Multi-Task Learning for Efficient Management of
Beyond 5G Radio Access Network Architectures

ZorazeAli, Lorenza Giupponi, Marco Miozzo, PaoloDini

Abstract—Automation of Radio Access Network (RAN) opera- CAPEX Capital Expen'dilures.
tion is a fund tal feature to ble and efficient CQI Channel Quality Indicator
Beyond Fifth-generation wireless (5G) networks, in the context of ~ CW CodeWord
the Next Generation Self-Organizing Network (NG-SON) vision. DB DataBase
Machine Learning (ML) is already identified as the key ingredient DL Downlink
of this vision, with new standardized and open architectures, D D Neural K
like Open-RAN (O-RAN), taking momentum. In this paper, we NN cep Neura! Nelw0|‘" o
propose models based on single-task and Multi-Task Learning ~ ECDF Empirical Cumulative Distribution
(MTL) paradigms to address two RAN use cases, handover Function
management and initial Modulation and Coding Scheme (MCS) ¢NB next-Generation Node B
selection. Traditional handover schemes have the drawback of
L L . . . HO HandOver
taking into account the quality of the signals from the serving, li dic
and the target cell, before the handover. Also, initial MCS at KQI Key Quality Indicator
the start of the session and after a hand usually is handled LST™M Long Short Term Memory
conservatively. The proposed ML solutions allow to address these LTE Long Term Evolution
drawbacks by 1) considering the expected Quality of Experience MCS Modulation and Coding Scheme
(QoE) res:u!tmg ﬁ:un:l the decision of a targes ?ell to handm:'er, MDP Markov Decision Process
as the driving principle of the handover decision and 2) using MDT Minimizati f Drive T
the experience extracted from network data to make smarter m"f"m"o" of Drive est
initial MCS allocations. In this line, we implement a realistic ML Machine Learning
cellular simulation scenario by incorporating coverage holes to MLP Multi-Layer Perceptron
build an extensive database to train and test the proposed models. mmWave Millimeter Wave
The results show that the ML-based models outperform the 3rd .
Generation Partnership Project (3GPP) standardized handover MNO MOF’IIC N'e l.w ork F)pcralor
and initial MCS selection approaches by improving the QoE of MOS Mean Opinion Score
users resulting from a handover and the throughput obtained MSE Mean Square Error
upon blishing a new ion with a network. Besides MTL Multi-Task Learning
that, using the obtained results, this paper extensively discusses NG-SON Next Generation Self-Organizing
the merits of leveraging the MTL model to address different, Network
but related multiple RAN functions because it allows reusing a o Orth | il
common learning architecture for multiple RAN use cases, which NOMA Non-Orthogonal Multiple Access
provides significant impl ion ad O-RAN Open-RAN
Index Terms—LSTM, RNN, Next Generation Self-organizing OPEX Ope.rutlonal Ijlxpendltures)
networks, Deep learning, machine learning, Mobile Networks POMDP P-arllzlljlly Observable Markov Deci-
All authors are with the Mobile Networking Department ston Frocess .
L. L QoE Quality of Experience
at Centre Tecnoldgic de Telecomunicacions de Catalunya QoS Quality of Service
(CTTC/CERCA), Barcelona, Spain. uaity “
. . . . RAN Radio Access Network
E-mails by the authorship order: zali@cttc.es, Igiup- . .
. . . RIC Radio Intelligent Controller
poni@cttc.es, mmiozzo@cttc.es, and pdini@cltic.ec. I .
X A . RLF Radio Link Failure
This work was supported by Huawei Technologies, Sweden
. . . RNN Recurrent Neural Network
AB. The authors would like to specifically thank Stojan .
. . . RRC Radio Resource Control
Denic, Stavroula Vassaki and Gunnar Peters, from Huawei X .
Technologies, for the enriching discussions on the work RSRP Reference Signal Receive Power
sies, & : RSRQ Reference Signal Received Quality
SINR Signal to Interference plus Noise Ra-
ACRONYMS tio
2gPP ;f?feneram‘)n PantlnTrshlp Project SLA Service Level Agreement
o si L h‘g""e‘"‘f“_"" wire I"S‘S‘ SNR Signal to Noise Ratio
AE A'Xl éger:;'dnon wireless SON Self-Organizing Network
Al Am'? ncl Iersll' TCP Transmission Control Protocol
ruficial Intelligence TTI Transmission Time Interval

