
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

High Speed Implementation of the Deformable

Shape Tracking Face Alignment Algorithm

Nikos Petrellis

Dept. of Electrical and

Computer Engineering

University of Peloponnese

Patra, Greece
npetrellis@uop.gr

Panagiotis Mousouliotis

School of Informatics

Aristotle University of

Thessaloniki

Thessaloniki, Greece

p.mousouliotis@esda-

lab.gr

Stavros Zogas

Dept. of Electrical and

Computer Engineering

University of Peloponnese

Patra, Greece

s.zogas @esda-lab.gr

Nikolaos Voros

Dept. of Electrical and

Computer Engineering

University of Peloponnese

Patra, Greece

voros@esda-lab.gr

Panagiotis Christakos

Dept. of Electrical and

Computer Engineer

University of Peloponnese

Patra, Greece
p.christakos @esda-lab.gr

Christos Antonopoulos

Dept. of Electrical and

Computer Engineering

University of Peloponnese

Patra, Greece

ch.antonop@esda-lab.gr

Georgios Keramidas

School of Informatics

Aristotle University of

Thessaloniki

Thessaloniki, Greece

gkeramidas@csd.auth.gr

Abstract— The 2D facial landmark alignment method,

implemented in C++ in the open source libraries DLIB and

Deformable Shape Tracking (DEST), is used in several

applications such as driver drowsiness detection. The most

challenging of these applications require fast video frame

processing. Therefore, the alignment of the facial landmarks in

a single video frame has to be performed with the minimum

possible latency without precision loss. In this paper, the DEST

implementation of the face alignment method that is based on

regression trees is heavily restructured to reduce latency. The

resulting face alignment predictor is implemented in C. The

elimination of multiple nested routine calls, excessive argument

copying, type conversions and integrity checks lead to a software

implementation that is 240 times faster than the one provided in

the DEST library. Moreover, the structure of the new face

alignment predictor is appropriate for hardware

implementation on a Field Programmable Gate Array (FPGA)

for further acceleration1.

I. INTRODUCTION

Regression-based methods are the dominant solutions for
face alignment tasks in computer vision. These methods
employ a series of mapping functions to iteratively update the
face shape hypothesis. A fast 2D facial landmark detection
algorithm has been presented by Kazemi and Sullivan in [1]
where an Ensemble of Regression Trees (ERT) has been used
to estimate the position of the facial landmarks. A subset of
image pixel intensities is used to reduce latency. ERT is
trained using gradient boosting in order to optimize the sum
of square error loss.

The authors in [2] formulate the regression procedure as a
sparse coding problem. An occlusion dictionary is used into
the face appearance dictionary to recover face shape from
partially occluded face appearance. Cascaded regression has
been interpreted as a learning-based approach to iterative
optimization methods like the Newton’s method. In [3], the
problem of facial deformable model fitting is addressed using
cascaded regression. A method is proposed in [4], that locates
the facial landmarks and extracts discriminating features from
suitable facial regions. Histogram of Oriented Gradients
(HOG) features are extracted from the active facial patches

1 The source code of the modified DEST face alignment implementation will

be available in Github: https://github.com/ncpetrellis/

This work has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No 871738 -

instead of the whole face, which makes the system robust
against the scale and pose variations.

The authors of [5] also relied on ERT to evaluate computer
graphics rendered datasets. More specifically, they used 500
trees with depth 5 each one. This size is used in our
implementation too. Masui et al., employ an ERT-based
method [6] to align 68 facial landmarks, in order to avoid
facial expression errors, and to measure the reaction of people
on advertisements. Finally, the authors of [7] developed an
ERT method to estimate head pose for human-machine
interaction achieving a latency equal to 1ms per image frame.

