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Abstract— The 2D facial landmark alignment method, 

implemented in C++ in the open source libraries DLIB and 

Deformable Shape Tracking (DEST), is used in several 

applications such as driver drowsiness detection. The most 

challenging of these applications require fast video frame 

processing. Therefore, the alignment of the facial landmarks in 

a single video frame has to be performed with the minimum 

possible latency without precision loss. In this paper, the DEST 

implementation of the face alignment method that is based on 

regression trees is heavily restructured to reduce latency. The 

resulting face alignment predictor is implemented in C. The 

elimination of multiple nested routine calls, excessive argument 

copying, type conversions and integrity checks lead to a software 

implementation that is 240 times faster than the one provided in 

the DEST library. Moreover, the structure of the new face 

alignment predictor is appropriate for hardware 

implementation on a Field Programmable Gate Array (FPGA) 

for further acceleration1. 

I. INTRODUCTION  

Regression-based methods are the dominant solutions for 
face alignment tasks in computer vision. These methods 
employ a series of mapping functions to iteratively update the 
face shape hypothesis. A fast 2D facial landmark detection 
algorithm has been presented by Kazemi and Sullivan in [1] 
where an Ensemble of Regression Trees (ERT) has been used 
to estimate the position of the facial landmarks. A subset of 
image pixel intensities is used to reduce latency. ERT is 
trained using gradient boosting in order to optimize the sum 
of square error loss. 

The authors in [2] formulate the regression procedure as a 
sparse coding problem. An occlusion dictionary is used into 
the face appearance dictionary to recover face shape from 
partially occluded face appearance. Cascaded regression has 
been interpreted as a learning-based approach to iterative 
optimization methods like the Newton’s method. In [3], the 
problem of facial deformable model fitting is addressed using 
cascaded regression. A method is proposed in [4], that locates 
the facial landmarks and extracts discriminating features from 
suitable facial regions. Histogram of Oriented Gradients 
(HOG) features are extracted from the active facial patches 

                                                           
1 The source code of the modified DEST face alignment implementation will 

be available in Github: https://github.com/ncpetrellis/  
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instead of the whole face, which makes the system robust 
against the scale and pose variations. 

The authors of [5] also relied on ERT to evaluate computer 
graphics rendered datasets. More specifically, they used 500 
trees with depth 5 each one. This size is used in our 
implementation too. Masui et al., employ an ERT-based 
method [6] to align 68 facial landmarks, in order to avoid 
facial expression errors, and to measure the reaction of people 
on advertisements. Finally, the authors of [7] developed an 
ERT method to estimate head pose for human-machine 
interaction achieving a latency equal to 1ms per image frame. 

The face alignment algorithm initially presented in [1] is 
used in the C++ DLIB machine learning toolkit and the 
Deformable Shape Tracking (DEST) library [8]. The DEST 
library implementation of the facial landmark alignment 
algorithm presented in [9], is modified in the approach 
described in this paper. The source code of the DEST 
implementation has been developed in C++ based on the 
Eigen template library for linear algebra operations. Eigen 
library optimizes matrix/vector operations as well as Singular 
Value Decomposition (SVD), Jacobi matrices, etc. However, 
the compact description of the algebraic operations comes at 
a high latency cost caused by an excessive number of nested 
routine calls. The CPU implementation of the DEST library 
shows a latency that is more than 100 times slower than 1ms 
that is advertised in [1]. Moreover, the original code uses 
Eigen/DEST C++ classes, that are not appropriate for the 
implementation of the computational intensive operations in 
reconfigurable hardware (FPGAs).  

