J. INDIAN CHEM. SOC., VOL. LXIII, JULY 1986

TABLE 1—ANALYTICAL AND PHYSICAL DATA									
Compd.	Colour	М.р. И	Analysis % :	Found/(Calcd.)	٨м	μ_{eff}			
		°C	N	Metal	Ω^{-1} cm ² mol ⁻¹	в.м.			
$[Cu(C_{14}H_{15}O_{5}N_{5})Cl]^{a}$	Brown	176	7.65	17.50	19.6	1.70			
			(7.82)	(17.74)		• •			
$[N1(U_{14}H_{15}U_{2}N_{3})_{3}]$	Yellowish green	1980	9.50	10.02	6.7	3.0			
	Vollowish brown	0000	(9.71)	10.09	4.0	4 99			
[00(014111603119)9]	Lenowish prown	200-	(9.71)	(10.20)	1.0	4.04			
$[Cu(C_1, H_1, O_1, N_2)Cl]^b$	Light brown	181	7.33	17.00	13.1	1.8			
			(7.52)	(17.07)					
$[Ni(C_{1s}H_{17}O_{s}N_{s})_{s}]$	Yellowish green	205°	9.04	9.54	5.1	3.12			
			(9.26)	(9.70)					
$[C_0(C_{15}H_{17}O_{5}N_{5})_{5}]$	Dark brown	209°	9.04	9.61	5,2	4.70			
			(9.26)	(9.70)					
^a Cl % : 9.80 (9.91).	^b Cl % : 9.31 (9.54).	° Decomp	osed.						
	Compd. $[Cu(C_{14}H_{16}O_{3}N_{9})Cl]^{a}$ $[Ni(C_{14}H_{16}O_{3}N_{9})_{3}]$ $[Co(C_{14}H_{16}O_{3}N_{9})_{3}]$ $[Cu(O_{16}H_{17}O_{3}N_{9})_{3}]$ $[Ni(C_{16}H_{17}O_{3}N_{9})_{3}]$ $[Co(O_{16}H_{17}O_{8}N_{9})_{3}]$ a Cl % : 9.80 (9.91).	TABLE 1—ANAICompd.Colour $[Cu(G_{14}H_{16}O_{3}N_{9})Cl]^{a}$ Brown $[Ni(C_{14}H_{16}O_{3}N_{9})_{3}]$ Yellowish green $[Co(G_{14}H_{16}O_{3}N_{9})_{3}]$ Yellowish brown $[Cu(G_{16}H_{16}O_{3}N_{9})_{3}]$ Yellowish brown $[Cu(G_{16}H_{17}O_{3}N_{9})_{3}]$ Yellowish green $[Ni(C_{16}H_{17}O_{3}N_{9})_{3}]$ Yellowish green $[Co(G_{16}H_{17}O_{3}N_{9})_{3}]$ Yellowish green $[Co(G_{16}H_{17}O_{3}N_{9})_{3}]$ Dark brown	TABLE 1—ANALYTICAL AN Compd. Colour M.p. °C $[Cu(G_{14}H_{16}O_{3}N_{9})Cl]^{a}$ Brown 176 $[Ni(C_{14}H_{16}O_{3}N_{9})_{9}]$ Yellowish green 198° $[Co(G_{14}H_{16}O_{3}N_{9})_{9}]$ Yellowish brown 200° $[Cu(G_{16}H_{16}O_{3}N_{9})_{9}]$ Yellowish brown 200° $[Cu(G_{16}H_{17}O_{3}N_{9})_{9}]$ Yellowish green 205° $[Oo(G_{16}H_{17}O_{9}N_{9})_{9}]$ Dark brown 209° a< Cl % : 9.80 (9.91).	TABLE 1—ANALYTICAL AND PHYSICAL DA Compd. Colour M.p. °C Analysis % : N $[Cu(G_{14}H_{16}O_{3}N_{9})Cl]^{a}$ Brown 176 7.65 $[Ni(C_{14}H_{16}O_{3}N_{9})_{9}]$ Yellowish green 198° 9.50 $[Ni(C_{14}H_{16}O_{3}N_{9})_{9}]$ Yellowish brown 200° 9.51 $[Cu(G_{14}H_{16}O_{3}N_{9})_{9}]$ Yellowish brown 200° 9.51 $[Cu(G_{16}H_{19}O_{3}N_{9})_{9}]$ Light brown 181 7.33 $[Ni(C_{16}H_{19}O_{3}N_{9})_{3}]$ Yellowish green 205° 9.04 $[Co(G_{16}H_{19}O_{3}N_{9})_{3}]$ Dark brown 209° 9.04 $[Co(G_{16}H_{19}O_{3}N_{9})_{3}]$ Dark brown 209° 9.04 (9.26) a Cl % : 9.80 (9.91). b Cl % : 9.81 (9.54). c	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TABLE 1—ANALYTICAL AND PHYSICAL DATA Compd. Colour M.p. °C Analysis % : Found/(Calcd.) N Amage of the cm ⁻¹ [Cu(G ₁₄ H ₁₆ O ₂ N ₉)Cl, ^a Brown 176 7.65 17.50 13.6 [Ni(C ₁₄ H ₁₆ O ₈ N ₉)s] Yellowish green 198° 9.50 10.02 6.7 [Ni(C ₁₄ H ₁₆ O ₈ N ₉)s] Yellowish brown 200° 9.51 10.03 4.0 [Cu(C ₁₄ H ₁₆ O ₈ N ₉)s] Yellowish brown 200° 9.51 10.03 4.0 [Cu(C ₁₄ H ₁₆ O ₈ N ₉)s] Yellowish brown 200° 9.51 10.03 4.0 [Cu(C ₁₄ H ₁₆ O ₈ N ₉)s] Yellowish green 205° 9.04 9.54 5.1 [Cu(C ₁₆ H ₁₇ O ₈ N ₉)s] Yellowish green 205° 9.04 9.54 5.1 [Co(C ₁₆ H ₁₇ O ₈ N ₉)s] Dark brown 209° 9.04 9.61 5.2 [Co(C ₁₆ H ₁₇ O ₈ N ₉)s] Dark brown 209° 9.04 9.61 5.2 [Co(C ₁₆ H ₁₇ O ₈ N ₉)s] Dark brown 209° 9.04 9.61 5.2 [Co(C ₁₆ H ₁₇ O ₈ N ₉)s] Dark brown 209°			