The face alignment algorithm initially presented in [1] is
used in the C++ DLIB machine learning toolkit and the
Deformable Shape Tracking (DEST) library [8]. The DEST
library implementation of the facial landmark alignment
algorithm presented in [9], is modified in the approach
described in this paper. The source code of the DEST
implementation has been developed in C++ based on the
Eigen template library for linear algebra operations. Eigen
library optimizes matrix/vector operations as well as Singular
Value Decomposition (SVD), Jacobi matrices, etc. However,
the compact description of the algebraic operations comes at
a high latency cost caused by an excessive number of nested
routine calls. The CPU implementation of the DEST library
shows a latency that is more than 100 times slower than 1ms
that is advertised in [1]. Moreover, the original code uses
Eigen/DEST C++ classes, that are not appropriate for the
implementation of the computational intensive operations in
reconfigurable hardware (FPGAs).

In this paper, the libraries DEST and Eigen have been
ported to Linux Ubuntu and compiled with tools similar to the
ones used in state-of-the-art hardware design tools such as
Xilinx Vitis (GNU C++ and Vitis compilers). Thus, the
porting of the Ubuntu DEST/Eigen package to the Xilinx Vitis
environment is straightforward. We have profiled a DEST
video processing application that tracks the facial landmarks,
in order to extract the computational intensive operations. As
a second step, we modified their source code so that they can
also be accelerated in hardware. The face landmark prediction
routine and the nested calls have been flattened, converted

CPSoSaware: Cross-layer cognitive optimization tools & methods for the

lifecycle support of dependable CPSoS. project.

https://github.com/ncpetrellis/

from C++ to C, and their arguments are now pointers to
integers or floating point buffers (according to the memory
arena programming paradigm). The resulting code is not only
appropriate for hardware acceleration using reconfigurable
hardware, but it is also 240 times faster since the latency of
the face landmark prediction routine is reduced from 116 ms
to 479 μs on an Intel Core i5-9500 CPU @3.00GHz, 6 core
processor with 16GB RAM.

This paper is structured as follows. A brief review of the
face alignment prediction method suggested in [1] is presented
in Section II. The implementation of the inference step and the
modified structure of the source code that implements face
alignment is described in Section III. Experimental results and
the reasons of the high latency showed in the original DEST
implementation are discussed in Section IV. Finally, the
conclusions and future work are presented in Section V.

II. FACE ALIGNMENT BASED ON REGRESSION TREES

In [1], focus is given mainly on the training of the

regression trees while we emphasize in the efficient

implementation of the inference step. Let p be the number of

face landmarks in an image Img, and xi be the pair of the i-th

landmark coordinates. The shape S∈ 𝑅2𝑝, formed by these p-

landmarks is defined as:

 𝑆 = {𝑥0, 𝑥1, . . , 𝑥𝑝}

The algorithm starts by assuming that the shape S is the

mean landmark positions retrieved from the trained model.

Then, the position of the actual landmarks in the image under

test, is refined by a sequence of cascaded regressors. The

current shape estimate in the regressor t is denoted as �̂�(𝑡)

(t=1,.., Tcs). The transition to the next regressor, involves the

prediction of a correction factor rt that depends on the image

Img and the current estimate �̂�(𝑡). This correction factor rt is

added to �̂�(𝑡) in order to generate the updated shape in the

next regressor t+1: �̂�(𝑡+1). The rt value is estimated based on

the intensities of pixels that are indexed relative to the current

shape �̂�(𝑡). Each regressor rt is trained using a gradient tree

boosting algorithm with a sum of square error loss. This

training algorithm exploits the triplet (𝐼𝜋𝑖
, �̂�𝑖

(𝑡)
, 𝛥𝑆𝑖

(𝑡)
) where

the training data consists of a set of N images 𝐼𝜋𝜄
, 0 ≤ 𝜋𝑖 < 𝑁

and �̂�𝑖
(𝑡)

is the shape of any training image 𝑖 ≠ 𝜋𝑖 . The

residual 𝛥𝑆𝑖
(𝑡+1)

in the regressor rt+1 is estimated as [1]:

 𝛥𝑆𝑖
(𝑡+1)

