
Journal of Molecular Graphics and Modelling 111 (2022) 108103

Available online 21 December 2021
1093-3263/© 2021 Published by Elsevier Inc.

Surface-based protein domains retrieval methods from a 
SHREC2021 challenge 

Florent Langenfeld a,*, Tunde Aderinwale b, Charles Christoffer b, Woong-Hee Shin c, 
Genki Terashi d, Xiao Wang b, Daisuke Kihara b,d, Halim Benhabiles e, Karim Hammoudi f,g, 
Adnane Cabani h, Feryal Windal e, Mahmoud Melkemi f,g, Ekpo Otu i, Reyer Zwiggelaar i, 
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a Laboratoire de Génomique, Bio-informatique et Chimie Moléculaire (GBCM), EA 7528, Conservatoire National des Arts-et-Métiers, HESAM Université, 2, rue Conté, 
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A B S T R A C T   

Proteins are essential to nearly all cellular mechanism and the effectors of the cells activities. As such, they often 
interact through their surface with other proteins or other cellular ligands such as ions or organic molecules. The 
evolution generates plenty of different proteins, with unique abilities, but also proteins with related functions 
hence similar 3D surface properties (shape, physico-chemical properties, …). The protein surfaces are therefore 
of primary importance for their activity. In the present work, we assess the ability of different methods to detect 
such similarities based on the geometry of the protein surfaces (described as 3D meshes), using either their shape 
only, or their shape and the electrostatic potential (a biologically relevant property of proteins surface). Five 
different groups participated in this contest using the shape-only dataset, and one group extended its pre-existing 
method to handle the electrostatic potential. Our comparative study reveals both the ability of the methods to 
detect related proteins and their difficulties to distinguish between highly related proteins. Our study allows also 
to analyze the putative influence of electrostatic information in addition to the one of protein shapes alone. 
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Finally, the discussion permits to expose the results with respect to ones obtained in the previous contests for the 
extended method. The source codes of each presented method have been made available online.   

1. Introduction 

Proteins are key molecular effectors at the cellular level. Proteins are 
linear assemblies of amino-acids that fold in specific, energy-driven 3D 
structures [1,2] linked to their activity. Identifying similarities within 
protein structures is therefore of tremendous importance in various 
fields, from biochemistry to drug design. Numerous methods have been 
dedicated to structural similarity search of proteins in structural bioin
formatics, that mainly rely on the analysis of the 3D point clouds defined 
by the 3D coordinates of their individual atoms [3–7]. These methods 
are mostly based on the conserved core structure of proteins, and 
therefore, may be inefficient to detect proteins sharing similar surface. 
The protein surface is a higher-level description of the protein structure 
that abstracts the underlying protein sequence, structure and fold into a 
continuous shape with geometric and chemical features that fingerprint 
its interactions with the other molecules of its environment (solvent, 
ligands, proteins, nucleic acids, …) [8]. Methods able to detect protein 
surficial similarities are then of major importance. 

Only a limited number of methods have been proposed so far:  

● Sael et al. use 3D Zernike descriptors to detect either global or local 
similarities between protein’s surfaces [9]. This method is able to use 
surficial physico-chemical properties like the electrostatic potential 
or the hydrophobicity [10].  

● MaSIF (molecular surface interaction fingerprinting) is a geometric 
deep learning framework that allows to fingerprint biomolecular 
surfaces [11]. Both geometric and chemical features are extracted 
and embedded into numerical vectors which is subsequently pro
cessed in an application-dependent manner.  

● FTIP (Farthest point sampling-enhanced Triangulation-based 
Iterative-closest-Point) is a global protein surface comparison 
method that uses the Farthest point sampling method to extract a 
subset of protein surfaces, and then uses a triangulation-based effi
cient Iterative-closest-Point algorithm to align these so-called 
feature-points [12].  

● BioZernike [13] adopts a slightly different approach: instead of using 
the 3D point cloud formed by the atoms coordinates, it uses the 
electron density distribution. A 3D Zernike moment normalization 
procedure is applied to orient the electron density volumes to be 
compared, allowing for fast retrieval of proteins/protein assemblies. 

The aim of this track is therefore to assess the performance of 
currently available methods and to stimulate the development of novel 
methods. To this end, the dataset encompasses (1) a variety of protein 
domains, with some of them closely related, to query the dataset, (2) a 
dataset of experimental structures that contain one or more domains, (3) 
a few protein shapes corresponding to protein that contains two of the 
query domains, (4) two versions of the same dataset, one made of the 
protein shapes only, and the other with an additional physico-chemical 
property, the electrostatic potential, encoded along the shapes. We 
selected this surficial physico-chemical feature as it is the main driving 
force in many biological recognition processes, such protein-ligand and 
protein-protein interactions [14]. 

In the present work, we detail the dataset proposed by the challenge 
organizers to the participants and how it differs from the previously 
proposed datasets in Section 2. In Section 3, we describe the 5 methods 
submitted to the contest. The evaluation metrics are briefly introduced 
in Section 4, and the performance of the methods is presented in Section 
5. Finally, we discuss the outcomes of the different submitted methods in 
Section 6. 

2. The dataset 

2.1. Constitution of the SHREC′21 dataset 

The SHREC′21 protein dataset is based on the Pfam 33.1 database 
[16]. Basically, this database classifies protein sequences into domains 
and families, that can be grouped into clans whenever they are evolu
tionarily related. Protein domains of structures from the Protein Data 
Bank (PDB [17,18]) can therefore be attributed to a Pfam domain and, 
possibly, a clan. To build up the track dataset, we relied on this notion of 
domain, and manually selected 10 Pfam domains: the SH2 domain 
(PfamID PF00017), the SH3 domain (PfamID PF00018), the variant SH3 
domain (SH3_2, PfamID PF07653), the PDZ domain (PfamID PF00595), 
the PDZ_6 domain (PfamID PF17820), the peptidase family M50 (m50, 
PF02163), the bromodomain family (PF00439), the DNA-binding 
domain of the STAT protein (STAT-binding, PF02864), the PHD-finger 
domain (PfamID PF000628), and the C2H2 Zinc-finger domain 
(zf-C2H2, PfamID PF00096). 

For each selected domain, all corresponding structures from the PDB 
were listed, and the best resolution structures were retrieved to serve as 
a query for the track. When applicable, the NMR (Nuclear Magnetic 
Resonance) structures were assigned an arbitrary resolution of 2.25 Å 
[19], while structures with no resolution were discarded. The residues 
corresponding to the Pfam domains were then extracted from the 
selected structures when necessary, so that the selected domains were 
left alone. For example, only the DNA-binding domain of the STAT 
(Signal Transducer and Activator of Transcription) protein was kept as a 
query, its others domains being discarded. 

The remaining structures were filtered according to their Uniprot 
[20] identifier, and duplicates were discarded to (1) ensure a diversity of 
sequence structures among the dataset, (2) limit the dataset size to a 
tractable size given the track timeline. Finally, only the best resolution 
structures for each Uniprot entry were kept (Table A.6). When NMR 
structures were selected, only the first model was considered. Unlike the 
query structures, we kept the other domains present in these structures 
that eventually constitute the dataset. Therefore, many dataset struc
tures display several domains, at least one of which is one of the query 
domains. 