ARPU Average Revenue per User

UE User Equipment
UL Uplink
V2X Vehicular-to-everything

I. INTRODUCTION

Mobile communications have experienced during the last
decades an incredible evolution. Since its inception, mobile
device connections have surpassed the number of people in
the world, making it the fastest growing technology ever [1].
Despite that, it is well known that the revenue generated
by Mobile Network Operators (MNOs) per user (Average
Revenue per User (ARPU)) has been steadily decreasing for
the last decade. The Capital Expenditures (CAPEX) of Fifth-
generation wireless (5G) networks are still not completely
clear and include: 1) more spectrum, with expensive auction
fees, 2) deployment of new antennas and equipment upgrade,
3) large scale small-cell deployments, to pursue the Millimeter
Wave (mmWave) vision. Therefore, the reduction of Opera-
tional Expenditures (OPEX) is fundamental to the evolution
of Beyond 5G mobile communication systems. Another inter-
esting data is that 70 % of the total cost involving deployment,
optimization, and operation of a network comes from the
Radio Access Network (RAN) segment [2]. It is the reason
that there is a significant interest in improving the efficiency
of the RAN management, which consequently reduces its
OPEX. Currently, there are two main trends to achieve these
objectives.

On the one hand, automation and self-organization of the
RAN have become two fundamental ingredients for optimal
resource utilization and management. It has been almost
a decade since when Self-Organizing Network (SON) was
defined and introduced as a feature of Long Term Evolution
(LTE), in 3rd Generation Partnership Project (3GPP) Release
8 [3]. Since then, it has been evolving through the releases
and into the concept of Next Generation Self-Organizing
Network (NG-SON) for 5G networks [4]. 5G cellular networks
and beyond are characterized by highly complex, dense, and
heterogeneous deployments to increase network coverage and
capacity. Besides traditional sub-6 GHz and licensed bands,
the access can span over a wide range of bandwidth, including
mmWave and unlicensed spectrum. The high diversity of
mobile devices and new applications further complicates the
network architecture and its management. In this context,
mobile networks generate a massive amount of measurements,
control, and management information during their normal
operation [5] [6], which can be efficiently used to address
the 5G and beyond network management challenges.

On the other hand, the evolution towards Beyond 5G
and Sixth-generation wireless (6G) networks calls for fur-
ther architectural transformations required to support service
heterogeneity, coordination of multi-connectivity, on-demand
service deployment. In Feb. 2018, the Open-RAN (O-RAN)
Alliance was founded by a group of mobile network oper-
ators to enhance RAN performance through virtualized net-
work elements, openness, and intelligence. Openness aims to
eliminate proprietary hardware and software implementations
by establishing open standard interfaces, which will reduce

operating costs. Intelligence has already become a neces-
sity for the deployment, optimization, and operation of Be-
yond 5G networks. O-RAN introduces new Radio Intelligent
Controller (RIC) modules and enables them with Machine
Learning (ML)/Artificial Intelligence (Al) features to enhance
traditional network functions with intelligence. In one of its
defining white papers [7], different use cases are proposed,
like traffic steering, Quality of Experience (QoE) optimiza-
tion, Quality of Service (QoS) based resource optimization,
RAN Slice Service Level Agreement (SLA) assurance, context
based dynamic HandOver (HO) management for Vehicular-to-
everything (V2X).

Both these trends and visions converge to the already
widely agreed need of ML/AI as fundamental ingredients
of Beyond 5G and 6G networks. Specifically, deep learning
has been lately intensively applied in communication and
networking literature to solve a wide range of problems [8].
RAN operation is extremely complex. It requires the ability to
continuously adapt to the environment’s ever-changing condi-
tions in terms of propagation, users’ needs, system load, high
mobility, etc. The number of tasks that a Beyond 5G RAN has
to execute is vast and includes all traditional SON use cases
and more to come. These functions are built around adjusting
operation parameters, which often affect the operation of other
SON functions, leading to the need for the so-called self-
coordination of multiple SON tasks.

