place, and it may not even
be reflect the worst condition (from a clinical point of view) for
which the patient was treated.

Surgical, therapeutic and diagnostic procedures are timestamped
at minute level, on the other hand, and so allow much better for
finegrained temporal modelling, both as features and outcomes.
Indeed, for example, thanks to the hierarchical structure of the
data model (Sygehusvæsenets Klassifikationssystem (SKS), the
Classification System of the Healthcare Sector) all procedure codes
prefixed by NABE pertain to the intensive care unit (ICU) and so
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the presence of any such code is a good proxy for ICU transfer.
A more pharmacovigilance-y application would be using proce-

dure codes to identify what patients need transfusion and when,
and use this a proxy for clinical diagnosis of haemorrhage, a known
adverse drug reaction (ADR) to certain drugs and drug combina-
tions.

The Causes of Death Register

This register contains information on deaths of Danish residents,
for example detailed meta-data on the circumstances, the causal
paths leading to death and mode of death [87]. Their validity may
be disputed [88], but we only considered all-cause mortality and
needed to know the date of death. Date of death, in turn, is likely
sufficiently accurate for our needs although some persons are found
dead, rendering their dates of death uncertain.

Medication

The medication data arrived in formats clearly designed to under-
pin production, not research. Collating data from two regions with
different information system infrastructures resulted in relatively
complex extract-transform-load (ETL) processes to reconcile these
data into a sensible, operational format. We only obtained complete
medication data for little more than half the BigTempHealth study
period i.e. from around 2009 (see figure 8).

The Capital Region data actually came from two sources, Elec-
tronic Patient Medication 1 (EPM1) and Electronic Patient Medica-
tion 3 (EPM3); their accuracy has been validated previously [89].
EPM1 was rolled out from 2006, explaining9 the low coverage in 9 At least partially: there may have

been problems with the actual data
dump, but they were beyond repair

the early years. The temporal overlap between the two is an arte-
fact: EPM3 was rolled out starting 2012 (while retiring EPM1), but
it seemed that some (historical) EPM1 records made into EPM3,
maybe for patients admitted in the early period of the EPM3 roll-
out.

For Region Zealand all data were extracted from the OPUS-
medicin medication module. An important step in preprocessing
the OPUS-medicin data was handling dosing information of in-
dividual administrations. The full dose administered was not
recorded; instead, we had to compute this (key) data point by com-
bining information on the strength of the formulation given (e.g.
tablets with 500 mg. metformin) and the quantity given (e.g. 2

tablets). Thus, we had to ensure meaningful combinations of the
units of these values as you cannot administer, for example, 100 ml.
of 500 mg. metformin tablets.

In Denmark, medicines are encoded using the Anatomic Thera-
peutic Chemical classification (ATC), an open-access classification
system for drugs using a strictly hierarchical structure for its di-
vision of medicines into 5 levels. ATC is maintained by the World
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Health Organization (WHO) Collaborating Centre for Drug Statis-
tics Methodology [90] and can be queried online, free of charge.10

10 Alternative drug classifications exist,
such as WHOdrug (maintained by
Uppsala Monitoring Centre (UMC)
[91]) and RxNorm [92]. RxNorm
is used widely in United States of
America (USA), ATC in Europe, and
WHOdrug by the industry.

Due to this tree structure, when used for research one must be
careful if exposure to the chemical substance is of interest. If that is
the case, we must correctly and mindfully harmonise the exposure
to medicines with different ATC codes that are, in fact, the same
substance.11 11 Different strengths alone might be

enough for a substance to be classified
under different ATC codes [93]

One example is ibuprofen. On its own it is classified under 5

ATC codes (C01EB16, G02CC01, M01AE01, M02AA13, R02AX02)
and in combinations with codeine (N02AJ08), paracetamol (M01AE51)
and oxycodone (N02AJ19). As such, determining exposure to
ibuprofen using ATC codes is more involved than it seems at first,
especially if you seek to disentangle the isolated effect of ibuprofen.
As figure 9 illustrates, this is not an issue for most substances, but
two (betamethasone and dexamethasone) have 11 different ATC
codes. In addition, diclofenac came out with different results for
adverse oucomes in study I (figure 25).

Figure 9: Number of drugs for each
ATC code. The bar chart shows that
by far most drugs have a single ATC
code (3,720 drugs) while few have
several ATC codes, and two drugs
(betamethasone and dexamethasone)
have 11 ATC codes. The vertical scale
is pseudo-log-transformed (linear
between 0 and 1).

Biochemistry

For Capital Region patients, biochemistry data came from the cen-
tral database Clinical Laboratory Information System (in Danish:
sygehus-Laboratorier, Klinisk Biokemiske Afdelinger) (LABKA),
covering the period 2009 through mid-2016, and arrived with a rea-
sonably standardised structure. Our biochemistry data dump from
Region Zealand, covering the period 2011 through mid-2016, came
from the private vendor of B-Data Clinical Chemistry Laboratory
System (BCC) used throughout the region. The raw data contained
some 80 tables with sparse or cryptic documentation: after several
iterations, the final biochemical results as seen by clinicians were
extracted and reconciled with the data from LABKA.

The combined biochemistry data set contained more than 310

million results of samples collected between October 2009 and June
2016, and from 2011 onwards the data set had sufficient coverage
in both regions (figure 8). More details on the preprocessing of the
biochemistry data will be available in a forthcoming study [94].

In the end, for the studies in this project we used the approxi-
mately 13 million estimated glomerular filtration rates (eGFRs) [95,
96].

Clinical notes

Clinical text is a particular kind of natural language with some
degree of standardisation but ripe with i.a. ambiguities, domain-
specific terminology, non-standard abbreviations, typos, and gram-
matical inconsistencies. In recent years clinical text is increasingly
entered by the healthcare staff themselvs, as opposed to previously
when specialised secretaries would transcribe dictated text. The
impression is that the heterogeneity has grown as the transcrip-

https://www.whocc.no/atc_ddd_index/?code=C01EB16
https://www.whocc.no/atc_ddd_index/?code=G02CC01
https://www.whocc.no/atc_ddd_index/?code=M01AE01
https://www.whocc.no/atc_ddd_index/?code=M02AA13
https://www.whocc.no/atc_ddd_index/?code=R02AX02
https://www.whocc.no/atc_ddd_index/?code=N02AJ08
https://www.whocc.no/atc_ddd_index/?code=M01AE51
https://www.whocc.no/atc_ddd_index/?code=N02AJ19
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tion served (also) to somewhat harmonise and proof clinical notes
before they were recorded in the system.

Generally, textual data in Danish electronic medical records
(EMRs) come in 3 forms. First, nurses’ notes are usually short (tweet-
like in length) with data on the patient’s current status, recorded in
near-realtime and with relatively high temporal granularity. The fre-
quency of such notes, as well as their content, reflect how intensely
the patient is observed. Very ill patients will have frequent notes of-
ten with specific observations noted, such as level of consciousness
or delirium symptoms.

Second, written results of paraclinical examinations such as radi-
ological examinations, histopathological analyses of biopsies and
antimicrobial sensitivity evaluations. Such reports usually observe
a fairly standardised structure that include relevant paragraphs,
sometimes with informative headings.

Third, clinical notes fall in two groups: those of inpatients and
those of outpatients. Inpatient clinical notes will generally comprise
a comprehensive admission note by a junior physician, a thorough
review by a more senior physician, several shorter update notes
recorded during clinical rounds and a discharge note; there will
also be e.g. notes on surgery or invasive diagnostic procedures
when relevant. Outpatient notes will be recorded by a mix of
physicians, specialised nurses, laboratory technicians, midwives,
etc. upon ambulatory visits. These hold focused information on
their specific purposes such as post-surgery check-ups, controlling
pacemaker status, and regular pregnancy visits.

We had access to approximately 75 million notes of the last
type. Some were clearly form-like with large special-character/any-
character ratios. Automatically extracting information from such
notes is usually impractical because the information is ambiguous.
For example, it is not uncommon to see formats akin to these:

GA [34+2] Headache No [ ] Yes [x] Previous c-section

No [x] Yes [ ]

Gestational age: 34+2. Headache __ yes. Previous

c-section no ___.

It requires little medical knowledge (and exposure to obstetri-
cal patients) to accurately extract the information held by these
two examples; recognising also that they hold the same data is a
easy, despite GA being a very common abbreviation for general
anaesthesia.

Enabling a computer to do this automatically, in a way that
scales and correctly handles myriad non-standard encodings, is
much more difficult. Even manually annotating a large corpus of
form-like notes does not guarantee satisfactory results.

As an aside, from a natural language processing (NLP) view-
point the latter of the two examples is easier, because it actually
holds only the information of interest whereas the first example
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has both options from which the healtchare professional could (and
did) choose.



Methods

This chapter details the main methods of our studies, following the
logic illustrated in figure 5; word embeddings are presented first
(although used only in study III) as they serve to operationalise the
textual data for analysis.
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Word embeddings

Clinical notes usually arise from very structured data collection, but
this structuredness is lost when saved as free text without format-
ting or terminology conventions. Free text is rich because different
persons, in their own words, can describe and record their obser-
vations, interpretations, and conclusions. This strength, however,
also complicates matters as such data are unfit for quantitative
analyses; natural language processing (NLP) tools enable us to
transform textual data to recoup some of the structure and make
them compatible with i.a. statistical models [69].

The exact nature of such data transformation depends on the
purpose of the analysis and can take many forms: from very so-
phisticated semantic analyses yielding relationships between words,
over more brute force approaches assigning codes to them based
on (fuzzy) matching against ontologies12, to converting words (or 12 Such as the 10th revision of the

International Classification of Disease
(ICD10) or the Medical Dictionary for
Regulatory Activities (MedDRA)

sentences or entire documents) into numeric vectors.
The vector approach typically comes in two variants: one-hot-

encoding and word embeddings. Traditional one-hot-encoding
represents each word by an N-dimensional vector where N is the
number distinct words in the corpus.13 This creates huge vectors 13 The corpus is the collection of e.g.

documents or clinical notes from
which we extract information [97,
ch. 1]

with little information due their extreme sparsity: a single cell will
hold the value 1, the rest will be 0.
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This has a major downside, other than the computational in-
convenience: even words with similar meanings or that contain
little typos are considered as different as two completely unrelated
words. This happens because the N one-hot vectors form the stan-
dard basis for RN (the vector space into which we have mapped the
words) and are, thus, by definition linearly independent [98, ch. 4].

Word embeddings overcome these disadvantages by packing text
into much, much fewer dimensions, usually a few hundred. Embed-
ding models are often trained in an unsupervised manner although
they can be incorporated as submodels in larger prediction models
[70].

In essence, learning the embedding constitutes dispersing the
words of the corpus in the embedding space so that words that
represent similar notions are closer to each other than to other
words. To concretise this, consider the 11 words14 below with their 14 COPD: chronic obstructive pul-

monary disease. NIV: non-invasive
ventilation.

one-hot vectors:

tonsilitis =
(

1 0 0 0 0 0 0 0 0 0 0
)

neuralgia =
(

0 1 0 0 0 0 0 0 0 0 0
)

headche =
(

0 0 1 0 0 0 0 0 0 0 0
)

sore throat =
(

0 0 0 1 0 0 0 0 0 0 0
)

impotence =
(

0 0 0 0 1 0 0 0 0 0 0
)

pneumonia =
(

0 0 0 0 0 1 0 0 0 0 0
)

NIV =
(

0 0 0 0 0 0 1 0 0 0 0
)

man =
(

0 0 0 0 0 0 0 1 0 0 0
)

COPD =
(

0 0 0 0 0 0 0 0 1 0 0
)

dialysis =
(

0 0 0 0 0 0 0 0 0 1 0
)

kidney failure =
(

0 0 0 0 0 0 0 0 0 0 1
)

Instead of representing each word with an 11-dimensional one-
hot vector (as above), the embedding in figure 10 represents each
word by a 2-dimensional dense vector. Using a 2-dimensional
embedding helps us build intuition that holds even when the
embedding space has (many) more dimensions and, thus, cannot
easily be drawn on a piece of paper.

The black arrows show the embedding vectors starting in (0, 0):
words that are closer in the embedding space have similar vectors.
Fascinatingly, word embeddings enable language algebra15 with a 15 A classic example is that england +

london – france = paris [69]conceptual example being:
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Figure 10: Simple example of embed-
ding 11 words into a 2-dimensional
embedding space. For example, the
embedding vector of tonsilitis (-2, 3)
and for sore throat (-2, 2) are very
different from those of dialysis (1, -2)
and headache (2, 1). The grey +COPD
vector is identical to the black COPD
one but moved to the end of the NIV
vector; the grey –dialysis vector is a
reversed version of the black dialysis
vector and moved to the end of the
grey +COPD vector to arrive at kidney
failure.

NIV + COPD− dialysis =

(
3
−1

)
+

(
1
3

)
−
(

1
−2

)

=

(
3
4

)
= kidney failure

While several ways exist to quantify similarity between vectors,
the most common is arguably cosine similarity i.e. the angle be-
tween them. Figure 11 shows all pairwise cosine similarities in the
corpus using embedding and one-hot vectors, respectively. Two
things are evident: when using word embeddings, "clusters" of
clinically related words light up (blue) and one-hot vectors are
completely dissimilar.

Figure 11: Cosine similarities between
the words in figure 10, using em-
bedding and one-hot vectors. The
similarity scale goes from -1 (red, com-
pletely opposite meanings) through 1

(blue, exact same meaning).

The property that words with similar meanings, regardless of
spelling, yield similar embedding vectors makes word embeddings
a powerful tool for operationalising free-text data for machine
learning models and have been put to use in a variety of ways. So-
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called entity embedding builds on the same notion but also embeds
non-textual data [99].

Process modelling

Once data are made suitable for statistical analysis, we use them to
model the data-generating process: the hidden process in the world
from which the data arose in the first place.

Generalised linear models

Generalised linear models (GLMs) have long been the mainstay for
effect-size estimation with observational data or even in sub-group
analyses of randomised controlled trials (RCTs) because their coef-
ficients have convenient interpretations. We can model biological
interactions or extend the models to include non-linear effects with
e.g. splines, at which point the models are called generalised ad-
ditive models (GAMs) because they no longer assume and model
only linear effects.

Devising sound GLMs requires domain knowledge and evidence
from previous research or justifiable assumptions about causal
assocations (or lack thereof) between included variables in these
models. This work is tedious, and much effort has been put into
yielding causal estimates while bypassing this step [100–103].

GLMs are actually the extension of linear models to handle other
outcomes than unbound, continuous outcomes. This is achived
with a so-called link function g (more on this in Outcome mod-
elling):

g(E[Y|X]) = β0 + x1β1 + x2β2 + . . . + xpβp (1)

= Xβ (2)

E[Y|X] = g−1(Xβ) (3)

GLMs are sometimes called shallow learners (as opposed to deep
learners) because they connect each feature (and interaction term
when present) directly with the output. Thus, a basic vanilla GLM
model assumes that each feature has a linear effect on the trans-
formed outcome and that this effect be independent of the effects
of the other features. This yields directly interpretable parame-
ter estimates (e.g. odds ratios for logistic regression models) and,
as a consequence, the possibility to estimate average marginal or
conditional effects.

This assumption of independent effects is often violated or at
least biologically unlikely. Consider, for example, predicting the
risk of 30-day mortality as a function of age, sex and the need for
intensive care. The impact of needing intensive care is probably
greater in older patients than in younger: age and intensive care
need probably interact. Unless explicated in the GLM, such rela-
tionships will evade the model’s learning. Failing to capture such a
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crucial characteristic of the data-generating process will likely result
in biased effect-size estimates (aetiologic enquiries) or suboptimal
model performance (predictive enquiries).

These assumptions are especially important when the interest
is in the coefficients, because they estimate the relative effect of
unit-changes in each of the features on the transformed outcome.
Assessing these assumptions becomes difficult if interaction terms
or even splines are included.

Penalised regression models

GLMs can work well when the number of observations N is greater
than the number of parameters k in the model. As k approaches (or
supersedes) N, GLMs become increasingly problematic due to over-
parameterisation. This enables the model to fit the developmet set
very well (perhaps even identify single observations) but impedes
generalisability [104].

One solution is to add shrinkage to the coefficients by penalising
model complexity, forcing the model pick as much information as
possible from as few features as possible. Thus, by adding so-called
regularisation terms to equation (2) we obtain:

g(E[Y|X]) = Xβ + λ|β|+ φ‖β‖2, (4)

where |β| = ∑k
i=1 |βi| is the `1 norm and ‖β‖2 = ∑k

i=1 β2
i is the

`2 norm. Equation (4) offers three types of penalised regression
models: lasso regression when φ = 0, ridge regression when λ = 0,
and elastic-net regression when λ, φ > 0 [104]. λ and φ are so-called
hyperparameters that can either be pre-specified or learnt with the
coefficients (see Hyperparameters and how to tune them).

Lasso regression pushes as many coefficients as possible all the
way to zero resulting in feature selection. Ridge regression, on
the other hand, will generally only push coefficients toward zero
enabling i.a. better handling of collinearity because it need not
pick which to keep. A mix of the lasso and the ridge, the elastic-net
regression will do some feature selection but do so more leniently.

We again consider a 2-dimensional example to build intuition
(figure 12). The lasso estimate must lie within the square, and the
ridge estimate within the circle.16 For both, the estimate will be 16 This follows from the squared-error

loss function (not shown); because they
are simpler, the example in figure 12 is
actually based on a linear model

combination of coefficients that yield the highest likelihood within
these constraints, represented by the oval lines.

Smaller values of λ and φ will yield larger squares and circles: as
λ and φ tend to 0, equation (4) tends to equation (2). That is, larger
values of λ and φ will result in more shrinkage and stronger feature
selection (for the lasso).

Multilayer perceptrons

One way to overcome manually specifying complex models while
learning ditto relationships in data is using multilayer perceptrons
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Figure 12: The contour of the 2-
coefficient likelihood function with the
constraints imposed by the lasso and
the ridge. The dashed lines indicate
the maximum likelihood (left, (1, 2)),
lasso (mid, (0, 1)) and ridge (right,
(0.27, 0.96)) estimates. The oval cirles
in the lasso and ridge sub-plots show
the contour line of the estimates. The
lasso shrunk one parameter all the
way to 0 while the ridge parameter
estimate for the same parameter is 0.27.
Adapted from figure 16.4 in Efron and
Hastie [104].

(MLPs), a basic type of artificial neural networks. Although the
brain was the inspiration of the name and architecture of such
models, they do not truly mimic the brain and probably provide
much less computing power than neurons [105]. MLPs have one
or more hidden layers each with a number of nodes. MLPs with
several hidden layers, as well as more complex neural network
models with specialised architectures, are often collectively called
deep learning models, but since we only used MLPs, discussing other
types of neural network models is beyond the scope of this section.

MLPs allow each feature to play a signifant role in many direc-
tions of the prediction because each hidden layer contains several
nodes, and each feature can affect each hidden node independently
of its influence on the other nodes. Thus, even a single hidden layer
adds much flexibility compared with the GLM in which each fea-
ture influences the prediction through a single coefficient.17 As we 17 Indeed, an MLP with a single hidden

layer can approximate any function
arbitrarily well if that layer has enough
nodes [75, sec. 6.4]

add more hidden layers, this complexity increases somewhat expo-
nentially and the MLP, consequently, can capture highly non-linear
effects of single features and complex interactions between them.

Hidden layer 1Features Hidden layer 2 Output

Figure 13: Multi-layer perceptrons
are multiple stacked generalised
linear models. One node per layer
highlighted solely to illustrate this
notion. Adapted from i.a. Thorsen-
Meyer [106]
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It is important to remember, however, that MLPs come about
from a series of linear transformations and so, these models can
only capture complex relationships insofar as they be amenable to
such serial linear transformations [70, 107].

Thus, MLPs models learn ("automagically") the structure needed
to predict well and seem to alleviate the model-design burden as
we make no assumptions about the data-generating process. There
is, of course, no free lunch and the challenges regarding model
design and interpretation are discussed later.

Similar to the link function in GLMs, each node in the hidden
layers of a MLP applies a so-called activation function that serve
to map the outputs of all nodes in the same hidden layer into the
same range of values to prevent a single node from dominating that
layer’s output.

The logistic function is amongst the most common activation
functions, and an MLP using logistic activation functions essen-
tially becomes a compound model of (potentially many) stacked
logistic regressions. Indeed, the notation in figure 13 is chosen to
emphasise this key insight: the equations inside the nodes in the
hidden layers and the output node are equivalent to that of the
GLM in equation (2). In GLMs the learnt parameters are usually
called coefficients whereas they are called weights in neural-network
models.

Outcome modelling

Apt operationalisation of the outcome variable is crucial no matter
whether the model serves a predictive or aetiological purpose.
Outcome data types can, generally, be divided into continuous
and categorical. In the absense of comparable observation time, a
temporal aspect of the outcome can be incorporated as in time-to-
event or per-unit outcomes. Many subtypes exist, but in this thesis
I have used one from each: binary (i.e. the occurrence or not of an
event if interest) and count (length-of-stay, in study I).

Multivariate outcomes are probably more common in machine
learning than epidemiology at large, perhaps because the models
are already so high-dimensional and interpretability of the individ-
ual variables less important, so adding more complexity usually
comes with only slight marginal costs.

Logistic regression
In machine learning, binary-outcome
models are usually called classification
models because their application
tends to focus on assigning labels to
persons, Twitter posts, images, etc. In
epidemiology this term is somewhat
misguided: these models need not
report a label assignment but mostly
yield the probability of belonging to
each of the possible outcome groups.
Thus, we only arrive at a binary
decision once we set a threshold
for the probability of event. Thus, I
instead prefer and use the term binary
regression [108].

Clinical decisions are often binary: you operate or you do not, you
admit the patient or you do not, you give the patient the drug or
you do not. Although ultimately binary, these decisions result from
intricate decision-making processes, in which predictions (conscious
or not) of the patient’s risk of harm in either case plays a crucial
role.

We can directly observe and model continuous outcomes such as
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body weight, length-of-stay, and number of admissions. In contrast,
with a binary outcome (e.g. survival or not) we are interested in
the probability of experiencing the event, but we cannot observe
this probability directly. Instead, in a given cohort after a certain
amount of follow-up time has passed, we want to estimate the
proportion of subjects with a certain combination of features who
survived (in this example).

That is, we seek to estimate the expected value of a Bernoulli
process (i.e. the probability of observing the event Yi) for a given
combination of feature values Xi [74]:

yi ∼ Bernoulli(pi) (5)

pi = E[Yi | Xi] (6)

With few predictors we can do this with stratification, but even a
modest number of features renders stratification impractical and it
will not provide estimates for feature-value combinations not seen
in the data set. Logistic regression remedies these shortcomings.

Because probabilities can be neither less than 0% nor greater
than 100%, a convenivent transformation is to model the logarithm
of the odds of observing the event. This is called the logit of the
probability18 and is convenient for at least two reasons: the un-

18 Log-binomial regression directly
models the risk but comes with its
own set of complications [64, 109, 110]

bounded codomain (see figure 14) ensures that the transformed
outcome is appropriate for any linear combination of features, and
there is no lower or upper limit to the relative change in odds.19

19 A probability can not necessarily be
doubled; for example, the maximum
relative change of a 80% mortality is
25%

Figure 14: The logit is defined as

logit(p) = log(odds) = log
(

p
1−p

)
and

maps the probability p from [0, 1] to
(−∞, ∞). The dashed lines show the
1:1 relationships for comparison.

The logistic regression model is a particularly popular GLM for
modelling binary outcomes and the baseline approach for binary
classification in machine learning. The name of logistic regression
arises from the fact that the logistic function is the inverse of the
logit, so that our model actually is on the form,

pi = logit−1( f (Xi)) =
1

1 + e− f (Xi)
, (7)

where f is the function, be it linear or not. As such, in a logistic
regression with a GLM setup, the coefficients are the odds ratios
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for a unit change in the feature value, a decent approximation to
the risk ratio as long as the event probability be low. In machine
learning setups, we usually employ slight variations of the classic
logistic regression to model the probability directly.

Standardised difference in proportions

When no stratification or other adjustment for confounding is
needed, the standardised difference in proportions (SPD) is a
good metric for comparing binary univariate outcomes in two
populations. SPD is defined as

d =
PA − PB√

1
2 PA(1− PA) +

1
2 PB(1− PB)

· 100%, (8)

where PA and PB are the observed proportions of events in the two
groups. d > 0 if the event proportion is greater in group A than
that in group B and vice versa.

SPD is an extension of the standardised difference in means
(which is valid only for continuous variates) and is convenient
because its value carries information about both the strength of
association and its significance: a SPD of 10% corresponds roughly
to a p-value of 0.05 [111]. SPD only yields a point estimate, but
confidence intervals can be computed with e.g. bootstrapping [104,
112].

Poisson regression

A regular linear regression may be inappropriate for counted
outcomes because it allows negative and decimal outcomes. In
counted outcomes such as length-of-stay, negative outcomes are
impossible and often we count full days or choose another scale
with appropriate, integer values (e.g. length-of-stay in hours instead
of full days). Poisson regression is one appropriate approach for
such data.

A basic Poisson regression is relatively simplistic, assuming that
the variance equal the mean of the Poisson distribution; there are
ways to handle situations when this assumption is violated [109]
such as introducing a parameter to capture the dispersion. Fur-
ther, Poisson regressions can be offset to account for, for example,
varying observation or exposure periods to effectively model the
number of events per some index unit (e.g. per day, per patient or
per department) [109].

Poisson regression models are also called log-linear models
because the log-transformed outcome variable is modelled via a
standard linear model [109]. More generally, we can plug in any
model, be it linear or not, to model the λ parameter of the Poisson
distribution,
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yi ∼ Poisson(λi) (9)

log(λi) = f (Xi) (10)

Figure 15: Poisson probability density
functions for each of 4 different values
(1, 5, 10, 20) of λ.

Even though the mean of a Poisson distribution must be greater
than zero, zero-count observations are possible (especially for small
λ), see figure 15. When the data contain excessive zeros, rather
than being over- or underdispersed, one can invoke i.a. hurdle or
zero-inflated models [113, 114].

Cox regression

The outcomes described above are univariate, but often in realistic
settings univariate outcomes do not suffice. When the outcome
of interest is binary but follow-up time is not (approximately) the
same in all patients or not all patients can be expected to experi-
ence the event before end of follow-up, we combine the outcome
indicator with a variable that specifies the time-to-event (or censor-
ing). Figure 16 illustrates a simple example of time-to-event data:
binary outcome with some censoring, that is, patients in whom the
outcome is not observed.

The censoring of patients who did not experience the event be-
fore end of follow-up is often assumed non-informative. Censoring
during the follow-up period, on the other hand, can be problem-
atic with the notable exception of patients included, say, 3 months
before the end of a study with a 6-month follow-up period.

A

B
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D
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F

G

H

I

J

K

Figure 16: Time-to-event observations
in 10 fictive patients. Filled circles
represent the 7 patients experiencing
the event in the follow-up period,
hollow circles those who do not.
Patient B is censored at end of follow-
up; patients C and D are lost to
follow-up. Inspired by i.a. Altman
[115, fig. 13.1].

Cox regressions, or proportional hazards models, seek to esti-
mate the hazard at a certain time t, making no assumptions about
the distribution of the baseline hazard h0 [115, 116],

h(ti|Xi) = h0(t) exp(Xiβ) (11)

This setup is convenient for effect-size estimation because the
baseline hazard h0 does not matter.

Training multi-layer perceptrons

Design decisions abound when crafting MLPs. At the most gen-
eral level, training the model means finding the parameters and
hyperparameters (see below) that yield the best fit, as with any
machine learning model type. Parameters are learnt minimising the
loss (corresponding to maximising the "goodness-of-fit") through
so-called gradient descent [70, 104]. We do not (generally) know the
shape of the loss function, so we must chart it through an iterative
process to hopefully find the global minimum where we obtain the
best possible fit.

Every step in this iterative process is called an epoch, and we
illustrate the training process with so-called learning curves. Cru-
cially, training could go on forever and the model might continue
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to reduce the loss, although increasingly slow until some plateau is
reached (figure 17). This "saturation" often causes over-fitting: the
model will learn characeristics specific to the training data and will
not transport well to new data, see Avoiding over-fitting.

Figure 17: Examplary learning curve
for training (black) and validation
(blue) over 50 epochs (x axis; zeroth
epoch = the random initial parameter
values). The loss (arbitrary scale, so
hidden) shown on the vertical axis.
The blue dashes line shows the best
epoch in the validation set.

In a machine learning context, we operate with several names
for data sets depending on what purpose they serve. We generally
distinguish the development set from the test set; the test set is,
somewhat confusingly, used for validation and can be internal or
external [117]. When training the prediction model, the develop-
ment set is usually split into a training set and a validation set;
when employing e.g. 5-fold cross-validation the development set is
actually split into 5 training-validation set pairs [118, ch. 17].

Avoiding over-fitting

It is not too difficult to devise an MLP that fits the development set
excellently. The tricky part is to stop training the model when it
has learnt as much as it can from the development data while still
transporting well to other data, increasing its utility in any target
population. That is, to avoid over-fitting. This tradeoff is illustrated
in figure 18.

In the ideal scenario we have low bias and low variance, so that
we are quite convinced about our result, and that result is quite
accurate. When we continue training the model in the training set,
the variance will go down but its bias (in the validation set) will go
up, at which point we begin overfitting.

Thus, regularisation seeks to prevent over-fitting by striking the
best possible bias-variance balance [119] and comes in a variety
of approaches, e.g. using parameter norm penalties (just as in
Penalised regression models) and early stopping [75, ch. 7]. Early
stopping has the obvious advantage that we explicitly stop training
the model when performance in the validation set deteriorates, but
early stopping hinges on this very validation set, and so the model
needs to be trained on the full development set afterwards in a way
that utilises the information gained from the early stopping [75,
sec. 7.8].
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Low variance

Low bias High bias

High variance

Figure 18: Classic illustration of the
bias-variance tradeoff. The ideal in
the upper-left corner represents high
certainty about the estimate that is
close to the truth; the worst situation
is the bottom-right corner with much
uncertainty about the estimate that is
far from the truth.