For all structures (queries and dataset structures), we removed all 
hetero-atoms, and unwanted chains. The resulting PDB structures were 
then protonated using pdb2pqr [21], using propka [22,23] to compute 
the pKa values of the ionizable groups at pH = 7.2. The solvent-excluded 
surface of all protonated structures were computed using the default 
parameters of EDTSurf [24,25] except that inner cavities were dis
carded. We then computed the electrostatics using APBS suite [26], and 
used the multivalue program to compute the electrostatic potential at the 
mesh vertices locations. Two datasets were then assembled, one with 
only the protein surface shapes (shape-only dataset) and one combining 
the protein surface shapes and electrostatics values (shape + electro
static dataset). Similarly, two sets of query surfaces were produced 
(shape-only and shape + electrostatic). Each dataset (shape-only and 
shape + electrostatic) includes 554 molecular surfaces which were made 
available to the track participants, along with the 2 sets of 10 queries, on 
the track web–page (http://shrec2021.drugdesign.fr). 

Regarding the dataset, it is important to note that SH3 and SH3_2 
domains were annotated as similar according to HHsearch (a tool 
commonly used to detect homologous proteins [27]), as well as the PDZ, 
PDZ_6 and m50 domains. We present in Fig. 1 the TM-scores matrix for 
all queries of the dataset. A TM-score above 0.5 indicates that the two 
structures are likely to share the same topology, while unrelated struc
tures are usually associated to TM-scores below 0.17 [28]. SH3 and 
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SH3_2 query structures show a TM-score of 0.84, while, PDZ and PDZ_6 
query structures show a TM-score of 0.79. Surprisingly, the m50 query 
structure only has a TM-score of 0.28 and 0.32 with PDZ and PDZ_6 
structures, respectively. A visual inspection of these structures 
confirmed that the peptidase M50 is topologically different from both 
the PDZ and PDZ_6 domains: while the peptidase M50 is mainly α-he
lical, PDZ and PDZ_6 are mixed α − β proteins. Overall, most query 
structures present an intermediate topological similarity with all other 
queries, as evidenced by the fact that all TM-scores range from 0.19 to 
0.47, except for the aforementioned pairs of classes (SH3/SH3_2 and 
PDZ/PDZ_6). 

Finally, as the dataset encompasses multi-domain proteins, 22 
dataset proteins display two of the query domains. Namely, 9 proteins of 
the dataset encompass both a SH2 and a SH3 domains, 6 proteins 
encompass both a SH2 and a Stat-binding domains, 4 proteins encom
pass both a bromodomain and a PHD-finger domain, 2 proteins 
encompass a PDZ_6 and a peptidase family M50 domains, and one 
structure encompass a PDZ and a peptidase m50 domains. The final 
structure of the dataset and the size of each class is summarized in Fig. 2. 

2.2. Comparison to previous SHREC datasets on proteins 

Compared to previous SHREC datasets dealing with protein struc
tures or surfaces [29–34], the SHREC′21 protein track dataset is char
acterized by three main aspects: (1) the presence of two datasets 
representing the same set of proteins, one shape-only and one shape +
electrostatic dataset, (2) the close evolutionary relationship of some of 
the query domains, further characterized by a similar topology (Fig. 1), 
(3) the intermediate similarity of the domains topologies (Fig. 1), and 
(4) the use of individual domains to query a dataset of single-as well as 
multi-domain proteins shapes. 

The main novelty of the SHREC′21 track is arguably the availability 
of protein surfaces with electrostatic values, which has been shown to 
improve the retrieval performance of protein surfaces [11,35]. This 
additional feature might therefore allow to better distinguish structur
ally related proteins based on their surficial properties and improve the 
methods’ performance. 

2.3. Challenge proposed to the participants 

SHREC, or 3D Shape Retrieval Challenges, are challenges primarily 
organized in order to evaluate the effectiveness of 3D-shape retrieval 
algorithms. A group organizes a challenge by building up a dataset, then 
proposes the challenge publicly to the community, and finally gathers, 
analyses and verifies the results. The theme of the challenge may vary 
from one to another, but all challenges take place in a limited time, 
which ranges from 1 to 1 1/2 months. 

In our contest, the participants were asked, given each of the 10 
query surfaces, to retrieve the molecular surfaces of proteins from the 
dataset that encompass the same domain as the query. Each query-to- 
dataset-surface distance was expected to be expressed as a dissimi
larity score. The results were therefore 10 × 554 matrices of dissimi
larity scores. Each participant was allowed to submit one dissimilarity 
matrix for each dataset: one matrix for the shape-only dataset, and one 
matrix for the shape + electrostatic dataset. 

3. Participants and methods 

Among the seven groups that initially registered to this track, only 5 
were able to produce the results in time and returned a shape-only 
dissimilarity matrix. Only one method (3DZD, see 3.1) returned a 
dissimilarity matrix for the shape + electrostatic dataset. The other 
groups were not able to produce a satisfying training dataset or willing 
to develop their algorithm to handle the electrostatics values. In the 
following subsections, each group describes their new, respective 
methods. 

3.1. Network trained with encoded 3DZD (3DZD) by Tunde Aderinwale, 
Charles Christoffer, Woong-Hee Shin, Genki Terashi, Xiao Wang & 
Daisuke Kihara 

Our group submitted two (shape-only and shape + electrostatic) 
dissimilarity matrices of the target proteins to the 10 query proteins 
provided by the organizers. These methods are based on the 3D Zernike 
Descriptor (3DZD). 3DZD is the rotation-invariant shape descriptor 
derived from the coefficients of 3D Zernike-Canterakis polynomials 
[36]. 

3.1.1. Summary of the 3DZD method 
Similar to SHREC′20 [34], our group trained two types of neural 

Fig. 1. Structural similarity between the protein structure queries. The TM- 
score (in the (0, 1] range) measures the topological similarity between two 
protein structures: the higher the TM-score, the more similar the two structures. 
Scores below 0.17 correspond to unrelated proteins, while those above 0.5 
usually indicate two structures having the same fold [15]. The corresponding 
RMSD values are presented in Fig. B.11. 

Fig. 2. The Upset Plot of ten selected Pfam domains in SHREC2021 challenge 
datasets. The dataset is composed of 554 individual shapes, of which 22 bears 
two of the domains of the dataset. 
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network to output a score that measures the dissimilarity between a pair 
of protein shapes. Briefly, the first framework (the Extractor model) is 
structured into multiple layers: an encoder layer with 3 hidden units of 
size 250, 200 and 150, a feature comparator layer which computes the 
Euclidean distance, cosine distance, element-wise absolute difference 
and product, and a fully connected layer with 2 hidden units of size 100 
and 50. There are multiple hidden units in each layer, and our group 
uses the ReLu activation function in all except the output of the fully 
connected layer where the sigmoid activation function is used to output 
the probability that the two proteins belong to the same protein– or 
species–level in the SCOPe dataset classification [37,38]. The second 
framework (the end–to–end model) is similar to the first except the 
feature comparator layer is removed and the output of the encoder is 
directly connected to the fully connected layer. 

The network is trained on the latest SCOPe dataset of 259,385 pro
tein structures. 2500 protein structures were set aside for network 
validation. Proteins in Class I (Artifacts) were removed. Each of the two 
network frameworks is trained with two datasets. The first dataset is 
3DZDs of the surface shape of proteins and the second one is feature 
vectors that concatenate 3DZD of shape and 3DZD of the electrostatic 
properties. 

Our group examined the performance of the networks on the vali
dation dataset to determine which models to use. For the shape-only 
dataset, we submitted predictions generated by the Extractor model. 
For the shape + electrostatic dataset, we submitted the average pre
dictions between the Extractor model and the end–to–end model. 

For each protein in the provided dataset, our group performs a 
pre–processing step as follows: (1) the PLY mesh data file is converted to 
a volumetric skin representation (Situs file) where points within 1.7 grid 
intervals are assigned with values that are interpolated from the mesh 
[9]. For the electrostatic features, the interpolated values are the po
tentials at the mesh vertices. For the shape feature, a constant of 1 is 
assigned to grids that overlap with the surface. (2) The resulting Situs 
file is fed into the EM-Surfer pipeline [39] to compute 3DZD. 

