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Abstract— Edge detection is one of the most common 
operations needed in the image processing domain. In this work, 
alternative implementations of the Sobel algorithm are tested on 
a ZCU102 Xilinx embedded platform, demonstrating how 
different optimization techniques can be conveniently 
configured in Xilinx Vitis environment. We exploit (a) Xilinx 
Runtime library (XRT) that allows the reprogramming of the 
reconfigurable logic at real time and (b) the various high-level 
attributes offered by the OpenCL API for efficient resource 
allocation in the state-of-the-art Xilinx Ultrascale Multi-
Processor System-on-Chips (MPSoC). Specifically, different 
implementations of the Sobel algorithm (varying the data 
transfer models and data packing modes) are demonstrated and 
analyzed. Our experimental results shows that starting from a 
CPU implementation with 656 ms latency, the frame processing 
time is reduced to a range between 17 ms and 22 ms depending 
on the allocated resources, leading to a solution that is up to 38 
times faster.  

Keywords— Sobel algorithm, OpenCL, Image Processing, 
Pipeline, FPGA Acceleration, Artificial Intelligence, Xilinx Vitis, 
Xilinx HLS 

I. INTRODUCTION 

Image processing is one of the areas that scientists and 
companies continuously invest to find solutions and efficient 
implementations. There are many algorithms that have been 
implemented for feature extraction from digital images or 
video streams. Edge detection is a common image processing 
operation and quite remarkable of them are i) the Sobel 
algorithm due to its low complexity and ii) the Canny 
algorithm due to its increased sensitivity. 

Sobel algorithm was presented for the first time in 1968 
[1]. It is a quite common method for edge extraction from a 
digital image. Edges correspond to discontinuities of the 
image and can be used for the recognition of the shape of the 
displayed objects and patterns. Canny algorithm is a more 

complex algorithm than Sobel. Its functionality is based on 
frame-level statistics. Although it is more accurate than 
Sobel, it has a higher latency and is more computationally 
intensive. 

Several approaches target hardware optimizations with 
different implementation techniques and algorithms. In [2], 
the authors implemented a hardware optimized architecture 
of Sobel Algorithm targeting the Xilinx ML510 FPGA 
platform by importing a pipeline logic and reducing the 
FPGA resources usage by 40%. In [3] and [4], a different 
approach is followed. In these papers, there various hardware 
implementations of Canny Edge Detection algorithm arE 
proposed targeting the Xilinx Virtex-5 FPGA platform. 
Focus is given on the reduction of the computation latency. 
On the other hand, the authors in [5] developed a Sobel Edge 
Detection algorithm on Xilinx Spartan-6 FPGA platform 
achieving better latency and higher operational frequency. In 
[6], a ZynqMP UltraScale MPSoC is used, focusing on the 
advantages of the xfOpenCV acceleration library to develop 
a faster Sobel Edge Detection method. In [7], the Vivado HLS 
v2015.3 tool is used and a comparison between software and 
hardware implementations of the Sobel Algorithm is 
presented. Furthermore, in [8] the authors implemented a 
frame-level Canny algorithm on Xilinx Virtex-5 FPGA 
platform reducing the resources and achieving better 
performance. Pujare et al [9] put effort into developing the 
Sobel algorithm based on Nexys 4 platform and they also 
used the Vivado v18.2 software tool. The results are 
displayed through VGA and MATLAB toolboxes that were 
employed to compare the results. The platform used in [10] 
is Xilinx Virtex 4 LX200. An interesting pipeline technique 
that has been employed reduces the hardware resources and 
the latency of the execution. Finally, the implementation of 
the Canny algorithm in processing video frames with the 
assistance of an Artix-7 Xilinx FPGA core is presented in 
[11]. 