In this paper, the libraries DEST and Eigen have been 
ported to Linux Ubuntu and compiled with tools similar to the 
ones used in state-of-the-art hardware design tools such as 
Xilinx Vitis (GNU C++ and Vitis compilers). Thus, the 
porting of the Ubuntu DEST/Eigen package to the Xilinx Vitis 
environment is straightforward. We have profiled a DEST 
video processing application that tracks the facial landmarks, 
in order to extract the computational intensive operations. As 
a second step, we modified their source code so that they can 
also be accelerated in hardware. The face landmark prediction 
routine and the nested calls have been flattened, converted 
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from C++ to C, and their arguments are now pointers to 
integers or floating point buffers (according to the memory 
arena programming paradigm). The resulting code is not only 
appropriate for hardware acceleration using reconfigurable 
hardware, but it is also 240 times faster since the latency of 
the face landmark prediction routine is reduced from 116 ms 
to 479 μs on an Intel Core i5-9500 CPU @3.00GHz, 6 core 
processor with 16GB RAM.  

This paper is structured as follows. A brief review of the 
face alignment prediction method suggested in [1] is presented 
in Section II. The implementation of the inference step and the 
modified structure of the source code that implements face 
alignment is described in Section III. Experimental results and 
the reasons of the high latency showed in the original DEST 
implementation are discussed in Section IV. Finally, the 
conclusions and future work are presented in Section V. 

II. FACE ALIGNMENT BASED ON REGRESSION TREES 

In [1], focus is given mainly on the training of the 

regression trees while we emphasize in the efficient 

implementation of the inference step. Let p be the number of 

face landmarks in an image Img, and xi be the pair of the i-th 

landmark coordinates. The shape S∈ 𝑅2𝑝, formed by these p-

landmarks is defined as: 

 𝑆 = {𝑥0, 𝑥1, . . , 𝑥𝑝} 

The algorithm starts by assuming that the shape S is the 

mean landmark positions retrieved from the trained model. 

Then, the position of the actual landmarks in the image under 

test, is refined by a sequence of cascaded regressors. The 

current shape estimate in the regressor t is denoted as �̂�(𝑡) 

(t=1,.., Tcs). The transition to the next regressor, involves the 

prediction of a correction factor rt that depends on the image 

Img and the current estimate �̂�(𝑡). This correction factor rt is 

added to �̂�(𝑡) in order to generate the updated shape in the 

next regressor t+1: �̂�(𝑡+1). The rt value is estimated based on 

the intensities of pixels that are indexed relative to the current 

shape �̂�(𝑡). Each regressor rt is trained using a gradient tree 

boosting algorithm with a sum of square error loss. This 

training algorithm exploits the triplet (𝐼𝜋𝑖
, �̂�𝑖

(𝑡)
, 𝛥𝑆𝑖

(𝑡)
) where 

the training data consists of a set of N images 𝐼𝜋𝜄
, 0 ≤ 𝜋𝑖 < 𝑁 

and  �̂�𝑖
(𝑡)

is the shape of any training image 𝑖 ≠ 𝜋𝑖 . The 

residual  𝛥𝑆𝑖
(𝑡+1)

in the regressor rt+1 is estimated as [1]: 

 𝛥𝑆𝑖
(𝑡+1)

= 𝑆𝜋𝑖
− �̂�𝑖

(𝑡+1)
 

The residuals correspond to the gradient of the loss 

function and are estimated for all training samples. The shape 

estimation for the next regressor stage is performed as [1]: 

 �̂�(𝑡+1) = �̂�(𝑡) + 𝑟𝑡(𝐼𝜋𝑖
, �̂�𝑖

(𝑡)
) 

Then, for K tests (k=1, …, K) and for N training images 

(i=1,…, N) in each test the following calculation is repeated: 

 𝑟𝑖𝑘 = 𝛥𝑆𝑖
(𝑡)

− 𝑓𝑘−1(𝐼𝜋𝑖
, �̂�𝑖

(𝑡)
) 

In the k-th step, a regression tree is fitted to rik using a 

weak regression function gk, thus fk is updated as follows [1]: 

 𝑓𝑘(𝐼, �̂�(𝑡)) = 𝑓𝑘−1(𝐼, �̂�(𝑡)) + 𝑙𝑟 ∙ 𝑔𝑘(𝐼, �̂�(𝑡)) 

where lr<1 is the learning rate used to avoid overfitting. 

The final correction factor rt of the t-regressor is equal to fK. 