3.1.2. Runtimes and computational cost 
It takes approximately 12–13 min to pre-process each file. Gener

ating 3DZD took ~8.00 s on average for each protein on an Intel® 
Xeon® CPU E5-2630 0 @ 2.30 GHz. The training of each models took 12 
h. Dissimilarity prediction between two proteins using the trained model 
took ~0.22 s on average on a Nvidia® Titan X GPU. The averaging of the 
two matrices was almost instant and negligible. The code is available at 
the following url: https://github.com/kiharalab/shrec_2021_shape_ 
retrieval. 

3.2. ProteinNet: deep learning based protein characterization from 3D 
point clouds (ProteinNet) by Halim Benhabiles, Karim Hammoudi, 
Adnane Cabani, Feryal Windal & Mahmoud Melkemi 

Our group proposes a deep learning approach to calculate a protein 
descriptor from its 3D point cloud. To this end, we developed a variant of 
PointNet [40] which is a point cloud deep architecture dedicated for 3D 
classification and segmentation. We adapted this architecture in order to 
learn an affine transformation matrix that allows to align the co
ordinates of the input 3D protein point cloud into a canonical repre
sentation. The new representation maintains interesting properties 
demonstrated in Ref. [40], including invariance to rigid geometric 
transformations as well as point order permutations. The ProteinNet 
deep architecture is illustrated in Fig. 3. More specifically, the archi
tecture is based on a PT-Net module (Protein Transformer Network) 
which is inspired from the T-Net (Transformer Network) module of the 
original PointNet architecture. The PT-Net module is trained to predict 
an affine transformation matrix M that is constrained to be close to an 
orthogonal matrix, namely |(M.Mt) − I| = 0 (step 1 in Fig. 3). The matrix 
M is used to transform the input protein into its canonical representation 
(step 2 in Fig. 3). A cosine similarity loss between the original protein 
and the transformed one is then calculated (step 3 in Fig. 3) in order to 
back-propagate the error over the network (step 4 in Fig. 3) and opti
mize the matrix M. 

Fig. 3. ProteinNet deep architecture for protein point cloud transformation into canonical representation. Step (1): affine transformation matrix estimation. Step (2): 
protein point cloud transformation using the estimated affine matrix. Step (3): similarity calculation between the original protein point cloud (the input) and its 
transformed point cloud. Step (4): cosine similarity loss calculation between the original input protein point cloud and its transformation; and back–propagation over 
the network to optimize the estimation of the affine transformation matrix. 
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3.2.1. PT-Net module 
The module is composed of a sequence of 3 convolution blocks (32, 

64 and 512 layers) followed by a global max pooling layer and 3 suc
cessive dense layers (256, 128 and 9). As shown in Fig. 3, each convo
lution block as well as the dense layers (except the last one) undergo a 
batch normalization and a tangent hyperbolic activation function. The 
last dense layer of 9 units is reshaped to output the (3 × 3) M matrix (see 
details in Ref. [40]). 

3.2.2. Data preparation and architecture training 
All the proteins of the dataset of the track have been sampled to 2048 

points using a Poisson disk sampling technique [41] and then normal
ized into a zero-center unit sphere based on their respective minimum 
bounding spheres [42]. The architecture has then been trained using a 
batch size of 16 on 80% of the dataset over 150 epochs and validated on 
the remaining 20% of the data. The training data were augmented 
on-the-fly (during the training process) by adding some geometric noise 
(e.g. random displacement of point coordinates in a limited interval). 

3.2.3. Protein feature extractor 
The trained ProteinNet model has then been exploited to calculate a 

protein feature descriptor, for each input protein, by extracting its in
termediate Global Max Pooling hidden layer. This descriptor corre
sponds to a 1-dimension vector of 512 values. 

3.2.4. Dissimilarity matrix computation 
The dissimilarity matrix between the ten protein shape queries and 

the set of 554 protein shapes has been calculated using Euclidean dis
tance between their respective 512 feature vectors. 

3.2.5. Runtimes and computational cost 
This framework has been developed in Python 3.7.6 using different 

libraries, namely Open3D 0.8.0.0, and Keras 2.2.4-tf on a TensorFlow- 
GPU 2.1.0 backend. The experiments have been conducted on an Intel 
Xeon® Gold® 5118 CPU@2.30 GHz with 128 GB of memory and NVI
DIA® Tesla® T4 GPU with 16 GB of memory. The running times in s of 
each stage performed on CPU are reported in Table 1 for one protein. 
Table 2 shows the training times of the ProteinNet model trained on 
GPU. The code is available at the following url: https://github.com/ 
Benhabiles-JUNIA/ProteinNet. 

3.3. Fisher kernel agglomerated local Augmented Point pair feature 
descriptors, trained with Gaussian Mixture Model (APPFD-FK-GMM) by 
Ekpo Otu, Reyer Zwiggelaar, David Hunter & Yonghuai Liu 

Our group presents a novel APPFD-FK-GMM 3D shape retrieval 
method (see Fig. 4) based on Fisher Kernel (FK) and Gaussian Mixture 
Model (GMM) agglomeration of the Augmented Point-pair Feature 
Descriptor (APPFD) [43]: a 3D key point shape descriptor that robustly 
captures the physical geometric characteristics of 3D surface regions. 
Previous APPFD binning technique involves bucketting each of the 
6-dimensional features of the APPFD into a multi-dimensional histogram 
with at least 7 bins in each feature-dimension, resulting to approxi
mately 76 = 117,649-dimensional final feature-vector (APPFD), which is 
very high-dimensional final descriptor. 

In this work, we contribute a simpler approach, where each of the 6- 
dimensional feature is binned into a 1-dimensional histogram with 35 
bins for each feature-dimension to produce a 210-dimensional local 
descriptor (APPFD) for every key point or local surface patch (LSP). 
Finally, the locally computed APPFDs are agglomerated into a compact 
code called the Fisher Vector (FV) with 4210 dimensions, which is L2 
and power-normalized, and represents a single protein model, using the 
FK and GMM [44] framework. 

The goal of the APPFD-FK-GMM method/contribution is to provide a 
straight-forward, efficient, robust, and compact representation, 
describing the geometry of 3D protein surfaces, with a knowledge-based 
(i.e. non-learning) approach. While a single protein surface in this 
challenge contains an average of 120,000 vertices and 200,000 trian
gular faces, our implementation address this very high data-structure by 
reducing 3D protein surface representation to 3,500 points sample. 

3.3.1. Summary of the APPFD-FK-GMM method 
Our method involves two main stages: (1) computing local APPFDs 

for selected key points on 3D protein surface, (2) key points APPFDs 
aggregation with FK and GMM described below. 

Fig. 4 shows the processing pipeline of the APPFD-FK-GMM algo
rithm with complete implementation details provided in Ref. [44]. The 
reader is referred to Ref. [45], for further details regarding this method. 

Stage (1) Computing Local APPFDs. Following key points (pki ) determi
nation for each 3D protein surface, represented as point cloud 
(P), the 4-dimensional feature, f1 = (α, β, γ, δ) in Ref. [46] is 
augmented with a locally-extracted 2-dimensional feature: 
f2(pi, pj) = (φ, θ) for every possible combination of point pair, 
pi, pj (without their estimated normals, ni, nj) in the local sur
face patch (LSP), {Pi, i = 1: K} around each key point 
{pki , i= 1 : K} in Ps, where K is the number of key points. The 
extraction of f2 (see Fig. 5) is because f1 is not robust enough 
to capture the entire geometric details of the underlying sur
face, whereas, the PPF approach opens up possibilities for 
additional feature space. 