Hyperparameters and how to tune them

In essence, a statistical model has two types of parameters: learnt
parameters and hyperparameters, and we seek to find the best-
performing combination of these that still transports well. Learnt
parameters are updated during training (it is the whole point of
training the model) to make the model fit the data increasingly well:
coefficents are learnt parameters in GLMs, so are weights in MLPs.

In contrast, any given statistical model rests on a number of
design decisions about its architecture, reflected in the model’s
hyperparameters that set the stage for and remain fixed throughout
training. These can be crucial to the model’s ability to learn perti-
nent relationships from the data. A key strength (and selling point)
of machine learning models is that you can take the human almost
entirely out of the training process and automate many decisions,
not least with respect to hyperparameters.

A logistic regression model, for example, has ony few hyperpa-
rameters such as the link function. In lasso and ridge regression
models, the penalties are hyperparameters. MLPs have many more
hyperparameters, including the number of hidden layers, the num-
ber of nodes in each layer, and activation function(s). While there
are ways to make meaningful, conscious decisions about the link
function in a binary-outcome GLM, it is difficult to know a priori
what penalty is the best in a ridge regression or how many layers
yield the best performance in a deep learning model.

One remedy is automatic hyperparameter optimisation whose
simplest approach is an exhaustive grid search over all combina-
tions of the hyperparameter values. Although conceptually very
simple, it comes with two serious disadvantages. First, combinato-
rial explosion might render this approach impractical: 4 hyperpa-
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rameters with each 5 values yields 1,024 different combinations so
if training a single model takes 15 minutes, finding the best hyper-
parameter combination would take 21 days. Second, continuous
hyperparametres (such as norm penalty) must be binned to play
well with grid searches.

Instead of exhaustive searches, one can take a number of random
samples from the hyperparameter space, train the corresponding
models, and use the one that comes out best. A conceptually and
empirically more appealing way is to build some form of systema-
tism into the sampling to optimise the hyperparameters instead of
blindly sampling random values. This is what we did in study II
(see figures S3–S12), using Optuna’s multivariate TPE sampler [120]
based on Bayesian optimisation [121].

Evaluating prediction models

The evaluation, importance and interpretation of model perfor-
mance depends heavily on the purpose of the model. Our machine
learning models were all predictive and so here I outline two cru-
cial aspects of model performance evaluation (discriminatory ability
and calibration) and a relatively new approach to evaluating the po-
tential clinical utility (decision-curve analysis). Performance should
be assessed in test sets, be they internal og external.

Validation

At its core, validation is about quantifying to what extent the
model makes good predictions. Keeping the target population
in mind is important: the evaluation should gauge how well we
expect our results to transport to the target population and not just
any random population from anywhere in the world20 [106]. The 20 Unlike causal relationships we

would expect to apply (more) univer-
sally

decision-making processes we model greatly depend on cultural
and structural conditions far beyond what is captured in our (often,
clinical and demographic) data [80]; these structural conditions are
likely so pervasive that even if model performance in an external
data set from another country is moderate, it will not necessarily
give any useful insights into whether the model would benefit our
future patients in that setting [122].

There are several ways to split the original data set into devel-
opment, validation and test sets. Here, I briefly describe the types
and variations we employed in studies II and III. First, split-sample
validation is probably the most common scheme in machine learn-
ing applications and very simple: the dataset is split randomly
into two disjoint subsets (usually with a 4-to-1 ratio = 80%-20%
split-sampling). This scheme makes a quite strong assumption of a
stationary data generating process, so that any patterns learnt from
past data will apply equally in future data. This is unlikely to hold
and split-sampling validation is by some considered to "only work
when not needed" [117, p. 245]. For cross-validation as part of early
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stopping, we found this a viable approach despite its limitations.
Second, temporal validation better resembles the overall purpose

of building prediction models: we seek to make predictions about
the future using data from the past. Even if the model learns to
predict outcomes very well in the development set (yielding appar-
ent performance) once we make predictions about the future, these
will likely be off-base to some extent (real performance) due to drift
in the underlying data-generating process. Even when conducting
external validation, if the validation and development data were
collected concurrently, the temporal drift (e.g. changes in clinical
guidelines or novel medical technologies) will likely escape the
validation scheme.

Third, K-fold cross validation in its most basic version randomly
divides the development set into K subsets (called folds) of equal
size. It then uses K − 1 folds for training and the last fold for vali-
dation and does this K times to obtain K estimates of the prediction
error [104, ch. 12].

Fourth, group K-fold cross-validation is appropriate when the
units of analysis are not independent. This happens, for example,
if we include all admissions and any patient can (but need not)
contribute several admissions to the dataset. If this is not accounted
for, a patient may appear in both the training and validation set,
potentially leaking information between them and allowing the use
of validation data during training [70].

Finally, stratified K-fold cross-validation is used for prediction
models with categorical outcomes and ensures that the distribution
of the outcomes in the training and validation sets be approxi-
mately the same as in the full development set.

Discrimination

Figure 19: Receiver operating charac-
teristic curve.

A model’s ability to distinguish patients with the event from those
without reflects its discriminatory power. Models with better dis-
crimination have greater variance in the predictions [123, 124],
allowing for better separation of event and no-event individuals.
Discrimination in binary regression models is usually visualised
with the receiver operating characteristic (ROC) curve and quan-
tified by area under the ROC curve (AUROC) [118]. AUROC has
the desirable property that it accounts for the trade-off between
specificity and sensitivity across cutoff values; other metrics, such
as Matthew’s correlation coefficient (MCC) that is more robust to
(somewhat extreme) imbalances in the outcome variable [125], are
evaluated at a specific cutoff as it relies on a single instantiation of
the confusion matrix derived from the predictions.

Calibration

Calibration gauges to what extent the actual predictions be accurate.
A poorly-calibrated model yields incorrect predicted risks which
can hamper its utility: guiding patients’ (and clinicians’) decision-
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making on whether to undergo (perform) a procedure crucially
depends on accurate risk predictions; a believed 5% mortality risk
could sway towards the procedure whereas knowing the real risk
to be 25% might cause the patient to forego it. Calibration alone is
insufficient as a performance metric because simply predicting the
incidence for all individuals will have perfect calibration [123] but
will be of zero clinical use.

Figure 20: Calibration curve with fitted
linear regression.

We used calibration-in-the-small throughout, plotting decile-
binned predictions on the x axis and bin-wise event proportions
on the y axis. Decile-binning is usually used; in a recent study we
found no qualitative difference of using 15 og 20 bins [126]. The
final step is to fit a linear regression to these coordinates. A fitted
linear line that follows the diagonal represents perfect calibration.

Decision-curve analysis

Figure 21: Decision curve. The
intervene-in-flagged curve (blue)
suggest that this fictive prediction
model be of clinical utility.

Discrimation and calibration together thoroughly gauge perfor-
mance from a purely technical perspective, but they fail to evaluate
the model with respect to clinical utility: will we make better
decisions with the model than without it [127, 128]. To be sure,
assessing true clinical utility is different and involves many aspects,
not least financial and organisational, but decision-curve analysis
provides a sound framework for obtaining some insights into the
potential clinical utility of a model, with certain assumptions [127].

Decision curve analysis is visual using overlain curves represent-
ing different actions. The most basic plot has three such curves: an
intervene-in-all curve, an intervene-in-none curve, and an intervene-
in-flagged curve where flagged patients are those predicted to be
at high risk by the model. The x axis is the prevalence of the event
in the target population, the y axis is an arbitrary net-benefit scale
with no immediate interpretation, but one can compare directly the
net-benefit (which can be positive or negative) of the three actions.

Crucially, the plot cannot be used to pick a threshold: the x axis
reflects the prevalence one expects in the target population, and so
one should find the corresponding value and identify the decision
curve with the more favourable net-benefit. If this is the intervene-in-
flagged curve, the model can be considered to hold potential clinical
utility, subject to verification in a prospective study.

Explaining predictions

Put simply, in aetiological epidemiology a statistical model should
perform well because this adds confidence in its effect-size esti-
mates, in turn derived from the learnt parameters; in contrast, the
merits of a prediction model hinges on its ability to make accurate
predictions, and the learnt parameter estimates are simply a means
to this end.

Figure 22: Number of hits on
PubMed (y axis) by year (x axis).
Query on 18 October 2021: "shap
value*" OR (shap AND (explain*
OR explanation*)) OR "shapley

additive explanation*".

Consequently, machine learning models are built to learn com-
plex relationships somewhat autonomously without explicit pro-
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gramming, with the underlying assumption is that there is no
assumption: that we "learn from the data" and that latent (= hid-
den) relationships can be brought fourth "automagically" insofar as
we have enough data. Learning extremely complex relationships
precisely underpins the goal (accurate predictions) and we do not
care for their interpretations from an effect-size viewpoint. Con-
sequently, MLP models do not innately lend themselves well to
scrutiny, and so we need other techniques to gauge the plausibility
of the relationships they have learnt.

The growing recognition that entirely opague predictions in
the medical field are of little use and may hamper uptake [129]
has given rise to the discipline of explainable artificial intelligence
(xAI) that seeks to alleviate this important shortcoming of complex
prediction models [73, 102, 130–132].

24%11%

Figure 23: Illustration of how SHAP
values take us from the cohort-level
grand mean prediction (24%) to
the individual prediction (11%).
Arrows represent features (e.g. age
and comorbidiy): red push the risk
upward, blue push it downward.

We used one of the available methods for explaining predictions,
the SHapley Additive exPlanation (SHAP) framework [73], gaining
traction in the medical field (figure 22). The method yields one
so-called SHAP value per feature per unit of analysis. For binary
regression, the SHAP value is the absolute change in risk of a given
unit’s value for each feature. Put simply, if you take the mean risk
across all units21 in the cohort and add the sum of one unit’s SHAP

21 E.g. patients or admissionsvalues, you arrive at the predicted risk of that unit, as illustrated in
figure 23.
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The full manuscripts are included in part III, but this chapter
outlines their rationales, study designs, key methodologies and
main results.
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Prevalence and adverse outcomes of drug-drug interactions (I)

This study had a twofold purpose. First, to chart the landscape
of potential drug-drug interactions (DDIs) prescribed at Danish
hospitals and elicit patient types most prone to discouraged drug
pairs. Second, to estimate the risk of adverse outcomes (length-
of-stay, rehospitalisation and all-cause mortality) associated with
discouraged drug pairs. Full manuscript on page 85.

Data

We used inpatient drug-prescription and register data between
January 2008 and June 2016 from the BigTempHealth data set,
including only admissions of individuals with concurrent use of at
least two drugs. Successive in-hospital stays were combined into
admissions if they were at most one day apart. As our reference for
potential DDIs, we used Danish Drug Interactions Database (DID)
[133]. This is maintained by the the Danish Medicines Agency
(DMA) and covers mainly pharmacokinetic interactions.

Methods

In the first (descriptive) part of the study we used summary statis-
tics and standardised differences in proportions (SPDs) (see page
45). The second (analytical) part used stratified Cox [64] and Pois-
son [134] regression models, with strata created by 1:5 matching
patients on high-dimensional preference scores based on 843 fea-
tures [135–138]. We fit outcome models only to patients whose
preference scores were at least 0.3 but no greater than 0.7 [135].
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Results

The full cohort comprised 2,886,227 admissions of 945,475 patients
(54% female) with median age 62 years (inter-quartile range (IQR):
41-74) and a median drug load of 7 (IQR: 4-11). In the 1,836,170

admissions (of 659,525 patients) with ≥ 1 potential DDI, 54% of the
patients were female, the median age was 65 years (IQR: 49-77), and
the median drug load was 9 (IQR: 6-13).

The 18,192 patients (in 27,605 admissions) exposed to discour-
aged drug pairs were slightly older (median age: 68 years, IQR:
58-77), fewer were female (46%), and they had higher drug loads
(median: 16, IQR: 11-22).

WI
SC

DF

WI

DF
WI

DF

WI

SC WI
FV

WI

MV

WI

WI

WI

SC

WI

SC

EF

WI

SC

WI

WD

WI

WD

WI

WD

WI

DF

WI

WI

DF

WI
SC

0%

20%

40%

60%

I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVII XVIII XIX XXI
Patient type (ICD-10 chapter)

Pr
ev

al
en

ce
 in

 e
xp

os
ed

 g
ro

up

Figure 24: Prevalence of discouraged
drug pairs by patient type. Each point
represents one discouraged drug pair,
and size the absolute value of the
standardised difference in proportions
using as reference admissions during
which treatment with any discouraged
pair was initiated. DF (N = 5): Dom-
peridone (A03FA03) + Fluconazole
(J02AC01); WD (N = 3): Warfarin
(B01AA03) + Diclofenac (M01AB05,
systemic); WI (N = 18): Warfarin
(B01AA03) + Ibuprofen (M01AE01);
SC (N = 6): Simvastatin (C10AA01) +
Clarithromycin (J01FA09); MV (N = 1):
Meropenem (J01DH02) + Valproic acid
(N03AG01); EF (N = 1): Erythromycin
(J01FA01) + Fluconazole (J02AC01);
FV (N = 1): Fluoxetine (N06AB03) +
Venlafaxine (N06AX16). Figure and
caption reproduced as-is from figure 2

in study I.

In the 65 discouraged drug pairs (45%) prescribed to 5 patients
or more, 7 were prevalently (>10% of admissions) prescribed dur-
ing hospital admissions (figure 24). The most prominent pair was
warfarin-ibuprofen, prevalent in all patient types except three (chap-
ters X, XVI and XX). The second-most prominent was simvastatin-
clarithromycin, prevalent in six patient types (I, III, IV and X-XII);
the third-most was domperidone-fluconazole, prevalent in five
patient types (II-IV, VXIII and XXI).

As figure 25 shows, the discouraged pairs meropenem-valproic
acid, domperidone-fluconazole, imipramine-terbinafine, agomelatine-
ciprofloxacin, clarithromycin-quetiapine and piroxicam-warfarin
were associated with elevated mortality (shown with black points
and lines in the figure). Confidence interval bounds of pairs asso-
ciated with readmission were close to 1 and length-of-stay results
were inconclusive.
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Figure 25: Estimate effect sizes of
exposure to discouraged drug pairs
and post-discharge mortality rate
(hazard ratio, HR), readmission rate
(HR) and length-of-stay (change in
days). Diamonds show point estimates
of the effect sizes, horisontal lines the
95% confidence intervals. The exposed
and non-exposed columns show
count (empirical equipoise) and the
matched column shows the number of
exposed/non-exposed used to estimate
the effects of that pair. Figure and
caption reproduced as-is from figure 3

in study I.

Conclusion

In this study, to our knowledge the largest of its kind, we found
that well-known potential DDIs still abound, suggesting that per-
tinent information still goes unrecognised [139] and that point-of-
care alerts may mitigate risk of harmful drug administrations. Our
results suggest, in particular, that prescribing clinicians be alert
when using strong inhibitor/inducer drugs (i.e. clarithromycin, val-
proic acid, terbinafine) and prevalent anticoagulants (i.e. warfarin
and non-steroidal anti-inflammatory drugs) due to their great po-
tential for harmful interactions. Our finding that 3A4 was the most
prominent CYP isoenzyme involved in mortality and readmission
rates agrees well with empirical evidence and clinical experience.

Renal dysfunction and inappropriate drug dosing (II)

In this study we sought to elicit the predictability of inappropri-
ate drug dosing of select renal risk drugs to inform clinicians and
healthcare personnel upfront about which patients with renal dys-
function are at elevated risk. We did so by crafting and comparing
ridge logistic regression and multilayer perceptron (MLP) predic-
tion models. Full manuscript on page 125.
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Data

In this study we used in-patient drug-administration and biochem-
istry data along with the Danish National Patient Register (NPR)
data, on admissions of adults between between 1 October 2009

and 1 June 2016. We set index at 24 hours after time of admission,
including only admissions with at least one estimated glomeru-
lar filtration rate (eGFR) ≤ 30 mL/min/1.73 m2 between time of
admission and index.

Methods

We trained separate ridge logistic regression and MLP models to
predict the risk of five outcomes: >0, ≥1, ≥2, ≥3 and ≥5 daily
inappropriate doses. We crafted the hold-out test set with a time-
series validation scheme. Hyperparameters were optimised with
Optuna using 5-fold cross-validation, and prediction explained with
SHapley Additive exPlanation (SHAP) values.
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Figure 26: Deriving the outcome
variables. This exemplary admission
is composed of three successive in-
patient visits (i.e. the patient has been
transferred twice represented by the
arrows). The admission is eligible
because it spans more than 24 hours
and an eGFR ≤ 30 was measured
before index. Here, apixaban was
given while the patient’s eGFR was
≤ 30, but dose reduction rendered
these administrations appropriate.
Figure and caption reproduced as-is
from figure 1 in study II.

Results

42,250 admissions (81%) started before 1 July 2015 and so we were
used for model development, and the remaining 10,201 admissions
made up the independent hold-out test set. The median age was
77 years and 50% of admissions were of women. ≥ 5 drugs were
used between admission start and index in 23,124 admissions (44%).
The most common drug classes used between admission and index
were analgesics (Anatomic Therapeutic Chemical classification
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(ATC) code N02, 37%), systemic antibacterials (J01, 35%), diuretics
(C03, 33%), antithrombotics (B01, 28%), and antacids (A02, 25%).

The MLP models were slightly more performant, and were better
calibrated in the development set, than their linear counterparts.
All areas under the ROC curves (AUROCs) were between 0.77 and
0.81. Calibration in the test was about as good for ridge regression
models as for MLP models.

Figure 27 illustrates how the MLP models picked up highly
non-linear effects when such were appropriate. The SHAP val-
ues also gave rise to other insights. First and foremost, many fea-
tures contribute substantively to the predictions of daily rate > 0
and ≥ 1 outcomes, while few features almost entirely drive the
predictions for the other outcomes. Second, few features are the
dominant prediction drivers across outcomes and models: use of
anti-inflammatory, antirheumatic, and antidiabetic drugs as well as
diagnoses of chronic kidney failure. Third, sex and age contribute
little to predictions. Fourth, more pronounced polypharmacy
pushes the risk up and vice-versa. Fifth, the linear models tend
to give most weight to relatively few features whereas the MLP
models spread out the contributions across more features. Finally,
frailty (expressed as the number of previous admissions) was a
more important driver for rarer outcomes, in the MLP models.

Conclusion

The trained predictions models can flag patients at high risk of re-
ceiving at least one inappropriate dose daily in a controlled in-silico
setting. Using MLPs yielded some performance gains although
slightly more involved ridge logistic regressions potentially might
have been on par with these. A prospective clinical study would
be needed to confirm (or refute) this in a real, clinical setting and
whether this may translate into benefits in hard endpoints.

Language-agnostic safety signal detection in clinical notes (III)

In this study we combined several methodologies from machine
learning, natural language processing (NLP), and data science to
construct an end-to-end pipeline that produces safety signals for
single-drug and drug-pair exposure. Its salient strength is that
textual data need by neither in English nor curated. The latter
comes about by turning things upside down: instead of predicting a
likely outcome of a range of exposures, it yields likely exposures a
given reaction, input as free text. Full manuscript on page 173.

Data

For this study we used all admissions of 500,000 randomly-sampled
adult inpatients from the BigTempHealth cohort, making use
of their in-hospital prescription data and free-text clinical notes
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Figure 27: Bivariate relationships
between values of select features
(x axis) and their corresponding
SHAP values (y axis). The continuous
features are summarized by locally
estimated scatterplot smoothing
(LOESS), binary features by vertical
density bands. Figure and caption
reproduced as-is from study II.

recorded within 48 hours after time of admission. We only consid-
ered single drugs or drug pairs in at least 1,000 doorstep medica-
tion profiles.

Methods

Upon admission, the physician must synchronise the hospital
medication system with the outpatient medication profile (we call
this doorstep medication profile) before any changes are made, in
order to properly document such changes.

To leverage the free text recorded in clinical notes, we used fast-
Text [140] to train a 256-dimensional word embedding model from
the full corpus, and terms from the included clinical notes that
passed several filtering and processing steps: removing negated
words, special characters, stop words, and Danish names. Impor-
tantly, we neither lemmatised nor stemmed words to retain natural
words as the input. To associate each single-drug and drug-pair
exposure with free-text information we used one MLP model with 2
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hidden layers with each 256 nodes.

Results

The included admissions spanned the period 18 May 2008 through
30 June 2016 and comprised 2,905,251 admissions (54% of women),
10,788,259 clinical notes and 13,740,564 drug prescriptions. The final
textual data contained 179,441,739 tokens for training the 10,720

MLP models of which 571 were for single drugs and the rest for
drug pairs.

TREMOR DYSTONIA PARKINSONISM HYPERKINESIA

DEPRESSION INDIFFERENCE NAUSEA VOMITING

Figure 28: Fingerprint plots of 8 main
UKU terms and their 571 single-drug
signals. Inner circles: each wedge
represents one drug and transparency
the signal score. Outer circles: colours
represent anatomical drug classes
(ATC level 1). See caption of figures 2

(page 190) and 3 (page 191) in the full
article for drug-class names and their
colour coding. Subset of fingerprints
from figure 3 in study III.

The fingerprints for 8 main UKU terms in figure 28 illustrate
the single-drug exposures. These fingerprint plots illustrate that
general or vague terms (bottom row) are relatively strongly associ-
ated with many drug exposures, and that for more specific terms
(top row) fewer drugs of appropriate drug classes light up. Also,
fingerprints of clinically related terms (e.g. tremor, parkinsonism
and dystonia) are similar but clearly distinct from those of other
terms (seen in figure 3 in full manuscript).

Safety signals (each independently assessed by two coauthors
with moderate agreement as per Cohen’s κ [141]) were generally
meaningful, and terms with similar clinical meanings did yield
similar exposure profiles. As figure 29 shows, 28 single-drug safety
signals (8.1% of 345) were potentially undescribed or unknown; 16

drug-pair safety signals (14% of 115) were possible interactions.

Conclusion

Combining various flavours of machine learning and data scien-
tific tools we successfully built an end-to-end pipeline for safety
signal detection in medication and non-English textual data with-
out the need for manual curation. We achieved this by turning
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Figure 29: Main UKU terms by do-
main. Panel A shows the number of
terms used in congruence analysis
(total = 116). Panel B comprises all 345

single-drug assessments (23 terms x
5 single-drug signals = 115; 23 terms
x 5 drug-pair signals x 2 drugs per
pair = 230). Bright green: reaction
possibly caused by single-drug (panel
B) or drug-pair (panel D) exposure.
Dark green: known reaction (panels
B+D) or interaction (panel C). Dark
grey: protopathic or indication bias.
Light grey: spurious signal. Figure and
caption reproduced as-is from figure 5

in study III.

things upside down, predicting not the likely outcome of a range of
exposures, but the likely exposures for given outcomes of interest.

The congruence analysis suggests that the method pick up per-
tinent information, even when supplied with synonyms. With
8% of single-drug and 14% of drug-pair signals being possibly
undescribed and relevant, its hit rate was in the expected order of
magnitude [21, 142] and appropriate for its purpose: shortlisting
few relevant safety signals from thousands of noisy ditto. These
shortlists would then undergo review by pharmacologists, pharma-
cists, or other pharmacovigilantees and could complement existing
safety signal detection in e.g. individual case safety reports (ICSRs).

Our approach is original in the field of adverse drug reaction
safety signal detection and helps overcome many limitations of
NLP methods relying on curated textual data in English. Crucially,
this makes our method appealing in settings that must make sense
of non-English free text for pharmacovigilance while, with few
modifications, potentially lending itself well to alternative use
cases such as patient-level decision-making support and drug
repurposing.



Discussion

Leveraging longitudinal observational data, in the form of com-
bined electronic health record (EHR) and electronic medical record
(EMR) data, to answer pharmacovigilance questions proved much
more difficult than anticipated. This chapter discusses key method-
ological challenges, weaknesses, and reflections pertaining to our
studies, through the lens of the three questions posed in the Scope.
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Outcome operationalisation

Undertaking three separate studies, we had to overcome several
challenges and make some decisions about operationalising out-
comes.

Study I

We used standardised differences in proportions (SPDs) to highlight
drug exposures more prevalent in certain patient types than others
(see also figure 2 of the manuscript, page 104). Using a reporting
odds ratio had likely left the results qualitatively unaltered, but a vi-
able alternative—and in hindsight conceptually appealing—method
had been the shrinkage log odds ratio (SLOR) from disproportional-
ity analysis of safety signals [143]. Because it is shrunken, it might
better account for rare drug pairs, and its Bayesian interpretation
might have provided better statistical properties than that of SPD
for ranking by imbalance.
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Study II

In study II we originally intended to use hurdle models with an
offset Poisson component to model the daily rates of inappropriate
doses. A hurdle model has two components [144]: a binary regres-
sion submodel for whether the patient received any inappropriate
doses, and a count submodel for the expected daily rate of inappro-
priate doses using e.g. a truncated Poisson distribution. As such,
the hurdle model can be considered a discrete mixture model in
which one process governs the zero counts and another the positive,
non-zero counts [145, sec. 4.3].

We had built the architecture for such a model, but for two
principal reasons we decided to go with the final approach of
dichotomising the outcomes and training several binary-regression
models instead. First, the hurdle-model setup would impose a
parametric outcome model (in the second component) that might fit
the data-generating process poorly or even hamper learning due to
more complex cost functions. The binary-only outcome approach
imposes fewer assumptions on the modelling and eases evaluation;
also, this way the multilayer perceptron (MLP) models remain
non-parametric.

Second, the purpose of developing such a prediction model was,
anyway, to flag patients at elevated risk of receiving inappropriate
doses. So, even with a hurdle model (or any modelling the daily
rate of inappropriate doses as a numeric outcome) we would need
to set a threshold somewhere. By dichotomising the outcome
upfront, this decision is moved upstream and aids resolving the
potential problems with parametric outcome models.

However, even with a dichotomised outcome we might be inter-
ested in estimating the uncertainty about predicted risks. MLPs do
not lend themselves well to fully-Bayesian analysis because of their
complex posterior distributions (causing convergence problems),
but modelling the risks with a Beta distribution (with two parame-
ters) instead of a Bernoulli (with one parameter) could be a viable
approach, and one rarely seen for binary regression in machine
learning.

Another limitation of the outcome variable daily rate of inappro-
priate doses (on which the dichotomised predicted outcomes were
based) is that it is a soft endpoint. We do not actually know if it
is a good proxy for noxious outcomes or not: even if patients are
exposed to higher doses of drugs than they should be, they may
remain unaffected. For example, it is clinically plausible that a
patient suffers no harm even if they continue their metformin treat-
ment for a few days despite dehydration-induced transient kidney
dysfunction.

One way to include noxious outcomes—such as prolonged
hospitalisation, readmission, and mortality—could have been using
a Hidden Markov Model (HMM) setup [146], modelling different
states from index to end of follow-up. Another might be to employ
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causal discovery, perhaps utilising the temporal information in
our data with the temporal PC algorithm [147] although this was
unavailable when the study was conducted.

Study III

We took a fairly simplistic approach when defining the drug-pair
outcomes in this study: a patient was considered exposed to a given
drug pair or not. However, the patient could also be exposed to
just one of the drugs, and including that information in the model
might alter (and perhaps improve the quality of) the safety signals.

Thus, a factorial design could have been a better way to model
drug-pair safety signals, for example using 4 mutually exclusive
outcome nodes in each model (exposure to none of the drugs,
exposure to drug 1 only, exposure to drug 2 only, exposure to
both drugs) with a softmax activation function and a categorical

crossentropy loss function.

Explained predictions 6= causal relationships

There is growing awareness that machine learning prediction mod-
els do not yield causal relationships by themselves [148]; indeed,
notwithstanding sophisticated attempts at explaining predictions,
such models will perpetuate (and perhaps corroborate) biases cap-
tured in the development data [79], a clear sign that they fail to
recognise causal relationships and only capture associational ditto.
Therefore, when the purpose is outcome prediction, frameworks
that yield prediction drivers become useful for sanity checks to as-
certain, to the extent possible, that the model picked up pertinent
information in the data, and not biases or misleading proxies. Us-
ing i.a. SHapley Additive exPlanation (SHAP) values this way (as
we did in study II) helps improve prediction models.

Figure 30: Number of hits on PubMed
(y axis) by year (x axis). Query on 21

October 2021: "propensity score*"

Causal inference in observational data is possible; methods based
on propensity scores enjoy increasing usage (figure 30) and are
perhaps the most widespread approach. Propensity scores can be
used in a variety of ways, including weighted regression, regression
adjustment, matching, and stratification [149, ch. 12] These are
sometimes referred to as pseudo-randomisation because they seek
to accomplish what randomised controlled trials (RCTs) do: apart
from random error, the difference in outcome between groups is
attributable to the exposure under study [150].

The validity of such methods rests on several assumptions: a
well-defined equivalent trial exists, absence of unmeasured con-
founding,22 consistency, positivity, and no interference [149]. Even 22 Related to epistemic uncertainty

[151]very large data sets such as that of BigTempHealth cannot guaran-
tee unmeasured confounding: much information escapes clinical
and administrative data, perhaps most notably socio-economic
status and changing clinical practice.

Using preference scores23 in study I (page 91) we did not seek to 23 A slight adaptation of raw propen-
sity scores [135]
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make definitive claims of causality but instead use a well grounded
method for finding interesting associations with stronger real-life
bearing that blindly hammering variables into a generalised linear
model (GLM) and hope for the best, or (perhaps worse) blindly
using a machine learning model with SHAP values.