for octahedral geometry¹⁶. In the electronic spectra of these complexes, two bands are mainly observed at ~9 000 and ~24 000 cm⁻¹, assigned to ν_1 and ν_3 transitions, respectively, considering a On symmetry. Two shoulders ${}^{4}T_{1g}(F) \rightarrow {}^{2}T_{1g}$, ${}^{2}T_{gg}$ (~18 000 cm⁻¹) and ${}^{4}T_{1g}(F) \rightarrow {}^{4}A_{gg}(F)$ (~19 000 cm⁻¹) may be considered either due to the splitting of ν_s , in many components or they may be because of appearance of ν_2 transitions¹⁷. The ratio of ν_2/ν_1 (1.95-2.2) suggests the shoulders ~ 19 000 cm⁻¹ as ν_{g} transitions for these complexes.

In ligands, AHCE and AHCP, the band around 1 620 cm⁻¹ is assigned¹⁹ to $v_{C=N}$ (azomethine) vibrations. The ligands with one primary amino group is expected to show two bands in the region 3100-3400 cm⁻¹ due $\nu_{\rm S}(\rm NH_2)$ and $\nu_{\rm as}(\rm NH_2)$ vibrations²⁰. The presence of a phenolic group in such compounds makes it difficult to differentiate between $v_{\rm NH}$, and $v_{\rm OH}$ vibrations since both absorb around Thus, a band around the same frequencies. 3 200 cm⁻¹ has been attributed to a combination of $\nu_{\rm NH_2} + \nu_{\rm OH}$ vibrations. In the complexes, the $\nu_{C=N}$, $\nu_{\rm NH_2} + \nu_{\rm OH}$ vibrations have undergone a negative shift by 50-75 cm⁻¹, indicating the coordination of the azomethine, primary amino and phenolic OH groups of the ligands. This view is further supported by the appearance of bands corresponding to $v_{M-N}(525-550)$ and $v_{M-O}(450-470 \text{ cm}^{-1})$. In the complex nos. 1 and 4 (Table 1), metal halogen bands are also present as indicated by the appearance of bands²¹, $\nu_{M-Cl}(340-370 \text{ cm}^{-1})$.