In this paper, we employed the state-of-the-art Xilinx 
Vitis and XRT tools in order to describe various Sobel 
implementations in a more compact way compared to its 
predecessor (Xilinx SDSoC). The OpenCL API that is 
introduced in Xilinx Vitis allows fast experimentation with 
alternative implementations for efficiency and resource 
allocation comparison. Xilinx Vitis also supports higher 
portability between different hardware platforms. The 
developed Sobel edge detection filter was targeted for a 
Xilinx ZCU102 Field Programmable Gate Array (FPGA) 
platform. We combined three memory models (with different 
data copy requirements and data movement latency) with 
three data packing options (128, 256 and 512-bits) in order to 
take advantage of the FPGA port width. The overall time 
needed for processing a single 512×512 pixel frame was 
reduced from 656 ms needed by a software implementation 
to 17.52 ms (including the time needed for data transfer) 
when a 512-bit data-packing scheme is employed. 

The paper is organized as follows: In Section II, there is a 
short introduction of the Sobel algorithm. Out 
implementation method is described in Section III while the 
experimental results are discussed in Section IV. To sum up, 
in Section V we present the conclusion of our 
experimentation and our future work. 

II. INTRODUCTION TO SOBEL ALGORITHM  

As noted, the Sobel filter is used in image processing and 
computer vision applications as an edge detection algorithm. 
It is based on an isotropic 3×3 Image Gradient Operator 
presented for the first time in 1968 and a detailed description 
can be found in [1]. A discrete differentiation is implemented 
as an approximation of the gradient of the image intensity. A 
convolution is applied in a window around at each pixel of 
the image. Thus, it is considered as a relatively low complex 
edge detection algorithm. The result of this operation can be 
the corresponding gradient vector or the norm of this vector. 
The Sobel algorithm is applied in a horizontal or vertical 
direction in the grayscale version of the initial RGB image A. 
The output Gx of the Sobel algorithm when applied 
horizontally can be expressed as: 

 𝐺௫ ൌ ൥
൅1 0 െ1
൅2 0 െ2
൅3 0 െ1

൩ ∗ 𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒ሺ𝐴ሻ 

where * is the convolution operator. The grayscale 
conversion followed in this paper is based on integer 
operations that are speed/memory efficient. The gray level pg 
of a pixel p with initial color values pR, pG, pB for red, green 
and blue, respectively is estimated as:   

  𝑝௚ ൌ ሺ19𝑝ோ ൅ 37𝑝ீ ൅ 7𝑝஻ሻ/64 

The approximation of the gradient operation makes the 
Sobel algorithm less sensitive to high-frequency variations.  

 

 

Fig. 1. The OpenCL Memory Model. 

III. SOBEL ALGORITHM IMPLEMENTATION IN VITIS 

The Xilinx Vitis tool [13] is the evolution of the Xilinx 
SDSoC [14] and SCAccel [15] tools. As its predecessors, the 
Vitis tool targets both edge and datacenter FPGA 
applications. Key innovations of the Vitis tools are the Xilinx 
Runtime library, called XRT, and the adoption of the 
OpenCL memory model. XRT provides the flexibility to 
reprogram the FPGA during the execution of an application 
both for the edge and the datacenter domains. This feature 
was not possible in the SDSoC tool, where for the edge 
domain the user was building an application which would use 
the FPGA programmed at boot time and with no flexibility to 
reprogram it as the application is executed. Another feature 
of the Vitis tool is the adoption of the OpenCL memory 
model hierarchy [4], where data is progressively moved from 
the Host (x86 or ARM) Memory to a Global Memory, 
accessible to both the host and the device, and finally from 
the Global Memory to the local Device Memory (DM). The 
Device Memory is typically the Block Random Access 
Memory (BRAM) of the FPGA. Fig. 1 provides a high level 
illustration of this hierarchy.  

 
Fig. 2. The SDSoC Data Motion Network Architecture. 

As opposed to the SDSoC tool where the user had the 
responsibility of constructing the Data Motion Network, the 
Vitis tool provides C++ based OpenCL functions for moving 
the data through the memory hierarchy as defined by the 
OpenCL API. This model leads to a more clear, simple, and 
standard way of describing FPGA applications. In the SDSoC 
case, the Data Motion Network, shown in Fig. 2, required low 
level actions as the following: 

● Definition of the system port (indicated as “A” in Fig. 
2); the host-side memory parts used in the data 
movement 



● Definition of the data mover (the intermediate node 
between the host and the device; denoted as “B” in 
Fig. 2) 

● Definition of the device interface for 
receiving/transmitting the data (“C” in Fig. 2) 

TABLE I.  COMPARISON OF THE DATA MOVEMENT PROCEDURE BETWEEN 
THE SDSOC AND THE VITIS TOOLS 

 SDSoC Vitis 

Host - Memory allocation and 
mapping using the 
sds_alloc() function. 
- Definition of the system 
port using the SDSoC 
pragmas. 