Equipoise is "a state of genuine uncertainty about the benefits
or harms that may result from different exposures or interven-
tions" [67, p. 84] and a key notion in RCTs. Equivalently, in causal
inference based on propensity scores, empirical equipoise24 is an 24 "Accept drug pairs as emerging from

empirical equipoise if at least half of
the dispensings of each of the drugs
are to patients with a preference score
of between 0.3 and 0.7." [135, p. 12]

important, if somewhat overlooked, consideration. Mindful of this,
the percentages in the Exposed and Non-exposed columns in figure 25

show that empirical equipoise could only reasonably be assumed
in 22 exposure groups, e.g. Meropenem + Valproic acid, Paroxetine +
Tamoxifen and Clonidine + Imipramine.

What is perhaps worse, the final matched cohorts, in which the
Poisson and Cox regression models were fit, were generally very
small for exposures with empirical equipoise. This naturally calls
into question the generalisability of the findings and warrants
further investigation (e.g. with discrepancies in summary statistics
of those matched and the full cohort). Thus, as was also highlighted
by Walker et al. [135, p. 19], equivalent models should be fit in
different populations, ideally using heterogeneous data sources, to
better understand the wider applicability of the results. Exactly the
way so-called Observational Health Data Sciences and Informatics
program (OHDSI) network studies are carried out.

Our approach to modelling the exposure in study I was relatively
simplistic, in that we considered exposure to the drug pair a binary
thing. A more appropriate approach had probably been regressing
the adverse outcomes (length-of-stay, readmission, and all-cause
post-discharge mortality) on independent effects of each drug in the
drug pair as well as an interaction term. Even though that would
add a few more parameters in the model, one could argue that the
results (considering the reasonably large number of admissions
from which they arose) would benefit enough to warrant this
approach.

In our setup, the high-dimensional lasso logistic regression
models served as prediction models to yield one propensity score
for each patient. Proper performance evaluation (as per Evaluating
prediction models) had likely been warranted to ascertain well-
calibrated models: poor calibration might be problematic because
we matched patients on their preference scores, derived from the
predicted propensity scores.

A conceptually and methodologically different approach would
have been to use causal discovery [152, 153] that, in some sense,
bridges the gap between machine learning and causal inference.
Recent advances in this field leverage temporal information [147],
but these were unavailable when the study was conducted.

It would have been interesting to see if results similar to ours
would emerge in other data sets arising from healthcare in other
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cultural and health-political contexts. Although we did use tools
from the OHDSI ecosystem, our data model was not compatible
with the Observational Medical Outcomes Partnership (OMOP)
common data model (CDM) and so did not allow for simple com-
parison with data sites in the network.

Secondary data

Whether data be primary or secondary is less important than
having data appropriate for our research questions [64, ch. 23]. To
be sure, using secondary data restricts the spectrum of questions
we can and should ask; a very recent and sobering example is the
surge in COVID-19 studies hinging on secondary EHR data, with
unfortunate consequences when their inherent characteristics went
unrecognised [154].

The salient point is that the primary purpose of our secondary
data is caring for patients and managing the healthcare system.
So, at their core these data must provide clinical utility while we
seek to unleash their scientific utility. For example, data designed
for process support25 are not necessarily ideal for research. Thus, 25 Such as how the patient moves

around in the healthcare system as
per the Danish Contact Model [155,
pp. 13–14]

tapping into such data poses multiple problems starting with
something as basic as how to define an admission: if departments
are seen as distinct entities, considering stays at each department
contiguous admissions is sensible, but from a scientific perspective
this fragmentation of the full in-hospital visits must be reconciled
or perhaps used actively, e.g. if the interest revolves around risk of
intensive care unit (ICU) transfer.

Another example is that of lingering Electronic Patient Med-
ication 1 (EPM1) records in the Electronic Patient Medication 3

(EPM3) data set. This was a complication we needed to handle in
the extract-transform-load (ETL) process, but this may make perfect
sense from a clinical vantage point: healthcare staff needed to have
the medical profiles of patients who visited the hospital in the early
period after transitioning from EPM1 to EPM3, and a simple way to
do that could have been to simply synchronise the two systems.

Nonetheless, when used correctly longitudinal observational
data arising from EHRs can fill in the evidence gaps left by RCTs
[156] and for economic evaluations [157, ch. 8]. Sometimes, even,
"secondary data might be the best source given the available re-
sources" [64, p. 481] and the ability to follow patients over (long)
periods of time is an important tool in safety profiling of medicines
as, only then, may outcomes of long-term exposure or late-onset
effects surface [158]. Thus, having large-scale systems with curated
and operational EHR data in place allows researchers to undertake
the kind of sound clinical research essential for society to make
well-grounded decisions [159].

Despite great efforts and successes in making clinical systems
communicate, inter-sector data transfer often passes through central
databases, such as the so-called cloud-based shared medication record
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(fælles medicinkort, FMK) [160]. Whenever a patient is admitted
to a hospital, the current medication profile is downloaded to the
hospital’s medication module and in-hospital modifications occur
in this local copy. At discharge, the local copy of the medication
profile is, then, uploaded to the shared medication record for
other practitioners to see and modify. This system works well and
underpins clinical work as long as each electronic patient system
and the shared medication record platform communicate and do so
well (unfortunately not always the case).

The very same system, however, causes a great deal of trouble
in subsequent analyses, as hospital records offer little information
about genuine medication use between hospital visits. In the ideal
world in which all medication data (community-pharmacy and
in-hospital dispensations alike) were kept in one place, such as the
shared medication card, we could craft better exposure profiles that
might elicit safety problems with medicine use. So, this kind of
data siloing is yet another thing that necessitates reconciling drug-
safety data when using secondary data for pharmacovigilance.

Error-prone preprocessing

Valid data analysis hinges on sound data preprocessing that does
not distort the data. As described in Data, our raw biochemistry
and medication data received left much to be desired, especially
from a documentation viewpoint. This meant that many resources
went into deciphering and disentangling the data to cast them into
an operational format suitable for the BigTempHealth research
goals, including our studies in the realms of pharmacovigilance.

Undertaking such full-scale ETL processes with little or inade-
quate documentation is errorprone. In hindsight, a validation study
akin to what others have done for Electronic Patient Medication
(EPM) [89], but not restricted to medication, might have been a
great resource for pinpointing problems arising from erroneous
preprocessing.

More than a time-consuming annoyance without direct scientific
output, it is wasteful that the same data are processed and opera-
tionalised over and over again by different groups and stakeholders,
a notion also raised by others [161, 162]. It also complicates repro-
ducibility in science because the results of any statistical analysis
will depend on the data input: if preprocessing steps of the same
raw data differ, so will the results.

Myriad pecularities needed resolving, and here I present three
illustrative challenges relevant to our studies. First, there are differ-
ent ways to record how much of a drug was given to a patient. The
EPM data needed little work as they directly gave the dose and its
unit: if 2 tablets of 500 mg. metformin were administered, it was
recorded as an administration of 1000 mg. metformin. Such data
simplifies validation as we, essentially, need only confirm that doses
and units be meaningful together, and that doses be reasonable.
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OPUS-medicin had a different approach: for every administra-
tion, we had to compute the total given dose by combining the
strength and its unit with the given amount and its unit. So, we
would have the information that 2 tablets of metformin with a
strength of 500 mg./tablet were given. When the units line up, the
total dose is just the product of these two numbers and some sim-
ple logic to deduce the unit of the total dose.26 Sometimes they do 26 For example: x tablets × y

mg./tablet = z mg.not, and we had to handle cases like 2 drops of metformin with a
strength of 500 mg./tablet. This quickly becomes unwieldy due to
the huge number of potential combinations and is caused by insuf-
ficient (if existent) data-entry validation in the medication module.
Curiously, we also encountered not so few cases in which the doses
more than anything else resembled Danish phone numbers. For
the purpose of study II, the only study in which we used the ac-
tual doses administered, manually checking inconsistencies was
time-consuming but possible because we only considered 7 drugs.
But scaling this effort to cover substantial parts of the full data set
would be impractical.

Second, comprehensive preprocessing was needed for the B-
Data Clinical Chemistry Laboratory System (BCC) data. It turned
out that Nomenclature, Properties and Units (NPU) codes were
inconsistent and not necessarily uniquely linked to specific com-
ponents (e.g. potassium and sodium) in specific specimens (e.g.
blood or urine). It makes a large clinical difference whether glucose
is measured in blood or urine, and so within BigTempHealth an
alternative (largely manually created) coding scheme was used, see
Idiosyncratic data modelling.

Third, the issue of possibly duplicate clinical notes emerged.
Their origin was undocumented but seemed related to our having
several iterations of the same clinical notes (perhaps drafts saved
while collecting more data and observations). Thus, much of the
text would be identical but there would be differences, and only the
final version would be useful for our needs. Setting up automated
de-duplication without erroneously removing legitimate clinical
notes proved remarkably difficult. Related to this are smart phrases
that take form-like structure but nonetheless store everything as
free text. Such standardised text can also make deduplication
difficult as they may be very alike but genuinely pertain to different
patients.

Only in-hospital data

Part of the BigTempHealth research programme, we had access
only to in-hospital data which restricted the types of questions we
could pose and, consequently, the studies we could undertake. This
limitation has four main components. First, albeit comprehensive
with respect to both population and longevity, the the Danish
National Patient Register (NPR) has a key weakness: it holds no
primary-sector information on diagnoses, procedures, or treatments.
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Although we did not have access to them, Danish out-of-hospital
healthcare utilisation data exist [83, 163] but do not hold detailed
phenotypic patient data (such as diagnoses) as it is outside the
scope of the register.

Second, we have no real records of out-of-hospital medication
exposure. Instead, we resorted to what we called doorstep medication
profiles in study III (see 179). Although this is probably a decent
proxy, having the actual data from the Drug Statistics Register [83,
164] had likely yielded more accurate exposure profiles at time of
admission. Of note, the consumption of over-the-counter drugs
and poor compliance with prescription drugs escape both the Drug
Statistics Register and our doorstep medication profiles although
the former hold some data on over-the-counter drugs.

Third, the BigTempHealth cohort only comprised patients who
visited the hospital and did so between 1 January 2006 and 1 July
2016. This selection (and consequent potential for bias) must be
borne in mind, and the results of our analyses seen in light of this:
the average patient seen at a hospital is likely sicker and older than
an average patient seen by general practitioners or, indeed, the
average person in the population.

Fourth, for many patients in the BigTempHealth cohort, our
data on all axes are left-censored and for some (such as mortality
and readmission) also right-censored. This hinders many types
of studies of the relationship between exposure and outcome as
we often have no well-defined start of exposure. We can use a
new user-design and follow patients who start a new treatment
during their admission, but this is not entirely unproblematic:
they may not be truly new users, and if we condition on patients
having previous admissions without exposure, we also condition on
patients probably being worse off than the background population
(as also touched on above).

Idiosyncratic data modelling

Obtaining data can be difficult enough, but the work only then
really begins: big data are not necessarily good data, and raw data
are usually unfit for analysis without preprocessing involving
setting up ETL processes to yield operational data in some data
model [165] that can be stored somehow, whether as flat files or in
a database. This becomes problematic when each research group
must (or at least does) waste valuable resources undertaking their
own variations of data preprocessing with little or no insights into
exactly what was done [161].

Sygehusvæsenets Klassifikationssystem (SKS) is the data model
of NPR and somewhat specific to Denmark.27 Such specific data 27 Diagnoses are encoded with a

Danish dialect of the the 10th revision
of the International Classification
of Disease (ICD10) and procedures
with the NOMESCO Classification of
Surgical Procedures (NCSP)

models make it difficult to undertake large-scale studies with data
from other countries. In particular, analytic code will necessarily
be specific to the data model for which it was developed. Thus,
the code we have produced (and, for studies II and III, shared to
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ensure transparency and aid scrutiny [166, 167]) will need adaption
to become appropriate for other researchers, even if their data
originate from the same sources.

The issue of idiosyncratic data models was particularly acute
for our biochemistry data. Even though both data sources seemed
to use codes from a standardised nomenclature (NPU) with links
to International Union of Pure and Applied Chemistry (IUPAC)
codes, it turned out that regional variations in these codes rendered
them near-useless for identifying specific biochemical analyses.
Instead, we ended up building in-house standards for components
(e.g. potassium and glucose) and specimens (e.g. plasma and urine).
This enabled querying with with post-hoc reconciliation of units
(if needed), somewhat akin to post-coordination [168]. We had to
do this in a study we prepared [169] but decided to defer in the
interest of time and resources as it fell outside the scope of the
project.

Textual data

Free text is a wonderful medium for data collection and presenta-
tion because it gives the author full control over what is recorded
and how it is presented, as discussed previously (page 34).

The textual data in clinical notes proved amazingly untidy with
abounding ambiguities attributable to different "dialects" between
medical specialties: the meaning of GA, for example, would likely
be gestational age in obstetrics but general anaethesia in surgical
specialties (including gynaecology). Ambiguities and the use of
abbrevations is probably also somewhat correlated with seniority
and experience level, and perhaps also the setting in which the note
was written (e.g. inpatients vs. outpatients).

There seemed no good way to overcome this fundamental char-
acteristic of the data when used the way we did in study III. We
trained the embedding model on our own data, but it might be rea-
sonable to expect that an existing language model, pre-trained on a
relevant corpus in Danish, could yield better results. The problem
with this notion is that there are not many relevant corpora avail-
able. Even training such a model on medical textbooks in Danish
might be suboptimal because the language used therein is proper
Danish in stark contrast to clinical notes.

Thus, despite the elegance in how embedding models opera-
tionalise textual, for brute-force approaches such as that in study
III, simpler methods building on (maybe fuzzy) matching might be
more viable while also methodologically simpler.

Complex analyses

In 2000 Edwards and Aronson stated that that cohort and case-
control studies for pharmacovigilance requires complex calculations
[14]. The need for complex calculations has only gone one way
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since then and now pharmacovigilantes can reap the benefits of the
tremendous advances in data science, statisics, and engineering to
leverage huge data sets.

Scientific articles cannot generally accommodate all technical
details of their underlying analyses, and so referees and readers
must consult the analytic code directly to truly understand how the
results came about. The codebases of our three studies make up
thousands of lines of code in various languages (mainly R, Python,
and SQL) and while we have done what we could to ensure that
our code be correct and reflect what we report in the manuscripts,
there is always the risk of errors.

Scientific software is neither meant nor designed for production
and often leaves much to be desired from a programming point
of view, is prone to errors, and is difficult to scrutinise [166, 167]
even for skilled peers. We cannot always share our data, especially
secondary data as ours. Thus, even if analytic code is publicly
available—as we did for studies II and III—it is very difficult to
scrutinise, or even just comprehend, such code if it were not crafted
for a common data model.

Moreover, even the two end-to-end analytic pipelines we shared
(study II and study III) do not truly start at the beginning. As
already discussed, when raw data arrive from private vendors
or public registers, they undergo preprocessing and these steps
(perhaps even more errorprone than the processing in the analytic
pipeline) are usually not shared anywhere.28 28 In the OHDSI community, sharing

the ETL code is actually encouraged
so others can learn from previous
experience

Some have called for researchers to share their data formatting
keys [161], but this misses a salient charateristic of modern epidemi-
ology: we no longer use only tidy structured data whose encoding
need reconciling. Rather, many applications in analytical epidemi-
ology using machine learning leverage e.g. waveform and textual
data that require a radically different approaches. Thus, we need
to share not merely formatting keys but full analytic workflows.
Snakemake [170], born in bioinformatics and used in all three stud-
ies, is a powerful framework for building analytic pipelines, but
alternatives such as Nextflow [171] do exist.

These frameworks encourage modularisation: breaking down
code into manageable and digestible chunks. Snakemake and the
like are still uncommon in epidemiology, but having a unified
language for building code along with the adoption of common
data models would likely remedy many of the issues discussed in
this section. One issue that cannot be resolved, however, is that of
the computational requirements of these pipelines.

Very complex (machine learning) analytic pipelines tend to
require specialised hardware to run and finish within a reasonable
timeframe [106]. Study III is a good example: it took more than 24

hours to train the embedding model even though it had 120 central
processing unit (CPU) cores and 200 GB memory at its disposal.29 29 As a comparison, my computer has 4

CPU cores and 16 GB memory

https://snakemake.github.io
https://www.nextflow.io/
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Over-engineered solutions

Machine learning covers many disciplines and machine learning
models can take many forms. To focus our efforts, we used only
MLP models throughout and so perhaps fell victim to the law of the
instrument: if all you have is a hammer, everything looks like a nail;
MLPs became our hammer.

In study II, however, simpler model types such as support vector
machines or random-forest models could have been used in place
of the MLPs, might have been as performant, and had likely trained
faster.

In a similar vein, simpler but equally performant alternatives
in study III might have been viable. For example, one could take
an input term—representing a potential adverse drug reaction
(ADR)—and use the learnt embedding model to find, say, clinical
cousins30 similar to some degree, e.g. top-5 or with cosine similarity 30 In study III we considered clinical

cousins terms that mean (almost) the
same thing but may be lexicographi-
cally very different

> 0.9. Then, one could query the retained tokens for the presence of
any of these derived target tokens, to construct a 2-by-2 exposure-
outcome contingency table and use the SLOR, akin to the way
it is used in disproportionality analysis in individual case safety
reports (ICSRs). This might even handle the imbalanced nature of
the problem better than our randomly under-sampling the majority
class, a classic tack in machine learning.

Such an approach would definitely be faster in the development
phase and it would render pertinence evaluation superflous. It
would, however, require full access to the entire corpus at query
time. Storing almost 11 million clinical notes in a database with
several million doorstep medication profiles31 may not be feasible. 31 As well as supporting data structures

such as indices for tolerable querying
time

On the other hand, keeping some 4,000 MLP binary files (each
about 2 MB) is perhaps not more desirable in the end, from a
resource-requirement perspective.

An additional (major) benefit of the contingency-table approach
would be that another disproportionality method, the Ω shrinkage
measure [172], would be available for (more) proper statistical
modelling of drug-drug interactions (DDIs) in this kind of safety
signal analysis.





Conclusion and outlook

With the increasing computerisation of healthcare, and subsequent
gathering of massive amounts of observational longitudinal data,
the hope was that these data sources would easily lend themselves
well to pharmacovigilance and perhaps even supersede individual
case safety reports (ICSRs). The former proved much more diffi-
cult than anticipated, and based on the following discussion of the
research questions—in turn building on our experiences and the
reflections they sparked—I conjecture that we can utilise longitudi-
nal observational data in two ways to viably complement existing
spontaneous reporting systems (SRSs), not replace them.

First, by using existing, or partaking in building new data ware-
houses with data models appropriate for pharmacovigilance. This
notion feeds into the idea of the learning healthcare system [173].
Although there might be other viable options, from our experi-
ence Observational Medical Outcomes Partnership (OMOP) is one
prudent choice of common data model (CDM): it was born and is
developed with pharmacoepidemiology and pharmacovigilance in
mind at the nexus between regulatory bodies, acadaemia, and the
industry [165, 174].

Second, by exploiting frameworks based on CDMs and federated
privacy-by-design [175–177] data analysis with post-hoc aggre-
gation of results, not data. Other than addressing privacy issues,
this delinks the ability to generate original ideas and intelligent
questions from that of data access: even though you have never
seen their data and never will, you know the structure of the data
of everybody else and can nevertheless design studies and build
the required analytic code, which is then shared across the data net-
work. This will bring more minds and ideas to the table, ultimately
improving the questions asked and studies conducted to answer
them.

Chapter contents

Can observational data cater for pharmacovigilance? 76

What are the hindrances? 77

Is it worth our while? 79

The future 80



76 pharmacovigilant machine learning in big data?

Can observational data cater for pharmacovigilance?

The short answer to the question is, "it depends". The nature of the
BigTempHealth cohort turned out to put some hefty restrictions
on the kinds of questions we could reasonably ask. In particular,
the very limited medication data precluded well-defined exposure
operationalisation for most kinds of typical questions in pharma-
covigilance and pharmacoepidemiology in general.

Having access to very detailed in-hospital data did, however, en-
able us to undertake studies beyond what it possible with register
data only. In particular, the operationalisation of the outcomes in
study II and the ability to tap into textual data from clinical notes
in study III were novel and could inspire future research with these
data types and sources.

Unlike registers, electronic medical record (EMR) offer a high
level of granularity and detail, but this is not enough to be useful in
pharmacovigilance: without data that underpin well-defined expo-
sure operationalisation—a key component of pharmacovigilance—
we cannot fully reap the benefits of high granularity in genuinely
interesting research endeavours. I illustrate some examples in
figure 31:

Admission

A

B

C

E

F

D

Admission

?

?

Figure 31: With in-hospital data many
study designs become impractical due
to ill-defined start and end of exposure.
Each row represents one patient. Filled
circles: observed. Hollow circles:
unobserved, inferred from prescription
records. Red: exposure to drug. Blue:
outcome of interest.

Patients A and F represent the kind of questions we were best
able to address: we directly observe the exposure and immediate
adverse drug reactions (ADRs). Patients B and E are less desirable,
but if we assume that the start-of-admission records be correct, we
can infer exposure or lack thereof before the outcome. Patients
C and D are worst: we have no way to gauge if the patient was
exposed, and we cannot observe events that happen outside the
hospital.

Obtaining complete medication data is difficult, if not impossible.
In Denmark, however, the Drug Statistics Register [164] provides
detailed information on purchased prescription drugs. Access to
this data source might be necessary for observational data to truly
cater for pharmacovigilance, in a Danish context.
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What are the hindrances?

Here, I highlight 9 principal hindrances in 3 domains32 that should 32 Inspired by Johnson et al. [178]

be addressed upfront when considering using observational data
for pharmacovigilance:
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Figure 32: Hindrances to successfully
using observational data in pharma-
covigilance.

Complex data

Modelling Statistical modelling offers many ways to answer the
abounding pharmacovigilance questions. We used methods from
descriptive, aetiological, and predictive epidemilogy (studies I and
II) as well as safety signal detection (study III). A natural place to
begin is to understand what kinds of questions one wants to pose,
what kinds of modelling one intends to use to answer these and,
crucially, if these are underpinned by the data.

Causal inference in observational data, for example, hinges on
the assumption of no unmeasured confounding, so one should
ensure access to data that will reasonably satisfy this assumption.
Another example is safety signal detection that tends to revolve
around rare patterns [143, p. 1259], which in turn requires large
data sets. Although somewhat tangential to pharmacovigilance,
drug repositioning can build on the same methods as safety sig-
nal detection, and so also in this regard having enough data is
important [179].

Organisation It takes a village to exploit electronic health record
(EHR) data for pharmacovigilance; here I consider organisation in
a broad sense, to include also infrastructure. The path from raw
data in siloes to operational data suitable for pharmacovigilant
machine learning (as well as other applications) requires a diverse
skillset (see figure 33) and a concerted effort. Such diversity can
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only realistically be achived by an organisation that also has access
to adequate hardware and IT infrastructure.
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Figure 33: Venn diagram of pharma-
covigilance (PhV). Inspired by Conway
[180] and Alarcón-Soto et al. [181].

Heterogeneity Observational data can be heterogeneous, and have
only become more so in the past decade. We used tabular, not-so-
high-dimensional data and textual data, but other data types are
available and becoming increasingly so, not least various kinds of
omics data.

Disparate data

Integration Data collection is delinked from the analytic needs,
so we answer our questions to the best of abilities with the data
we can get our hands on. Observational data live in siloes and
an important step is to be able to marshal them so they can be
analysed together. This might become easier in the future with
learning healthcare systems [173],33 but it will likely remain a major 33 Akin to Facebook or Google whose

data collection are intimately linked
with the purpose of their analyses,
enabling optimisation of the former to
underpin the latter

hurdle that must be overcome.

Adequacy We need enough data, with respect to both quality and
quantity. It may be unreaslistic to have enough data e.g. if the
interest revolves around rare exposures and/or outcomes, if the
geographic area giving rise to the data is too restricted, or if we do
not cover a sufficiently long time span.

This is important for both aetiological, predictive, and safety-
signal detection endeavours albeit in different ways. Statistical
power is a key component in aetiological epidemiology, whereas
too few observed events will preclude training any useful predic-
tion model or sound validation. For safety signal detection, we
need enough exposure-event pairs for them to stand out.

Standardisation Collating structured data from disparate sources
may entail standardising and reconciling encoding to ensure that,
say, a given diagnosis can be identified uniquely in all data sets.
Employing a CDM will further facilitate collaboration with other
data holders using the same CDM [182]. The Observational Health
Data Sciences and Informatics program (OHDSI) network studies
build on the notion that interesting research questions may come
about in settings without data, but data may abound elsewhere.
Because we know what the data look like in other sites, we can
design statistical analyses to leverage these data without ever seeing
them.

Misleading data

The subtitle for this domain might as well be the well-known
garbage in, garbage out: the results of any analysis hinge entirely on
good data. This applies no less to pharmacovigilance [182] and
draws on the virtues of i.a. epidemiological prudence with respect
to quality assessment of data.
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Errors Errors can arise before we receive the data (at data collec-
tion) and after (during preprocessing). For example, we received
several versions of the Electronic Patient Medication (EPM) data
before we felt convinced that they were complete; even then, as
described earlier, duplicate records lingered in the years around
changing systems. One particularly tricky preprocessing challenge
we faced was that of de-duplication of clinical notes. It proved
difficult to set up an automated way to carry out this task without
inadvertently discarding legitimate notes.

Information bias This comprises measurement error for continuous
variables and misclassification for categorial ones [64, ch. 9].

Missingness This encompasses missing patients (i.e. selection bias)
and missing data points for patients in the data set. Selection bias
can happen due to e.g. Berksonian bias when pooling data sources
[64, ch. 12]. Data missingness falls into three groups, of which
the last is the most challenging: missing-completely-at-random
(MCAR), missing-at-random (MAR) and missing-not-at-random
(MNAR) [183].

Is it worth our while?

All three studies yielded interesting findings, showcasing that ob-
servational data such as those in the BigTempHealth research pro-
gramme can underpin pharmacovigilance. Leveraging distributed
data networks, e.g. by means of a CDM, would only amplify this
potential.

We did not undertake any formal cost-effectiveness evaluation
but collating, operationalising, maintaining, and analysing obser-
vational data are costly operations. Data collation is bureaucratic
and appropriate staff to oversee this is key. As addressed repeatedly
in this thesis, operationalising data is a large undertaking requir-
ing people with diverse backgrounds and areas of expertise; this
component also involves adequate hardware. If data collation is
a one-off event, the maintenance amounts to costs pertaining to
hardware so the data remain operational and available for analysis;
with continual data capture the costs are greater and likely more
unpredictable. Analysing normal epidemiological data can happen
on a desktop computer and runtime can usually be counted in
seconds or minutes. Machine learning in big observational data is
another beast: running the analyses of studies II and III each took
several days on specialised hardware.

One way to reduce the marginal costs is to have central data
repositories with select CDMs that underpin pharmacovigilance
applications, so the added costs are limited to running the analyses.
We partook in a proof-of-concept study evaluating the OMOP CDM
with use cases in patient-level prediction and pharmacovigilance.
Although we, regrettably, never got to publish any results,34 the 34 Apart from a poster at the European

OHDSI Symposium 2019 [11]
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experience yielded two learning points: setting up a sound extract-
transform-load (ETL) process is a demanding task, but once it is
done and validated the opportunities do make up for it.35 35 See also e.g. the European Medicines

Agency’s recently closed call for
tenders with data in the OMOP CDM

The future

Below I point to 4 avenues that seem particularly apt for future
work at the nexus between secondary observational data, machine
learning, and pharmacovigilance.

Deep Danish data in common data models

We have excellent health and administrative data in Denmark, but
due to the relatively little population, we may not have enough ob-
served events of potential ADRs to have sufficient power for safety
signal detection or aetiological studies. This renders transnational
collaboration necessary and our data infrastructure should facilitate
this.

Having all Danish observational data available out-of-the-box
in appropriate CDMs would facilitate faster pharmacovigilance en-
quiries with more power through e.g. OHDSI network studies, help
overcome the issue of opague data processing and entailing duplica-
tive efforts, and enable leveraging the full Danish population with
deeper and better data than can currently be used for pharmacovig-
ilance. Indeed, a recent the European Medicines Agency (EMA)
guideline on register-based studies lists OMOP as a recommended
terminology36 [184, appendix 3]. This notion is not new in a Danish 36 Although OMOP is not strictly a

terminology but a CDM that uses
standard vocabularies to achieve
harmonisation

setting: Aarhus University Hospital participates in the EU-ADR
alliance [185].

We cannot compete with North American databases with hun-
dreds of millions of patients [186], but we can have deeper data for
better patient characterisation. As discussed previously, this could
be e.g. nurses’ notes that provide other aspects and closer-to-real-
time data on patient status, or human microbiome data due to its
(potential) interference with drug uptake and response [187, 188].

Multilingual safety signal detection

As we illustrate with study III, there is scope for using language-
agnostic text mining in clinical notes for safety signal detection. In
particular, our approach might lend itself well to transnational text
mining using machine translation.

This could be a viable complement to current efforts usign
natural language processing (NLP) for pharmacovigilance, but its
real potential remains to be explored and substantiated. Although
less than for other types of studies using structured data, even for
this kind of endeavours, using CDMs would be convenient as it
would simplify the development of the analytic code to set up the
system locally.

https://etendering.ted.europa.eu/cft/cft-display.html?cftId=8432
https://etendering.ted.europa.eu/cft/cft-display.html?cftId=8432
https://data.ohdsi.org/OhdsiStudies
https://www.teamitresearch.com/eu-adr/
https://www.teamitresearch.com/eu-adr/
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Machine learning-based propensity scores

Genuinely useful medical applications of machine learning have
hitherto been mainly in data-rich domains with the kind of data
these methods were built for: images (radiology [189], ophtal-
mology [190], pathology [191]) and intricate, high-dimensional
time-series data (intensive care medicine [106, 126]). But medicine
overall has turned out to not be as low-hanging a fruit as antici-
pated, perhaps with Watson for Oncology as the most spectatular
example [192].