Acknowledgement

One of the authors (G.P.P.) is grateful to U.G.C., New Delhi, for financial assistance.

References

- 1. T. R SESHADRI and S. VARDARAJAN, Proc. Indian Acad. Sci., Sect. A, 1952, 35, 75.
- V. PATROVSKY, Collect. Czech. Commun, 1962, 27, 1824. 2.
- M. L DHAR and A. C. JAIN, Curr. Sci., 1972, 41, 177. 3.
- P. SINGH, V. SINGH, R L. GORL and B. P. SINGH, J. 4. Indian Chem. Soc., 1975, 52, 958.

- 5. L. JURD, A. D. KING, JR. and K. MIHARA, Experientia, 1970, 26, 1981.
- J. A. DE GREEF and C. F. VAN SUMERE, Arch. Int. 6. Physicl. Bocchem., 1966, 74, 512. W. C. MALIK, D. K. RASTOGI and M. P. TOETIA, Indian
- 7. J. Chem., 1978, 11, 1303.
- J. S. TYAGI, H. K. PARUTHI, A. D. TANEJA and C. R. G. 8. PRASAD, Chem. Era, 1975, 11, 22. R. B. ARORA and C. N. MATHUR, Br. J. Pharmacol.,
- 9. 1963, 20, 29.
- 10. C. R. HANCOCK, H. B. BARLOW and H. J. LACHY, J. Exptl. Bot., 1961, 12, 401.
- 11.
- A. RUSSEL and J. R. FRYE, Org. Synth., 1955, 3, 281. A. I. VOGEL, "Quantitative Inorganic Analysis", Long-12. mans, London, 1968.
- G. P. POKHARIYAL, J. Indian. Chem. Soc., 1983, 60, 1089. W. J. GHARY, Coord. Rev., 1971, 7, 81 13.
- 14.
- 15.
- C. K. JORGENSEN, Acta Chem. Scand., 1956, 10, 887. D. H. BUSCH in "Cobalt", ed. R. S. YOUNG, American 16. Chemical Society, 1970.
- 17. A. B. P. LEVER and D. OGDEN, J. Chem. Soc. (A), 1971, 2041.
- C. J. BALLAHAUSEN, "Introduction to Liga Theory", McGraw-Hill, New York, 1962, p. 256 "Introduction to Ligand Field 18.
- 19. D. K. RASTOGI, S. K. SHANI, V. B. RANA and S. K. DUO, J. Coord. Chem., 1978, 8, 97.
- 20. S. M. NELSON and D. H. BUSCH, Inorg. Chem., 1969, 8, 1859.
- 21. N. SONODA and T. TANAKA, Inorg. Chim. Acta, 1975, 12, 261.

Complexes of Cobalt(II), Nickel(II), Copper(II), Zinc(II), Cadmium(II) and Dioxouranium(II) with Thiophene-2-aldehydethiosemicarbazone

BALWAN SINGH and HARIHAR MISRA*

Department of Chemistry, University of Allahabad, Allahabad-211 002

Manuscript received 23 August 1985, revised 30 January 1986, accepted 3 March 1986

METAL complexes of thiosemicarbazides have been known for their pharmacological applications¹. Significant antitubercular^a, fungicidal^a and antiviral⁴ activities have been reported for thiosemicarbazides and their derivatives. Extensive studies on the investigation of metal complexes of thiosemicarbazones have been undertaken in recent years. The present study describes the synthesis and

characterisation of complexes of Co^{II} , Ni^{II} , Cu^{II} , Zn^{II} , Cd^{II} and UO_{s}^{II} with thiosemicarbazone obtained by condensing thiophene-2-aldehyde with thiosemicarbazide.