The angular projections θ and φ in Fig. 5 are derived by taking the 
scalar products of ( S→ ⋅ V1

̅→
) for ∠1, and ( S→ ⋅ V2

̅→
) for ∠2 about a point pi in 

a given LSP. Mathematically, scalar products defined in this manner are 
homogeneous (i.e invariant) under scaling and rotation. Therefore, f2 is 
considered rotation and scale invariant for 3D shapes under rigid and 
non-rigid transformations [34]. 

Finally, a 6-dimensional f3 = (f2 + f1) are locally obtained thus: f3(pi, 
pj) = (f2(pi, pj), f1(pi, pj)) = (φ, θ, α, β, γ, δ), and binned into a 1-dimen
sional histogram with 35 bins in each feature-dimension, normalized 
and concatenated to give 35 × 6 = 210-dimensional single local APPFDs 
per LSP.  

Stage (2) Key points APPFDs Aggregation with FK and GMM. Here, the 
final descriptor (i.e. fisher-vector, FV) computation approach 
involves an initial step of training a GMM, given aggregated 
key points local APPFDs for all database 3D objects, then FK is 
applied on the trained model and a single protein’s local 
APPFDs to derive a global signature (APPFD-FK-GMM) for the 
protein surface (see Fig. 4). 

Table 1 
Running times in s using CPU for each stage of the ProteinNet framework ob
tained for one protein.  

Point cloud 
maximum and 
minimum sizes of 
two proteins 

Point cloud 
sampling (2,048) 
and normalization 

Feature 
descriptor (512) 
calculation of one 
protein 

Distances from 
one protein to all 
protein dataset 
(554 proteins) 

582,496 points 1.14 0.005 0.004 
37,658 points 0.9    

Table 2 
Running times in s using CPU for each stage of the Pro
teinNet framework obtained for one protein.  

Deep learning model ProteinNet 

Training data size 499 
Epochs 150 
Training time (s) 155  
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3.3.2. Runtimes and computational cost 
Our group submitted a dissimilarity matrix D = [10 × 554], where 

the entry D = [i, j] corresponds to the L2 distance from ith FV in the query 
set to the jth FV in the collection set. 

While implementing the APPFD-FK-GMM for this task, K is specified 
by the parameter, vs = 0.20, which is the voxel size for point cloud 

down-sampling, while the radius parameter, r = 0.50 specifies the size of 
P. Regarding point cloud size, P = 3, 500 points are sampled. 

In conclusion, we present a pure Python 3.60 implementation code 
that computes the APPFD-FK-GMM method. All experiments were car
ried out under Windows® 7 desktop PC with Intel® Core® i7-4790 CPU 
@ 3.60 GHz, 32 GB RAM. It takes an average of 30 s to compute the 
APPFD-FK-GMM. The implementation code is available at the following 
url: https://tinyurl.com/shrec21. 

3.4. Projected Wave Kernel Signature maps (PWKSM) by Léa Sirugue & 
Matthieu Montès 

This method is based on the 2D projection of the surface and the 
Wave Kernel Signature (WKS) descriptor. Wave Kernel Signature [47] is 
an isometric invariant descriptor that has been extensively improved 
and used in the field of computer vision [48–51]. We have combined 
WKS with a 2D projection on a unit sphere [52]. Lowering one dimen
sion of the space allows us to have a fast and dense comparison of the 
surface while having a smaller storage size for files. 

Descriptor calculation. In a first step, the WKS descriptor is computed 
on the surface of the 3D object for each point of the mesh. The surface is 
flattened on the unit sphere using a conformal transformation [52]. 
Then, the 2D spherical coordinates of the unit sphere are converted into 
2D cartesian coordinates on the plane [53]. A maps of size (θmax −

θmin)/δ, (φmax − φmin)/δ is created. θmax and θmin are the maximum and 
minimum values of θ on the unit sphere and the same with φ, each 

Fig. 4. APPFD-FK-GMM processing pipeline involving Phase 1 (fitting a GMM to all the keypoints or LSPs descriptor, i.e. local APPFDs from each 3D protein surface 
and for all database protein surfaces) and Phase 2 (computing a single compact descriptor called fisher-vector (FV) for each 3D protein by aggregating all its 
keypoints or local APPFDs using the fisher kernel (FK) framework and the trained GMM in Phase 1. Within each LSP around a keypoint, six different geometric 
features are first extracted, and each feature-dimension is binned into a 1D histogram with 35 bins, where all histograms are combined to form a 210-dimensional 
descriptor, i.e local APPFD for each LSP. All such LSP descriptors from each 3D protein are compacted into a 4210-dimensional FV for that protein model, as in 
Phase 2. 

Fig. 5. Local Surface Patch (LSP), Pi with pairwise points (pi, pj) as part of a 
surflet-pair relation for (pi, ni) and (pj, nj), with pi being the origin. θ and φ are 
the angles of vectors projection about the origin, pi. θ is the projection angle 
from vector 〈pi − pj〉 to vector 〈pi − pc〉 while φ is the projection angle from 
vector 〈pi − pj〉 to vector 〈pi − l〉. The LSP centre is given by pc, keypoint is given 
as pki where i = 2. Finally, l is the vector position of pki − pc [34]. 
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representing an angle coordinate. δ is a coefficient to adapt for resolu
tion. This type of projection is similar to topographic maps, that is why 
our group called this descriptor Projected Wave Kernel Signature Maps 
(PWKSM). An interpolation in the space of discrete integers is done to 
densify the maps. To reduce impact of deformation at the poles when 
converting to 2D cartesian coordinates, we computed 7 different maps 
with different pole orientations. 

Descriptor comparison. A dense comparison is made using GPGPU sum 
reduction technique [54–56]. Each point’s WKS of a PWKSM is 
compared to all points’ WKS of another PWKSM. The Earth Mover’s 
distance L is used to compare the WKS descriptor of each point. Then, 
the smallest distance between a point of a first PWKSM T and all points 
of a second PWKSM V is selected. The sum of all the smallest distances 
for each point of the first PWKSM are summed to create the score ST. The 
same is done for computing SV. 

ST(T,V) =
∑NT

kT=1
minkV L(T(kT),V(kV)) (1) 

The final score is the average of ST and SV defined as follows: 

S =
ST + SV

2
(2)  

3.4.1. Runtimes and computational cost 
All the calculations were made on a computer based on a 64-bit OS 

with an Intel® Xeon® CPU @ 2.30 GHz, a Nvidia® Quadro® k4200 GPU 
with 4 GB and 32 GB of RAM. 

Computing the WKS took on average 9 min and 31 s. It required on 
average 44 s to compute one PWKSM. The comparison of two surfaces (i. 
e 7 versus 7 PWKSM) takes on average 23 s. The code is available at the 
following url: https://gitlab.cnam.fr/gitlab/siruguej/PWKSM. 

3.5. Graph-based learning methods for surface-based protein domains 
retrieval (DGCNN) by Huu-Nghia H. Nguyen, Tuan-Duy H. Nguyen, Vinh- 
Thuyen Nguyen-Truong, Danh Le, Hai-Dang Nguyen & Minh-Triet Tran 

In this deep learning method, our group exploits the availability of 
protein class labels from Ref. [35] to optimize the representation of 
protein surfaces without any additional properties. Particularly, we 
designed a message-passing graph convolutional neural network 
(MPGCNN) with the Edge Convolution (EdgeConv) paradigm [57] for 
the protein classification objective. Then, the latent representation of 
protein surfaces from this neural network is used for the retrieval task in 
this track (Fig. 6). 