Algorithmic bias is one very important thing to keep in mind
in this regard. This comes back to the challenges presented in fig-
ure 32: a key source of algorithmic bias is actually the well-known
selection bias, that is, if the data are not representative of the target
population, the results will be biased and sometimes in unpre-
dictable ways, and bigger data set will not fix this automatically.37 37 "Running a poorly designed algo-

rithm on a faster computer doesn’t
make the algorithm better; it just
means you get the wrong answer more
quickly. (And with more data there
are more opportunities for wrong
answers!)" Russell [78, p. 37]

Causal inference based on propensity-score modelling is a
promising avenue for using machine learning models in phar-
macovigilance. In the OHDSI toolbox, propensity scores are based
on lasso logistic regression, but we might be better off with more
complex machine learning models [193], especially for deep data
as we might recoup more information this way than is (hopefully)
captured by hundreds or thousands of features in a penalised (but
linear nonetheless) logistic regression.

Some results suggest that using propensity scores obtained from
more complex machine learning models yield superior results
[194], but it will be important to submit such models to rigorous
evaluation to ascertain adequate predictive performance.

Safety signal detection + causal discovery

Causal discovery (also known as structure learning) allows for
inferring causal mechanisms from observational data [153, 195] and
has obvious applications in medical research, as an alternative to
causal inference methods based on e.g. propensity scores.

Important statistical characterisics are still largely unexplored,
somewhat precluding wider uptake for causal inference. Despite
this, using causal discovery in observational data could be a good
way to complement safety signal detection in ICSRs in safety signal
triangulation [196], as it is more data-driven than conventional
causal inference building on prespecified hypotheses.
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Abstract  16 

Importance: While the beneficial effects of medications are numerous, drug-drug 17 

interactions may lead to adverse drug reactions that are preventable causes of morbidity and 18 

mortality. 19 

Objective: To quantify the prevalence of potential drug-drug interactions in drug 20 

prescriptions at Danish hospitals, estimate the risk of adverse outcomes associated with 21 

discouraged drug combinations, and highlight the patient types (defined by the primary 22 

diagnosis of the admission) that appear to be more affected.  23 

Design: Cross-sectional (descriptive part) and cohort study (adverse outcomes part). 24 

Setting: Hospital electronic health records from two Danish regions (approx. 2.5 million 25 

people) from January 2008 through June 2016.  26 
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Participants: Inpatients receiving two or more medications during their admission. 27 

Exposure: Concomitant prescriptions of potentially interacting drugs as per the Danish Drug 28 

Interaction Database. 29 

Main outcome and measure: Descriptive part: prevalence of potential drug-drug 30 

interactions in general and discouraged drug pairs in particular during admissions. Adverse 31 

outcomes part: post-discharge all-cause mortality rate, readmission rate and length-of-stay.   32 

Results: Among 2,886,227 hospital admissions (945,475 patients; median age 62 years [IQR: 33 

41-74]; 54% female; median number of drugs 7 [IQR: 4-11]), patients in 1,836,170 34 

admissions were exposed to at least one potential drug-drug interaction (659,525 patients; 35 

median age 65 years [IQR: 49-77]; 54% female; median number of drugs 9 [IQR: 6-13]), and 36 

in 27,605 admissions to a discouraged drug pair (18,192 patients; median age 68 years [IQR: 37 

58-77]; female 46%; median number of drugs 16 [IQR: 11-22]). Meropenem-valproic acid 38 

(HR: 1.5, 95% CI: 1.1–1.9), domperidone-fluconazole (HR: 2.5, 95% CI: 2.1–3.1), 39 

imipramine-terbinafine (HR: 3.8, 95% CI: 1.2–12), agomelatine-ciprofloxacin (HR: 2.6, 95% 40 

CI: 1.3–5.5), clarithromycin-quetiapine (HR: 1.7, 95% CI: 1.1–2.7), and piroxicam-warfarin 41 

(HR: 3.4, 95% CI: 1–11.4) were associated with elevated mortality. Confidence interval 42 

bounds of pairs associated with readmission were close to 1; length-of-stay results were 43 

inconclusive. 44 

Conclusions and Relevance: Well-described potential drug-drug interactions are still missed 45 

and alerts at point of prescription may reduce the risk of harming patients; prescribing 46 

clinicians should be alert when using strong inhibitor/inducer drugs (i.e. clarithromycin, 47 

valproic acid, terbinafine) and prevalent anticoagulants (i.e. warfarin and NSAIDs) due to 48 

their great potential for dangerous interactions. The most prominent CYP isoenzyme 49 

involved in mortality and readmission rates was 3A4.  50 
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Introduction  51 

Two drugs are said to interact when the action of one does or may affect the activity, 52 

metabolism or toxicity of the other1. Drug-drug interactions (DDIs) constitute a particularly 53 

important cause of adverse drug reactions (ADRs) as clinical evidence and (when known) 54 

their pharmacological mechanisms make them somewhat predictable. Many hospitalised 55 

patients take several drugs and polypharmacy2 is estimated to affect 40–65% of hospitalised 56 

patients3,4.  57 

Although the risk of DDIs is proportional to the number of drugs taken5, the clinical 58 

consequences vary widely, and ADRs rarely occur6. Even if uncommon, serious adverse 59 

outcomes do cause harm, constitute economic losses and are to some extent preventable. At 60 

particularly elevated risk of ADRs are the elderly (often multimorbid and with reduced 61 

physiological capacity)2 and patients with diseases in organ systems involved in drug 62 

metabolism, particularly kidneys and liver7. The consequences of DDIs affect both the 63 

individual patient and society as a whole: 10–20% of hospital admissions may be attributable 64 

to drug-related problems and toxic effects of medication of i.a. DDIs8,9, and studies have 65 

linked DDIs to prolonged hospitalisation and increased healthcare costs10-13. 66 

The electronic medication management systems deployed at public hospitals in Denmark do 67 

not systematically flag problematic drug combinations. Even with such systems in place, alert 68 

fatigue is a real issue that requires tailoring to optimise their genuine utility14. To this end, 69 

appropriate evidence about the extent and nature of the problem is needed.  70 

No studies to date have examined the prevalence of potential drug-drug interactions (pDDIs) 71 

in hospitals for different patient types and assessed the clinical impact of pDDIs. This study 72 

sought to fill this gap and elicit learning points for clinicians to mitigate this issue.  73 

We used electronic health records (EHRs) to (a) elicit the prevalence of discouraged drug 74 

pairs and their expected clinical significance and documentation level, (b) identify which 75 

patient types are most affected by discouraged pairs, and (c) gauge the association between 76 

discouraged pairs and three adverse outcomes: post-discharge mortality, readmission, and 77 

length-of-stay (LOS).  78 
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Materials and methods 79 

Patients and data 80 

We obtained inpatient data for admissions to twelve public hospitals in the Capital Region 81 

and Region Zealand, Denmark, from January 2008 through June 2016. The two regions 82 

comprise approximately 2.5 million people, about half of the Danish population15. 83 

Admissions of individuals using at least two drugs concomitantly were included. We defined 84 

concomitant use as temporally overlapping time prescriptions and identified all two-way drug 85 

combinations.  86 

Information on admission timing, diagnoses, and medical histories was obtained from the 87 

Danish National Patient Register (DNPR)16,17, recording data for department-specific visits. 88 

DNPR encodes diagnoses with a Danish version of the International Classification of 89 

Disease, 10th revision (ICD-10). An admission’s primary diagnoses are recorded 90 

retrospectively at discharge. Successive in-hospital visits were combined into admissions if 91 

they were at most one day apart.  92 

We marshalled information on dispensed in-hospital drug prescriptions from OPUS-93 

medication (OpusMed) and Electronic Patient Medication (EPM). The latter has been 94 

validated18 and the former was used in the same manner; both use the WHO Anatomical 95 

Therapeutic Chemical (ATC) classification system19. 96 

As our pDDI reference we used the Danish Drug Interaction Database (DID), covering 97 

predominantly pharmacokinetic interactions based mainly on published results and 98 

maintained by specialists in clinical pharmacology under the auspices of the Danish 99 

Medicines Agency20.  100 

pDDI prevalence 101 

This descriptive part was cross-sectional. pDDIs were categorised by management 102 

recommendation (five levels), clinical significance (five levels), and documentation level (six 103 

levels); we only considered the 14,237 (from a total of 18,691) pDDIs with information on all 104 

three axes (Table 1). The quality of the documentation level is based on the evidence about 105 

the significance of the kinetic or dynamic properties. 106 

Discouraged drug pairs were defined as prevalent when they occurred in more than 10% of 107 

admissions of at least one specific patient type, defined as the ICD-10 chapter of the 108 
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admission’s primary diagnosis. We used standardised difference in proportions to compare 109 

imbalances between binary variables, taking an absolute difference above 10% to indicate 110 

substantial imbalance21. 111 

Adverse outcomes of exposure to discouraged combinations 112 

In this analytic part of the study, we screened the effect of all discouraged pairs on post-113 

discharge all-cause mortality rate (henceforth, post-discharge mortality), readmission rate and 114 

LOS. Only patients’ first admissions were used. We excluded patients whose exposure 115 

started outside the hospital for better-defined exposure start. The effects on post-discharge 116 

mortality and readmission were estimated with stratified Cox regression models assuming 117 

noninformative censoring22 and the effects on LOS with stratified Poisson regression 118 

models23, with exposure to the discouraged drug pair as the sole explanatory variable. We 119 

created strata by greedy 1:5 matching on preference score, an extension of the propensity 120 

score accounting for target exposure prevalence24. The preference score is the probability that 121 

a patient be exposed whether this happened or not. Thus, if two patients have (almost) the 122 

same preference score but one was exposed and the other not, the exposure is a likely 123 

explanation for their difference in outcome25-27.  124 

We used Cyclops28 to compute high-dimensional propensity scores26 with sparse lasso 125 

logistic regression models using up to 843 features derived from eight covariates: age at 126 

admission (continuous), sex (binary), patient type (one-hot-encoded), diagnoses during 127 

admission (ICD-10 level 3, one-hot-encoded), medication burden (continuous), whether the 128 

admission was acute or elective (binary), and weighted Elixhauser comorbidity score 129 

(Agency for Healthcare Research Quality29 version, continuous). Seeking empirical 130 

equipoise, outcome models were fit to patients with preference scores between 0.3 and 0.724. 131 

The significance level was set to 5%; power analyses were foregone. Estimates with 95% 132 

confidence intervals (CI) wider than 100 on the linear scale were omitted.  133 

Software 134 

We used the R statistical programming language and Python for data processing, analysis, 135 

and visualisation. The analysis workflow was built as a Snakemake pipeline30 (eFigure 1). 136 

The full analytic code is available upon request.  137 
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Ethics 138 

Data were stored and analysed on a secure cloud in Denmark. Registry data access was 139 

approved by the Danish Health Data Authority (FSEID-00003092, FSEID-00004491, 140 

FSEID-00003724) and the Danish Patient Safety Authority, which at the time was the 141 

competent body for approvals regarding research in EHRs, approved journal access and the 142 

purpose for the study (3-3013-1731-1).This article observes relevant items in the 143 

Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 144 

statement31. 145 

Results 146 

Among the 4,411,576 admissions of 1,481,584 patients identified, we included 2,886,227 147 

admissions (65%) of 945,475 patients (64%) to whom two or more drugs were administered  148 

(eFigure 2). Table 2 shows overall and stratified summary statistics for pertinent variables. 149 

The 538,620 (57%) women in the cohort contributed 1,551,131 admissions (54%) and 150 

13,122,610 (54%) dispensed prescriptions. Of these, 27,605 admissions (1%) featured 151 

discouraged drug pairs and 12,655 (46%) were administrated to women. pDDIs and 152 

discouraged drug pairs were observed more frequently in older patients. Further, the median 153 

number of prescribed drugs in admissions with discouraged drug pairs (16, IQR: 11-22) was 154 

larger than any-pDDI (9, IQR: 6-13) and no-pDDI (4, IQR: 2-6) admissions. Patients exposed 155 

to discouraged drug pairs were more ill and had longer admissions and higher in-hospital 156 

mortality.  157 

Of 344,489 unique drug pairs administered in-hospital, 5,646 (2%) were pDDIs; 1,836,170 158 

admissions (64%) of 659,525 patients (70%) featured at least one of these 5,646 pDDIs. In 159 

27,605 admissions (1%) of 18,192 patients (2%) at least one of the 146 (3%) discouraged 160 

drug pairs was used, most with expected major (71%) and moderate (21%) clinical 161 

significance (Table 3 and eTable 1). The most prescribed drugs involved in discouraged 162 

drug pairs were, in descending order of number of users, pantoprazole (nine admissions 163 

[0.0%] of five patients [0.0%] exposed to discouraged drug pairs of 570,440 admissions of 164 

224,002 pantoprazole users), ibuprofen (9,982 admissions [1.8%] of 7,368 patients [2.0%] of 165 

569,223 admissions of 365,302 users), simvastatin (5,048 admissions [1.1%] of 3,887 166 

patients [3.6%] of 442,545 admissions of 148,579 users), metoprolol (1,191 admissions 167 

[0.3%] of 399 patients [0.3%] exposed of 379,785 admissions of 127,237 users), and 168 
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diclofenac (1,917 admissions [1.1%] of 1,326 patients [1.1%] exposed of 177,928 admissions 169 

of 120,256 users) affecting up to 3% of the hospitalized patients receiving the drugs (eTable 170 

2). In contrast, more uncommon drugs (used by less than 1% of hospitalized patients), e.g. 171 

erythromycin (1,573 admissions [27.8%] of 1,461 patients [29.2%] exposed out of 5,665 172 

admissions of 5,001 users), rifabutin (25 admissions [24.8%] of 10 patients [21.7%] exposed 173 

out of 101 admissions of 46 users), ketoconazole (644 admissions [20.4%] of 320 patients 174 

[21.2%] exposed out of 3,158 admissions of 1,513 users), warfarin (12,570 admissions 175 

[10.3%] of 8,791 patients [20.9%] exposed out of 121,653 admissions of 42,101 users), and 176 

domperidone (2,872 admissions [12.4%] of 2,028 patients [19.2%] exposed out of 23,213 177 

admissions of 10,571 users) were more often given as part of discouraged pairs (eTable 2, 178 

eFigure 3).  179 

Overall, patients admitted with cardiovascular diseases (ICD-10 chapter IX); endocrine, 180 

nutritional and metabolic diseases (chapter IV); and respiratory diseases (chapter X) were 181 

more frequently exposed to discouraged drug pairs unlike obstetrical patients (chapter XV) 182 

and patients admitted for other reasons (chapter XXI) (Figure 1A, eFigure 4). Discouraged 183 

pairs varied among the remaining patient types, but within the ±0.1 threshold indicative of 184 

negligible imbalance (Figure 1A). In contrast, most drugs were more frequently prescribed in 185 

admissions with discouraged pairs with many above the 0.1 threshold except misoprostol and 186 

oxytocin (Figure 1B). 187 

In the 65 discouraged drug pairs (45%) prescribed to five patients or more (eTable 3), seven 188 

were prevalently (>10% of admissions) prescribed during hospital admissions (Figure 2). 189 

The most prominent pair was warfarin-ibuprofen, prevalent in all patient types except three 190 

(chapters X, XVI and XX). The second-most prominent was simvastatin-clarithromycin, 191 

prevalent in six patient types (I, III, IV and X-XII); the third-most was domperidone-192 

fluconazole, prevalent in five patient types (II-IV, VXIII and XXI). The other four were 193 

warfarin-diclofenac (XIV, XV, XVII), fluoxetine-venlafaxine (V), meropenem-valproic acid 194 

(VI) and erythromycin-fluconazole (XI). eFigures 4-6 show the prevalence of each drug and 195 

each diagnosis in patients exposed vs non-exposed to discouraged drug pairs. 196 

Figure 3 shows the estimated effects of exposure on mortality rate, readmission rate and 197 

LOS; eTable 5 contains the numerical estimates. Six discouraged drug pairs were 198 

significantly associated with increased mortality rate, of which particularly the 95% CIs of 199 
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meropenem-valproic acid, domperidone-fluconazole, imipramine-terbinafine and 200 

agomelatine-ciprofloxacin are relatively far from 1. Ertapenem-fluconazole, amitriptyline-201 

terbinafine as well as clarithromycin with ticagrelor, tacrolimus and everolimus, respectively, 202 

were associated with substantially elevated readmission rates albeit with CI bounds near 1. 203 

Many discouraged pairs were associated with longer or shorter hospital stays with most effect 204 

sizes within approximately ±1 day. 205 

Discussion 206 

We found that 1,836,170 admissions (64%) of 659,525 patients (70%) featured at least one 207 

pDDI and that during 27,605 admissions (1%) of 18,192 patients (2%) at least one 208 

discouraged drug pair was administered. Seven discouraged pairs were prevalent, most 209 

notably warfarin-ibuprofen (18 patient types), simvastatin-clarithromycin (six patient types) 210 

and domperidone-fluconazole (five patient types). Of the prevalent discouraged pairs, 211 

domperidone-fluconazole and meropenem-valproic acid (one patient type) were significantly 212 

associated with elevated mortality. The prevalent pair warfarin-ibuprofen was just 213 

statistically significantly associatiated with elevated readmission rates and three of five 214 

discouraged pairs associated with elevated readmission rates involved clarithromycin. LOS 215 

results were inconclusive. 216 

The increasing availability of longitudinal patient data and growing access to databases with 217 

DDI information facilitate comparative, data-driven approaches to identify, anticipate and 218 

explain DDIs32. Indeed, in this study we used comprehensive phenotypic in-hospital data to 219 

detail the landscape of in-hospital pDDIs with particular focus on discouraged drug pairs to 220 

elicit their effects on potentially preventable adverse outcomes. 221 

Prevalence patterns and effects of pDDIs are elusive because many potentially interacting 222 

drug combinations offer genuine clinical utility if used consciously by alert physicians. 223 

Teasing apart these dynamics is difficult on a large scale. Indeed, studies of pDDI prevalence 224 

in hospitalised patients often use relatively small samples from sub-populations such as 225 

critically ill or oncological patients33-35. Our approach was different seeking to conduct a 226 

large-scale screening of hospitalised patients, focusing on outright discouraged drug pairs 227 

because their clinical benefits unlikely outweigh their potential harm.  228 
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A recent systematic review of clinically manifested DDIs36 found prevalence estimates up to 229 

26% in not-critically-ill hospitalised patients37. Further, the number of drugs used 230 

concomitantly has been shown to be a significant risk factor for interactions at hospitals and 231 

in primary care38-41. We also observed widespread polypharmacy among patients exposed to 232 

pDDIs especially when exposed to discouraged drug pairs. However, unlike for diagnoses, no 233 

drugs involved in pDDIs  emerged as neither particularly frequent nor infrequent except 234 

misoprostol and oxytocin. Thus, perceiving the effect of polypharmacy solely in terms of the 235 

association between number of concomitant drugs and pDDIs is arguably of limited use as it 236 

tells us little about the nature of the association. Instead, other phenotypic factors such as 237 

comorbidities may be of greater utility to the prescribing physician at point of care. 238 

A Danish study of 167,232 patients from 1998 on the island of Funen found that 4.4% of all 239 

inhabitants of age above 70 were prescribed drug combinations with a high risk of severe 240 

interactions42. A recent Brazilian study with approximately 340,000 patients from primary- 241 

and secondary-care hospitals arrived at a similar figure43. These estimates are substantially 242 

lower than our 14% patients prescribed pDDIs with expected major clinical significance 243 

(Table 3), likely because our data are newer than those in the former and include also tertiary 244 

hospitals unlike both those studies.  245 

Another study from Denmark published in 2005 found that pDDIs are prevalent but mostly 246 

clinically insignificant44. Our results agree with this notion: six discouraged combinations 247 

featured substantial and statistically significant associations with elevated mortality, of which 248 

only two were prevalent in particular patient types (meropenem-valproic acid, domperidone-249 

fluconazole). This was the case for only warfarin-ibuprofen with respect to readmission rates.  250 

Rarely used drugs are more often involved in potentially dangerous DDIs perhaps due to 251 

prescribers’ lack of specific knowledge on these drugs; consider three examples. First, using 252 

meropenem (or ertapenem) with valproic acid elevates the risk of seizures (unknown 253 

mechanism) and meropenem consumption is increasingly prescribed at emergency 254 

departments, often by junior doctors. Second, the cardiac risks of domperidone and 255 

erythromycin (prolonged QT and Torsades-de-Pointes) are aggravated by concurrent use of 256 

fluconazole (or any conazole) because the latter impedes their metabolism by inhibiting 257 

CYP3A445. Third, concurrent use of agomelatine and ciprofloxacin increases the exposure of 258 
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the former because the later inhibits CYP1A2. Causes of death in deceased exposed to these 259 

drug pairs did not suggest unexpected patterns (eFigure 7). 260 

Some active ingredients involved in discouraged drug pairs have several ATC codes 261 

(terbinafine, diclofenac and tacrolimus) and the somewhat agreeing effect estimates on 262 

mortality and readmission rates add confidence to these findings. Interestingly, the effects on 263 

LOS were not consistent across ATC codes for the same active ingredient prompting cautious 264 

interpretation. Indeed, LOS is elusive: for example, a short admission can end with discharge 265 

to home or death. To arrive at meaningful conclusions on lengths-of-stays, one would need to 266 

use for example drug administrations allowing for time-to-event analyses, something not 267 

possible with these data. 268 

Strengths and limitations 269 

This study features a range of strengths. First, this is the largest study assessing the 270 

prevalence of discouraged drug pairs and their effects on adverse outcomes among 271 

hospitalised patients. Second, we used unfiltered data from a heterogeneous population of 272 

almost one million hospitalised patients over an eight-year period. Third, detailed and reliable 273 

register data allow for detailed phenotyping, both with respect to diagnoses and medication 274 

use. Fourth, such deep phenotyping underpins the use of high-dimensional preference scores 275 

to obtain approximate empirical equipoise when studying the associations between exposure 276 

and adverse outcomes. Fifth, the risk of selection bias and loss to follow-up was minimal. 277 

Nonetheless, there are potential weaknesses. First, hospital data may be subject to recall and 278 

information bias. This is likely not an issue for this study because we rely on near-objective 279 

data (e.g. validated source of medication data) used also for administrative and billing 280 

purposes. Bias by indication could be a problem but the use of high-dimensional propensity 281 

scores should, at least in part, counter this. Second, we only considered two-way pDDIs. 282 

Large-scale screening for N-drug interactions is difficult due to combinatorial explosion in 283 

the number of possibilities and difficulties in defining a proper reference to which the results 284 

should be compared. Instead, targeted investigations would be meaningful, e.g. on triple 285 

whammy and its effect on kidney function. Third, different pDDI databases likely feature 286 

discrepancies regarding management recommendations and clinical significance, and the 287 

DID covers primarily pharmacokinetic interactions. Further, DID allows different levels of 288 

evidence: for older drugs only pDDIs supported by published evidence are considered, 289 

96 pharmacovigilant machine learning in big data?



   

 

 

 

11 

whereas for newer drugs also pDDIs from summaries of product characteristics not published 290 

elsewhere are included. This database, nonetheless, is well-known among Danish physicians 291 

and used in daily practice to guide medicinal treatment and, as such, makes for a natural gold 292 

standard against which to compare real-life prescriptions in Denmark. Fourth, the pDDIs 293 

involving antibiotics and systemic antifungals and associated with elevated mortality are used 294 

to treat serious infections. Thus, exposure to these combinations could be proxies for serious 295 

clinical conditions, themselves associated with high mortality. If so, physicians could have 296 

deemed it worthwhile to use a discouraged drug pair due to bleak prognoses. Fifth, despite a 297 

large dataset we had relatively few patients exposed to several discouraged drug pairs, 298 

making it difficult to rule out effects of these exposures on mortality and readmission rates 299 

even though we did not find any. 300 

Conclusion 301 

Discouraged drug pairs are common in hospitalised patients at large and so are potentially 302 

problematic drug pairs, notably, combinations of warfarin and NSAIDs and with 303 

antiinfectives (especially, azoles, carbapenems and macrolides). The meropenem-valproic 304 

acid and domperidone-fluconazole combination, both prevalent in at least one patient type, 305 

were significantly associated with elevated post-discharge mortality rate. This study elicited 306 

unfortunate prescription patterns with potentially detrimental effects in hospitalised patients 307 

and the CYP3A4 isoenzyme was involved in more than half the discouraged pairs associated 308 

with elevated mortality or readmission rates.  309 
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Tables 

Table 1. Classification of potential drug-drug interactions based on management 

recommendation, clinical significance, and documentation level published by the Danish 

Medicines Agency Drug Interaction Database. 

Management recommendation  
1 The drug combination should always be avoided (discouraged in text). 
2 The drug combination can be used with dose adjustment.  
3 The drug combination can be used with staggered time of ingestion. 

4 The drug combination can be used under certain precautions, i.e. changing the routes of 
administration. Alternative agents should be considered.  

5 The drug combination can be used. No action needed as the risk of adverse events appears 
to be small.  

Clinical significance  

Major Clinically pronounced/physiological effect with either significant altered therapeutic 
response or frequent occurrence of serious adverse reactions.  

Moderate 
Clinically moderate/physiological effect with either slightly altered therapeutic response, or 
rare occurrence of more serious side effects. Serum concentration changes, which in other 
experiments have been closely associated with the above-mentioned phenomena.  

Minor 
Unchanged or not significantly altered biological response with fewer and easier side 
effects - or serum concentration changes, which in other studies have not shown significant 
changes in the biological response.  

Possible Pharmacokinetic changes which are not accompanied by known adverse reactions or 
changes in the biological response.  

None Neither kinetic or physiological/clinical changes.  

Undetermined Kinetic or physiological/clinical changes that cannot be estimated based on the available 
documentation.  

Documentation level  

Well-
documented 

At least 2 (from different centres) human controlled trials and/or (before and after) trials in 
relevant individuals with single or multiple steady state trials in the form of either 
significant kinetic or dynamic changes.  

Documented A human controlled study and/or (before and after) study with steady state single or 
multiple dose trials in the form of either significant kinetic or dynamic changes. 

Limited 
documented 

Either more than 2 case reports with relevant during and after kinetics or dynamics or 
human in vitro studies with relevant cytochrome P450 (CYP) fractions and concentrations. 

Poorly 
documented 1-2 case reports. Non-conclusive in vitro studies.  
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Table 2. Overall and stratified summary statistics of included admissions. Values are N (%) 

and median (interquartile range). pDDI: potential drug-drug interaction. AHRQ: Agency for 

Healthcare Research Quality. 

 Overall No pDDIs pDDIs Discouraged 
drug pairs 

Admissions 2,886,227 1,050,057 
(36%) 

1,836,170 
(64%) 27,605 (1%) 

Women 1,551,131 
(54%) 565,697 (54%) 985,434 (54%) 12,655 (46%) 

Patients 945,475 553,612 659,525 18,192 
No. prescriptions 9 (5-15) 5 (3-8) 12 (7-19) 22 (14-36) 

in women 8 (4-15) 4 (3-7) 12 (7-19) 22 (14-35) 
No. unique prescribed drugs 7 (4-11) 4 (2-6) 9 (6-13) 16 (11-22) 

Unique prescribed drugs 

2-4 drugs 888,934 (31%) 629,786 (60%) 259,148 (14%) 520 (2%) 

5-9 drugs 1,042,023 
(36%) 347,943 (33%) 694,080 (38%) 4,408 (16%) 

≥ 10 drugs 955,270 (33%) 72,328 (7%) 882,942 (48%) 22,677 (82%) 
Age in years 62 (41- 74) 51 (30-69) 65 (49-77) 68 (58-77) 

Age group 

< 18 years 203,125 (7%) 148,043 (14%) 55,082 (3%) 492 (2%) 

18-44 years 619,540 (22%) 293,005 (28%) 326,535 (18%) 2,359 (9%) 

45-64 years 773,558 (27%) 269,693 (26%) 503,865 (27%) 7,790 (28%) 

65-74 years 577,389 (20%) 162,494 (16%) 414,895 (23%) 8,166 (30%) 

75-84 years 461,247 (16%) 114,094 (11%) 347,153 (19%) 6,588 (24%) 

≥ 85 years 251,368 (9%) 62,728 (6%) 188,640 (10%) 2,210 (8%) 
pDDIs per patient 1 (0-3) 0 (0-0) 2 (1-5) 9 (5-15) 
Length of stay in days 3 (1-6) 2 (1-4) 3 (2-7) 7 (3-15) 
Acute admission 2,107,774 

(73%) 765,816 (73%) 1,341,958 
(73%) 19,746 (72%) 

In-hospital mortality 62,830 (2%) 14,397 (1%) 48,433 (3%) 1,252 (5%) 
Low eGFR (<30ml/min/1.73m2) 109,907 (4%) 15,198 (1%) 94,709 (5%) 2,660 (10%) 
Elixhauser index (AHQR)   

 
  

 

<0 646,561 (22%) 230,311 (22%) 416,250 (23%) 4,893 (18%) 
0 854,868 (30%) 399,526 (38%) 455,342 (25%) 3,838 (14%) 

1-4 297,174 (10%) 104,072 (10%) 193,102 (11%) 3,157 (11%) 

≥5 1,087,624 
(40%) 316,148 (30%) 771,476 (42%) 15,717 (57%) 

Most common drug classes (ATC level 3) 
Other analgesics and antipyretics 
(N02B) 

1,334,677 
(63%) 501,208 (48%) 1,334,677 

(73%) 22,024 (80%) 
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Antithrombotic agents (B01A) 1,038,880 
(43%) 211,944 (20%) 1,038,880 

(57%) 21,890 (79%) 

Opioids (N02A) 917,092 (43%) 318,180 (30%) 917,092 (50%) 18,098 (66%) 
Anti-inflammatory and 
antirheumatic products, non-
steroids (M01A) 

663,518 (29%) 178,152 (17%) 663,518 (36%) 14,900 (54%) 

Drugs for peptic ulcer and gastro-
oesophageal reflux disease 
(GORD) (A02B) 

642,650 (27%) 141,344 (13%) 642,650 (35%) 15,429 (56%) 

Beta-lactam antibacterials, 
penicillins (J01C) 686,899 (24%) 206,305 (20%) 480,594 (26%) 10,796 (39%) 

Loop (high-ceiling) diuretics 
(C03C) 518,342 (18%) 52,487 (5%) 465,855 (25%) 131,98 (48%) 

Most common primary diagnosis 
Abdominal and pelvic pain (R10) 63,574 (2%) 26,387 (3%) 37,187 (2%) 448 (2%) 
Pneumonia, organism unspecified 
(J18) 60,237 (2%) 21,369 (2%) 38,868 (2%) 1,057 (4%) 

Atrial fibrillation and flutter (I48) 55,405 (2%) 14,422 (1%) 40,983 (2%) 667 (2%) 
Mental and behavioural disorders 
due to use of alcohol (F10) 51,347 (2%) 29,206 (3%) 22,141 (1%) 135 (0%) 

Other chronic obstructive 
pulmonary disease (J44) 45,919 (2%) 16,039 (2%) 29,880 (2%) 474 (2%) 

Nonrheumatic aortic valve 
disorders (I35) 10,244 (0%) 1,784 (0%) 8,646 (0%) 1,439 (5%) 

Acute myocardial infarction (I21) 30,250 (1%) 983 (0%) 29,267 (2%) 244 (1%) 

Angina pectoris (I20) 31,664 (1%) 5,366 (1%) 26,298 (1%) 190 (1%) 

Bacterial pneumonia, NOC (J15) 24,045 (1%) 8,420 (1%) 15,625 (1%) 528 (2%) 

Other sepsis (A41) 28,401 (1%) 7,348 (1%) 21,053 (1%) 482 (2%) 
  

prevalence and adverse outcomes of drug-drug interactions 101



   

 

 

 

16 

Table 3. Unique drug combinations (upper cells) and prevalence (lower cells) of pDDIs by 

management recommendation and clinical significance.  Values are N (%). 