The next node that should be visited in a regression tree 

is determined by comparing the intensity difference of two 

pixels p1 and p2 with a threshold Th. Different threshold Th 

values are defined for each regression tree node in the trained 

model. The coordinates of p1, p2 should be indexed relative 

to the reference mean shape and for this purpose, the image 

could be warped to match the mean shape. A global process 

called Similarity Transform (ST) is used to perform the 

required warping. If q is an image pixel and its closest 

landmark has index kq, their distance δxq is estimated as 

𝛿𝑥𝑞 = ‖𝑞 − 𝑥𝑘𝑞
‖. The pixel q’ in the original image Img that 

corresponds to q in the mean shape is estimated by [1]: 

 𝑞′ = 𝑥𝑖,𝑘𝑞
+

1

𝑠𝑖
𝑅𝑖

𝑇𝛿𝑥𝑞 

The parameters si and Ri are scale and rotation matrices 

used in the ST to warp the initial shape. The minimization of 

the mean square error between the actual q’ value and the one 

estimated using eq. (6), can be used to estimate the optimal 

values for si and Ri. More details can be found in [1]. 

III. ORIGINAL DEST AND MODIFIED IMPLEMENTATION 

The implementation of the method described in [1] with 
the open source DEST package [8] was modified to allow its 
acceleration with reconfigurable hardware. The DEST 
implementation takes advantage of the Eigen template library 
that simplifies complicated matrix operations. All the 
supported DEST/Eigen operations are well-defined and 
protected from overflows, rounding errors, inappropriate type 
conversions, etc. Eigen operators are overloaded using 
multiple templates that support various numeric types (e.g., 
complex numbers). The cost of these facilities is a vast 
performance degradation. Moreover, the employed Eigen 
classes cannot be used in hardware synthesis.  

In order to overcome these limitations, the source code 
was reconstructed by simplifying operand types, flattening 
nested routine calls, copying large data once (e.g., during 
initialization), etc. The computational intensive operations are 
described in ANSI C, to reassure that they can be ported to 
hardware by state of the art tools such as Xilinx Vitis.  

A DEST application that aligns landmarks in faces 
detected in the frames of a video or camera stream is used. 
Frames from the video stream are retrieved and if face 
landmark alignment is needed in the specific frame, face 
detection takes place using the OpenCV library. In the frames 
where a new face detection is not required, the face is assumed 
to exist in an extended bounding box around the shape 
estimated in the previous frame. Landmark alignment is 
performed in the bounding box returned by OpenCV using the 
predict() function. The ST process has to be applied on the 
detected face bounding box to adapt its coordinates to the ones 
used by the mean shape stored in the trained model. This 
model consists of a number of regression trees in each cascade 
stage and the tree node values are available from the training. 



The most computational intensive operation, i.e., the 
predict() function, is implemented in three nested levels: 
Tracker::predict() calls Regressor::predict() which in turn 
calls Tree::predict(). Tracker::predict() (top level) accepts as 
input the image frame and the position of the bounding box of 
the recognized face and returns the estimated face landmark 
positions. Within Tracker::predict(), the Regressor::predict() 
is called Tcs=10 times. The Regressor::predict() accepts as 
input the Img, the face bounding box coordinates and the 
current estimate (corresponds to f in eq. (5)) of the landmark 
shape. The Regressor::predict() returns the shape residuals sr, 
that are used to update the estimate f in the Tracker::predict(). 
The Regressor::predict() routine initially performs ST to 
adapt the current landmark shape to the mean coordinates of 
the trained model. Then, pixel intensities are read from the 
sparse Img representation and the system locates the closest 
landmarks in these pixels by trying to fit the regressor trees 
stored in the trained model. The routine Tree::predict() is 
called for all the stored Ntr  binary regressor trees (Ntr=500). 
Each Tree::predict() call returns a correction factor called 
mean residuals (mr). The leaves of each regression tree have 
different mr values stored. Each tree is accessed from the root 
to the leaves within the Tree::predict() routine, following the 
appropriate path. Each tree has depth equal to Td=5 and 2𝑇𝑑 −
1 = 31 nodes. In each intermediate tree node, the intensities 
of a pair of pixels indexed in the trained model are compared. 
The right or left direction of the binary tree is opted depending 
on whether the intensity difference is larger than a threshold 
Th that is also stored in the trained model. 