Experimental

Thiophene-2-aldehyde (Fluka) and thiosemicarbazide (Fluka) were used to synthesise the semicarbazone (TATSC). Metal acetates were of AnalaR grade, while the solvents were of reagent grade.

Preparation of ligand (TATSC): Thiophene-2aldehyde (9.2 cm^3) in ethanol (60 cm^3) was gradually added to a solution of thiosemicarbazide (9.10 g) in ethanol (100 cm^3) , and the mixture was refluxed on a steam-bath for 3 h and left overnight. A yellowish brown solid separated, was filtered, washed with ethanol and ether and dried over calcium chloride under reduced pressure. The product (yield 80%) was insoluble in water but soluble in ethanol. Analytical data are presented in Table 1.

Metal complexes with TATSC: To TATSC (2.96 g) dissolved in ethanol (60 cm³), aqueousethanolic solution containing Co(CH₃COO)₂.4H₂O/ Ni(CH₃COO)₂.4H₂O (2.00 g)/Cu(CH₃COO)₃. H₂O (1.60 g)/Zn(CH₃COO)₂.2H₂O (1.76 g)/ Cd(CH₃COO)₂.2H₂O (2.12 g)/UO₃(CH₂COO)₃. 2H₂O (3.40 g) was gradually added with constant sturning. The mixture was refluxed on a water-bath for ~2 h and left overnight. Coloured solid complexes separated out from the solution in 80-85% yield. The products were filtered, washed with ethanol and ether, and air-dried. The complexes were insoluble in hot water but soluble in ethanol.

Analytical data are presented in Table 1. Infrared spectra in the range $4\ 000-200\ \text{cm}^{-1}$ were recorded on a Beckman Aculab 10 spectrophotometer using KBr pellets. Diffuse reflectance spectra in the range $220-1\ 000$ nm were obtained using a Carl-Zeiss VSU-22 spectrophotometer. Magnetic susceptibilities of complexes at 303 K were determined by Gouy's method. Thermogravimetric data were obtained by heating the complexes at the rate of 10° min⁻¹ in air upto 800°.

Results and Discussion

The analytical data of the complexes (Table 1) indicate 1 : 2 metal – ligand stoichiometry. μ_{eff} value (4.60 B.M.) for the Co^{II} complex corresponds to three unpaired electrons as reported for tetrahedral Co^{II} complexes⁸. The electronic spectrum showed one intense band at 590 nm and one weak band at 520 nm corresponding to transitions ${}^{4}A_{gg}(F) \rightarrow {}^{4}T_{1g}(P)$ and ${}^{4}A_{gg}(F) \rightarrow {}^{4}T_{gg}(F)$, respectively, which also supported tetrahedral geometry around the d⁷ Con ion⁶. The Ni^{II} complex was diamagnetic, suggesting a square-planar structure of the complex⁷. One intense band (440 nm) observed in the diffuse reflectance spectrum of the complex for the transitions ${}^{1}A_{1g} \rightarrow {}^{1}A_{gg}$, ${}^{1}A_{1g} \rightarrow {}^{1}B_{1g}$ and ${}^{1}A_{1g} \rightarrow {}^{1}E_{g}$ also supported square-planar geometry. The μ_{eff} value of 1.86 B.M. for Cu^{II} complex corresponds to one unpaired electron. Square-planar structure of the complex was confirmed^{8,9} by the presence of one band (480 nm) in the reflectance spectrum corresponding to ${}^{2}B_{1g} \rightarrow {}^{2}E_{g}$ transition. Zn^{II}, Cd^{II} and UO_g^{II} complexes were all diamagnetic. The electronic spectral measurements of the complexes were not useful.