Recommendat
ion level 

Clinical significance 

 

Major Moderate Minor Possible None Un-
determined Total 

1: 
Discouraged 

104 (71) 31 (21) - 8 (5) - 3 (2) 146 (3) 
16,339 
(90) 1,293 (7) - 1,206 (7) - 24 (0) 18,192 (3) 

2: Dose 
adjustment 

164 (16) 457 (45) 48 (5) 279 (28) 1 (0) 56 (6) 1,005 (18) 
40,718 
(27) 91,264 (61) 12,606 (8) 58,622 (39) 25 (0) 4,953 (3) 148,455 

(23) 

3: Staggered 
ingestion 

53 (23) 100 (44) 9 (4) 47 (21) - 17 (8) 226 (4) 
14,339 
(16) 38,544 (43) 244 (0) 12,264 (14) - 43,776 (48) 90,662 

(14) 

4: Precautions 
300 (17) 602 (35) 86 (5) 601 (35) 30 (2) 123 (7) 1,742 (31) 
45,221 
(8) 

459,717 
(86) 82,611 (16) 249,539 

(47) 12,214 (2) 106,406 (20) 532,066 
(81) 

5: No action 
needed 

6 (0) 82 (3) 311 (12) 206 (8) 1,648 (65) 274 (11) 2,527 (45) 

165 (0) 97,285 (21) 189,797 
(40) 

116,185 
(25) 

399,935 
(85) 191,767 (41) 470,956 

(71) 

Total 
627 (11) 1,272 (23) 454 (8) 1,141 (20) 1,679 (30) 473 (8) 5,646 
92,167 
(14) 

517,599 
(78) 

225,512 
(34) 1,679 (0) 400,935 

(61) 264,711 (40) 659,525 
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Figures  

 

Figure 1. Standardised differences in proportions (i.e. discouraged drug pairs initiated versus 

not) of diagnoses (panel A) and prescribed drugs during admissions (panel B), respectively. 

The colour represents ICD-10 chapter and anatomical ATC level, respectively, and the size is 

the prevalence in patients exposed to discouraged drug pairs. The top three diagnoses and 

drugs are labelled, and an interactive version of the figure is provided as online 

supplementary material. 
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Figure 2. Prevalence of discouraged drug pairs by patient type. Each point represents one 

discouraged drug pair, and size the absolute value of the standardised difference in 

proportions using as reference admissions during which treatment with any discouraged pair 

was initiated. DF (N = 5): Domperidone (A03FA03) + Fluconazole (J02AC01); WD (N = 3): 

Warfarin (B01AA03) + Diclofenac (M01AB05, systemic); WI (N = 18): Warfarin 

(B01AA03) + Ibuprofen (M01AE01); SC (N = 6): Simvastatin (C10AA01) + Clarithromycin 

(J01FA09); MV (N = 1): Meropenem (J01DH02) + Valproic acid (N03AG01); EF (N = 1): 

Erythromycin (J01FA01) + Fluconazole (J02AC01); FV (N = 1): Fluoxetine (N06AB03) + 

Venlafaxine (N06AX16).
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eTable 1. Prevalence of potential drug-drug interactions based on 
recom

m
endation and docum

entation level. 
U

n
iq

u
e
 d

ru
g
 c

o
m

b
in

a
tio

n
s
 (u

p
p
e
r c

e
lls

) a
n
d
 p

re
v
a
le

n
c
e
 (lo

w
e
r c

e
lls

) o
f p

D
D

Is
 b

y
 m

a
n
a
g
e
m

e
n
t 

re
c
o
m

m
e
n
d
a
tio

n
 a

n
d
 d

o
c
u
m

e
n
ta

tio
n
 le

v
e
l. V

a
lu

e
s
 a

re
 N

 (%
). 

 

R
ecom

m
en-

dation level 
D

ocum
entation level 

W
ell 

docum
ente

d 

D
ocu-

m
ented 

Lim
ited 

docum
ented 

Poorly 
docum

ented 
Total 

1: D
iscouraged 

2
5
 (1

7
) 

7
0
 (4

8
) 

2
3
 (1

6
) 

2
8
 (1

9
) 

1
4
6
 (3

) 

8
,1

6
0
 (4

5
) 

5
,9

1
8
 

(3
3
) 

3
,4

7
7
 (1

9
) 

2
,1

3
3
 (1

2
) 

1
8
,1

9
2
 

(3
) 

2: D
ose 

adjustm
ent 

1
7
3
 (1

7
) 

5
4
0
 (5

4
) 

7
4
 (7

) 
2
1
8
 (2

2
) 

1
,0

0
5
 

(1
8
) 

8
,1

4
0
7
 (5

5
) 

9
1
,0

9
6
 

(6
1
) 

3
,5

9
9
 (2

) 
2
3
,7

3
0
 (1

6
) 

1
4
8
,4

5
5
 

(2
3
) 

3: Staggered 
ingestion 

1
0
5
 (4

6
) 

8
6
 (3

8
) 

2
1
 (9

) 
1
4
 (6

) 
2
2
6
 (4

) 

8
1
,0

5
0
 (8

9
) 

1
2
,1

2
9
 

(1
3
) 

2
,7

4
4
 (3

) 
4
8
8
 (1

) 
9
0
,6

6
2
 

(1
4
) 

4: Precautions 
3
0
4
 (1

7
) 

8
3
4
 (4

8
) 

1
6
1
 (9

) 
4
4
3
 (2

5
) 

1
,7

4
2
 

(3
1
) 

1
6
,3

0
9
7
 (3

1
) 

4
6
8
,8

8
8
 

(8
8
) 

8
5
,7

6
4
 (1

6
) 

1
2
3
,7

9
2
 (2

3
) 

5
3
2
,0

6
6
 

(8
1
) 

5: N
o action 

needed 

2
5
9
 (1

0
) 

1
,7

5
5
 

(6
9
) 

2
3
0
 (9

) 
2
8
3
 (1

1
) 

2
,5

2
7
 

(4
5
) 

1
4
,1

7
3
3
 (3

0
) 

3
9
9
,1

1
5
 

(8
5
) 

2
1
6
,5

3
9
 (4

6
) 

1
7
0
,0

4
3
 (3

6
) 

4
7
0
,9

5
6
 

(7
1
) 

Total 
8
6
6
 (1

2
) 

3
,2

8
5
 

(5
8
) 

5
0
9
 (9

) 
9
8
6
 (1

7
) 

5
,6

4
6
 

2
8
,8

2
1
0
 (4

4
) 

6
0
4
,9

9
9
 

(9
2
) 

2
4
6
,7

7
1
 (3

7
) 

2
3
4
,2

0
5
 (3

6
) 

6
5
9
,5

2
5
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eTable 2. Drugs involved in discouraged drug pairs.  
Drugs used by less than 5 patients were omitted to avoid privacy issues. 
 

Drug name 

ATC Disc
our
age
d-

pDD
Is 
(N) 

Pairs 
(N) 

Disco
urage

d-
pDDIs 
involv

ing 
drug 
(%) 

Admis
sions 
with 

disco
urage

d-
pDDIs 

(N) 

Admis
sions 
with 
drug 
(N) 

Admis
sions 
with 

disco
urage

d-
pDDIs 

(%) 

Patien
ts 

with 
disco
urage

d-
pDDI 
(N) 

Patien
ts 

with 
drug 
(N) 

Patien
ts 

with 
disco
urage

d-
pDDI 
(%) 

Total 
admis
sions 

(N) 

Total 
patien
ts (N) 

Patien
ts 

overal
l (%) 

Admis
sions 
overal
l (%) 

Erythromycin J01FA01 8 860 0.93 1573 5665 27.77 1461 5001 29.21 28862
27 

94547
5 

0.53 0.2 

Rifabutin J04AB04 2 224 0.89 25 101 24.75 10 46 21.74 28862
27 

94547
5 

0 0 

Ketoconazole D01AC08 6 753 0.8 644 3158 20.39 320 1513 21.15 28862
27 

94547
5 

0.16 0.11 

Diclofenac S01BC03 1 370 0.27 53 313 16.93 13 177 7.34 28862
27 

94547
5 

0.02 0.01 

Clarithromycin J01FA09 14 1086 1.29 4022 25792 15.59 3338 21008 15.89 28862
27 

94547
5 

2.22 0.89 

Paroxetine N06AB05 4 832 0.48 1206 8733 13.81 408 2707 15.07 28862
27 

94547
5 

0.29 0.3 

Domperidone A03FA03 1 1009 0.1 2872 23213 12.37 2028 10571 19.18 28862
27 

94547
5 

1.12 0.8 

Isocarboxazid N06AF01 4 400 1 90 789 11.41 36 249 14.46 28862
27 

94547
5 

0.03 0.03 

Warfarin B01AA03 16 1202 1.33 12570 12165
3 

10.33 8791 42101 20.88 28862
27 

94547
5 

4.45 4.21 

Diclofenac D11AX18 1 289 0.35 18 197 9.14 6 87 6.9 28862
27 

94547
5 

0.01 0.01 

Imatinib L01XE01 1 491 0.2 139 1543 9.01 44 337 13.06 28862
27 

94547
5 

0.04 0.05 

 4 

Etoricoxib M01AH05 1 216 0.46 9 106 8.49 6 51 11.76 28862
27 

94547
5 

0.01 0 

Sirolimus L04AA10 3 434 0.69 168 2085 8.06 30 233 12.88 28862
27 

94547
5 

0.02 0.07 

Ketoconazole J02AB02 2 248 0.81 12 158 7.59 9 75 12 28862
27 

94547
5 

0.01 0.01 

Phenprocoum
on 

B01AA04 2 542 0.37 146 1985 7.36 97 649 14.95 28862
27 

94547
5 

0.07 0.07 

Pravastatin C10AA03 1 732 0.14 371 5193 7.14 114 1518 7.51 28862
27 

94547
5 

0.16 0.18 

Ciclosporin L04AD01 5 819 0.61 681 9595 7.1 193 2257 8.55 28862
27 

94547
5 

0.24 0.33 

Clonidine N02CX02 3 982 0.31 806 11522 7 303 7371 4.11 28862
27 

94547
5 

0.78 0.4 

Piroxicam M02AA07 1 401 0.25 27 387 6.98 13 232 5.6 28862
27 

94547
5 

0.02 0.01 

Tizanidine M03BX02 3 703 0.43 321 4744 6.77 194 1244 15.59 28862
27 

94547
5 

0.13 0.16 

Dronedarone C01BD07 1 307 0.33 59 910 6.48 32 325 9.85 28862
27 

94547
5 

0.03 0.03 

Tenoxicam M01AC02 1 271 0.37 15 246 6.1 5 105 4.76 28862
27 

94547
5 

0.01 0.01 

Diclofenac M02AA15 1 443 0.23 24 433 5.54 16 253 6.32 28862
27 

94547
5 

0.03 0.02 

Voriconazole J02AC03 3 734 0.41 192 3542 5.42 49 1418 3.46 28862
27 

94547
5 

0.15 0.12 

Itraconazole J02AC02 2 578 0.35 53 1149 4.61 38 532 7.14 28862
27 

94547
5 

0.06 0.04 

Fluconazole J02AC01 2 1318 0.15 3802 88426 4.3 2929 50842 5.76 28862
27 

94547
5 

5.38 3.06 

Ibuprofen M02AA13 1 290 0.34 6 148 4.05 5 94 5.32 28862
27 

94547
5 

0.01 0.01 

Rifampicin, 
Pyrazinamide, 
Ethambutol nd 
Isoniazid 

J04AM06 4 303 1.32 12 328 3.66 7 203 3.45 28862
27 

94547
5 

0.02 0.01 
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Nabumetone M01AX01 1 493 0.2 27 759 3.56 18 339 5.31 28862
27 

94547
5 

0.04 0.03 

Simvastatin 
and Ezetimibe 

C10BA02 2 284 0.7 10 293 3.41 8 101 7.92 28862
27 

94547
5 

0.01 0.01 

Terbinafine D01BA02 5 631 0.79 57 1685 3.38 31 912 3.4 28862
27 

94547
5 

0.1 0.06 

Carbamazepin
e 

N03AF01 8 873 0.92 337 10396 3.24 178 3167 5.62 28862
27 

94547
5 

0.33 0.36 

Terbinafine D01AE15 5 848 0.59 211 6839 3.09 144 4481 3.21 28862
27 

94547
5 

0.47 0.24 

Diclofenac, 
combinations 

M01AB55 1 546 0.18 37 1371 2.7 22 598 3.68 28862
27 

94547
5 

0.06 0.05 

Etodolac M01AB08 1 847 0.12 370 14021 2.64 251 9338 2.69 28862
27 

94547
5 

0.99 0.49 

Azathioprine L04AX01 1 896 0.11 315 12493 2.52 139 3640 3.82 28862
27 

94547
5 

0.38 0.43 

Ritonavir J05AE03 5 590 0.85 76 3029 2.51 47 792 5.93 28862
27 

94547
5 

0.08 0.1 

Amitriptyline N06AA09 3 1114 0.27 902 36127 2.5 376 12365 3.04 28862
27 

94547
5 

1.31 1.25 

Emtricitabine, 
tenofovir 
disoproxil, 
elvitegravir 
and cobicistat 

J05AR09 4 232 1.72 5 209 2.39 5 93 5.38 28862
27 

94547
5 

0.01 0.01 

Fluoxetine N06AB03 2 875 0.23 215 10164 2.12 150 3450 4.35 28862
27 

94547
5 

0.36 0.35 

Colchicine M04AC01 1 779 0.13 165 8144 2.03 93 3728 2.49 28862
27 

94547
5 

0.39 0.28 

Agomelatine N06AX22 2 672 0.3 76 3810 1.99 57 1596 3.57 28862
27 

94547
5 

0.17 0.13 

Tacrolimus D11AH01 2 458 0.44 11 562 1.96 10 252 3.97 28862
27 

94547
5 

0.03 0.02 

Posaconazole J02AC04 1 628 0.16 90 4768 1.89 38 964 3.94 28862
27 

94547
5 

0.1 0.17 

 6 

Rifampicin J04AB02 6 857 0.7 131 7229 1.81 102 4308 2.37 28862
27 

94547
5 

0.46 0.25 

Valproic acid N03AG01 2 1029 0.19 606 33631 1.8 458 10000 4.58 28862
27 

94547
5 

1.06 1.17 

Ibuprofen M01AE01 2 1437 0.14 9982 56922
3 

1.75 7368 36530
2 

2.02 28862
27 

94547
5 

38.64 19.72 

Clomipramine N06AA04 3 596 0.5 48 2852 1.68 21 824 2.55 28862
27 

94547
5 

0.09 0.1 

Drospirenone 
and 
ethinylestradio
l 

G03AA12 3 419 0.72 20 1220 1.64 7 412 1.7 28862
27 

94547
5 

0.04 0.04 

Desogestrel G03AC09 4 335 1.19 7 436 1.61 5 201 2.49 28862
27 

94547
5 

0.02 0.02 

Medroxyproge
sterone 

G03DA02 4 488 0.82 17 1156 1.47 5 374 1.34 28862
27 

94547
5 

0.04 0.04 

Ertapenem J01DH03 1 697 0.14 41 3009 1.36 32 2076 1.54 28862
27 

94547
5 

0.22 0.1 

Estriol G03CA04 3 645 0.47 39 3075 1.27 14 1211 1.16 28862
27 

94547
5 

0.13 0.11 

Oxcarbazepine N03AF02 4 868 0.46 131 10597 1.24 52 2986 1.74 28862
27 

94547
5 

0.32 0.37 

Methenamine J01XX05 1 620 0.16 31 2563 1.21 27 906 2.98 28862
27 

94547
5 

0.1 0.09 

Atazanavir J05AE08 3 507 0.59 22 1894 1.16 12 566 2.12 28862
27 

94547
5 

0.06 0.07 

Simvastatin C10AA01 8 1392 0.57 5048 44254
5 

1.14 3887 14857
9 

2.62 28862
27 

94547
5 

15.71 15.33 

Estradiol G03CA03 5 1058 0.47 344 31379 1.1 138 10795 1.28 28862
27 

94547
5 

1.14 1.09 

Diclofenac M01AB05 1 1245 0.08 1917 17792
8 

1.08 1326 12025
6 

1.1 28862
27 

94547
5 

12.72 6.16 

Meropenem J01DH02 1 1283 0.08 575 55688 1.03 439 36151 1.21 28862
27 

94547
5 

3.82 1.93 

Imipramine N06AA02 3 785 0.38 69 6844 1.01 45 2235 2.01 28862
27 

94547
5 

0.24 0.24 
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Tacrolimus L04AD02 2 765 0.26 90 9708 0.93 68 1900 3.58 28862
27 

94547
5 

0.2 0.34 

Celecoxib M01AH01 1 996 0.1 661 72096 0.92 571 57153 1 28862
27 

94547
5 

6.04 2.5 

Naproxen M01AE02 2 811 0.25 165 18264 0.9 110 12381 0.89 28862
27 

94547
5 

1.31 0.63 

Everolimus L04AA18 2 459 0.44 15 1735 0.86 12 294 4.08 28862
27 

94547
5 

0.03 0.06 

Selegiline N04BD01 2 494 0.4 14 1698 0.82 6 544 1.1 28862
27 

94547
5 

0.06 0.06 

Venlafaxine N06AX16 3 1082 0.28 220 39070 0.56 149 12541 1.19 28862
27 

94547
5 

1.33 1.35 

Verapamil C08DA01 3 1036 0.29 221 41236 0.54 135 13786 0.98 28862
27 

94547
5 

1.46 1.43 

Tamoxifen L02BA01 2 620 0.32 21 4280 0.49 16 1974 0.81 28862
27 

94547
5 

0.21 0.15 

Phenobarbital N03AA02 9 945 0.95 107 24658 0.43 51 10612 0.48 28862
27 

94547
5 

1.12 0.85 

Allopurinol M04AA01 1 1181 0.08 315 76643 0.41 139 22843 0.61 28862
27 

94547
5 

2.42 2.66 

Quetiapine N05AH04 1 1134 0.09 297 74846 0.4 234 24677 0.95 28862
27 

94547
5 

2.61 2.59 

Nortriptyline N06AA10 2 1045 0.19 87 21962 0.4 60 7232 0.83 28862
27 

94547
5 

0.76 0.76 

Ticagrelor B01AC24 2 984 0.2 188 49328 0.38 155 30626 0.51 28862
27 

94547
5 

3.24 1.71 

Mianserin N06AX03 1 930 0.11 59 16501 0.36 21 6006 0.35 28862
27 

94547
5 

0.64 0.57 

Probenecid M04AB01 2 551 0.36 5 1435 0.35 5 469 1.07 28862
27 

94547
5 

0.05 0.05 

Midazolam N05CD08 2 1137 0.18 145 42109 0.34 108 33001 0.33 28862
27 

94547
5 

3.49 1.46 

Metoprolol C07AB02 1 1392 0.07 1191 37978
5 

0.31 399 12723
7 

0.31 28862
27 

94547
5 

13.46 13.16 

 8 

Apixaban B01AF02 1 811 0.12 49 16377 0.3 24 8230 0.29 28862
27 

94547
5 

0.87 0.57 

Nifedipine C08CA05 2 920 0.22 36 12454 0.29 30 4457 0.67 28862
27 

94547
5 

0.47 0.43 

Ciprofloxacin J01MA02 2 1384 0.14 393 13525
6 

0.29 248 86572 0.29 28862
27 

94547
5 

9.16 4.69 

Letrozole L02BG04 1 761 0.13 25 9502 0.26 14 4067 0.34 28862
27 

94547
5 

0.43 0.33 

Sulfamethizole J01EB02 1 943 0.11 31 11944 0.26 27 10010 0.27 28862
27 

94547
5 

1.06 0.41 

Dabigatran 
etexilate 

B01AE07 2 899 0.22 81 32015 0.25 43 14549 0.3 28862
27 

94547
5 

1.54 1.11 

Atorvastatin C10AA05 1 1142 0.09 231 94086 0.25 64 36004 0.18 28862
27 

94547
5 

3.81 3.26 

Rosuvastatin C10AA07 1 967 0.1 54 23416 0.23 10 7811 0.13 28862
27 

94547
5 

0.83 0.81 

Zuclopenthixol N05AF05 1 823 0.12 25 14838 0.17 14 4039 0.35 28862
27 

94547
5 

0.43 0.51 

Cabergoline G02CB03 1 506 0.2 10 5821 0.17 10 4909 0.2 28862
27 

94547
5 

0.52 0.2 

Triazolam N05CD05 3 1118 0.27 43 66578 0.06 33 48423 0.07 28862
27 

94547
5 

5.12 2.31 

Mirtazapine N06AX11 1 1203 0.08 28 76274 0.04 13 27409 0.05 28862
27 

94547
5 

2.9 2.64 

Rivaroxaban B01AF01 1 973 0.1 9 53062 0.02 5 34144 0.01 28862
27 

94547
5 

3.61 1.84 

Lansoprazole A02BC03 1 1243 0.08 15 11873
7 

0.01 6 43814 0.01 28862
27 

94547
5 

4.63 4.11 

Pantoprazole A02BC02 2 1518 0.13 9 57044
0 

0 5 22400
2 

0 28862
27 

94547
5 

23.69 19.76 
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eTable 3. O
verview

 of drugs involved in discouraged com
binations  

D
rugs used by less than 5 patients w

ere om
itted to avoid privacy issues. 

 D
rug nam

e 
A

TC
 

R
ecom

m
en-

dation level 
C

linical 
significance 

D
ocum

entation 
pD

D
Is 

(N
) 

D
om

peridone 
A03FA03 

5 
M

inor 
D

ocum
ented 

2 
D

om
peridone 

A03FA03 
5 

N
one 

D
ocum

ented 
2 

D
om

peridone 
A03FA03 

1 
M

ajor 
Lim

ited 
docum

ented 
1 

W
arfarin 

B01AA03 
5 

M
inor 

D
ocum

ented 
3 

W
arfarin 

B01AA03 
5 

M
inor 

W
ell 

docum
ented 

3 

W
arfarin 

B01AA03 
5 

M
oderate 

Poorly 
docum

ented 
1 

W
arfarin 

B01AA03 
5 

N
one 

D
ocum

ented 
56 

W
arfarin 

B01AA03 
5 

N
one 

Lim
ited 

docum
ented 

4 

W
arfarin 

B01AA03 
5 

N
one 

W
ell 

docum
ented 

4 

W
arfarin 

B01AA03 
5 

Possible 
D

ocum
ented 

4 
W

arfarin 
B01AA03 

5 
U

ndeterm
ined 

D
ocum

ented 
4 

W
arfarin 

B01AA03 
5 

U
ndeterm

ined 
Poorly 

docum
ented 

12 

W
arfarin 

B01AA03 
5 

U
ndeterm

ined 
W

ell 
docum

ented 
2 

W
arfarin 

B01AA03 
4 

M
ajor 

W
ell 

docum
ented 

5 

W
arfarin 

B01AA03 
4 

M
inor 

D
ocum

ented 
1 

W
arfarin 

B01AA03 
4 

M
oderate 

D
ocum

ented 
6 

W
arfarin 

B01AA03 
4 

M
oderate 

Lim
ited 

docum
ented 

4 

W
arfarin 

B01AA03 
4 

M
oderate 

Poorly 
docum

ented 
5 

W
arfarin 

B01AA03 
4 

M
oderate 

W
ell 

docum
ented 

17 

W
arfarin 

B01AA03 
4 

Possible 
D

ocum
ented 

11 

W
arfarin 

B01AA03 
4 

Possible 
Lim

ited 
docum

ented 
3 

W
arfarin 

B01AA03 
4 

Possible 
Poorly 

docum
ented 

5 

W
arfarin 

B01AA03 
4 

Possible 
W

ell 
docum

ented 
1 

W
arfarin 

B01AA03 
4 

U
ndeterm

ined 
D

ocum
ented 

2 

W
arfarin 

B01AA03 
4 

U
ndeterm

ined 
Poorly 

docum
ented 

3 

W
arfarin 

B01AA03 
2 

M
ajor 

D
ocum

ented 
4 

W
arfarin 

B01AA03 
2 

M
ajor 

Lim
ited 

docum
ented 

4 
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W
arfarin 

B01AA03 
2 

M
ajor 

W
ell 

docum
ented 
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eTable 4. List of discouraged drug pairs 
D

iscouraged drug pairs dispensed in at least 5 adm
issions (≥5 patients) prescribed during patient 

hospitalisation.  
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rug 2 
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us (L04AD

02) 
27 

Estradiol (G
03C

A03) 
C

arbam
azepine (N

03AF01) 
26 

N
ifedipine (C

08C
A05) 

R
ifam

picin (J04AB02) 
24 

Voriconazole (J02AC
03) 

R
ifam

picin (J04AB02) 
22 

Ketoconazole (D
01AC

08) 
C

larithrom
ycin (J01FA09) 

21 
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17 

Ertapenem
 (J01D

H
03) 

Valproic acid (N
03AG

01) 
20 

Sulfam
ethizole (J01EB02) 

M
ethenam

ine (J01XX05) 
19 

R
itonavir (J05AE03) 

Triazolam
 (N

05C
D

05) 
19 

Sim
vastatin (C

10AA01) 
Im

atinib (L01XE01) 
19 

Sim
vastatin (C

10AA01) 
Itraconazole (J02AC

02) 
18 

Voriconazole (J02AC
03) 

Sirolim
us (L04AA10) 

18 
D

abigatran etexilate (B01AE07) 
D

ronedarone (C
01BD

07) 
17 

Estradiol (G
03C

A03) 
Phenobarbital (N

03AA02) 
16 

C
lonidine (N

02C
X02) 

Im
ipram

ine (N
06AA02) 

15 
Apixaban (B01AF02) 

Ketoconazole (D
01AC

08) 
15 

Isocarboxazid (N
06AF01) 

M
ianserin (N

06AX03) 
14 

Terbinafine (D
01AE15) 

Im
ipram

ine (N
06AA02) 

14 
Estradiol (G

03C
A03) 

O
xcarbazepine (N

03AF02) 
12 

W
arfarin (B01AA03) 

D
iclofenac, com

binations (M
01AB55) 

12 
W

arfarin (B01AA03) 
Piroxicam

 (M
02AA07) 

11 
W

arfarin (B01AA03) 
D

iclofenac (M
02AA15) 

11 
Terbinafine (D

01BA02) 
Am

itriptyline (N
06AA09) 

10 
W

arfarin (B01AA03) 
N

abum
etone (M

01AX01) 
10 

C
larithrom

ycin (J01FA09) 
Everolim

us (L04AA18) 
9 

Letrozole (L02BG
04) 

Zuclopenthixol (N
05AF05) 

8 
W

arfarin (B01AA03) 
D

iclofenac (S01BC
03) 

8 
Terbinafine (D

01BA02) 
N

ortriptyline (N
06AA10) 

7 
R

ifabutin (J04AB04) 
R

itonavir (J05AE03) 
7 

Isocarboxazid (N
06AF01) 

M
irtazapine (N

06AX11) 
7 

C
lonidine (N

02C
X02) 

C
lom

ipram
ine (N

06AA04) 
7 

Ticagrelor (B01AC
24) 

C
iclosporin (L04AD

01) 
7 

R
ifam

picin (J04AB02) 
Atazanavir (J05AE08) 

5 
C

abergoline (G
02C

B03) 
C

larithrom
ycin (J01FA09) 

5 
D

abigatran etexilate (B01AE07) 
Ketoconazole (D

01AC
08) 

5 
Tacrolim

us (D
11AH

01) 
C

larithrom
ycin (J01FA09) 

5 
Lansoprazole (A02BC

03) 
Atazanavir (J05AE08) 

5 
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eTable 5. Effect-size estim
ates of exposure to discouraged drug pairs on 

post-discharge m
ortality, readm

ission and length-of-stay 
Provides num

erical estim
ate illustrated in Figure 3: estim

ate (95 confidence interval). M
ortality and 

readm
ission estim

ates are hazard ratios. Values below
 1 are show

n w
ith 2 significant digits, 

otherw
ise w

ith 1 significant digit. 
 C

linical 
significance 

D
rug pair 

M
ortality 

R
eadm

ission 
LO

S 

M
oderate 

Estradiol 
+ 

Phenobarbital 
- 

0.74 (0.16; 3.4) 
0.21 (-0.088; 0.51) 

M
oderate 

C
arbam

azepine  
+  

Estradiol 
0.45 (0.1; 2) 

0.97 (0.47; 2) 
0.2 (0.0049; 0.39) 

M
oderate 

Estradiol  
+ O

xcarbazepine 
0.78 (0.21; 2.9) 

2.2 (0.81; 6) 
-0.036 (-0.23; 

0.15) 

M
ajor 

N
aproxen  

+ 
W

arfarin 
1.3 (0.61; 2.7) 

0.92 (0.56; 1.5) 
-0.14 (-0.24; -

0.032) 

M
ajor 

Apixaban  
+ 

Ketoconazole 
2.5 (0.81; 7.7) 

1.6 (0.82; 3.2) 
-0.022 (-0.18; 

0.14) 

M
ajor 

Erythrom
ycin 

+ 
Fluconazole 

0.99 (0.73; 1.3) 
0.72 (0.58; 0.89) 

-0.089 (-0.12; -
0.056) 

M
ajor 

Im
atinib 
+ 

Sim
vastatin 

1.1 (0.4; 3.2) 
1.5 (0.66; 3.6) 

-0.12 (-0.38; 0.13) 

M
ajor 

Atorvastatin 
+ 

C
iclosporin 

0.73 (0.24; 2.3) 
1.7 (0.78; 3.6) 

0.77 (0.64; 0.9) 

M
ajor 

C
arbam

azepine 
+ 

M
idazolam

 
1.5 (0.77; 2.9) 

0.7 (0.44; 1.1) 
-0.004 (-0.083; 

0.075) 

Possible 
C

elecoxib 
+ 

W
arfarin 

0.78 (0.45; 1.4) 
1.2 (0.85; 1.7) 

0.036 (-0.04; 0.11) 

U
n-

determ
ined 

Isocarboxazid 
+ 

M
ianserin 

- 
0.78 (0.15; 3.9) 

0.26 (-0.18; 0.7) 

M
ajor 

D
iclofenac 
(topical) 

+ 
W

arfarin 

0.96 (0.26; 3.5) 
1.7 (0.66; 4.6) 

0.8 (0.64; 0.97) 

M
ajor 

Posaconazole 
+ 

Sim
vastatin 

7.9 (0.71; 88) 
1.3 (0.27; 6.7) 

1.1 (0.91; 1.3) 

M
ajor 

C
iclosporin 

+ 
Ticagrelor 

- 
4.2 (0.58; 29.9) 

0.31 (-0.053; 0.66) 

M
ajor 

C
larithrom

ycin 
+ 

Tacrolim
us 

(im
m

unosupp.) 