In the proposed Modified Implementation (MI), the 
functionality of the three nested predict() routines is included 
in the new Kernel_predict() routine that has been developed 
in ANSI C, in order to be portable to hardware. All the 
numerous parameters of the trained model that were accessed 
in the original DEST implementation from predict() routines, 
are now loaded during initialization into contiguous buffers 
from the new predict_prepare() routine called once during 
initialization. More specifically, the number of the Ntr 
regression trees and their node values are read: the threshold 
Th, the mean residual mr, and the indices of the pixels that their 
intensity difference has to be compared with Th. Moreover, the 
Tcs learning rates lr, the LM coordinates of the mean shape 
landmarks, the Nc relative pixel coordinates of the sparse 
image and the closest landmark to these relative pixel 
coordinates are also read from the trained model.  

In the new Tracker::predict(), some model values (default 
mean shape estimate and mean residuals) are initially read into 
buffers from the trained model for each new frame. Pointers 
to these buffers along with pointers to the buffers prepared by 
predict_prepare() and frame-specific information (pointer to 
image buffer, image dimensions, position of the detected face) 
are passed to the Kernel_predict() routine. The final landmark 
shape is returned by Kernel_predict() and its homogeneous 
coordinates are converted to the absolute coordinates needed 
in order to display the landmarks on the tested image frame. 

IV. EXPERIMENTAL RESULTS-DISCUSSION 

To validate whether the MI implementation exhibits any 
accuracy degradation compared to the original DEST 
implementation, videos from the dataset of [11] were used. 
The videos from this dataset last 5-8 sec. and their resolution 
is 1920×1080. Face alignment was performed once every five 
frames and the extracted landmarks were 100% identical 
between the MI and the original DEST version. The 

performance comparison between the original DEST and the 
MI implementation showed that the latency of the 
Tracker::predict() routine was reduced from 116 ms to 475 μs 
on an Ubuntu 18.04, Intel 6-Core i5-9500 CPU @3.00GHz, 
with 16GB RAM. The frame rate was increased from 1.6 fps 
to 28 fps. These performance results are also confirmed when 
a webcam input stream is used. 

In order to better understand why the MI implementation 
runs so fast on the same platform, we will examine two 
architectural differences between the original DEST and the 
MI source code. The first one concerns the number of 
operations needed to define the effective memory address of 
the model parameters. These parameters are copied once in 
contiguous buffers in the predict_prepare() routine in the MI 
code. The number of operations needed to estimate the 
effective address of an individual parameter encounters the 
additions of the offsets to the base address of the buffer. In 
most of the cases, the offset additions were reduced by 1 in the 
MI implementations. The DEST implementation required 
1.87 times more operations than the MI source code for the 
estimation of the effective addresses. 

The reduction in the operations needed to estimate 
effective memory addresses cannot justify the improvement of 
the Tracker::predict() latency by 240 times. Eigen library 
offers a convenient way to describe algebraic operations. For 
example, matrix multiplication, complex number handling, 
SVD and other complicated operations can be described in a 
compact way with overloaded operators. The cost of these 
facilities is the increased latency posed by the Eigen library. 
The MI implementation runs much faster because the 
functionality of the Tracker::predict(), and the nested 
Regressor::predict() and Tree::predict() routines are 
implemented as a C Kernel_predict() routine. Eigen types are 
replaced in this routine, with simple C types, avoiding type 
conversions. No excessive Eigen constraint checks (e.g., for 
value overflow) are applied. Moreover, no operator 
overloading is used and each operation is implemented by 
custom inline code in the Kernel_predict().  