= 𝑆𝜋𝑖
− �̂�𝑖

(𝑡+1)

The residuals correspond to the gradient of the loss

function and are estimated for all training samples. The shape

estimation for the next regressor stage is performed as [1]:

 �̂�(𝑡+1) = �̂�(𝑡) + 𝑟𝑡(𝐼𝜋𝑖
, �̂�𝑖

(𝑡)
)

Then, for K tests (k=1, …, K) and for N training images

(i=1,…, N) in each test the following calculation is repeated:

 𝑟𝑖𝑘 = 𝛥𝑆𝑖
(𝑡)

− 𝑓𝑘−1(𝐼𝜋𝑖
, �̂�𝑖

(𝑡)
)

In the k-th step, a regression tree is fitted to rik using a

weak regression function gk, thus fk is updated as follows [1]:

 𝑓𝑘(𝐼, �̂�(𝑡)) = 𝑓𝑘−1(𝐼, �̂�(𝑡)) + 𝑙𝑟 ∙ 𝑔𝑘(𝐼, �̂�(𝑡))

where lr<1 is the learning rate used to avoid overfitting.

The final correction factor rt of the t-regressor is equal to fK.

The next node that should be visited in a regression tree

is determined by comparing the intensity difference of two

pixels p1 and p2 with a threshold Th. Different threshold Th

values are defined for each regression tree node in the trained

model. The coordinates of p1, p2 should be indexed relative

to the reference mean shape and for this purpose, the image

could be warped to match the mean shape. A global process

called Similarity Transform (ST) is used to perform the

required warping. If q is an image pixel and its closest

landmark has index kq, their distance δxq is estimated as

𝛿𝑥𝑞 = ‖𝑞 − 𝑥𝑘𝑞
‖. The pixel q’ in the original image Img that

corresponds to q in the mean shape is estimated by [1]:

 𝑞′ = 𝑥𝑖,𝑘𝑞
+

1

𝑠𝑖
𝑅𝑖

𝑇𝛿𝑥𝑞

The parameters si and Ri are scale and rotation matrices

used in the ST to warp the initial shape. The minimization of

the mean square error between the actual q’ value and the one

estimated using eq. (6), can be used to estimate the optimal

values for si and Ri. More details can be found in [1].

III. ORIGINAL DEST AND MODIFIED IMPLEMENTATION

The implementation of the method described in [1] with
the open source DEST package [8] was modified to allow its
acceleration with reconfigurable hardware. The DEST
implementation takes advantage of the Eigen template library
that simplifies complicated matrix operations. All the
supported DEST/Eigen operations are well-defined and
protected from overflows, rounding errors, inappropriate type
conversions, etc. Eigen operators are overloaded using
multiple templates that support various numeric types (e.g.,
complex numbers). The cost of these facilities is a vast
performance degradation. Moreover, the employed Eigen
classes cannot be used in hardware synthesis.

In order to overcome these limitations, the source code
was reconstructed by simplifying operand types, flattening
nested routine calls, copying large data once (e.g., during
initialization), etc. The computational intensive operations are
described in ANSI C, to reassure that they can be ported to
hardware by state of the art tools such as Xilinx Vitis.

A DEST application that aligns landmarks in faces
detected in the frames of a video or camera stream is used.
Frames from the video stream are retrieved and if face
landmark alignment is needed in the specific frame, face
detection takes place using the OpenCV library. In the frames
where a new face detection is not required, the face is assumed
to exist in an extended bounding box around the shape
estimated in the previous frame. Landmark alignment is
performed in the bounding box returned by OpenCV using the
predict() function. The ST process has to be applied on the
detected face bounding box to adapt its coordinates to the ones
used by the mean shape stored in the trained model. This
model consists of a number of regression trees in each cascade
stage and the tree node values are available from the training.