- A constructor for 
memory allocation. 

Interme
diate 

- Definition of the data 
mover using SDSoC 
pragmas. 
- Definition of the design 
data arguments using SDSoC 
pragmas. 
- Code for data packing. 

- Functions for setting 
the design data 
arguments. 
- Functions for data 
migration (host to device 
and vice versa) 

Device - Definition of the design 
interface using HLS pragmas 
and design memories. 
- HLS code for data packing. 

- Definition of the 
design interface using 
HLS pragmas and 
design memories. 

Generally speaking and from the designer’s perspective, 
the data motion network description used to model (as 
defined in SDSoC) the data movement between the host and 
the FPGA device was a quite complex and error prone 
procedure. It included the memory allocation in the host side, 
the memory mapping to physical memory addresses, the host 
memory port definition, the data mover definition, and 
finally, the FPGA design (device) memory interface.  

On the contrary, in the Vitis tool, this complex procedure 
has been substituted by a few simple high-level function calls. 
Table I shows a comparison of the data movement 
approaches in the SDSoC and the Vitis tools. The SDSoC tool 
requires a mix of code and “pragma directives” in different 
positions of the application source code files, such as the 
main code files and in various header files. Moreover, special 
code is required for defining data packing, so as to take 
advantage of the full data movement port width. In the Vitis 
tool the whole procedure is simpler, clearer, and more 
standardized. Finally, some configuration issues, such as the 
data packing are inferred by the FPGA design and 
automatically realized without the need to explicitly 
determine all the implementation details. 

 
Fig. 3. The three kernels used in the Sobel algorithm implementation. 

Our Sobel design is implemented using three sequential 
kernels annotated in the Xilinx Vitis tool (Fig. 3). The first 
kernel in the Grayscale Converter (in the code it is named as 
grayconvert) converts an RGB image to a grayscale as 
described in Section II. This kernel supports the configuration 
of the data packing at the interface. In this way, the design of 

the grayconvert can reduce the required processing latency by 
consuming more image pixels and processing them 
concurrently.  

The second kernel performs Edge Detection (imgscan), 
according to Sobel filtering by processing row-wise (see eq. 
(1)) the results of the first kernel. This kernel design is also 
parameterized regarding data packing, but since most of the 
clock cycles are used for the computation of the filtering, the 
data packing optimization has a negligible overhead. The 
third kernel used is a Boundary Detection and correction 
kernel, called borderscan in the design files. This kernel is not 
optimized at all since it consumes sparse data around the 
borders of the imgscan kernel’s result image. 

TABLE II.  EXECUTION TIME OF THE GRAYCONVERT+IMGSCAN 
KERNELS AND TOTAL SOBEL EXECUTION TIME IN PARENTHESES 

Transfer Mode 128-data-pack 
ms 

256-data-pack 
ms 

512-data-pack 
ms 

All OpenCL 
stages 

12.44 (21.71) 11.7 (20.42) 11.19 (20.34) 

Global Mem. 
only 

10.60 (18.84) 9.68 (18.07) 9.24 (17.52) 

K2K stream 
only 

10.01 (20.57) 9.78 (20.60) 9.67(20.73) 

IV. EXPERIMENTAL RESULTS 

A number of experiments has been conducted related to 
the degree of data packing as well as the method used for 
moving the data from the host to the device (kernel). We have 
defined three data moving methods: 

● Use of all the OpenCL memory model stages for all 
data movements (host, global, device). 

● Use of only global memory for sequential producer 
consumer kernels. 

● Use of only kernel-to-kernel data streams for 
sequential producer consumer kernels. 