An indicative way to measure how much overhead was 
posed by the Eigen library, is to use the GNU debugger (GDB) 
and measure how many “Step Into” commands are needed for 
a specific operation either in the original DEST or the MI 
source code. For example, reading the number of trees in each 
regressor is completed in 2 GDB steps. Accessing a tree node 
requires 10 GDB steps. Reading two pixel intensities and 
comparing their difference with the tree node threshold 
requires 62 GBD steps. Accessing the first singular value from 
the svd structure requires 75 GDB steps. The number of GDB 
steps needed between the call of the routine 
estimateSimilarityTransform() that implements ST and the 
execution of its first instruction, is 128. Initializing a 2×2 
matrix with zeros, requires 165 GDB steps. Finally, when the 
readPixelIntensities() routine is called to access the pixel 
intensities of the input image, 162 GDB steps are needed only 
for the type conversion and integrity checks of the first two 
arguments. Then, a nested loop with 1080×1920 iterations 
takes place and in each iteration the routine 
kernel.assignCoeffByOuterInner() is called. In all of the above 
cases, the corresponding commands in the MI implementation 
require only a single GDB step. We will focus on the 
Eigen::Matrix2f d = Eigen:: Matrix2f::Zero(2, 2) command 
to justify the 165 GDB steps required. Table I lists the various 
functions and the steps GDB spends in each one of them in 



order to complete the d matrix initialization. Explaining the 
functionality of each one of these routines and their 
input/output arguments is out of the scope of this paper 
although their operation is implied by their names in most of 
the cases. Fig. 1 shows examples of face alignment achieved 
by the MI implementation using the dataset of [11].  

V. CONCLUSIONS 

The popular DEST package, Eigen library-based 

implementation of face alignment algorithm that exploits an 

ensemble of regression trees was modified to support 

hardware implementation. The computational intensive 

routines were flattened and implemented in C language. The 

replacement of Eigen library classes and types led to an 

implementation that is 240 times faster than the original 

DEST implementation.  

In our future work we will examine the accuracy penalty 

of an integer representation of the model parameters that are 

realized as floating point values in the original source code. 

An integer representation would lead to a hardware 

implementation with fewer resources. The face alignment 

algorithm will also be implemented in FPGA devices for 

applications that require ultra-high speed face alignment. 
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TABLE I.  EIGEN FUNCTIONS CALLED WHEN EXECUTING THE COMMAND: EIGEN::MATRIX2F D = EIGEN::MATRIX2F::ZERO(2, 2); 

Function GDB 

steps 

Function GDB 

steps 

Function GDB 

steps 

zero() 5 DenseStorage() 2 generic_dense_assignment_kernel() 2 

scalar_constant_op() //2 versions 3 resize() // 2 versions 4 assignPacket() // 2 versions 5 

nullaryExpr() 6 data() // 2 versions 2 assignPacketByOuterInner() 3 

CwiseNullaryOp()  4 _check_template_params()  1 rowIndexByOuterInner() // 2 verions 6 

rows() // 3 versions 11 resizeLike()  4 colIndexByOuterInner() 2 

cols() // 3 versions 8 _set_noalias() 4 resize_if_allowed()  5 

functor() 1 EIGEN_EMPTY_STRUCT_CTOR 

(assign_op) 

1 call_dense_assignment_loop() 9 

EIGEN_DEFAULT_EMPTY_CONSTRUCT

OR _AND_DESTRUCTOR(MatrixBase) 

2 derived() // 3 versions 7 actualDst() 1 

DenseBase() 1 const_cast_derived() 1 evaluator() // 3 versions 6 

variable_if_dynamic() 2 check_for_aliasing()  2 packet() 2 

value()  9 pset1<Packet4f>() 2 noncopyable() // 2 versions 8 

constant() 1 pstore<float>()  2 coeffRef()  2 

innerSize()  2 pstoret() 1 matrix()  3 

outerStride() // 2 versions 3 PlainObjectBase() 6 run() // 4 versions 14 

 

     
Fig. 1. Example face alignment using video frames from [11]. Both original DEST and MI implementations estimate identical landmark positions. 
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