The presence of bands at 1 540, 1 460, 1 320 and 810 cm⁻¹ in the ir spectrum of TATSC (Table 2) suggests that it exists in thione form in the solid state. In the ir spectra of the complexes, bands assigned to N-C-N, C=S and NH-C=Sdisappear and new bands for the azine (C=N-N=C) and C-S groups appear, indicating chelation of the metal ion through azine nitrogen and the thiolo sulphur of the ligand. A negative shift of 20-25 cm⁻¹

Compd.	Colour	Decomp. Temp. (°C)		Analysis % : Found/(Calcd.)				
		Starting	Completion	Metal	C	H	Ň	
0,H,N,S,	Yellow	192*			39.10 (38.91)	3.84 (3.78)	22.58 (22.70)	
$C_0(O_6H_6N_3S_3)_3$	Black	260	720	19.72 (13.80)	34.02 (83.72)	2.94 (2.81)	19.58 (19.67)	
$N_1(O_6H_6N_5S_5)_5$	Black	280	680	13.64 (13.75)	33 96 (33.74)	2.85 (2.81)	19.34 (19.68)	
$Cu(C_8H_8N_8S_8)_8$	Brown	240	760	14 52 (14.72)	33.80 (33.36)	2.77 (2.78)	19.38 (19.46)	
$\operatorname{Zn}(O_{\mathfrak{s}}H_{\mathfrak{s}}\operatorname{N}_{\mathfrak{s}}\operatorname{S}_{\mathfrak{s}})_{\mathfrak{s}}$	Yellow	280	760	14.98 (15.08)	33.4 8 (33.22)	2,80 (2,76)	19.86 (19.38)	
$Cd(C_{\bullet}H_{\bullet}N_{\bullet}S_{\sharp})_{\sharp}$	White	240	680	23.21 (23.39)	29.90 (29.97)	2.58 (2 49)	17.92 (17.48)	
$UO_s(O_6H_6N_3S_s)_s$	Yellow	820		42.22 (42.31)	22.76 (22.57)	2.05 (1.88)	13 04 (13.06)	
• M.n.								

TABLE 1—ANALYTICAL DATA AND PHYSICOCHEMICAL PROPERTIES OF TATSO AND ITS COMPLEXES WITH Oo^{II}, Ni^{II}, Ou^{II}, Zn^{II}, Cd^{II} and UO^{II}

Тавце	2—INFRAR	ED SPECTRA	L, BANDS (0m ⁻¹) or TATSC	ND ITS COMP	LEXES AND TE	NTATIVE ASSIGNMENTS
TATSC (L)	$Co(L_s)$	Ni(L ₂)	$Cu(L_s)$	$Zn(L_3)$	$Cd(L_s)$	$\rm UO_s(L_s)$	Assignment
1 650	1 630 1 590	1 625 1 600	1 630 1 580	1 620 1 590	1 625 1 585	1 6 30 1 590	C = N stretch ^a C = N - N = C stretch ^b
1 540 1 460			_		_		N-C-N stretch ⁶ C=8 stretch ^d
1 820 1 030	1 050	1 045	1 050	1 045	1 045	1 050	NH - C = 8 stretch ^e N - N stretch ^f
810	720	725	715	720	720	725	C=S stretch ^b C-S stretch ^h
_	455 290	460 280	455 275	460 280	470 290	455 285	M - N stretch ¹ M - S stretch ¹
^a Ref. 7.	^b Ref. 11.	^c Ref. 12.	^d Ref. 13. ^e H	Ref. 14. ^f Re	f. 15. S Ref. 1	16. ^h Ref. 17.	¹ Ref. 6. ¹ Ref. 17.

in the stretching frequency of C=N in the ligand observed in the complexes also indicates the involvement of azomethine nitrogen in complexation and is supported by a positive shift of 15-20 cm⁻¹ in the N-N stretching frequency of TATSC when it coordinates with the metal ions. Appearance of new bands due to M-N and M-Sstretching vibrations in the spectra of the complexes further supports coordination of the metal ion to the bidentate ligand through azomethine nitrogen and thiolo sulphur.