3.5.1. Data pre–processing 
For the meshes in each 3D model of a protein surface, we first sample 

512 points on the surfaces of the meshes based on the area of the meshes. 
Then, to re-assign the topological structures for sampled points, we 
connect each nodes with their k-Nearest Neighbors based on their 
original coordinates (k = 16). 

3.5.2. Edge convolution 
In this geometry-only setting, the initial node features is the co

ordinates of sampled points. Each protein surface is represented by a k- 
Nearest Neighbors graph generated in the pre–processing step with 512 
vertices (nodes). 

The module that performs the graph message-passing function is the 

EdgeConv layer [57]. In the EdgeConv layer, the information of a vertex 
i after layer l is calculated as follows: 

xl+1
i = maxj∈N h(xl

i, x
l
j) (3)  

where N is the neighboring vertices of vertex i with 

h(xl
i, xl

j) = ReLU(MLP(xl
i ⊕ xl

j)) (4)  

where ReLU is Rectified Linear Unit (in this implementation, we used 
LeakyReLU—a variant of ReLU), MLP is a standard multilayer percep
tron (MLP), and ⊕ is the concatenation operator. 

In this implementation, our group uses a dynamic variant of Edge
Conv instead of the standard EdgeConv described above. At each Dy
namic EdgeConv layer, each vertex’s k–Nearest Neighbors is re- 
calculated in the feature space produced by the previous layer, before 
applying the standard EdgeConv operation. After the graph has been 
recomputed, standard EdgeConv operation is performed. 

After the pre–processing phase, the vertex features first go through 4 
layers of Dynamic EdgeConv. The dimensions of output features for each 
vertex after these first-4 layers are 64, 64, 128, and 256, respectively. 
Then, the outputs of these 4 layers are concatenated to become a 512- 
dimensional vector for each vertex. This 512-dimension vector is then 
fed through another Dynamic EdgeConv layer, creating the output 
vector v with 512 dimensions. The feature vector v is pooled using the 
concatenation of the outputs of a max-pooling and a mean pooling layer to 
generate the first graph-level feature vector. This vector is passed 
through two MLP blocks with BatchNorm, Leaky-ReLU, and Dropout 
layers. Finally, the vector is passed through a Fully-Connected layer for 
classification (Fig. 6). 

The latent representation of the graph is extracted as vectors by 
removing the last Fully-Connected layer from the network. The retrieval 
task is then performed by exploiting the L2-distances between these 
vectors. 

3.5.3. Runtimes and computational cost 
This method is implemented in Python 3.8 [58], using Pytorch [59] 

and Pytorch Geometric [60] libraries. The experiments were carried out 
a machine with an Intel® Core® i7-8700K 6-core CPU Processor @3.70 
GHz with 32 GB of RAM and an NVIDIA® TITAN V with 12 GB of VRAM. 
The training and test set’s embedding extraction uses both the CPU and 
the GPU, while computation of distance matrix only uses the CPU. The 
detailed time report is represented in Table 3. The code is available at 
the following url: https://github.com/huunghia160799/SHREC-protei 
n-domains. 

4. Evaluation metrics 

We use common evaluation metrics to assess the performance of the 
proposed methods, most of which are used in other SHREC tracks [61] or 
similar works evaluating the performance in retrieval [62]. For each 

Fig. 6. Dynamic edge convolutional neural network.  

Table 3 
Time report of each step of the DGCNN method.  

Training Test Set Extraction Matrix Computation Total 

≈1100 min ≈7 min ≈3 min 1173 min  

F. Langenfeld et al.                                                                                                                                                                                                                             

https://gitlab.cnam.fr/gitlab/siruguej/PWKSM
https://github.com/huunghia160799/SHREC-protein-domains
https://github.com/huunghia160799/SHREC-protein-domains


Journal of Molecular Graphics and Modelling 111 (2022) 108103

8

method, we compute the overall metrics (i.e the metrics averaged over 
all queries) and the individual metrics (i.e the metrics for each query) to 
provide a better understanding of the performance of each method for 
each query. Two composite classes are also presented: the SH3-like and 
the PDZ-like, which correspond to the grouping of the SH3 and SH3_2 
classes, and of the PDZ and PDZ_6 classes, respectively. To set the 
dissimilarity values for these composite classes, for each entry of the 
dataset, we kept the minimal dissimilarity value from the SH3/SH3_2 
queries and from the PDZ/PDZ_6 queries. 

4.1. Nearest neighbor, first tier and second tier 

These metrics measure the ratio of relevant objects among the k 
retrieved objects, and range in the interval [0, 1]. For the nearest 
neighbor (NN), only the first retrieved object is considered (k = 1), while 
the top C objects are considered for the first tier (FT), and the top 2 × C 
objects for the second tier (ST). Here, C represents the cardinal of the 
class under investigation, i.e the size of the class to which the query 
belongs. Higher values of nearest neighbor, first tier and second tier 
indicate better performance. 

4.2. Precision-recall curves 

The Precision (P) represents the fraction of relevant object retrieved 
compared to the top k retrieved objects: P = (relevant

⋂
retrieved)/ 

retrieved. Therefore, precision can be evaluated at different intervals. 
The Recall (R) represents the fraction of relevant objects retrieved 
compared to the size C of the class of the query: P = (relevant

⋂
retrieved)/ 

relevant. Both metrics range from 0 to 1. Precision-Recall curve plots the 
precision values at given recall values, which produces, in an ideal case, 
an horizontal line at P = 1 that spans the entire range of recall values. 

4.3. Confusion matrix 

A confusion matrix (CM) is a square matrix, whose columns repre
sents the different classes of the dataset and rows the class of the query. 
For each row, each element CM(i, j) gives the number of objects from 
class i retrieved using the query j, considering the top k = C retrieved 
objects, C being the size of the class corresponding to query j. The ele
ments CM(i, i) in the diagonal of the confusion matrix indicates the 
objects classified correctly, while the off-diagonal indicates mis
–classified elements. To ease the comparison between classes of different 
sizes, the numbers were normalized over the class sizes C of the queries. 
Consequently, the sum 

∑
jCM(i, j) of all elements of each row equals 1. 

4.4. Reciprocal rank and mean reciprocal rank 

The Reciprocal Rank (RR) measures the performance to find the first 
relevant item. For a given query, it equals to the inverse of the rank r of 
the first relevant item found: RR = 1/r. The Reciprocal Rank ranges from 
0 (no relevant object found) to 1 (the first retrieved object is relevant). 
The Mean Reciprocal Rank (MRR) is the Reciprocal Rank averaged over 
all queries. This metric is useful as: (1) it is considered order-aware, 
contrary to the previous metrics, (2) typical use cases only consider 
the few first retrieved items; therefore, the higher the reciprocal rank, 
the better the performance. 

5. Results 

Among the participants of the track, all teams returned a dissimi
larity matrix for the shape-only dataset, and only one method (3DZD) 
was adapted to handle the shape + electrostatics dataset. 

5.1. Shape-only challenge 

The results for the shape-only dataset are presented in Table 4 and in 

Figs. 8 and 7. Table 4 summarizes the performances of all submitted 
matrices for the shape-only dataset. For each metric (Nearest Neighbor, 
First Tier, Second Tier and Mean Reciprocal Rank), the highest value is 
indicated in bold. Given the dataset structure and the selected query 
domains, the best method achieves an overall level of 0.5 for the nearest 
neighbor metric, 0.160 for the first tier, 0.292 for the second tier and 
0.523 for the mean reciprocal rank. These results must be balanced by 
the fact that a few classes have only a small number of models (namely, 
the Stat-binding and m50 classes only have 6 and 4 members, respec
tively, see Fig. 2), and thus impact negatively the averaged results. For 
completeness, Tables C7, C8, C9 and C10 in Appendix C contain the per- 
class evaluation metrics for all methods. 