The profile of the sequential producer-consumer kernels 
fits for the case of the grayconvert and the imgscan kernels 
which have been designed to produce and consume their data 
sequentially. Table II shows the results, in terms of latency, 
measured on the FPGA device for the execution of the 
sequence of these two kernels for the three aforementioned 
data movement methods and for different data packing sizes. 
In parenthesis, in Table II, is shown the total time required 
for the data transfer and execution of all three kernels 
required for the Sobel calculation. Although the K2K 
execution in Table II would be expected to achieve smaller 
latencies than the Global Memory only execution, this is not 
the case. We attribute this result to the overheads introduced 
by the asynchronous execution of the OpenCL command 
queue as it can be seen by the comparison of the Global 
Memory and the K2K timelines of Fig. 4. 



 
(a) 

 
(b) 

Fig. 4. Comparison of Global Memory only and K2K execution timelines. 
Global Memory only execution timeline - in-order OpenCL command 
queue execution in red color (a). K2K execution timeline - out-of-order 
OpenCL command queue execution in red color (b).  

Regarding the synthesized system architecture and the 
resources used, Vitis Analyzer offers comprehensive reports. 
For example, in Fig. 5a the build report for all tested 
architectures is shown. The High Speed port is used to 
connect the processing system (Zynq) with the hardware 
kernels. The resources required by each kernel in terms of 
Look-Up Tables (LUT), BRAMs and Digital Signal 
Processing (DSP) engines is reported on the right of Fig. 5a. 
Run report for streaming interface appears in Fig. 5b. As can 
be seen from this figure, greyconvert and imgscan kernels are 
now directly interconnected (dashed line). 

The full software implementation of the Sobel algorithm 
can be easily tested in the Vitis environment by simply 
removing grayconvert, imgscan and borderscan from the list 
of the hardware kernels. This reference software 
implementation required 656 ms to process a single 512×512 
pixel frame on an Intel i7, 3.4GHz processor with 16GB 
RAM.  

As can be seen from Table II, all the tested 
implementations required only 21.71 ms in the worst case 
(All-OpenCL-stages, 128-data-packing). The facilities 
offered by Xilinx Vitis allowed to compare several alternative 
implementations easily in order to further optimize the 
design. Although the results are not strictly comparable, 
Table III lists what has been compared in the reference 
approaches. A slower reference implemented either in 
software or in hardware is compared with an accelerated 
hardware implementation. In this work, we were able to 
rapidly test nine alternative implementations and find one 
that is 38 times faster than the referenced software one. 

 

(a) 

 

(b) 

Fig. 5. Vitis Analyzer synthesis reports: (a) Kernel resources and 
interconnections in build reports, (b) Run-time report for streaming 
data transfer.  

TABLE III.  COMPARISON WITH REFERENCED APPROACHES 

Ref. Comparison Proposed solution Notes 

[3] 5.97ms @ OpenCV 
3.3GHz 

0.721ms @  
XC5VSX240 

Canny 
algorithm 

[4] 0.372ms .. 2.69ms @ 
various Xilinx/ Altera 
platforms 

0.456ms @ 
Virtex-5 

Canny 
algorithm 

[5] 1.1ms @ 236MHz 0.52ms @ Sparta-
6, 504MHz 

Sobel algorithm 

[6] ~8ms@PC, ~66ms@ 
OpenCV  

~4.17ms @ 
xfOpenCV 

Canny alg., 
Zynq7000  

This 
work 

656ms@Intel i7, 
3.4GHz 

9.24ms (kernels), 
17.52ms(+transfer 
time) 

Sobel, Global 
mem., 512 data 
pack. 

V. CONCLUSIONS 

In this work, the Sobel edge detection algorithm was used 
as a case study to demonstrate optimal hardware acceleration 
mechanisms that can be achieved in Xilinx Vitis/XRT 
environment. All the combinations between three data 
transfer models and three data packing options were tested 
reaching a hardware architecture that is 38 times faster than 
the referenced full software implementation. 

Future work will focus on experimentation with 
additional hardware acceleration techniques. These 
techniques will be exploited in more complicated, 
computational intensive applications. 
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