Thermogravimetric studies indicate that the metal complexes do not contain any water and that they are thermally quite stable. Decomposition started at relatively higher temperature and was complete above 680° (Table 1). The thermal stability of the complexes were in the following order for metal ions, UO_{II}^{II} > Ni^{II} ~ Zn^{II} > Co^{II} > Cu^{II}~Cd^{II}.

Acknowledgement

The authors are grateful to Prof. Arun K. Dey for his kind interest in the work, and thank U.G.C., New Delhi, for financial support.

References

- 1. N. N. ORLOVA, V. A. AKSEVOVA, D. A. SELIOLOVKIN, N. S. BOGDANOVA and G. N. PERSHIN, Russ. Pharm. Toxicol., 1968, 348.
- G. DOGMAGE, R. BEHNISCH, F. MIETZSCH and H. 2. SCHMIDT, Naturwissenschaften, 1946, 33, 315. U. SRIVASTAVA, B. B. PATHAK and S. C. BAHEL, J.
- 8. Indian Chem. Soc., 1981, 58, 822.
- V. K. PANDEY and A. K. AGARWAL, Acta Cienc. Indica 4. Chem., 1980, 6, 166.
- N. DUNSKI and T. H. CRAWFORD, J. Inorg. Nucl. Chem., 5. 1973, 35, 2707.
- B. DASH and S. K. MAHAPATRA, J. Inorg. Nucl. Chem., 6. 1975, 37, 271.
- V. J. BABAR, D. V. KHASNIS and V. M. SHINDE, J. 7. Indian Chem. Soc., 1981, 58, 970. T. S. PIPES and R. L. BELFORD, Mol. Phys., 1962, 5, 169.
- 8.
- J. FERGUSON, Theor. Chim. Acta, 1965, 3, 287.
- 10. D. M. WILES and T. SUPRUNCHUK, Can. J. Chem., 1969, 47, 1087.
- P. L. MAURYA, B. V. AGARWALA and A. K. DEY, Polym. 11. Bull., 1979, 1, 631.

- 12. N. SHAH and N. C. GAYAN, Indian J. Chem., 1976, 14, 878.
- K. BURGER, I. RUFF and F. RUFF, J. Inorg. Nucl. Chem., 1976, 38, 646. 13.
- 14. E. LIEBER, C. N. R. RAO, C. N. PILLAI, J. RAMACHANDRAN and R. D. HITES, Can. J. Chem., 1958, 36, 801.
- 15.
- P. A. GIGURE and I. D. LIU, J. Chem. Phys., 1952, 20, 136.
 O. N. R. RAO, "Chemical Applications of Infrared Spectroscopy", Academic, New York, 1968. 16.
- 17. M. A. ALI and R. BOSE, J. Inorg. Nucl. Chem., 1977, 39, 265.

Stability Constants of some Bivalent Metal Ion Chelates of Schiff Bases derived from 2,4-Dihydroxybenzaldehyde

M. S. MAYADEO*, C. H. SINHA and S. S. KALE

Department of Chemistry, Ramnarain Ruia College. Matunga, Bombay-400 019

Manuscript received 19 February 1986, revised 17 June 1986, accepted 25 June 1986

POTENTIOMETRIC studies have been carried out on metal chelates of UOII, CuII, CoII, NiII and Zn^{II} with 2,4-dihydroxybenzylidene thiosemicarbazone and 2,4-dihydroxybenzylidene phenylhydrazone. The proton-ligand and metal-ligand stability constants have been determined by the Calvin-Bjerrum pH titration technique as adopted by Irving and Rossotti¹, at $30\pm0.1^{\circ}$ and ionic strength 0.1 *M* in 75:25 (v/v) dioxan-water medium.

Experimental

The two ligands (A) 2,4-dihydroxybenzylidene thiosemicarbazone and (B) 2,4-dihydroxybenzylidene phenylhydrazone were synthesised by refluxing equimolar quantities of 2,4-hydroxybenzaldehyde and the respective amines in ethanol. The products were repeatedly crystallised to obtain analytically pure samples. The purity was tested by tlc and elemental analysis (Table 1).