The precision-recall curves for each individual classes (Fig. 7) show 
that most methods display a similar behavior for all classes, character
ized by a quick drop of the precision at low recall values. A few methods, 
however, show a different pattern for a few classes (Fig. 7): see the PDZ 
class for the 3DZD method (green curve, top left plot) or the SH3 class for 
the APPFD-FK-GMM method (dark blue curve, middle left plot), for 
instance, whose corresponding curves display medium precision values 
at medium recall. The confusion matrices for all methods are shown in 
Fig. 8. Combined with Fig. 1, they allow us to put the performance into 
perspective. For instance, PDZ and PDZ_6 domains are topologically 
very similar (TM-score: 0.79, Fig. 1) and therefore were expected to be 
confusing. When using the PDZ_6 query, ProteinNet retrieved only 1 
(4%) of the 26 PDZ_6 shapes within the first 26 retrieved results, but also 
12 (46%) shapes from the PDZ class (Fig. 8, middle top confusion ma
trix). More strikingly, 3DZD only found 1 (3%) of the 33 SH3_2 shapes 
within the 33 first retrieved shapes using the SH3_2 query, but the other 
32 retrieved shapes belong to the SH3 class (Fig. 8, second row of the top 
left confusion matrix), which is closely related to the SH3_2 class (TM- 
score: 0.84, Fig. 1). 

5.2. Shape + electrostatics challenge 

Similarly to the shape-only dataset, results for the shape + electro
statics dataset are presented in Table 5 and Figs. 9 and 10. Only one team 
returned a dissimilarity matrix for the shape + electrostatics dataset. 
The evaluation metrics are listed in Table 5. The results show similar 
trends compared to the shape-only dataset, with a nearest neighbor of 
0.5, a first tier value of 0.16, a second tier value of 0.321 and a mean 
reciprocal rank of 0.454. These metrics are similar to the results ob
tained from the shape-only dataset for the 3DZD method (the second tier 
value increased while the mean reciprocal rank decreased). The per- 
class metrics are shown in Appendix D (Tables D11, D12, D13 and D14). 

The precision-recall curves (Fig. 9) show a similar overall behavior 
for the 3DZD method, whose performance improved significantly for the 
SH3 domain but decreased significantly for the PDZ domain (dark blue 
and green curves, respectively, left plot of Fig. 9). The confusion matrix 
(Fig. 10) is in line with the previous results, indicating that 3DZD per
forms similarly in terms of overall performance but with a few differ
ences at the per-class results. 

Table 4 
Summary of the average evaluation metrics for the shape-only dataset. The 
composite classes are excluded from the average; they are presented in Tables C7 
to C10.  

Method Nearest 
Neighbor 

First 
Tier 

Second 
Tier 

Mean Reciprocal 
Rank 

3DZD 0.5 0.160 0.292 0.523 
ProteinNet 0 0.088 0.195 0.126 
APPFD 0.3 0.136 0.237 0.410 
PWKSM 0.1 0.105 0.201 0.236 
DGCNN 0 0.098 0.189 0.193  
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6. Discussion and concluding remarks 

6.1. Shape-only dataset 

Overall, the 3DZD method obtained the best results, in line with the 
previous tracks on protein shapes, where this group similarly obtained 
overall good results [33,34]. This method relies on the use of 3D Zernike 
polynomials, which has been successfully used to retrieve proteins based 
on their shapes [9] or their Cα coordinates [13]. It then uses a neural 
network trained on the SCOPe [37,38] database, whose classification 
largely overlaps with the classification of the Pfam database [16]. As 
instance, in the SCOPe databases, the SH3 domain and the SH3_2 
domain are classified in two different SCOPe domains, similarly to the 
Pfam classification. The DGCNN used the data from another SHREC′21 
track, the Retrieval and classification of protein surfaces equipped with 
physical & chemical properties track [35]. The organizers of this track, 
similarly to a previous track [33], proposed a set of shapes derived from 
NMR structures along their surficial physico-chemical properties to 
allow the participants to train their methods, and the resulting classifi
cation of the proteins was derived from the SCOPe database as well. The 
DGCNN and 3DZD methods were therefore trained on similar data, but 

Fig. 7. Per-query precision-recall curves for the shape-only dataset, for each method. All plots are colored according to the legend on the bottom right of the figure.  

Fig. 8. Confusion matrices of all methods for the shape-only dataset. The color- 
range is the same for all matrices. Confusion ranges from 0 (white background) 
to 1 (deep purple background). The original classes are separated from the 
composite classes (SH3-like and PDZ-like) by a black line. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Table 5 
Summary of the average evaluation metrics for the shape + electrostatics 
dataset. The composite classes are excluded from the average; they are presented 
in Tables D11 to D14.  

Method Nearest Neighbor First Tier Second Tier Mean Reciprocal Rank 

3DZD 0.5 0.160 0.321 0.454  
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produced different performance. 
Another point to consider, is that the DGCNN method uses a sam

pling (down to ≈ 8, 000 points) of the initial point clouds (see 3.5.1) that 
potentially resulted in a loss of information that might explain the dif
ference of performance between these two groups (DGCNN and 3DZD). 
However, the ProteinNet and APPFD-FK-GMM methods use more severe 
down-sampling steps as well to reduce the number of points down to 
2,048 for ProteinNet (see 3.2.2) and to 3,500 for APPFD-FK-GMM (see 
3.3) with various outputs in terms of performance. These numbers 
should be compared to the initial meshes sizes, which range from 37,658 
to 582,496 points. The APPFD-FK-GMM group, however, was able to 
better retrieve relevant results within the first hits, as evidenced by 
higher values of Nearest-neighbor and Mean Reciprocal Rank for the 
shape-only dataset (Table 4). 

While some methods were able to maintain medium precision levels 
at medium recall values (see section 5.1), a few queries were difficult to 
handle for all methods. For the DNA-binding domain from the STAT 

protein family or the peptidase M50 domain, the low number of such 
surfaces (6 and 4, respectively) in the datasets explains the low perfor
mance observed for all methods. For the other queries, like the PDZ_6 
domain or the SH3_2 domain, the explanation is the presence of closely 
related domains, the PDZ and SH3 domains, respectively. These 
confusing classes are significantly more populated (128 versus 26, for the 
PDZ/PDZ_6 domains, and 115 versus 33, for the SH3/SH3_2 domains). 
This is supported by the confusion matrices, which showed that, for 
instance, the ProteinNet group retrieved a great amount of SH3 domains 
(and almost no SH3_2 domains) within the top results using the SH3_2 
query, or the DGCNN group retrieved a significantly higher proportion 
of PDZ domains than PDZ_6 domains within the first results using the 
PDZ_6 query. In these cases, the high level of similarity between the 
domains coupled to the imbalanced size of the classes have negatively 
impacted the results. In the mean time, these results highlight the limits 
of the currently available methods to distinguish between the most 
closely related proteins. 

Fig. 9. Per-query precision-recall curves for the shape + electrostatics dataset, for each method. All plots are colored according to the legend on the far right of 
the figure. 
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Also, we observed different results for order-aware (mean reciprocal 
rank) and order-unaware (nearest neighbor, first ter and second tier) 
metrics. While DGCNN, ProteinNet and PWKSM methods display similar 
values for order-unaware metrics, PWKSM displays a higher Mean 
Reciprocal Rank. When converted back to ranks, these results mean that, 
on average, PWKSM ranked better the first relevant match, but did find a 
similar amount of relevant items within the top results. 