The most computational intensive operation, i.e., the
predict() function, is implemented in three nested levels:
Tracker::predict() calls Regressor::predict() which in turn
calls Tree::predict(). Tracker::predict() (top level) accepts as
input the image frame and the position of the bounding box of
the recognized face and returns the estimated face landmark
positions. Within Tracker::predict(), the Regressor::predict()
is called Tcs=10 times. The Regressor::predict() accepts as
input the Img, the face bounding box coordinates and the
current estimate (corresponds to f in eq. (5)) of the landmark
shape. The Regressor::predict() returns the shape residuals sr,
that are used to update the estimate f in the Tracker::predict().
The Regressor::predict() routine initially performs ST to
adapt the current landmark shape to the mean coordinates of
the trained model. Then, pixel intensities are read from the
sparse Img representation and the system locates the closest
landmarks in these pixels by trying to fit the regressor trees
stored in the trained model. The routine Tree::predict() is
called for all the stored Ntr binary regressor trees (Ntr=500).
Each Tree::predict() call returns a correction factor called
mean residuals (mr). The leaves of each regression tree have
different mr values stored. Each tree is accessed from the root
to the leaves within the Tree::predict() routine, following the
appropriate path. Each tree has depth equal to Td=5 and 2𝑇𝑑 −
1 = 31 nodes. In each intermediate tree node, the intensities
of a pair of pixels indexed in the trained model are compared.
The right or left direction of the binary tree is opted depending
on whether the intensity difference is larger than a threshold
Th that is also stored in the trained model.

In the proposed Modified Implementation (MI), the
functionality of the three nested predict() routines is included
in the new Kernel_predict() routine that has been developed
in ANSI C, in order to be portable to hardware. All the
numerous parameters of the trained model that were accessed
in the original DEST implementation from predict() routines,
are now loaded during initialization into contiguous buffers
from the new predict_prepare() routine called once during
initialization. More specifically, the number of the Ntr
regression trees and their node values are read: the threshold
Th, the mean residual mr, and the indices of the pixels that their
intensity difference has to be compared with Th. Moreover, the
Tcs learning rates lr, the LM coordinates of the mean shape
landmarks, the Nc relative pixel coordinates of the sparse
image and the closest landmark to these relative pixel
coordinates are also read from the trained model.

In the new Tracker::predict(), some model values (default
mean shape estimate and mean residuals) are initially read into
buffers from the trained model for each new frame. Pointers
to these buffers along with pointers to the buffers prepared by
predict_prepare() and frame-specific information (pointer to
image buffer, image dimensions, position of the detected face)
are passed to the Kernel_predict() routine. The final landmark
shape is returned by Kernel_predict() and its homogeneous
coordinates are converted to the absolute coordinates needed
in order to display the landmarks on the tested image frame.

IV. EXPERIMENTAL RESULTS-DISCUSSION

To validate whether the MI implementation exhibits any
accuracy degradation compared to the original DEST
implementation, videos from the dataset of [11] were used.
The videos from this dataset last 5-8 sec. and their resolution
is 1920×1080. Face alignment was performed once every five
frames and the extracted landmarks were 100% identical
between the MI and the original DEST version. The

performance comparison between the original DEST and the
MI implementation showed that the latency of the
Tracker::predict() routine was reduced from 116 ms to 475 μs
on an Ubuntu 18.04, Intel 6-Core i5-9500 CPU @3.00GHz,
with 16GB RAM. The frame rate was increased from 1.6 fps
to 28 fps. These performance results are also confirmed when
a webcam input stream is used.

In order to better understand why the MI implementation
runs so fast on the same platform, we will examine two
architectural differences between the original DEST and the
MI source code. The first one concerns the number of
operations needed to define the effective memory address of
the model parameters. These parameters are copied once in
contiguous buffers in the predict_prepare() routine in the MI
code. The number of operations needed to estimate the
effective address of an individual parameter encounters the
additions of the offsets to the base address of the buffer. In
most of the cases, the offset additions were reduced by 1 in the
MI implementations. The DEST implementation required
1.87 times more operations than the MI source code for the
estimation of the effective addresses.