2.3 (0.64; 8.4) 
3.4 (1.1; 10.4) 

0.12 (-0.098; 0.34) 
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M
ajor 

Paroxetine 
+ 

Tam
oxifen 

1.4 (0.27; 7.3) 
1.9 (0.33; 10.4) 

1.1 (0.78; 1.4) 

M
oderate 

Itraconazole 
+ 

Sim
vastatin 

2.4 (0.75; 7.9) 
2.5 (0.92; 6.6) 

1.1 (0.93; 1.2) 

M
ajor 

D
iclofenac, 

com
binations 

+ 
W

arfarin 

1.5 (0.39; 5.9) 
1.6 (0.61; 4.3) 

-0.1 (-0.38; 0.17) 

M
ajor 

C
lonidine 

+ 
Im

ipram
ine 

0.87 (0.095; 7.9) 
0.83 (0.31; 2.3) 

0.38 (0.21; 0.54) 

M
oderate 

M
eropenem

 
+ 

Valproic acid 
1.5 (1.1; 1.9) 

0.92 (0.76; 1.1) 
0.22 (0.19; 0.26) 

M
ajor 

N
ifedipine 

+ 
R

ifam
picin 

1.1 (0.13; 10.2) 
1.2 (0.45; 3) 

0.1 (-0.11; 0.31) 

M
oderate 

C
olchicine 

+ 
Verapam

il 
0.61 (0.29; 1.3) 

1 (0.63; 1.7) 
0.13 (0.032; 0.23) 

M
ajor 

Ketoconazole 
+ 

Sim
vastatin 

1 (0.68; 1.6) 
1.3 (0.91; 1.8) 

1.1 (1.1; 1.1) 

M
oderate 

Fluoxetine 
+ 

Venlafaxine 
- 

1.3 (0.4; 4.2) 
-0.38 (-0.7; -

0.063) 

M
ajor 

Etoricoxib 
+ 

W
arfarin 

2.8 (0.17; 47.1) 
0.82 (0.17; 3.8) 

-0.77 (-1.2; -0.36) 

M
ajor 

Am
itriptyline 

+ 
Terbinafine 
(system

ic) 

2.1 (0.53; 8) 
3.1 (1.1; 8.8) 

-0.39 (-0.63; -
0.15) 

M
ajor 

Im
ipram

ine 
+ 

Terbinafine 
3.8 (1.2; 12) 

1 (0.42; 2.4) 
0.46 (0.29; 0.62) 

M
ajor 

C
larithrom

ycin 
+ 

Everolim
us 

0.97 (0.1; 9) 
12.3 (1.1; 138.7) 

-1.2 (-1.9; -0.44) 

M
ajor 

Ibuprofen 
+ 

Phenprocoum
on 

0.81 (0.48; 1.4) 
1.2 (0.86; 1.7) 

0.2 (0.12; 0.27) 

M
ajor 

C
larithrom

ycin 
+ 

Q
uetiapine 

1.7 (1.1; 2.7) 
0.94 (0.66; 1.3) 

1.6 (1.5; 1.6) 

M
ajor 

R
itonavir 

+ 
Triazolam

 
3.6 (0.49; 26.1) 

2.6 (0.84; 8.1) 
-0.26 (-0.53; 

0.0016) 

M
ajor 

R
ifam

picin 
+ 

Voriconazole 
0.65 (0.077; 5.4) 

1.3 (0.39; 4.2) 
0.067 (-0.13; 0.26) 

M
ajor 

Piroxicam
 

+ 
W

arfarin 
3.4 (1; 11.4) 

1.4 (0.53; 3.9) 
0.034 (-0.19; 0.25) 
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M
ajor 

D
iclofenac 

(system
ic) 

+ 
W

arfarin 

0.83 (0.69; 1) 
1.1 (0.96; 1.2) 

0.25 (0.23; 0.28) 

M
ajor 

Ertapenem
 

+ 
Valproic acid 

1.3 (0.54; 3.1) 
2.6 (1.1; 5.8) 

0.24 (0.11; 0.38) 

M
ajor 

D
abigatran 
etexilate 

+ 
Ketoconazole 

- 
0.68 (0.14; 3.2) 

0.06 (-0.26; 0.38) 

M
ajor 

D
iclofenac 

(ophthalm
ologica) 

+ 
W

arfarin 
0.83 (0.23; 3) 

1.7 (0.72; 4) 
0.45 (0.27; 0.62) 

M
ajor 

C
larithrom

ycin 
+ 

Ticagrelor 
0.98 (0.51; 1.9) 

1.7 (1.1; 2.5) 
-0.25 (-0.34; -

0.16) 

M
ajor 

C
larithrom

ycin 
+ 

Ketoconazole 
1.2 (0.24; 5.8) 

0.56 (0.19; 1.7) 
0.096 (-0.12; 0.31) 

M
oderate 

Estriol 
+ 

Phenobarbital 
- 

0.45 (0.052; 4) 
-0.13 (-0.63; 0.38) 

M
ajor 

Sirolim
us 

+ 
Voriconazole 

0.51 (0.056; 4.6) 
2.7 (0.45; 16.5) 

-0.21 (-0.74; 0.32) 

M
ajor 

C
iprofloxacin 

+ 
Tizanidine 

1.4 (0.92; 2.1) 
1.4 (0.99; 1.9) 

0.36 (0.29; 0.42) 

M
ajor 

C
iclosporin 

+ 
Pravastatin 

0.22 (0.027; 1.7) 
0.86 (0.22; 3.3) 

-0.42 (-0.77; -
0.073) 

M
ajor 

Allopurinol 
+ 

Azathioprine 
0.93 (0.39; 2.2) 

0.87 (0.49; 1.6) 
0.092 (-0.036; 

0.22) 

M
ajor 

R
ifabutin 

+ 
R

itonavir 
- 

- 
0.51 (0.091; 0.93) 

M
ajor 

N
abum

etone 
+ 

W
arfarin 

0.99 (0.2; 4.8) 
0.67 (0.18; 2.4) 

-0.69 (-0.98; -
0.39) 

M
ajor 

D
om

peridone 
+ 

Fluconazole 
2.5 (2.1; 3.1) 

1 (0.89; 1.2) 
0.29 (0.27; 0.32) 

M
ajor 

M
ethenam

ine 
+ 

Sulfam
ethizole 

1.7 (0.64; 4.6) 
1.4 (0.67; 2.8) 

0.81 (0.7; 0.92) 

M
ajor 

Erythrom
ycin 

+ 
Tacrolim

us 
0.55 (0.066; 4.5) 

0.81 (0.22; 3) 
0.42 (0.17; 0.67) 

M
ajor 

R
ifam

picin 
+ 

Verapam
il 

0.7 (0.28; 1.8) 
1.4 (0.67; 2.7) 

0.36 (0.24; 0.47) 

M
oderate 

M
etoprolol 

+ 
Paroxetine 

1.1 (0.72; 1.7) 
0.92 (0.67; 1.3) 

0.088 (0.026; 
0.15) 
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M
ajor 

Am
itriptyline 

+ 
C

lonidine 
1.1 (0.62; 1.8) 

1.1 (0.77; 1.6) 
-0.16 (-0.23; -

0.085) 

M
ajor 

Ibuprofen 
+ 

W
arfarin 

0.9 (0.83; 0.98) 
1.1 (1; 1.2) 

0.006 (-0.0062; 
0.018) 

M
ajor 

Am
itriptyline 

+ 
Terbinafine 

(topical) 

1.1 (0.66; 1.9) 
1 (0.73; 1.5) 

0.54 (0.48; 0.6) 

M
ajor 

C
larithrom

ycin 
+ 

Sim
vastatin 

1.1 (0.95; 1.2) 
1 (0.92; 1.1) 

0.082 (0.063; 0.1) 

M
ajor 

Agom
elatine 
+ 

C
iprofloxacin 

2.6 (1.3; 5.5) 
1.1 (0.62; 1.9) 

0.82 (0.73; 0.9) 

M
ajor 

N
ortriptyline 

+ 
Terbinafine 
(system

ic) 

4.3 (0.86; 21.8) 
1.7 (0.43; 6.6) 

-0.29 (-0.61; 
0.032) 

M
ajor 

N
ortriptyline 

+ 
Terbinafine 

(topical) 

1.1 (0.46; 2.6) 
1.1 (0.65; 2) 

0.67 (0.58; 0.77) 

M
ajor 

Etodolac 
+ 

W
arfarin 

0.76 (0.43; 1.3) 
1.1 (0.78; 1.6) 

-0.15 (-0.23; -
0.07) 

Possible 
Erythrom

ycin 
+ 

Sim
vastatin 

1.1 (0.83; 1.3) 
1.1 (0.93; 1.4) 

0.067 (0.033; 0.1) 

M
ajor 

C
larithrom

ycin 
+ 

Tacrolim
us 

(topical) 

- 
0.51 (0.062; 4.2) 

-0.087 (-0.54; 
0.37) 

M
ajor 

C
lom

ipram
ine 

+ 
C

lonidine 
0.55 (0.065; 4.6) 

1.4 (0.43; 4.8) 
-0.22 (-0.47; 

0.029) 
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eFigure 1. Pipeline w
orkflow

 
 

 
 Snakem

ake pipeline depicting the w
orkflow

 used for the adverse outcom
es analytic part of the 

study. Schem
atic overview

 of the analytic pipeline. Each box represents a distinct step, and arrow
s 

represent dependencies betw
een tasks. Preprocessing not depicted. 

 eFigure 2. A
ttrition diagram

 
 

 
     

prevalence and adverse outcomes of drug-drug interactions 119



 
23 

eFigure 3. D
rugs prevalently involved in discouraged drug pairs 

  
 

D
rugs prevalently involved in discouraged drug pairs by m

anagem
ent recom

m
endation 

(colum
ns) and clinical significance (row

s), defined as drugs involved in discouraged drug pairs 

occurring in at least 10 of adm
issions. Points represent pD

D
Is, size the drug prevalence, and 

colour the clinical significance. 
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eFigure 4. Standardised differences in proportions of diagnoses in adm
issions 

w
ith and w

ithout discouraged drug pairs by patient type 

 
  Standardised differences in proportions (i.e. discouraged drug pairs initiated versus not) of diagnoses 

and during adm
issions. The colour represents IC

D
-10 chapter, and the size is the prevalence in 

patients exposed to discouraged drug pairs. The top three diagnoses and drugs are labelled. 
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eFigure 5. Phenotyping of diagnoses and m
edications 

 

 
D

etailed diagnoses and m
edication phenotyping of patients exposed to discouraged drug pairs vs. 

those not exposed. The plot com
pares the diagnoses and m

edications during hospitalisation. Each 

dot represents one of these covariates w
ith the colour indicating the absolute value of the 

standardized difference in proportion (SPD
). The top three m

edications and diagnoses w
ith SPD

 >0.1 

(exposed; red) are highlighted. 
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eFigure 6. Phenotyping of diagnoses and m
edications by patient type 

 
 Sam

e as eFigure 5 but by patient type. 
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eFigure 7. C
auses of death at IC

D
-10 chapter level am

ong deceased exposed 
to selected drug pairs 
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Abstract 25 

Introduction 26 

Dosing of renally cleared drugs in patients with kidney failure often deviates from 27 

clinical guidelines but little is known about what is predictive of receiving inappropriate 28 

doses.   29 

Methods and materials 30 

We combined data from the Danish National Patient Register and in-hospital data on 31 

drug administrations and estimated glomerular filtration rates for admissions between 1 32 

October 2009 and 1 June 2016, from a pool of about 2.9 million persons. We trained 33 

artificial neural network and linear logistic ridge regression models to predict the risk of 34 

five outcomes (>0, ≥1, ≥2, ≥3 and ≥5 inappropriate doses daily) with index set 24 hours 35 

after admission. We used time-series validation for evaluating discrimination, calibration, 36 

clinical utility and explanations. 37 

Results 38 

Of 52,451 admissions included, 42,250 (81%) were used for model development. The 39 

median age was 77 years; 50% of admissions were of women. ≥5 drugs were used 40 

between admission start and index in 23,124 admissions (44%); the most common drug 41 

classes were analgesics, systemic antibacterials, diuretics, antithrombotics, and antacids. 42 

The neural network models had better discriminative power (all AUROCs between 0.77 43 

and 0.81) and were better calibrated than their linear counterparts. The main prediction 44 

drivers were use of anti-inflammatory, antidiabetic and anti-Parkison's drugs as well as 45 

having a diagnosis of chronic kidney failure. Sex and age affected predictions but 46 

slightly. 47 
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Conclusion 48 

Our models can flag patients at high risk of receiving at least one inappropriate dose 49 

daily in a controlled in-silico setting. A prospective clinical study may confirm this holds 50 

in real-life settings and translates into benefits in hard endpoints.  51 
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Introduction 52 

Renal diseases affect patients’ susceptibility to, and modify the effects of many drugs, 53 

and they reduce renal clearance exposing patients to higher steady-state concentrations 54 

when given standard doses. The kidneys excrete active forms and/or metabolites of many 55 

drugs, so renal dysfunction necessitates dose-adjustment of renally cleared drugs with 56 

narrow therapeutic indices to prevent adverse events and accidental over-dosing.  57 

Inadequate dose-adjustment of such drugs has been linked to polypharmacy [1,2] and 58 

can cause noxious events [3] or accidental over-dosing [4]. Although not a new issue, 59 

[5,6] deviating from guidelines is widespread with prevalence estimates up to 70% [1,2,7-60 

9]. Despite large inter-individual variability in clearance and response, dose adjustment 61 

for many drugs is crude and based on the estimated glomerular filtration rate (eGFR), for 62 

example, halving the dose when eGFR < 60 ml/min/1.73 m2.  63 

Appropriate alerts in order-entry systems may facilitate rational clinical decision-making, 64 

[10,11] and convincing examples have showcased how computerised systems can 65 

underpin rational pharmacotherapy [4,12]. However, downsides of extensive 66 

computerisation of healthcare emerge [13]; alert fatigue [14] is particularly problematic, 67 

and strategies and interventions have been proposed to mitigate its negative effects [15]. 68 

At Danish hospitals, prescriptions are mostly dispensed and administered by nurses who 69 

record detailed meta-data [16]. Prescriptions are usually made and revised by physicians 70 

regularly during clinical rounds, typically in the morning or early afternoon. Electronic 71 

decision support is generally immature and neither prescribing physicians nor 72 

dispensing nurses are warned if dose-adjustment be advised or even required.  73 
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We suspect that the need for dose-adjustment in patients with renal dysfunction often 74 

goes unrecognised. Thus, with this paper we study its predictability to inform clinicians 75 

and healthcare personnel upfront about which patients with renal dysfunction are at 76 

elevated risk of inappropriate drug dosing. To this end we used and compared predictive 77 

modelling methods from classical statistical modelling and machine learning. 78 

Methods 79 

Study design, patients and data 80 

We conducted a register-based prediction study with prospective data for patients 81 

admitted to 12 public hospitals in two Danish regions comprising about 2.9 million 82 

persons (more than half the Danish population). We collected diagnosis data from the 83 

Danish National Patient Register, demographic data from the Danish Civil Registration 84 

System [17], as well as medication and biochemical data from electronic patient records. 85 

Diagnoses were encoded using the 10th revision of the International Classification of 86 

Diseases (ICD-10), drugs with the Anatomical and Therapeutic Chemical classification 87 

(ATC). 88 

The units of analysis were inpatient admissions, defined as chains of successive in-89 

hospital visits at most 24 hours apart. We included admissions starting between 1 90 

October 2009 and 1 June 2016, with at least one eGFR measurement ≤30 during the first 24 91 

hours of admission. We excluded minors (age <18 years). Admission time uses hour 92 

resolution (an admission starting at 9:54 is recorded as starting at 9:00) so to ensure at 93 

least 24 hours of observation time before inclusion, index was set at hour of admission + 94 

25 hours. Prior sample-size estimation was foregone.  95 
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Outcomes 96 

The outcome variables were based on the daily rate = r/E of inappropriate doses during 97 

follow-up, capped at 30 days. r is the number of given inappropriate doses of select drugs 98 

cleared mainly renally and with narrow therapeutic indices; E the time-at-risk (figure 1). 99 

To obtain well-defined times-at-risk, we set the eGFR threshold to ≤30 ml/min/1.73m2 100 

(unit omitted from here onward) and used the rules in supplementary table S1 for 101 

counting the number of inappropriate doses, based on the official reference guidelines for 102 

Danish physicians (pro.medicin.dk) as of January 2021. 103 

We used two rules, one definitive (maximum daily dose = 0 mg) and one of dose-104 

adjustment (reduced daily dose). Operationalisation of the definitive rule is 105 

straightforward: if the last eGFR ≤30, there should be no administrations until an eGFR 106 

>30 is measured. The dose-adjustment rule is slightly more involved as inappropriate 107 

dosing comes in two forms: (a) on a given day there are more than one eGFR 108 

measurements, of which at least one is ≤30, and the cumulative daily dose surpasses the 109 

threshold in the period(s) between above-threshold measurements, or (b) all eGFR 110 

measurements of a given day are ≤30 and the cumulative daily dose surpasses the 111 

threshold. 112 

Variables and features 113 

Variables are original data (e.g. sex and age at admission) and features the results of 114 

rendering the variables appropriate as model inputs (e.g. one-hot-encoded day of 115 

admission). Based on clinical and pharmacological experience we hand-picked pertinent 116 

variables likely to be informative to the prediction problem and realistically available in 117 

the clinical setting. These fall into three categories. Demographic: age at admission 118 
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(numeric), sex (binary). Clinical: number of distinct drugs (ATC level 5) administered 119 

between admission and index (numeric); therapeutic drug classes (ATC level 2) used 120 

between admission and index (one-hot-encoded); the Elixhauser score at admission 121 

(numeric, AQHR adaptation) [18]; ICD-10 chapters of diagnoses recorded in the past five 122 

years before admission (one-hot-encoded); record of chronic kidney failure in the past 123 

five years before admission (ICD-10 N18* diagnoses, one-hot-encoded). Contextual: hour 124 

of admission (numeric, transformed as f(t) = abs(12 – t); see supplementary figure S1); 125 

weekday of admission (one-hot-encoded); number of admissions in the past 5 years 126 

before admission (numeric). 127 

Missing values, only present for hour of admission and discharge, were imputed by 128 

sampling from the empirical distributions of valid values.   129 

Models and training 130 

We tried two model architectures (linear logistic ridge regression and artificial neural 131 

network) with several binary outcomes defined by increasing thresholds of the daily rate 132 

of inappropriate doses (>0, ≥1, ≥2, ≥3 and ≥5). The neural network models were multilayer 133 

perceptrons (MLPs) enabling speedy training and evaluation. 134 

All admissions starting before 1 July 2015 were assigned to the development set (42,250 135 

admissions [81%] of 27,253 patients) and the rest to the independent hold-out test set 136 

(10,201 admissions [19%] of 8,412 patients). Because admissions constitute the unit of 137 

analysis, some patients likely appear in both the development and test sets. Information 138 

may leak between the sets [19] so as a sensitivity analysis, we evaluated the performance 139 

also in the subset of test-set patients not in the development set. 140 
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We used the multivariate TPEsampler from Optuna [20] to find the best-performing 141 

hyperparameters by sampling 100 configurations, each using 5-fold stratified-and-142 

grouped cross-validation, from the following proposal distributions (discrete values in 143 

round brackets, bounds of log-uniform distributions in squared): optimiser (Adam, 144 

RMSprop), learning rate [10-6, 10-1], activation function (tanh, sigmoid), L2 penalty [10-6, 145 

10-2], number of hidden layers (1, 2, 3, 4), number of nodes per hidden layer [16, 32, 65, 146 

128], batch size (32, 64, 128, 256, 512), class handling (see below).  147 

Only relevant hyperparameters were sampled and we ran Optuna on linear and MLP 148 

models separately because they have disparate hyperparameter sets. MLP models with 149 

more hidden layers and more nodes therein can learn more complex relationships but 150 

become prone to overfitting which we countered with early stopping [21] and L2 151 

regularisation (handles collinearity better than L1 regularisation) [22,23]. The batch size is 152 

the number of observations from which the model learns at a time; small batches can give 153 

outliers undue influence while full-batch training (batch size = number of units) can 154 

become computationally impractical [19]. Class imbalances in binary outcomes can 155 

misguide training, so we tested the following remedies: synthetic minority oversampling 156 

technique (SMOTE), random over-sampling of minority class, NearMiss, random under-157 

sampling of majority class, class weighting, and none. SMOTE creates a dataset similar to 158 

the minority class but of the same size as the majority class [24]; NearMiss downsizes the 159 

majority class in a systematic way to retain as much information as possible in fewer data 160 

points [25]. Class weighting retains the original data but gives more weight to minority-161 

class observations.   162 
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Hyperparameter optimisation models trained for maximum 500 epochs with 50-epoch 163 

patience on improvement in the validation loss. The final models were trained on the full 164 

development set until the loss reached that obtained in the best cross-validation fold for 165 

the best configuration [21]. 166 

Evaluation and explanation 167 

Discrimination was assessed with receiver operating characteristic (ROC) curves and 168 

areas under the ROC curves (AUROC), calibration-in-the-small by plotting decile-binned 169 

predicted probabilities against corresponding bin-wise observed event proportions [26] 170 

with 95% Jeffrey intervals [27]; results from a perfectly calibrated model fall on the 171 

diagonal. We used the decision-curve analytic framework to gauge the models' potential 172 

clinical utility [28,29]. 173 

For explanation and scrutiny of prediction drivers, we used the SHAP DeepExplainer 174 

yielding one shap value per feature per unit [30]. The shap value for a risk prediction 175 

model is the absolute change in risk of a given unit's value for each feature: the cohort-176 

wide mean risk plus the sum of one unit's shap values equals that unit's risk. 177 

Analysis and ethics 178 

The full analytical pipeline was built with Snakemake [31] (schematic overview in 179 

supplementary figure S2) to facilitate transparency and reproducibility; blinding was 180 

impractical and so foregone, but all analytic code is available online (DOI: 181 

10.5281/zenodo.4560078). Univariate distributions were summarised by median (inter-182 

quartile range) and count (proportion), as appropriate. This report adheres to pertinent 183 

items in the MINIMAR guideline [32] and TRIPOD statement [33]. 184 
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All data have been marshalled on Computerome, a secure high-performance Danish 185 

computing infrastructure, after obtaining approval from the Danish Patient Safety 186 

Authority (3-3013-1723; then competent authority for ethical approval), the Danish Data 187 

Protection Agency (DT SUND 2016-48, 2016-50, 2017-57) and the Danish Health Data 188 

Authority (FSEID 00003724). Results 189 

Table 1 shows univariate summary statistics of the 52,451 admissions (42,250 + 10,201) of 190 

35,665 patients (27,253 + 8,412) included in the study (see supplementary table S2 for 191 

extended version with all features). Patients in the test sets were similar to those in the 192 

development set with some notable exceptions. Fewer had received inappropriate doses, 193 

especially in the test-set patients not part of the development set who also had fewer 194 

previous admissions. 195 

In the development set, the median age was 77 years (IQR: 67-85) and 20,743 admissions 196 

(49%) were of 13,759 women (50%). The median time at risk was 3.5 days (inter-quartile 197 

range: 1.7–7.7) and at least one inappropriate dose was given in 3,786 admissions (9.0%); 198 

≥1 inappropriate dose daily was given in 5.3% of admissions and ≥5 inappropriate doses 199 

daily were given in 0.9%. The target drugs most commonly given in inappropriate doses 200 

were ibuprofen (M01AE01, 4.1%) and metformin (A10BA02, 3.4%); inappropriate doses 201 

of the other target drugs were given in <1% of admissions. 202 

Patients in 4,988 admissions (12%) had no admissions in the 5 years before inclusion; 203 

13,960 (33%) had ≥7 previous admissions. The most common drug classes used between 204 

admission and index were analgesics (N02, 37%), systemic antibacterials (J01, 35%), 205 

diuretics (C03, 33%) antithrombotics (B01, 28%), and antacids (A02, 25%). Previous 206 

diagnoses were most commonly cardiovascular (chapter IX, 61%), genitourinary (XIV, 207 
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55%), related to i.a. lesions and external causes (XIX, 48%), endocrine-metabolic (IV, 47%), 208 

and symptoms/abnormal findings (XVIII, 44%).  209 

Table 2 shows the hyperparameters of the best configurations with performance metrics 210 

of the final models (see also supplementary figures S3–S12). Generally, multi-layer 211 

perceptron (MLP) models performed slightly better than their linear counterparts, all 212 

obtaining AUROC's between 0.77 and 0.81 in the test set (ROC curves in supplementary 213 

figures S13–S22). The MLP models more consistently showed good calibration in the 214 

development set. For daily rates >0, ≥1 and ≥2 both MLP and linear models were very 215 

well-calibrated in the test set (supplementary figures S23–S32). The decision curves did 216 

not suggest the clinical utility of the MLP models be superior to that of the linear 217 

(supplementary figures S33–S42).  218 

The model-specific shap values offer some insights (supplementary figures S43–S53). 219 

First, many features contribute substantively to the predictions of daily rate >0 and ≥1 220 

outcomes, while few features almost entirely drive the predictions for the other 221 

outcomes. Second, few features are the dominant prediction drivers across outcomes and 222 

models: use of anti-inflammatory, antirheumatic and antidiabetic drugs as well as 223 

diagnoses of chronic kidney failure. Third, sex and age contribute little to predictions. 224 

Fourth, using more distinct drugs (reflecting various levels of polypharmacy) pushes the 225 

risk up and using fewer drugs pulls the risk down. Fifth, the linear models tend to give 226 

most weight to relatively few features whereas the MLP models spread out the 227 

contributions across more features. Finally, the number of previous admissions (a proxy 228 

for frailty) became an increasingly important driver with increasing rarity of the 229 

outcome, in the MLP models.  230 
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Figure 2 shows the relationships between values of select features and their shap values 231 

and illustrates how MLP models capture highly non-linear effects and near-linear effects 232 

as appropriate (e.g. the effects of age at admission and number of previous admissions 233 

for daily rate >0.)  234 

Discussion 235 

This study reveals that 9.0% of patients with reduced kidney function are exposed to 236 

inappropriate doses of selected renal risk drugs in the follow-up period. Our models 237 

performed quite well with AUROC's between 0.77 and 0.81 with good calibration-in-the-238 

small for daily rates >0 and ≥1, in the test set. For rarer outcomes (daily rates ≥2, ≥3 and 239 