6.2. Shape + electrostatic dataset 

While the shape of a protein is of tremendous importance, its surficial 
properties are important as well. Therefore, in this track, we generated 
the shape + electrostatic dataset which encompass both properties, in 
order to stimulate the development of such methods. However, only one 
groups returned a dissimilarity matrix for this dataset, namely the 3DZD 
group. Most groups that participated to this challenge come from the 
computer vision field. As such, most of the methods presented in this 
work are the result of methodological developments dedicated to the 
analysis of 3D point clouds. The development of new, specific methods 
to handle both shapes and electrostatics would require an amount of 
time far greater than the SHREC timeline. Nevertheless, we hope that 
this challenge along with the other challenge dedicated to protein 
shapes [35] would stimulate the development of such methods. 

The overall results showed that the treatment of the electrostatics by 
the 3DZD marginally improved the results, compared to the shape-only 
results. Interestingly, the electrostatic potential impacted differently 
each class: it improved the ability of the 3DZD method to handle the SH3 
or the Bromodomain classes, as evidenced by the precision-recall curves 
(Figs. 7 and 9, Tables in Appendix C and Appendix D). The 3DZD method 
is derived from previous attempts from the same team to couple shape 
and electrostatics analysis to classify protein surfaces [10]. As noted in 
this exploratory work, electrostatics may be suitable to compare closely 
related proteins, while our datasets was mainly composed of loosely 
related proteins (Fig. 1). The electrostatics potential feature is likely to 
be more beneficial for protein surface comparison of local features 
rather than global shapes. In such local cases (like comparison of cata
lytic or binding sites), local electrostatic hot spots would represent the 

major local feature rather than one of the many features of the global 
protein surface, as it is the case for the MaSIF method [11]. 

6.3. Current machine learning–based methods: pitfalls and challenges 

Pitfalls of previously mentioned methods lies in the exploited protein 
datasets and their characteristics, notably the class imbalance as well as 
the high inter–class shape similarity. Indeed, the protein datasets are 
often highly imbalanced in terms of protein classes, which introduces a 
bias in the training process of these methods towards learning efficiently 
class representation. One common technique consists of using data 
augmentation to overcome this lack of original data. Hence, it is 
important to bear in mind that several protein classes cannot be 
considered as representative groups of protein families. Moreover, our 
problematic tackles a large quantity of classes composed of protein, 
which are e.g visually highly similar. In such a case, a challenge lies in 
the design of new methods with a high discriminating power that allows 
to extract the most significant features for distinguishing between pro
tein classes. In this sense, other aspects of the proteins (in addition to the 
shape) such as molecular properties and electrostatic properties could be 
considered. These parameters have to be carefully analyzed through 
experiments before envisaging method generalizations. 

6.4. Concluding remarks 

In conclusion, we have presented the results of the SHREC′21 chal
lenge on Surface-based protein domains retrieval. The number of partici
pants remained stable compared to the last two years, indicating a 
constant interest of the shape retrieval community towards biologically 
relevant problems. Each group relied on different methods and theo
retical background with respect to recommended modeling/machine 
learning practices [63,64] in order to solve the problem proposed by the 
organizers, and represent a variety of approaches to the same problem. 
As a step towards open science, all participants accepted to share their 
programs publicly with the community. Overall, the results are 
decreased compared to similar past tracks [34]. Indeed, two methods 
based on descriptors similar to 3DZD and APPFD-FK-GMM (3DZD and 
HAPPS, respectively) were presented in the SHREC′20 contest and per
formed very well (e.g both methods exceeding 0.95 for the NN metric) on 
a problem similar to the shape-only problem (see Tables 6 and 7 of [34]). 
However, the adapted versions (3DZD and APPFD-FK-GMM) did not 
reach the same level of performance by exploiting this new, particular 
dataset of proteins. This decrease of performance (and low performances 
from the three other methods) reveals that this year dataset was 
particularly hard to analyze, and that there is still room for improve
ments. Among the proposed methods, we observed that 3 over 5 used a 
learning-based protocol at some point. This proportion is in line with last 
year track, and show that such approaches continue to be investigated as 
they usually improve the results. To this regard, the SHREC′21 track on 
Retrieval and classification of protein surfaces equipped with physical & 
chemical properties might highlight some interesting points on the best 
architecture to learn protein surficial properties [35]. Similarly, the 
organizers of this track computed a set of additional chemical properties 
(electrostatic potential, location of potential hydrogen bond donors and 
acceptors, hydrophobicity). In this track, the participants first used the 
surface geometry then the combination of the geometry and 
physico-chemical features of the protein surfaces. The results showed 
that all methods improved their results when using both the geometric 
and physico-chemical data compared the geometry only. Particularly, 
the results generated by the machine learning based methods increased 
more compared to the other methods. As each of the physico-chemical 
feature was not considered individually, it remains hard to know 
whether one feature has a greater importance than the other. However, 
in their work, Gainza et al. showed that the electrostatic potential have 
the greatest impact of the physico-chemical features they computed. In 
our work, the electrostatic potential was used by the 3DZD team as an 

Fig. 10. Confusion matrix for the shape + electrostatics dataset. Confusion 
ranges from 0 (white background) to 1 (deep purple background). The original 
classes are separated from the composite classes (SH3-like and PDZ-like) by a 
black horizontal line. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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additional feature to help the retrieval task. The results reveals only 
slightly improved results compared to the results from the shape–only 
dataset. As noted in Ref. [10], the electrostatic potential may be of better 
use to compare closely related proteins, rather than comparing loosely 
related proteins, as it is the case in our work. Alternatively, shapes and 
electrostatics may be used in hierarchical way, i.e using first the shape 
then the electrostatics to achieve a better result. 

This track reveals significantly lower results when compared to past 
tracks [31–34]. However, satisfactory solutions exist to distinguish be
tween loosely related proteins, or to identify identical proteins with 
different conformations, based on their shapes only. Our work also re
veals some limits of the methods used by the participants for the chal
lenge. Very closely related proteins (such as SH3 and SH3_2 protein 
domains), i.e proteins displaying a high topological similarity and 
limited variations of their amino-acid sequences, hence surfaces, are still 
difficult to separate in different classes, but some methods distinguish 
them from the other classes. Also, when we consider the DNA-binding 
domain from the STAT proteins, no method was able to produce satis
factory results. While the DNA-binding domain used as a query has a 
globular shape, the STAT proteins are significantly bigger, with a 
non-globular shape, and have 3 additional domains (1 of which is a SH2 
domain, a domain included in the dataset), which means that only 
partial matches compared to the query may be achieved. This specific 
issue (the comparison of partially overlapping objects) may require 
further development. 

In the future, this latter point could be the subject of a dedicated 
SHREC track, and a good indicator of the overall progresses made in the 
field of the retrieval of proteins based on their surfaces. Currently, most 
methods have difficulties to handle such cases, which are quite common. 
Solving this challenge would be a step forward for the community. At 
the same time, explainable artificial intelligence (XAI) methods [65] 
may highlight the latent features responsible for good or bad pre
dictions, and help decipher the results of machine learning–based 
methods. XAI methods may help explain the performance difference 
observed for each class of protein, and provide a human-interpretable 
representation of machine learning descriptors, and therefore help 
identifying the current limits of these algorithms. Finally, deciphering to 
which extend, if any, the standard physico-chemical features (electro
statics potential, charges distribution, hydrophobicity, etc.) improve the 
results may be the main focus of the next SHREC tracks devoted to 
protein surfaces. 
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Appendix A. List of PDB structures used as queries for the dataset  

Table A.6 
List of the Protein Data Bank [17,18] structures used as queries for the track.  