The reduction in the operations needed to estimate
effective memory addresses cannot justify the improvement of
the Tracker::predict() latency by 240 times. Eigen library
offers a convenient way to describe algebraic operations. For
example, matrix multiplication, complex number handling,
SVD and other complicated operations can be described in a
compact way with overloaded operators. The cost of these
facilities is the increased latency posed by the Eigen library.
The MI implementation runs much faster because the
functionality of the Tracker::predict(), and the nested
Regressor::predict() and Tree::predict() routines are
implemented as a C Kernel_predict() routine. Eigen types are
replaced in this routine, with simple C types, avoiding type
conversions. No excessive Eigen constraint checks (e.g., for
value overflow) are applied. Moreover, no operator
overloading is used and each operation is implemented by
custom inline code in the Kernel_predict().

An indicative way to measure how much overhead was
posed by the Eigen library, is to use the GNU debugger (GDB)
and measure how many “Step Into” commands are needed for
a specific operation either in the original DEST or the MI
source code. For example, reading the number of trees in each
regressor is completed in 2 GDB steps. Accessing a tree node
requires 10 GDB steps. Reading two pixel intensities and
comparing their difference with the tree node threshold
requires 62 GBD steps. Accessing the first singular value from
the svd structure requires 75 GDB steps. The number of GDB
steps needed between the call of the routine
estimateSimilarityTransform() that implements ST and the
execution of its first instruction, is 128. Initializing a 2×2
matrix with zeros, requires 165 GDB steps. Finally, when the
readPixelIntensities() routine is called to access the pixel
intensities of the input image, 162 GDB steps are needed only
for the type conversion and integrity checks of the first two
arguments. Then, a nested loop with 1080×1920 iterations
takes place and in each iteration the routine
kernel.assignCoeffByOuterInner() is called. In all of the above
cases, the corresponding commands in the MI implementation
require only a single GDB step. We will focus on the
Eigen::Matrix2f d = Eigen:: Matrix2f::Zero(2, 2) command
to justify the 165 GDB steps required. Table I lists the various
functions and the steps GDB spends in each one of them in

order to complete the d matrix initialization. Explaining the
functionality of each one of these routines and their
input/output arguments is out of the scope of this paper
although their operation is implied by their names in most of
the cases. Fig. 1 shows examples of face alignment achieved
by the MI implementation using the dataset of [11].

V. CONCLUSIONS

The popular DEST package, Eigen library-based

implementation of face alignment algorithm that exploits an

ensemble of regression trees was modified to support

hardware implementation. The computational intensive

routines were flattened and implemented in C language. The

replacement of Eigen library classes and types led to an

implementation that is 240 times faster than the original

DEST implementation.

In our future work we will examine the accuracy penalty

of an integer representation of the model parameters that are

realized as floating point values in the original source code.

An integer representation would lead to a hardware

implementation with fewer resources. The face alignment

algorithm will also be implemented in FPGA devices for

applications that require ultra-high speed face alignment.

REFERENCES

[1] V. Kazemi and J. Sullivan, "One millisecond face alignment with an
ensemble of regression trees," 2014 IEEE Conference on Computer
Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 1867-
1874, doi: 10.1109/CVPR.2014.241

[2] D. J. Tan, F. Tombari, and N. Navab, "A Combined Generalized and
Subject-Specific 3D Head Pose Estimation," 2015 International

Conference on 3D Vision, Lyon, France, 2015, pp. 500-508, doi:
10.1109/3DV.2015.62.

[3] J. Xing, Z. Niu, J. Huang, W. Hu, X. Zhou, and S. Yan, "Towards
Robust and Accurate Multi-View and Partially-Occluded Face
Alignment," in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 4, pp. 987-1001, 1 April 2018, doi:
10.1109/TPAMI.2017.2697958.