≥5) calibration suffered and clinical utility is unlikely to be substantive. 240 

Apt intervention necessitates comprehension of the nature and extent of the problem. 241 

Use of renal risk drugs and associated problems, including inappropriate dosing, in 242 

patients with renal dysfunction is well-described [34-38]. A cross-sectional study of 243 

83,000 American outpatient Veterans found that 32% of patients with creatinine clearance 244 

between 15 and 29 were given drugs at excessive doses considering their kidney function 245 

[39]. Medication burden had the strongest cooccurrence with inappropriate dosing and 246 

metformin was a prominent drug among those with inappropriate doses. This agrees 247 

with our findings although our study design has clearer temporality.  248 

Some have called for a prediction tool to identify elderly at elevated risk of adverse drug 249 

reactions [40], a notion similar to ours in spirit but different in scope. Studies of factors 250 

associated with inadequate dose adjustment are few and often of retrospective nature 251 

eliciting relationships with characteristics after inappropriate doses have already been 252 

given. One study seeking to elicit factors associated with dosing appropriateness, using a 253 
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logistic regression, reported the statistically strongest association to be with severity of 254 

chronic kidney failure (p-value = 7%) [41]. A similar study found dosing errors in 33% of 255 

the patients; age (odds ratio, OR: 1.05), number of drug prescriptions (OR: 1.1) and number of 256 

drugs requiring dose adjustment (OR: 2.0) were associated with dosing errors [42]. A third 257 

study found that, in patients with chronic kidney failure, late-stage chronic kidney disease, 258 

number of prescribed drugs and presence of comorbidity were associated with dosing errors. 259 

Ill-defined indices and times-at-risk render such enquiries of little use for a priori 260 

prediction and risk stratification: the ability to intervene presupposes a reliable estimate 261 

of risk in advance, before the event happens.  262 

Carey et al. found only few factors to be genuinely predictive of potentially inappropriate 263 

prescribing in elderly outside the hospital setting [43]. Our models had AUROC's (0.77–264 

0.81) slightly higher than that of their model (0.76). In a prospective study from Norway 265 

[35] of internal-medicine patients with a mean age of 71 years, 35% received suboptimal 266 

doses; a composite variable (number of clinical/pharmacological risk factors) was quite 267 

strongly associated with non-optimal dosing (RR: 1.33), less so number of drugs at 268 

admission (RR: 1.09), whereas sex and age were not predictive of non-optimal dosing. Our 269 

results agree quite well with that finding, probably because the information captured by 270 

age and sex (essentially, proxies of comorbidity) is expressed explicitly in our feature set. 271 

As such, our models fare quite well with performance metrics superior to those of other 272 

published models even though ours came from an independent and temporally distinct 273 

test set. Many studies employing machine learning models for predicting medical 274 

outcomes use normal split-sample validation, putting aside a random sample of the 275 

observations for testing. This has several logical and practical implications, perhaps most 276 
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notably that a model developed with data collected between, say, 2005 and 2015 will 277 

likely perform better in a test case from 2013 than in one from 2017. The subset of our test 278 

set with patients not part of the development set is a conceptually appealing way to 279 

gauge how the model might perform in a new population. It does, however, distort the 280 

data and somewhat delink it from the clinical reality: some patients have previous 281 

admissions and those admitted for the first time are probably different from the rest.  282 

Strengths 283 

Here we highlight five principal strengths of this study. First, this is by far the largest 284 

study of its kind to date. Second, time-series validation yielded realistic performance 285 

evaluation in distinct (future) data [44] vis-a-vis many articles on predictive modelling, 286 

perhaps most clearly seen in the surge of COVID-19 papers [45]. Third, our data were 287 

richer than in any other study in this area thanks to the combined diversity and reliability 288 

of longitudinal diagnostic data from the National Patient Register and deep phenotypic 289 

in-hospital data. Fourth, our summary statistics are well-aligned with descriptive studies 290 

of deviations from dosing recommendations, and the nature of the general patient 291 

population to which a model as ours would be applied [46]. Finally, the shap-value 292 

analysis suggests that the models picked up clinically relevant information without 293 

undue influence of individual predictors.  294 

Limitations 295 

Like any study, this has potential limitations. First, albeit simple and elegant, using only 296 

eGFR as a proxy for kidney function is not always advisable [47]. It is, however, 297 

considered a reasonable metric for medicinal dosing [48] and used in Danish guidelines. 298 
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Second, eGFR can be estimated in several ways [49] and both the 4-variable MRDR Study 299 

and CKD-EPI equations were used in our data. However, clinicians use the reported 300 

eGFR estimate as-is and both equations perform well for low eGFR values [50]. Third, 301 

hard thresholds on eGFR are arbitrary: the difference in kidney function between eGFRs 302 

of 29 and 31 is minuscule, but the cutoff must be set somewhere. Again, we stayed loyal 303 

to the guidelines as these are, nevertheless, what should support clinicians’ prescribing 304 

decisions. Fourth, many drugs have narrow and intermediate therapeutic indices. We 305 

focused on seven drugs cleared primarily by the kidneys and with narrow therapeutic 306 

indices that are fairly common in a Danish setting and span several important drug 307 

classes. The drugs included also allowed for reasonably harmonised rules of 308 

inappropriate dosing. Finally, our binary outcomes are soft endpoints and do constitute a 309 

simplification. Seemingly inappropriate doses could be conscious choices and the 310 

outcome variables do not capture information about actual toxicity experienced by the 311 

patient. However, the narrow therapeutic indices of the included drugs increase the 312 

likelihood of noxious effects without appropriate dose adjustment. 313 

Conclusion 314 

Despite physicians’ awareness of the need for dose adjustment in patients with kidney 315 

dysfunction, a well-performing clinical decision support tool may help prevent such 316 

patients from "flying under the radar" in a busy clinical setting. Indeed, our models can 317 

flag patients at high risk of receiving >0 or ≥1 inappropriate dose daily.  318 

A prospective evaluation is necessary to assess if these results transport to the clinic and 319 

if the models can offer genuine clinical utility for the patients. Receiving inappropriate 320 

doses is a soft endpoint, so clinical evaluation should consider also hard endpoints, either 321 
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generic (e.g. length-of-stay, need for post-discharge rehabilitation and mortality) or 322 

specific ones related to the target drugs (e.g. transfusion and occurrence of known side-323 

effects of these drugs). 324 

Data availability 325 

Due to the sensitive nature of the data, we can neither offer access to nor share our data 326 

with third parties. Data can be obtained from the original sources upon request.  327 
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Tables 350 

Table 1: Univariate summary statistics of select features. Values are median (inter-quartile range) and count 
(proportion) as appropriate. Distinct patients and Distinct women show counts of actual patients (as a patient can 
contribute more than one unit.) 

Variate Development set 
(N = 42,250) 

Test set 
(N = 10,201) 

Test set  
(not in devel. set) 

(N = 5,980) 

Women 20,743 (49%) 4,854 (48%) 2,940 (49%) 

Distinct patients 27,253 8,412 5,341 

   Distinct women 13,759 (50%) 4,049 (48%) 2,629 (49%) 

Time at risk, days 3.5 (1.7–7.7) 3.5 (1.7–7.2) 2.9 (1.5–6.4) 

Inappropriate doses (outcomes)    

   > 0 (at least one) 3,786 (9.0%) 1,080 (11%) 740 (12%) 

   ≥ 1 daily 2,241 (5.3%) 588 (5.8%) 333 (5.6%) 

   ≥ 2 daily 1,236 (2.9%) 288 (2.8%) 108 (1.8%) 

   ≥ 3 daily 783 (1.9%) 171 (1.7%) 56 (0.9%) 

   ≥ 5 daily 366 (0.9%) 64 (0.6%) 9 (0.2%) 

Admissions 5 years before admission    

   None 4,988 (12%) 1,082 (11%) 1,074 (18%) 

   1–2 10,100 (24%) 2,367 (23%) 1,873 (31%) 

   3–4 7,712 (18%) 1,919 (19%) 1,232 (21%) 

   5–6 5,490 (13%) 1,303 (13%) 685 (12%) 

   ≥ 7 13,960 (33%) 3,530 (35%) 1,116 (19%) 

Drugs used between admission and 
index    

   None 6,165 (15%) 1,228 (12%) 762 (13%) 

   1–2 9,111 (22%) 1,984 (19%) 1,254 (21%) 

   3–4 8,761 (21%) 2,078 (20%) 1,355 (23%) 

   5–6 7,197 (17%) 1,852 (18%) 1,095 (18%) 

   ≥ 7 11,016 (26%) 3,059 (30%) 1,514 (25%) 

Any diagnosis of chronic kidney failure  13,470 (32%) 3,391 (33%) 732 (12%) 

Top-5 ICD-10 chapters†    

   Cardiovascular (IX) 25,757 (61%) 6,392 (63%) 3,283 (55%) 

   Genitourinary (XIV) 23,025 (55%) 5,819 (57%) 2,306 (39%) 

   Lesions, external causes, etc. (XIX) 20,275 (48%) 4,749 (47%) 2,481 (42%) 

   Metabolic-endocrine (IV) 19,716 (47%) 5,096 (50%) 2,415 (40%) 

   Symptoms/abnormal findings (XVIII) 18,663 (44%) 5,711 (56%) 2,882 (48%) 

Top-5 drug classes‡    
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   Analgesics (N02) 15,740 (37%) 4,367 (43%) 2,506 (42%) 

   Systemic antibacterials (J01) 14,719 (35%) 3,257 (32%) 1,938 (32%) 

   Diuretics (C03) 13,966 (33%) 3,672 (36%) 1,951 (33%) 

   Antithrombotics (B01) 11,842 (28%) 3,181 (31%) 1,795 (30%) 

   Antacids (A02) 10,635 (25%) 2,776 (27%) 1,407 (24%) 

† ICD-10 chapters (Roman numbering) of diagnoses recorded in the last 5 years before admission. 
‡ Drug classes (ATC level 2) administered between admission and index. 

 351 
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Figures 353 

Figure 1: Deriving the outcome variables. This exemplary admission is composed of three successive in-patient visits 354 

(i.e. the patient has been transferred twice represented by the arrows). The admission is eligible because it spans more 355 

than 24 hours and an eGFR ≤30 was measured before index. Here, apixaban was given while the patient's eGFR was 356 

≤30, but dose reduction rendered these administrations appropriate. 357 

 358 

  359 
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Figure 2: Bivariate relationships between values of select features (x axis) and their corresponding shap values (y 360 

axis). The continuous features are summarised by locally estimated scatterplot smoothing (LOESS), binary features by 361 

vertical density bands.  362 

 363 
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Supplem
entary

tables

Table
S1:

M
axim

um
doses

in
periods

w
hen

eG
FR

is
as

indicated.
A
T
C

codes
in

brackets.

##
Drug

eGFR
thredshold

Max.
daily

dose
##

1
Apixaban

(B01AF02)
<=

30
5

mg.
##

2
Dabigatran

(B01AE07)
<=

30
0

mg.
##

3
Rivaroxaban

(B01AF01)
<=

30
0

mg.
##

4
Metformin

(A10BA02)
<=

30
0

mg.
##

5
Ibuprofene

(M01AE01)
<=

30
0

mg.
##

6
Celecoxib

(M01AH01)
<=

30
0

mg.

2
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##
7

Methotrexate
(L04AX03)

<=
30

0
mg.

##
8

Lithium
citrate

(N05AN01)
<=

30
0

mg.

Table
S2

(extended
version

of
table

1):
U
nivariate

sum
m
ary

statistics
of

the
three

data
sets.

V
alues

are
m
edian

(inter-quartile
range)

and
N

(%
).

##
variate

develop
test

test_new
in_table1

##
1

n
42250

10201
5980

yes
##

2
time_at_risk

(median
[IQR])

3.5
[1.7,

7.7]
3.5

[1.7,
7.2]

2.9
[1.5,

6.4]
yes

##
3

daily_rate_not_zero
(%)

3786
(9.0)

1080
(10.6)

740
(12.4)

yes
##

4
daily_rate_geq_1

(%)
2241

(5.3)
588

(5.8)
333

(5.6)
yes

##
5

daily_rate_geq_2
(%)

1236
(2.9)

288
(2.8)

108
(1.8)

yes
##

6
daily_rate_geq_3

(%)
783

(1.9)
171

(1.7)
56

(0.9)
yes

##
7

daily_rate_geq_5
(%)

366
(0.9)

64
(0.6)

9
(0.2)

yes
##

8
inapp_dose_of_M01AE01

(%)
1713

(4.1)
343

(3.4)
244

(4.1)
yes

##
9

inapp_dose_of_M01AH01
(%)

67
(0.2)

21
(0.2)

18
(0.3)

yes
##

10
inapp_dose_of_B01AF01

(%)
341

(0.8)
174

(1.7)
115

(1.9)
yes

##
11

inapp_dose_of_A10BA02
(%)

1452
(3.4)

340
(3.3)

277
(4.6)

yes
##

12
inapp_dose_of_B01AE07

(%)
257

(0.6)
76

(0.7)
55

(0.9)
yes

##
13

inapp_dose_of_N05AN01
(%)

68
(0.2)

17
(0.2)

12
(0.2)

yes
##

14
inapp_dose_of_L04AX03

(%)
19

(0.0)
5

(0.0)
<5

yes
##

15
inapp_dose_of_B01AF02

(%)
124

(0.3)
184

(1.8)
73

(1.2)
yes

##
16

n_previous_admissions
(%):

0
4988

(11.8)
1082

(10.6)
1074

(18.0)
yes

##
17

n_previous_admissions
(%):

1-2
10100

(23.9)
2367

(23.2)
1873

(31.3)
yes

##
18

n_previous_admissions
(%):

3-4
7712

(18.3)
1919

(18.8)
1232

(20.6)
yes

##
19

n_previous_admissions
(%):

5-6
5490

(13.0)
1303

(12.8)
685

(11.5)
yes

##
20

n_previous_admissions
(%):

>6
13960

(33.0)
3530

(34.6)
1116

(18.7)
yes

##
21

n_distinct_drugs_before_index
(%):

0
6165

(14.6)
1228

(12.0)
762

(12.7)
yes

##
22

n_distinct_drugs_before_index
(%):

1-2
9111

(21.6)
1984

(19.4)
1254

(21.0)
yes

##
23

n_distinct_drugs_before_index
(%):

3-4
8761

(20.7)
2078

(20.4)
1355

(22.7)
yes

##
24

n_distinct_drugs_before_index
(%):

5-6
7197

(17.0)
1852

(18.2)
1095

(18.3)
yes

##
25

n_distinct_drugs_before_index
(%):

>6
11016

(26.1)
3059

(30.0)
1514

(25.3)
yes

##
26

admitted_tue
(%)

7092
(16.8)

1755
(17.2)

1016
(17.0)

yes
##

27
admitted_mon

(%)
7667

(18.1)
1803

(17.7)
1066

(17.8)
yes

##
28

admitted_thu
(%)

6665
(15.8)

1626
(15.9)

927
(15.5)

yes
##

29
admitted_sat

(%)
3809

(9.0)
960

(9.4)
606

(10.1)
yes

##
30

admitted_sun
(%)

4140
(9.8)

989
(9.7)

598
(10.0)

yes
##

31
admitted_wed

(%)
6718

(15.9)
1616

(15.8)
936

(15.7)
yes

##
32

admitted_fri
(%)

6159
(14.6)

1452
(14.2)

831
(13.9)

yes
##

33
n_persons

(%)
27253

(64.5)
8412

(82.5)
5341

(89.3)
yes

##
34

n_women
(%)

13759
(32.6)

4049
(39.7)

2629
(44.0)

yes
##

35
n18_diag_any

(%)
13470

(31.9)
3391

(33.2)
732

(12.2)
yes

##
36

icd10_chapter_4
(%)

19716
(46.7)

5096
(50.0)

2415
(40.4)

yes
##

37
icd10_chapter_9

(%)
25757

(61.0)
6392

(62.7)
3283

(54.9)
yes

##
38

icd10_chapter_14
(%)

23025
(54.5)

5819
(57.0)

2306
(38.6)

yes
##

39
icd10_chapter_18

(%)
18663

(44.2)
5711

(56.0)
2882

(48.2)
yes

##
40

icd10_chapter_19
(%)

20275
(48.0)

4749
(46.6)

2481
(41.5)

yes
##

41
atc_level2_A02

(%)
10635

(25.2)
2776

(27.2)
1407

(23.5)
yes

##
42

atc_level2_B01
(%)

11842
(28.0)

3181
(31.2)

1795
(30.0)

yes
##

43
atc_level2_C03

(%)
13966

(33.1)
3672

(36.0)
1951

(32.6)
yes

##
44

atc_level2_J01
(%)

14719
(34.8)

3257
(31.9)

1938
(32.4)

yes
##

45
atc_level2_N02

(%)
15740

(37.3)
4367

(42.8)
2506

(41.9)
yes

##
46

r
(%):

0
38464

(91.0)
9121

(89.4)
5240

(87.6)
no

##
47

r
(%):

1-2
1282

(3.0)
446

(4.4)
391

(6.5)
no

##
48

r
(%):

3-4
670

(1.6)
200

(2.0)
134

(2.2)
no

##
49

r
(%):

5-6
431

(1.0)
116

(1.1)
75

(1.3)
no

##
50

r
(%):

>6
1403

(3.3)
318

(3.1)
140

(2.3)
no

##
51

age_at_admission
(median

[IQR])
76.9

[66.6,
85.1]

77.4
[68.2,

85.5]
78.5

[69.3,
86.2]

no
##

52
hour_of_admission_cyclical

(%):
0

3560
(8.4)

884
(8.7)

514
(8.6)

no
##

53
hour_of_admission_cyclical

(%):
1-3

18460
(43.7)

4521
(44.3)

2727
(45.6)

no
##

54
hour_of_admission_cyclical

(%):
4-6

12209
(28.9)

2886
(28.3)

1629
(27.2)

no
##

55
hour_of_admission_cyclical

(%):
7-9

5367
(12.7)

1250
(12.3)

712
(11.9)

no
##

56
hour_of_admission_cyclical

(%):
10-12

2654
(6.3)

660
(6.5)

398
(6.7)

no
##

57
sex_female

(%)
20743

(49.1)
4854

(47.6)
2940

(49.2)
yes

##
58

sex_male
(%)

21507
(50.9)

5347
(52.4)

3040
(50.8)

no

3

##
59

n18_diag_N189
(%)

13228
(31.3)

3242
(31.8)

694
(11.6)

no
##

60
n18_diag_N185

(%)
1970

(4.7)
868

(8.5)
62

(1.0)
no

##
61

n18_diag_N184
(%)

385
(0.9)

223
(2.2)

23
(0.4)

no
##

62
n18_diag_N183

(%)
161

(0.4)
138

(1.4)
30

(0.5)
no

##
63

n18_diag_N181
(%)

44
(0.1)

34
(0.3)

<5
no

##
64

n18_diag_N182
(%)

61
(0.1)

36
(0.4)

9
(0.2)

no
##

65
elixhauser_score_ahrq

(%):
0

10419
(24.7)

2261
(22.2)

1881
(31.5)

no
##

66
elixhauser_score_ahrq

(%):
1-2

1900
(4.5)

432
(4.2)

273
(4.6)

no
##

67
elixhauser_score_ahrq

(%):
3-4

2078
(4.9)

496
(4.9)

356
(6.0)

no
##

68
elixhauser_score_ahrq

(%):
5-6

4725
(11.2)

1092
(10.7)

609
(10.2)

no
##

69
elixhauser_score_ahrq

(%):
>6

23128
(54.7)

5920
(58.0)

2861
(47.8)

no
##

70
icd10_chapter_1

(%)
10263

(24.3)
2662

(26.1)
954

(16.0)
no

##
71

icd10_chapter_2
(%)

10386
(24.6)

2748
(26.9)

1410
(23.6)

no
##

72
icd10_chapter_3

(%)
9226

(21.8)
2285

(22.4)
920

(15.4)
no

##
73

icd10_chapter_5
(%)

7673
(18.2)

1979
(19.4)

1059
(17.7)

no
##

74
icd10_chapter_6

(%)
7129

(16.9)
1992

(19.5)
992

(16.6)
no

##
75

icd10_chapter_7
(%)

11452
(27.1)

2901
(28.4)

1495
(25.0)

no
##

76
icd10_chapter_8

(%)
5392

(12.8)
1203

(11.8)
650

(10.9)
no

##
77

icd10_chapter_10
(%)

15905
(37.6)

4131
(40.5)

1930
(32.3)

no
##

78
icd10_chapter_11

(%)
16451

(38.9)
4136

(40.5)
1921

(32.1)
no

##
79

icd10_chapter_12
(%)

6220
(14.7)

1597
(15.7)

680
(11.4)

no
##

80
icd10_chapter_13

(%)
16131

(38.2)
4123

(40.4)
2107

(35.2)
no

##
81

icd10_chapter_15
(%)

159
(0.4)

25
(0.2)

11
(0.2)

no
##

82
icd10_chapter_16

(%)
38

(0.1)
11

(0.1)
5

(0.1)
no

##
83

icd10_chapter_17
(%)

1348
(3.2)

312
(3.1)

93
(1.6)

no
##

84
icd10_chapter_20

(%)
9

(0.0)
<5

<5
no

##
85

icd10_chapter_21
(%)

37872
(89.6)

9254
(90.7)

5221
(87.3)

no
##

86
atc_level2_A03

(%)
1819

(4.3)
395

(3.9)
249

(4.2)
no

##
87

atc_level2_A04
(%)

792
(1.9)

307
(3.0)

200
(3.3)

no
##

88
atc_level2_A06

(%)
2129

(5.0)
523

(5.1)
256

(4.3)
no

##
89

atc_level2_A07
(%)

701
(1.7)

185
(1.8)

95
(1.6)

no
##

90
atc_level2_A09

(%)
22

(0.1)
9

(0.1)
5

(0.1)
no

##
91

atc_level2_A10
(%)

5270
(12.5)

1500
(14.7)

814
(13.6)

no
##

92
atc_level2_A11

(%)
4752

(11.2)
1410

(13.8)
558

(9.3)
no

##
93

atc_level2_A12
(%)

8578
(20.3)

2330
(22.8)

1182
(19.8)

no
##

94
atc_level2_A16

(%)
6

(0.0)
5

(0.0)
0

(0.0)
no

##
95

atc_level2_B02
(%)

1271
(3.0)

295
(2.9)

184
(3.1)

no
##

96
atc_level2_B03

(%)
3513

(8.3)
946

(9.3)
385

(6.4)
no

##
97

atc_level2_B05
(%)

4884
(11.6)

1643
(16.1)

1074
(18.0)

no
##

98
atc_level2_C01

(%)
4318

(10.2)
1068

(10.5)
588

(9.8)
no

##
99

atc_level2_C02
(%)

563
(1.3)

155
(1.5)

45
(0.8)

no
##

100
atc_level2_C07

(%)
8491

(20.1)
2362

(23.2)
1189

(19.9)
no

##
101

atc_level2_C08
(%)

4606
(10.9)

1221
(12.0)

607
(10.2)

no
##

102
atc_level2_C09

(%)
4717

(11.2)
1183

(11.6)
751

(12.6)
no

##
103

atc_level2_C10
(%)

5698
(13.5)

1479
(14.5)

820
(13.7)

no
##

104
atc_level2_D01

(%)
23

(0.1)
9

(0.1)
<5

no
##

105
atc_level2_D07

(%)
29

(0.1)
8

(0.1)
<5

no
##

106
atc_level2_G03

(%)
83

(0.2)
29

(0.3)
19

(0.3)
no

##
107

atc_level2_G04
(%)

836
(2.0)

265
(2.6)

150
(2.5)

no
##

108
atc_level2_H01

(%)
84

(0.2)
15

(0.1)
12

(0.2)
no

##
109

atc_level2_H02
(%)

3867
(9.2)

1054
(10.3)

575
(9.6)

no
##

110
atc_level2_H03

(%)
1600

(3.8)
477

(4.7)
267

(4.5)
no

##
111

atc_level2_H05
(%)

236
(0.6)

62
(0.6)

5
(0.1)

no
##

112
atc_level2_J02

(%)
286

(0.7)
84

(0.8)
70

(1.2)
no

##
113

atc_level2_J04
(%)

22
(0.1)

<5
0

(0.0)
no

##
114

atc_level2_J05
(%)

244
(0.6)

65
(0.6)

36
(0.6)

no
##

115
atc_level2_J06

(%)
23

(0.1)
7

(0.1)
<5

no
##

116
atc_level2_L01

(%)
121

(0.3)
27

(0.3)
15

(0.3)
no

##
117

atc_level2_L02
(%)

166
(0.4)

61
(0.6)

34
(0.6)

no
##

118
atc_level2_L03

(%)
12

(0.0)
<5

<5
no

##
119

atc_level2_L04
(%)

964
(2.3)

207
(2.0)

46
(0.8)

no
##

120
atc_level2_M01

(%)
1628

(3.9)
401

(3.9)
308

(5.2)
no

##
121

atc_level2_M03
(%)

247
(0.6)

93
(0.9)

62
(1.0)

no
##

122
atc_level2_M04

(%)
2341

(5.5)
700

(6.9)
276

(4.6)
no

##
123

atc_level2_M05
(%)

99
(0.2)

24
(0.2)

17
(0.3)

no
##

124
atc_level2_N01

(%)
378

(0.9)
99

(1.0)
61

(1.0)
no

##
125

atc_level2_N03
(%)

1917
(4.5)

557
(5.5)

281
(4.7)

no
##

126
atc_level2_N04

(%)
174

(0.4)
42

(0.4)
22

(0.4)
no
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##
127

atc_level2_N05
(%)

5284
(12.5)

1454
(14.3)

823
(13.8)

no
##

128
atc_level2_N06

(%)
3314

(7.8)
843

(8.3)
424

(7.1)
no

##
129

atc_level2_N07
(%)

260
(0.6)

87
(0.9)

42
(0.7)

no
##

130
atc_level2_P01

(%)
1456

(3.4)
268

(2.6)
125

(2.1)
no

##
131

atc_level2_R01
(%)

19
(0.0)

10
(0.1)

5
(0.1)

no
##

132
atc_level2_R03

(%)
627

(1.5)
191

(1.9)
113
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Abstract 27 

Purpose 28 

To create a drug safety signalling pipeline associating latent information in clinical free 29 

text with exposure profiles to highlight potential adverse drug reactions to single drugs 30 

and drug pairs.  31 

Data and methods 32 

All inpatient visits of a 500,000-patient sample from two Danish regions, between 18 May 33 

2008 and 30 June 2016. Tokens from clinical notes recorded within 48 hours of admission 34 

were extracted and operationalised with a 256-dimensional fastText embedding; single-35 

drug and drug-pair exposures from doorstep medication profiles were cast into one-hot 36 

encoded vectors. For each of the resultant unique 10,720 target exposure we trained a 37 

multilayer perceptron with two hidden layers of 256 nodes, predicting the risk of exposure 38 

using tokens' embedding vectors as inputs. Only signals from well-calibrated models with 39 

good discrimination were considered pertinent for further evaluation: congruence 40 

between signals for terms with very similar meaning but different spelling, and manual 41 

review by three assessors.  42 

Results 43 

In the included 2,905,251 inpatient visits (1,559,685 (54%) women) the median age was 58 44 

(inter-quartile range, IQR: 33-73) and stable throughout. There were 13,740,564 doorstep 45 

drug prescriptions; the median number of prescriptions was 5 (IQR: 3-9) and in 1,184,340 46 

(41%) admissions patients used ≥5 drugs concurrently. 10,788,259 clinical notes were 47 

included, with 179,441,739 tokens (per-admission median: 51 [IQR: 29-80]) retained after 48 

pruning. 3,945 (38%) models yielded pertinent signals.  49 

Congruence was good: signal profiles agreed within UKU terms, within UKU domains, 50 

and within the mental-neurological spectrum. Inter-rater agreement was moderate. Of 345 51 

single-drug signals reviewed, 28 (8.1%) represented possibly undescribed relationships; 52 

for 186 (54%) signals, the reactions were possible, known, or due to protopathic or 53 

indication bias, all clinically meaningful relationships. 16 (14%) of the 115 drug-pair 54 

signals were possible interactions and 2 (1.7%) were known.  55 

Conclusion 56 

We have successfully built a language-agnostic pipeline for mining associations between 57 

free-text information and medication exposure without the need for manual curation. We 58 

achieve this by turning things upside down, predicting not the likely outcome of a range 59 

of exposures, but the likely exposures for one or several outcomes of interest. Our 60 

176 pharmacovigilant machine learning in big data?