Domain name Pfam ID PDB code chain residues Reference 

SH2 domain PF00017 1P13 B 161–243 [66,67] 
SH3 domain PF00018 1ABO B 67–113 [68,69] 
Variant SH3 domain (SH3_2) PF07653 5O99 B 474–527 [70,71] 
PDZ domain PF00595 2HE2 B 421–499 [72,73] 
PDZ_6 domain PF17820 3KHF B 982–1034 [74] 
Peptidase family M50 (m50) PF02163 3B4R B 111–186 [75] 
Bromodomain PF00439 6CW0 B 10–95 [76] 
PHD-finger domain PF00628 3KV5 D 39–88 [77,78] 
Zinc-finger domain, C2H2 type (zf-C2H2) PF00096 4ISI D 472–493 [79,80] 
STAT protein, DNA-binding domain (Stat-binding) PF02864 5D39 D 277–413 [81,82]  

Appendix B. RMSD between queries structures 
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Fig. B.11. Cα-RMSD (Root Mean Square Deviations) between queries structures. The higher the RMSD, the more distant the structures.  

Appendix C. Evaluation metrics details for the shape-only dataset: reciprocal rank, per-class nearest-neighbor, first tier and second tier  

Table C.7 
Per-class nearest-neighbor for the shape-only dataset.  

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like 

Class size 115 33 92 128 26 4 6 55 53 64 148 154 
3DZD 0 0 1 1 0 0 0 1 1 1 1 1 
ProteinNet 0 0 0 0 0 0 0 0 0 0 1 0 
APPFD 0 0 0 1 0 0 0 1 1 0 0 1 
PWKSM 0 0 0 1 0 0 0 0 0 0 0 1 
DGCNN 0 0 0 0 0 0 0 0 0 0 0 0   

Table C.8 
Reciprocal rank for the shape-only dataset.  

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like 

Class size 115 33 92 128 26 4 6 55 53 64 148 154 
3DZD 0.143 0.033 1 1 0.030 0.002 0.021 1 1 1 1 1 
ProteinNet 0.071 0.036 0.25 0.5 0.25 0.005 0.002 0.010 0.071 0.067 1 0.5 
APPFD 0.5 0.042 0.1 1 0.2 0.01 0.022 1 1 0.167 0.333 1 
PWKSM 0.333 0.053 0.125 1 0.333 0.015 0.042 0.083 0.042 0.333 0.333 1 
DGCNN 0.333 0.083 0.167 0.5 0.333 0.037 0.006 0.042 0.1 0.333 0.25 0.5   

Table C.9 
Per-class first tier for the shape-only dataset.  

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like 

Class size 115 33 92 128 26 4 6 55 53 64 148 154 
3DZD 0.35 0.03 0.05 0.42 0.00 0.00 0.00 0.24 0.34 0.17 0.70 0.39 
ProteinNet 0.26 0.03 0.16 0.28 0.04 0.00 0.00 0.00 0.06 0.05 0.35 0.31 
APPFD 0.40 0.03 0.15 0.22 0.04 0.00 0.00 0.15 0.25 0.13 0.44 0.27 
PWKSM 0.18 0.06 0.21 0.26 0.08 0.00 0.00 0.11 0.08 0.08 0.20 0.29 
DGCNN 0.19 0.09 0.13 0.25 0.12 0.00 0.00 0.04 0.08 0.09 0.26 0.30   
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Table C.10 
Per-class second tier for the shape-only dataset.  

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like 

Class size 115 33 92 128 26 4 6 55 53 64 148 154 
3DZD 0.55 0.45 0.13 0.72 0.04 0.00 0.00 0.33 0.45 0.27 0.79 0.69 
ProteinNet 0.55 0.09 0.43 0.51 0.08 0.00 0.00 0.02 0.15 0.13 0.68 0.60 
APPFD 0.58 0.12 0.30 0.53 0.08 0.00 0.00 0.18 0.34 0.23 0.66 0.59 
PWKSM 0.39 0.12 0.39 0.49 0.12 0.00 0.00 0.18 0.11 0.20 0.46 0.56 
DGCNN 0.37 0.09 0.33 0.39 0.12 0.00 0.00 0.20 0.25 0.16 0.49 0.52  

Appendix D. Evaluation metrics details for the shape þ electrostatics dataset: reciprocal rank, per-class nearest-neighbor, first tier and 
second tier  

Table D.11 
Per-class nearest-neighbor for the shape + electrostatics dataset.  

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like 

Class size 115 33 92 128 26 4 6 55 53 64 148 154 
3DZD 0 0 0 1 0 0 0 1 1 0 1 0   

Table D.12 
Reciprocal Rank for the shape + electrostatics dataset.  

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like 

Class size 115 33 92 128 26 4 6 55 53 64 148 154 
3DZD 0.5 0.167 0.333 1 0.010 0.003 0.030 1 1 0.5 1 0.5   

Table D.13 
Per-class first-tier for the shape + electrostatics dataset.  

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like 

Class size 115 33 92 128 26 4 6 55 53 64 148 154 
3DZD 0.50 0.12 0.14 0.20 0.00 0.00 0.00 0.36 0.28 0.23 0.58 0.19   

Table D.14 
Per-class second tier for the shape + electrostatics dataset.  

Method SH3 SH3_2 SH2 PDZ PDZ_6 m50 STAT zf-C2H2 PHD Bromodomain SH3-like PDZ-like 

Class size 115 33 92 128 26 4 6 55 53 64 148 154 
3DZD 0.68 0.36 0.38 0.55 0.00 0.00 0.00 0.51 0.36 0.36 0.74 0.74  
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[27] J. Söding, Protein homology detection by HMM–HMM comparison, Bioinformatics 
21 (7) (2004) 951–960, https://doi.org/10.1093/bioinformatics/bti125. URL:. 

[28] J. Xu, Y. Zhang, How significant is a protein structure similarity with TM-score =
0.5? Bioinformatics 26 (7) (2010) 889–895, https://doi.org/10.1093/ 
bioinformatics/btq066. URL:. 

[29] M. Temerinac-Ott, M. Reisert, H. Burkhardt, SHREC’07 - Protein Retrieval 
Challenge, 2008. 

[30] L. Mavridis, V. Venkatraman, D.W. Ritchie, N. Morikawa, R. Andonov, A. Cornu, et 
al., SHREC’10 track: protein model classification, in: M. Daoudi, T. Schreck (Eds.), 
Eurographics Workshop on 3D Object Retrieval, The Eurographics Association, 
2010, ISBN 978-3-905674-22-4, pp. 117–124, https://doi.org/10.2312/3DOR/ 
3DOR10/117-124. 

[31] N. Song, D. Craciun, C.W. Christoffer, X. Han, D. Kihara, G. Levieux, et al., Protein 
shape retrieval, in: I. Pratikakis, F. Dupont, M. Ovsjanikov (Eds.), Eurographics 
Workshop on 3D Object Retrieval, The Eurographics Association, 2017, ISBN 978- 
3-03868-030-7, pp. 67–74. URL: https://diglib.eg.org/handle/10.2312/3dor20171 
055. 

[32] F. Langenfeld, A. Axenopoulos, A. Chatzitofis, D. Craciun, P. Daras, B. Du, et al., 
Protein shape retrieval, in: A. Telea, T. Theoharis, R. Veltkamp (Eds.), 
Eurographics Workshop on 3D Object Retrieval, The Eurographics Association, 
2018, ISBN 978-3-03868-053-6, pp. 53–61, https://doi.org/10.2312/ 
3dor.20181053. 

[33] F. Langenfeld, A. Axenopoulos, H. Benhabiles, P. Daras, A. Giachetti, X. Han, et al., 
Protein shape retrieval contest, in: S. Biasotti, G. Lavoué, R. Veltkamp (Eds.), 
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