[4] Z. Gan, L. Ma, C. Wang and Y. Liang, "Improved CNN-based facial
landmarks tracking via ridge regression at 150 Fps on mobile devices,"
2017 10th International Congress on Image and Signal Processing,
BioMedical Engineering and Informatics (CISP-BMEI), Shanghai,
China, 2017, pp. 1-9, doi: 10.1109/CISP-BMEI.2017.8301921.

[5] Y. Dong, M. Lin, J. Yue, and L. Shi, "A low-cost photorealistic CG
dataset rendering pipeline for facial landmark localization,"
Multimedia Tools and Applications, 2019.

[6] K. Masui, G. Okada, and N. Tsumura, "Measurement of advertisement
effect based on multimodal emotional responses considering
personality," ITE Transactions on Media Technology and
Applications, vol. 8, no. 1, pp. 49-59, 2020.

[7] F. Madrigal and F. Lerasle, "Robust head pose estimation based on key
frames for human-machine interaction", EURASIP Journal on Image
and Video Processing, vol. 2020, doi: https://doi.org/10.1186/s13640-
020-0492-x.

[8] Deformable Shape Tracking (DEST). Available online:
https://github.com/cheind/dest (accessed on 17 April 2021).

[9] G. G. Chrysos, E. Antonakos, S. Zafeiriou, and P. Snape, "Offline
Deformable Face Tracking in Arbitrary Videos," 2015 IEEE
International Conference on Computer Vision Workshop (ICCVW),
Santiago, Chile, 2015, pp. 954-962, doi: 10.1109/ICCVW.2015.126.

[10] T. Hastie, R. Tibshirani, and J. H. Friedman. “The elements of
statistical learning: data mining, inference, and prediction,” New York:
Springer-Verlag, 2001.

[11] L. Jeni, H. Yang, R. Pillai, Z. Zhang, J. Cohn, and L. Yin, “3D Dense
Face Reconstruction from Video (3DFAW-Video) Challenge”, 2nd
3DFAW-Video Workshop/Challenge, IEEE International Conference
on Computer Vision (ICCV), 2019.

TABLE I. EIGEN FUNCTIONS CALLED WHEN EXECUTING THE COMMAND: EIGEN::MATRIX2F D = EIGEN::MATRIX2F::ZERO(2, 2);

Function GDB

steps

Function GDB

steps

Function GDB

steps

zero() 5 DenseStorage() 2 generic_dense_assignment_kernel() 2

scalar_constant_op() //2 versions 3 resize() // 2 versions 4 assignPacket() // 2 versions 5

nullaryExpr() 6 data() // 2 versions 2 assignPacketByOuterInner() 3

CwiseNullaryOp() 4 _check_template_params() 1 rowIndexByOuterInner() // 2 verions 6

rows() // 3 versions 11 resizeLike() 4 colIndexByOuterInner() 2

cols() // 3 versions 8 _set_noalias() 4 resize_if_allowed() 5

functor() 1 EIGEN_EMPTY_STRUCT_CTOR

(assign_op)

1 call_dense_assignment_loop() 9

EIGEN_DEFAULT_EMPTY_CONSTRUCT

OR _AND_DESTRUCTOR(MatrixBase)

2 derived() // 3 versions 7 actualDst() 1

DenseBase() 1 const_cast_derived() 1 evaluator() // 3 versions 6

variable_if_dynamic() 2 check_for_aliasing() 2 packet() 2

value() 9 pset1<Packet4f>() 2 noncopyable() // 2 versions 8

constant() 1 pstore<float>() 2 coeffRef() 2

innerSize() 2 pstoret() 1 matrix() 3

outerStride() // 2 versions 3 PlainObjectBase() 6 run() // 4 versions 14

Fig. 1. Example face alignment using video frames from [11]. Both original DEST and MI implementations estimate identical landmark positions.

https://doi.org/10.1186/s13640-020-0492-x
https://doi.org/10.1186/s13640-020-0492-x
https://github.com/cheind/dest