[3/22] 

approach may help overcome limitations of text mining methods relying on curated data 61 

in English. This makes our method appealing in settings that must make sense of non-62 

English free text for pharmacovigilance while, with few adaptations, lending itself well to 63 

alternative use cases such as patient-level decision-making support and drug repurposing.  64 
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Introduction 65 

Pharmacovigilance usually operates with two qualifications of the common term side effect: 66 

adverse drug events (ADEs) and adverse drug reactions (ADRs). ADEs are (noxious) 67 

medical events occurring while using certain medicines without assuming causal 68 

relationships between [1]. ADRs are subsumed by ADEs and constitute outcomes believed 69 

or known to be caused by exposure to a given medicinal product [2,3][2,3]. ADRs are 70 

usually classified in 6 groups, including dose-related and not dose-related [4] The latter are 71 

more unpredictable than the former and tend to be unrelated to the pharmacological 72 

effect, making them interesting from a safety signal detection perspective. 73 

ADRs signal detection usually revolves around spontaneous case reports, collated 74 

nationally (e.g. Danish Medicines Agency), regionally (e.g. European Medicines Agency) 75 

and internationally (e.g. VigiBase of the Uppsala Monitoring Centre [5]). This system 76 

suffers from several shortcomings, including the inherit filtering of reports making it into 77 

central databases, causing i.a. under-reporting [6-9] that may even be biased or otherwise 78 

influenced by, for example, media hype or legislation [10] although the number of 79 

spontaneous reports from biopharmaceutical companies is growing [11]. These 80 

weaknesses, and the ever-expanding digitisation of patient data, have sparked much 81 

interest in leveraging complimentary data sources and technologies for 82 

pharmacovigilance, including longitudinal clinical data and natural language processing 83 

(NLP), the branch of machine learning for making textual data compatible statistical 84 

modelling [12,13].  85 

Text mining is a subfield of NLP dedicated to extracting structured information from 86 

inherently unstructured textual data. Text mining applications in pharmacovigilance often 87 

hinge on hand-curated reference sets for named-entity recognition or entity extraction [14-88 

17]; for example, previous work brought about a Danish dictionary of side effects [18]. 89 

These tasks focus on assigning labels to free-text terms so they can be codified and used as 90 

structured data akin to diagnostic codes recorded in national registers [19] or adverse-91 

event databases.  92 

Creation and maintenance of such gold standards are costly and tedious, which likely 93 

explains the limited availability of tools and resources (including corpora) for non-English 94 

textual data. For example, the official ADR vocabulary of the Danish Medicines Agency is 95 

MedDRA (with English terms), and submitters of case reports are encouraged to pick from 96 

English terms when submitting case reports. When non-standard side effects are entered, 97 

these are manually mapped to the English MedDRA afterwards. Thus, although many a 98 
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little makes a mickle, it is near-impossible to extract information across languages which 99 

would be useful for pharmacovigilant purposes. We posit that, to leverage clinical free 100 

text, complementing existing vocabulary-based approaches to pharmacovigilant NLP with 101 

unsupervised and automatic information extraction from clinical free text deserve 102 

exploration and could facilitate vast screening of clinical free text.  103 

To this end, we report on the creation of one such complementary system: an end-to-end 104 

machine learning pipeline associating latent information in clinical free text with 105 

medication profiles to highlight potential adverse drug reactions to single drugs and two-106 

way drug combinations. We envision a system that accepts one of several side-effect terms 107 

from the user and returns likely, prominent exposures that would undergo assessments 108 

akin to the evaluation of signals in spontaneous case reports. 109 

Methods and materials 110 

Data were obtained from electronic patient records (EPR) systems of 12 secondary and 111 

tertiary public hospitals in two Danish regions (Capital Region and Region Zealand), 112 

comprising approximately 2.6 million persons (about half the Danish population). We 113 

used data from 500,000 adult (age ≥ 18 years) patients admitted between January 2006 and 114 

30 June 2016. 115 

The full analytic workflow is depicted schematically in figure 1 and has four main 116 

components (detailed below): doorstep medication profiles (red), embedding model 117 

(brown), operationalisation of clinical notes (blue), training the signal detection 118 

component (green), and evaluating the safety signals (purple).  119 

Doorstep medication profiles 120 

We considered only pre-existing medication at start of admission and created one 121 

medication vector with one element per distinct single drug and drug pair in the full data 122 

set, using their respective anatomical therapeutic chemical (ATC) codes. Elements 123 

corresponding to drugs and drug pairs used by that patient at doorstep were set to 1, the 124 

rest to 0. We only considered single drugs and drug pairs used in at least 1,000 admissions. 125 

Embedding model 126 

An embedding packs high-dimensional data into much fewer dimensions. Imagine, for 127 

example, one-hot-encoding words in a corpus of clinical notes that collectively contain 128 

345,671 unique words; the presence of a word in a given note could be represented by a 129 

(very sparse) vector with 345,670 zeros and a single 1. Learning a 100-dimensional 130 

embedding of the words, in contrast, enables us to represent each word by a 100-element 131 
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vector that captures latent information in unstructured text [13]. This vector will not be 132 

sparse (computationally convenient) and vectors of words with similar meaning will be 133 

similar even when lexicographically different (e.g. headache, sore head and neuralgia).  134 

We used fastText [20] to train the embedding model on the full corpus after slight pruning: 135 

characters other than letters and numbers were removed, as were multiple white spaces. 136 

This yielded one white-space separated string of words from each note. Hyperparameters 137 

were arbitrary but appropriate for the task at hand; for example, we used a 256-138 

dimensional embedding, sub-word components were allowed to be between 3 and 6 139 

characters long (minn and maxn settings), and tokens were allowed to span up to 3 words 140 

to capture multi-word signals (such as chest pain or sore head; wordNgrams setting). All 141 

settings can be found in the analytic code, see below.  142 

Operationalisation of clinical notes 143 

The corpus comprised notes recorded within the first 48 hours of admission; each note 144 

underwent five processing steps. First, the note was split into sentences. Second, within 145 

each sentence we identified negations and for each of these excluded the subsequent 5 146 

words or until end-of-sentence (heuristic based on Thomas et al. [21].) Third, we removed 147 

special characters from these non-negated words. Fourth, we retained the pruned words 148 

that were neither Danish stop words (using nltk.corpus [22]) nor present in an in-house list 149 

of almost 430,000 names used in Denmark. We forewent stemming and lemmatisation to 150 

let the model learn from natural words, to facilitate its downstream use. Finally, these 151 

retained tokens were concatenated by admission, essentially considering each admission 152 

one document (an oft-used term in text-mining and information retrieval literature). 153 

We computed the term-frequency/inverse-document-frequency (TF-IDF) as tf × log(N/(1 + 154 

df)) for each retained token (with 10 ≤ df ≤ 50,000) to automatically filter away tokens so 155 

common or rare that they unlikely contained information of interest [23]. The final TF-IDF 156 

values were not used to discard tokens at this step; that happened during training, see 157 

below.  158 

The final step of this component was converting tokens to their corresponding embedding 159 

vectors using the fastText model, which happened while training to not unnecessarily 160 

store vectors for tokens many of which were never used due to under-sampling, see 161 

below.  162 

Training the signal detection component 163 

We constructed one multilayer perceptron (MLP) model with 2 hidden layers of 256 nodes 164 

for each of the 12,270 unique drugs and drug pairs in the medication profiles, setting the 165 
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binary outcome to 1 if that drug (pair) was in the doorstep medication profile and 0 166 

otherwise. Because of the imbalanced nature of the prediction task (figure 2) and to obtain 167 

tolerable runtime, we used random 1:2 under-sampling of the majority class to help the 168 

model focus on pertinent signals. We used all tokens for cases and the top-50 tokens based 169 

on TF-IDF for controls. We, then, used the embedding vector for each token and used that 170 

with its outcome as one observation in the MLP model.  171 

We used sigmoid activation functions, the Adam optimiser and regularisation only in the 172 

form of early stopping based on area under the receiver operating characteristic curve 173 

(AUROC) in the internal validation set. The validations set came about by 80/20 random 174 

split-sampling, deemed appropriate as this served solely for regularisation and not 175 

validation per se [24].  176 

Pertinence was operationalised as signals from well-performing models with respect to 177 

discrimination and calibration-in-the-small using the 20% internal validation set. 178 

Discrimination was gauged by AUROCs, calibration-in the-small by the intercepts and 179 

slopes of linear regressions to the calibration curves of decile-binned predicted 180 

probabilities and corresponding bin-wise observed outcome probabilities [25]. Only 181 

models with intercepts in [-0.05, 0.05], slopes in [0.95, 1.05] and AUROCs ≥ 0.7 in the 182 

validation sets were considered to yield pertinent signals.  183 

Evaluating safety signals 184 

Congruence 185 

To quantify the relevance of the signals we compared the predicted odds with the odds in 186 

the background population and used these odds ratios as the signal scores. 187 

The congruence analysis served to qualitatively assess whether tokens with near-identical 188 

or very similar clinical meanings ("clinical synonyms") were assigned the same medication 189 

profiles regardless of lexicographical similarity or lack thereof. To this end, we used the 190 

terms in figure 5 (see also next section for details on their origin) and a list of clinical 191 

synonyms for a total 116 terms. Congruence was, then, assessed visually by plotting 192 

pairwise adjusted cosine distances [26] between the signal profiles of all 116 terms, 193 

constructed as the union of all exposures in the top-50 of any of the terms.  194 

Relevance 195 

We used a reference set to gauge the signals’ relevance, that is to what extent signals are 196 

meaningful from a clinical and pharmacovigilance point of view. Several potential 197 

reference sets exist [27], but for three principal reasons chose the items in the UKU 198 

(Udvalg for Kliniske Undersøgelser, English: Committee for Clinical Investigations) side 199 
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effect rating scale [28]. First, the UKU items were originally developed in a Nordic setting, 200 

so the English-Danish translations are readily available. Second, the UKU items were 201 

developed to gauge the side-effect load of psychotropics, and so their (somewhat) well-202 

defined pharmacological mechanisms aid the assessment of biological plausibility of 203 

signals (more on this below). Third, our results are readily put in a scientific context 204 

because the UKU scale has been used for several years and in different contexts [29], 205 

ensuring transparency with respect to and confidence in the translations for readers 206 

unfamiliar with the Danish language. 207 

We manually reviewed the top-5 single-drug and top-5 drug-pair signals for each 208 

reference-set term consulting three standard sources in clinical pharmacology: 209 

www.pro.medicin.dk (side effects; identical side-effect information as the official Danish 210 

summaries of product characteristics (SPCs, available at www.produktresume.dk) with 211 

few exceptions), DrugBank (drug-drug interactions; publicly available information; 212 

www.drugbank.ca [30]) and the Danish Interaction Database [31] (drug-drug interactions). 213 

We crafted a helper R package (promedreadr, doi: 10.5281/zenodo.5529817) to do the 214 

heavy lifting when collecting side-effect information from www.pro.medicin.dk. 215 

DrugBank kindly made their data (v5.1.8) available to the first author for the purpose of 216 

this study.  217 

Each single-drug signal was labelled as (a) example of protopathic bias or bias-by-218 

indication [32], (b) known side effect if reported for at least one product with that ATC 219 

code, (c) possible side effect (i.e. biologically plausible), or (d) spurious signal (in this 220 

order). For drug-pair signals we labelled each drug according to the single-drug 221 

classification and further evaluated the signal from a drug-drug interaction point of view 222 

on two axes: whether the two drugs are known to interact (is any interaction described in 223 

the Danish Interaction Database and/or DrugBank?) and relevance of signal (three options: 224 

known result of interaction, possible result of interaction, or not caused by interaction). 225 

BSKH, GJ and SEA undertook signal assessment: each signal was evaluated independently 226 

by two assessors and disagreement (quantified by Cohen's kappa [33]) was resolved  by 227 

consensus. 228 

Ethics 229 

This study is part of the BigTempHealth research programme for which approval was 230 

granted by the Danish Patient Safety Authority (3-3013-1723; then competent authority for 231 

ethical approval), the Danish Data Protection Agency (DT SUND 2016-48, 2016-50, 2017-232 

57) and the Danish Health Data Authority (FSEID 00003724). This report honours the 233 

RECORD statement [34] as relevant.  234 
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This study's codebase is available online (doi: 10.5281/zenodo.5598068). Trained on the full 235 

corpus, the embedding model contains sensitive information and so cannot be shared with 236 

third parties.  237 

Results 238 

The final data set covered the period from 18 May 2008 through 30 June 2016 and 239 

comprised 2,905,251 inpatient visits (admissions) of which 1,559,685 (54%) were of women. 240 

The median age was 58 (inter-quartile range, IQR: 33-73) and stable throughout the study 241 

period. These admissions comprised 10,788,259 clinical notes (18% of these patients' 242 

60,960,247 notes) recorded within 48 hours of admission and 13,740,564 doorstep drug 243 

prescriptions; the median number of prescriptions in the doorstep profiles was 5 (IQR: 3-9) 244 

and in 1,184,340 (41%) admissions patients used ≥5 drugs concurrently, a common 245 

polypharmacy threshold [35]. Pruning and filtering left 179,441,739 tokens (per-admission 246 

median: 51 [IQR: 29-80]) for training the 10,270 neural-network models of which 3,945 247 

(38%) yielded pertinent signals.  248 

Figure 2 shows the relative frequency of all 571 single-drug exposures and 249 

(correspondingly) the top-571 drug-pair exposures. The dominant drug classes were those 250 

affecting the nervous system (N, including psychiatric drugs), the alimentary tract and 251 

metabolism (A), and the cardiovascular system (C). The same picture emerged from the 252 

drug-pair exposures: the most prevalent drug pairs involved these same three drug classes 253 

(e.g. AA, AC and AN). 254 

We devised so-called fingerprints for each main UKU term visualising single-drug 255 

exposures (figure 3). These fingerprint plots illustrate that general or vague terms (e.g. 256 

depression, nausea, weight gain) are relatively strongly associated with many drug 257 

exposures, and that for more specific terms (e.g. amenorrhoea, galactorrhoea) fewer drugs, 258 

of appropriate drug classes, light up. Also, fingerprints of clinically related terms (e.g. 259 

tremor, parkinsonism and dystonia) are similar but clearly distinct from those of other 260 

terms.  261 

Congruence 262 

We hypothesised that signal profiles would be similar for similar side-effect terms 263 

("clinical synonyms"), regardless of lexicographical similarity or lack thereof. Indeed, as 264 

figure 4 illustrates, signal profiles agreed within UKU terms, within UKU domains, and 265 

within the mental-neurological spectrum. As expected, the terms in the Other domain did 266 

not agree well, likely because this domain comprises very different side effects not fitting 267 
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in elsewhere. Agreement was imperfect, which can be seen from e.g. the light stripes 268 

representing terms with signal profiles distinct from all other terms. Several UKU terms 269 

have synonyms identical to those of other UKU terms so these of course will show perfect 270 

congruence, even if across UKU domains.  271 

Relevance 272 

Agreement between the three assessors (BSKH, GJ, SEA) was moderate, with four values 273 

of Cohen's kappa (κ): relevance of drug 1 (κ = 0.49), relevance of drug 2 (κ = 0.72), whether 274 

the two drugs were known to interact in any way (κ = 1.0) and relevance of interaction (κ = 275 

0.73). The consensus assessments in figure 5 clearly shows that the method picked up 276 

pertinent information.  277 

There were 345 single-drug/potential-reaction pairs (figure 5, caption). Of these, 28 (8.1%) 278 

represented possible relationships between drug exposure and the reaction in question 279 

(figure 5B, light green). For 186 (54%) signals the reactions were either possible, known, or 280 

due to protopathic or indication bias, all clinically meaningful relationships (figure 5B, 281 

green and dark grey). 16 (14%) of the 115 drug-pair signals were possible interactions, 2 282 

(1.7%) were known and the rest not attributable to the drugs interacting (figure 5C).  283 

Discussion 284 

With a novel, language-agnostic approach using word embeddings we successfully built 285 

an end-to-end pipeline to elicit potential side effects of out-of-hospital drug exposure. The 286 

method may complement existing signal screening processes through automated detection 287 

of possible side-effects. Using side-effects from the psychiatric domain with (somewhat) 288 

well-defined pharmacological properties we illustrated that this method may offer 289 

genuine utility: manual review of signals for clinically relevant side effects illustrated the 290 

ability of the pipeline to highlight pertinent signals, with the "hit rate" in the same order of 291 

magnitude as that of signal detection in spontaneous case reports [36].  292 

The novelty of our approach hinders direct comparisons with the published literature. 293 

Indeed, we try to fill a gap in the three-axis categorisation of pharmacovigilance NLP: 294 

using non-English text, removing the reliance on annotated data, and leveraging EHR 295 

data. The number of published NLP applications in pharmacovigilance is growing: a 296 

review from 2012 included but 7 studies, most of which used either simplistic keyword 297 

searches or more elaborate NLP methodologies (MediClass, MedLEE), predominantly in 298 

discharge summaries with relatively old data (1995 through 2008) [37]. More recently, a 299 

review from 2017 included 48 studies and emphasised the need for side-effect detection 300 
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methods to handle also polypharmacy-related side-effects [38], an issue intimately related 301 

to drug-drug interactions.   302 

Side-effect signal detection generally occurs in three types of data (spontaneous case 303 

reports, online forums—including social media—and longitudinal patient data) with the 304 

analytical approaches somewhere along two axes (modelling complexity and 305 

structuredness of the data). The long-standing signal detection in spontaneous case reports 306 

rests on several large database (e.g. FAERS, EudraVigilance and VigiBase) collecting 307 

reports from healthcare staff, patients and pharmaceutical companies across the globe. The 308 

mainstay of this system has been disproportionality analytic [39] with attempts at 309 

assessing DDIs [40], although NLP applications exist [41-44] just as several attempts at 310 

leveraging online content for pharmacovigilance have come about [45-49], especially using 311 

Twitter posts [50-59] with examples of trying to disentangle temporality of exposure-event 312 

pairs [60].  313 

Although pharmacovigilant text mining in non-English corpora is not the norm, examples 314 

do exist. A Danish dictionary of side effects was created and used for mining psychiatric 315 

patient files, relying on ontologies against which terms found in the clinical text were 316 

compared [18,61,62] and, thus, different in scope than ours. Oronoz et al. sought to create a 317 

gold standard from EMR notes in Spanish that had been annotated by pharmacologists 318 

and pharmacists, with particular focus on medicines and diagnoses [63], while Segura-319 

Bedmar et al. sought to extract drug effects, both beneficial and noxious, from a Spanish 320 

online health forum [64]. Another study used Japanese online platforms to evaluate basic 321 

characteristics of medicine users [65] and Ujiie et al. used medical articles, manually 322 

annotated by a medical engineer, in Japanese articles published for postmarketing 323 

surveillance [66]. Usui et al. devised a system to automatically assign ICD-10 codes to 324 

Japanese free-text patient complaints recorded by pharmacists when dispensing 325 

prescription medicines [67].  326 

These examples all share the foundational characteristic that they rely on curated 327 

ontologies for annotating their corpora. This eases evaluation as the curation process 328 

establishes a ground truth against which to compare the algorithm's output. Nevertheless, 329 

real-life clinical corpora are moving targets, and the constant expansion and morphing of 330 

ontologies require continual and costly updating of annotation rules. Our approach stands 331 

in contrast to this: it is an end-to-end pipeline that requires no annotation of specific 332 

documents but acts a simple signal detection engine whose signals should then undergo 333 

expert review. With text embedding at its core, the method allows for data augmentation 334 

[68] without hand-tuning; we did not, however, venture down this path.  335 
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Data mining models generally carry no causal meaning, and an oft-raised issue of NLP is 336 

the need for (often large) annotated corpora which requires much work and continuous 337 

updating to remain relevant, the very thing we attempted to circumvent by reversing the 338 

prediction direction. Others have used word embeddings to operationalise free text in a 339 

non-annotated manner. For example, Workman et al. showed that word embeddings can 340 

help overcome the problems of misspelling in a pharmacovigilance application [69]; the 341 

RedMed model was trained on Reddit posts to extract health entities therein and performed 342 

reasonably well in such consumer-generated content [70]; and combining pre-trained 343 

word embeddings and conditional random fields could have flagged potential cutaneous 344 

adverse reactions to two chemotherapy classes in internet content before they were 345 

reported in the scientific literature [48].  346 

We trained one model per drug exposure for a total of 10,270 individual models. Although 347 

multi-label architectures sometimes aid learning [71], we found this to drown pertinent 348 

signals in models with thousands of outputs nodes in a single network. This probably 349 

happens because the model can only optimise a single loss value and we found no good 350 

way to automatically up- or down-weigh contributions from different outputs. Further, in 351 

a multi-label feed-forward architecture all weights but those between the last hidden layer 352 

and the outputs are shared, and there seems to be no good reason that predicting the risk 353 

of, say, exposure to metformin should be so intimately linked to that of olanzapine.  354 

When designing our approach, we had institutional pharmacovigilance efforts in mind, 355 

but alternative use cases exist, such as patient-level decision-making support and drug 356 

repurposing research. Including patient characteristics (e.g. age, sex and comorbidities) 357 

would enable clinical staff to query the method for single drugs or drug combinations 358 

potentially explaining the symptoms of their patients. Instead of looking at drugs given 359 

disproportionately often for a given term, we could focus on those given more rarely (so, 360 

with the odds ratio < 1) potentially eliciting interesting novel target conditions for existing 361 

treatments similar in spirit to e.g. Kessing et al. [72]. 362 

Combinatorial explosion is a well-known challenge for the study of DDIs: a person using 7 363 

different medicines is exposed to 21 two-way drug combinations. This challenge is only 364 

exacerbated if higher-order combinations are considered. So, instead of modelling this 365 

explicitly one could consider higher-order interactions (e.g. 3- or 4-way) by piecing 366 

together two-way combinations that yield predicted probabilities above a certain 367 

threshold when multiplied, i.e. using a simplistic approximation to the predicted joint 368 

probability.  369 
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An alternative approach, and indeed research question, would have been to compare new 370 

in-hospital exposures with terms in subsequent days for immediate side effects. To be 371 

feasible this would likely require a much larger data set to have sufficient exposure-372 

outcome pairs. It might, however, be less unwieldy as such an approach could focus on 373 

new(er) drugs drastically reducing the number of labels (and, thus, models to be trained). 374 

Strengths and limitations 375 

Our approach has five principal strengths. First, its unsupervised nature drastically 376 

reduces the need for manual work. This sets it apart from most other published studies 377 

using NLP in pharmacovigilance that tend to hinge on manual curation. Second, the 378 

method is language-agnostic owing to its unsupervised nature, so that it does not rely on a 379 

vocabulary to look up words. This renders the approach potentially useful for 380 

pharmacovigilance in also smaller languages and machine translation could enable 381 

screening efforts in disparate textual data sources of different languages even by people 382 

with no knowledge of the language(s) in question. Third, our corpus is quite large, a 383 

natural consequence of its non-reliance on curated data. Fourth, skipgrams (i.e. using sub-384 

word information) enable embedding of also i.a. word bigrams, misspellings, and out-of-385 

vocabulary words. Fifth, the crude and almost reductionist nature of our approach 386 

circumvents many difficulties posed by NLP because we break documents down to basic 387 

components and use them without modelling semantics and syntax.  388 

This study, however, is subject to several limitations. First, the apparently well-defined 389 

temporality obtained using doorstep medication profiles does not necessarily guarantee 390 

that what is reported in the text occurred after start of exposure. This potential problem, 391 

also the source of protopathic bias [32], is not unique to our approach but rather 392 

necessitates cautious interpretation of any signal detection method, in longitudinal and 393 

case-report settings alike. Second, we do not actually have data on prescriptions from the 394 

primary sector but rely on the doorstep registration of pre-existing medication. Physicians 395 

are obliged to record these doorstep medication profiles, and we expect they generally be 396 

accurate despite occasional exceptions. Fourth, we considered exposure a binary notion 397 

and, due to the nature of the data, do not have well-defined start-of-exposure. Doses could 398 

be considered, perhaps on an ordinal scale, if the interest revolves around dose-related 399 

ADRs; the lack of well-defined exposure time could be mitigated if doorstep medication 400 

profiles were based on data from the Danish Drug Statistics Register [73] (unavailable to 401 

us when conducting this study.) Third, word embeddings are powerful but not magical: 402 

the method clearly links clinical terms with similar meanings (even if lexicographically 403 

very different) to similar medications profiles, but the embedding model has difficulties 404 
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with i.a. rare variations: these yield different embedding vectors resulting in noisy signal 405 

profiles fitting poorly with what is expected. However, rarity of terms also hampers other 406 

kinds of association-mining or disproportionality-analytic techniques, and our method 407 

might even be less prone because few mentions might be enough to at least hint at 408 

relevant “clinical cousins” (terms that mean at approximately the same thing.) Fourth, 409 

even if the doorstep medication profiles are correct, we have no records of exposure to 410 

over-the-counter and herbal drugs and we have to assume patients be compliant, just as 411 

any study using secondary data. Finally, we only had data on inpatients who were not, 412 

generally, admitted due to side effects. Inpatients are not representative of the general 413 

population and so, with the data at our disposal, the safety signals might be somewhat 414 

conditional on frailty to some extent. 415 

Conclusion 416 

Combining various flavours of machine learning and data scientific tools we have built an 417 

end-to-end pipeline for mining associations between free-text information and medication 418 

exposure without the need for manual curation. We achieve this by turning things upside 419 

down, predicting not the likely outcome of a range of exposures, but the likely exposures 420 

for one or several outcomes of interest.  421 

The congruence analysis suggests that the method pick up pertinent information, even 422 

when supplied with synonyms, and with 8% of single-drug and 14% of drug-pair signals 423 

being possibly undescribed side effects, it provides a hit rate appropriate for its purpose: 424 

shortlisting few relevant signals from thousands of noisy signals [27]. These shortlists 425 

would then undergo review by pharmacologists, pharmacists or other pharmacovigilance 426 

experts [5,27] to elicit truly unknown side effects or aid substantiating/refuting suspected 427 

side effects emerging from e.g. spontaneous case reports.   428 

Our approach is original in the field of side effect detection and helps overcome many 429 

limitations of NLP methods relying on curated data including being language-agnostic. 430 

Crucially, this makes our method appealing in settings that must make sense of non-431 

English free text for pharmacovigilance while lending itself well to alternative use cases, 432 

e.g., patient-level decision-making support and drug repurposing. 433 
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Figure 3: Fingerprint plots of the 23 main UKU terms and their 571 single-drug signals. Inner circles: each 450 
wedge represents one drug and transparency the signal score. Outer circles: colours represent anatomical drug 451 
classes (ATC level 1), see legend. See caption of figure 2 for drug-class names.  452 

 453 
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 454 

Figure 4: Mean-adjusted cosine similarities between signal pairs. Rows and columns show pairwise similarities 455 

between signal profiles for specific terms. Dark blue squares signify agreement between blocks of terms (red 456 

represent disagreement). Black and white margin bars represent UKU side-effect terms, and columns/rows 457 

within the span of one bar are synonyms. The cosine similarity of two identical signals equals 1 (e.g. the 458 

diagonal). 459 

 460 

  461 
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Figure S1: Intercepts (x axis) and slopes (y axis) of linear regressions of the calibration 
curves in the internal validation sets. C

olour represents A
U

RO
C

 (0.5 corresponds to 
random

 guessing, 1.0 to perfect discrim
ination). M

odels w
ith intercept > 0 tend to have 

slopes < 1 and vice-versa, as a com
pensatory m

echanism
. M

odels represented by points 
inside the rectangle yield pertinent signals.  
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Figure S2: C
ohen's kappa for each rater pair (coloured bars) and overall (shaded, w

ide bar 
in the background), by item

. 
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Acronyms

ADE adverse drug event. 23

ADR adverse drug reaction. 9, 23–25, 27, 33, 62, 73, 76, 80

ATC Anatomic Therapeutic Chemical classification. 33, 34, 58

AUROC area under the ROC curve. 50, 59

BCC B-Data Clinical Chemistry Laboratory System. 34, 69

CDM common data model. 67, 75, 78–80

CPU central processing unit. 72

CRN civil registration number. 31

CRS the National Civil Registration System. 31, 32

CYP cytochrom P450. 57

DDI drug-drug interaction. 11, 27, 55–57, 73

DID Danish Drug Interactions Database. 55

DMA the Danish Medicines Agency. 25, 55

eGFR estimated glomerular filtration rate. 34, 58

EHR electronic health record. 26, 63, 67, 77

EMA the European Medicines Agency. 25, 80

EMR electronic medical record. 10, 26, 35, 63, 76

EPM Electronic Patient Medication. 68, 79

EPM1 Electronic Patient Medication 1. 33, 67

EPM3 Electronic Patient Medication 3. 33, 67

EPR electronic patient record. 26

ETL extract-transform-load. 33, 67, 68, 70, 72, 80

EU European Union. 25

FAERS the FDA Adverse Event Reporting System. 25

GAM generalised additive model. 40

GLM generalised linear model. 40–44, 48, 66
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HMM Hidden Markov Model. 64

ICD10 the 10th revision of the International Classification of Disease. 37, 70

ICSR individual case safety report. 24–26, 62, 73, 75, 81

ICU intensive care unit. 32, 33, 67

IQR inter-quartile range. 56

IUPAC International Union of Pure and Applied Chemistry. 71

LABKA Clinical Laboratory Information System (in Danish: sygehus-Laboratorier, Klinisk Biokemiske
Afdelinger). 34

MAR missing-at-random. 79

MCAR missing-completely-at-random. 79

MCC Matthew’s correlation coefficient. 50

MedDRA the Medical Dictionary for Regulatory Activities. 37

MLP multilayer perceptron. 41–43, 46–48, 52, 57–61, 64, 73

MNAR missing-not-at-random. 79

NCSP NOMESCO Classification of Surgical Procedures. 70

NLP natural language processing. 27, 35, 37, 59, 62, 80

NPR the Danish National Patient Register. 32, 58, 69, 70

NPU Nomenclature, Properties and Units. 69, 71

NSAID non-steroidal anti-inflammatory drug. 57

OHDSI Observational Health Data Sciences and Informatics program. 66, 67, 72, 78, 80, 81

OMOP Observational Medical Outcomes Partnership. 67, 75, 79, 80

RCT randomised controlled trial. 27, 28, 40, 65–67

ROC receiver operating characteristic. 50

SHAP SHapley Additive exPlanation. 28, 52, 58, 59, 65, 66

SKS Sygehusvæsenets Klassifikationssystem. 32, 70

SLOR shrinkage log odds ratio. 63, 73

SPD standardised difference in proportions. 45, 55, 63

SRS spontaneous reporting system. 25, 75

UK United Kingdom. 24

UKU Udvalg for KLiniske Undersøgelser. 61

UMC Uppsala Monitoring Centre. 24, 34

USA United States of America. 25, 34

WHO World Health Organization. 26, 33

xAI explainable artificial intelligence. 28, 52
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