In ML, we typically care about optimizing for a particular
metric. To do this, we generally train a model to perform our
desired task, or in our case, the RAN function. We then fine-
tune these models until their performance no longer increases.
By doing so, independently for all the different RAN use
cases, we may be ignoring information that might help us do
even better on the metric of interest. Specifically, this useful
information may come from different and related tasks/RAN
functions. By sharing representations between these tasks, for
example, using a wide feature space, which is not reduced only
to a specific problem to solve, we can enable our model to
generalize better on our original task. This approach is called
Multi-Task Learning (MTL) and has been used successfully
across all applications of ML [9]. MTL is inspired by human
learning, as integrating knowledge across tasks is an essential
feature of human intelligence. In that, we believe that MTL
reflects more accurately the human learning process than
single-task learning. In this paper, our objective is to prove the
potentiality of MTL to address RAN automation of multiple
tasks, which have to function in parallel during the regular
operation of the RAN. We propose different deep architectures
to address a set of tasks through individual or shared models.
Among them, we study the effectiveness of AutoEncoders
(AE) [10] to reuse the compressed representation of the data
for multiple heterogeneous use cases [11] [12]. This approach
can significantly reduce the implementation and computational
complexity of the learning architectures. To prove this concept,
we propose to target, without loss of generality, two RAN use
cases: 1) HO management and 2) the selection of the optimal
initial Modulation and Coding Scheme (MCS).

We address both the use cases, first through single-task
individual and then through multi-task shared models. To

address the use cases individually, we use a Long Short Term
Memory (LSTM) Recurrent Neural Network (RNN) to take
advantage of the temporal characteristic of the data extracted
from several and extensive simulation campaigns using the
latest 3GPP models of ns-3 [13]. The LSTM is designed
to solve a regression problem to estimate the QoE of the
users. We obtain excellent prediction errors, and with these
results, we can prove that the learning approach outperforms
traditional HO solutions and conservative approaches to select
the initial MCS. Successively, we build a different architecture
where the two RAN tasks share and train a common AE, based
on MTL principles. The same compressed data output of the
AE is used as input to two different Multi-Layer Perceptrons
(MLPs), implementing the regression of the particular param-
eter that we want to estimate for the two use cases (i.e., the
HO management and initial MCS). Both MLPs offer excellent
regression results similar to the one obtained using LSTM.
It means, the AE successfully reduces the dimensionality of
the data without losing meaningful information and network
performance. Thus, it facilitates the sharing of knowledge
between different tasks. Consequently, the same architecture
can be used to implement multiple parallel RAN functions.

In addition to that, we go more deeply into the study by
comparing two different ways of learning. In the first case,
the parallel MTL case, we learn the shared model by building
a shared database for all the use cases we plan to address. This
type of database is viable when we know the needed use cases
beforehand. However, RAN management problems can be
more complex and continuously require adding new use cases
and on-demand tasks to the design without retraining previous
tasks from scratch, or compromising their performance. As a
result, there is a need for the MTL shared model to be flexible
and be able to gradually add more tasks to its knowledge
without forgetting previously known tasks. For that, we also
propose a second incremental MTL scheme, based on the
continual learning paradigm [14], where the training database
is not built beforehand, but a new task can be incorporated
separately while previous task knowledge is preserved. This
approach is much more flexible and adequate for real networks
and provides clear implementation advantages [15].

A preliminary and partial version of this work was presented
in [16], and [17]. In [16], we focused only on the single task
HO management use case, and used an LSTM RNN to solve
the regression problem and estimate the QoE of the users. The
obtained results proved that the learning approach outperforms
traditional HO solutions. This paper further extends our re-
search horizon and includes the second use case of the initial
MCS. Moreover, in our previous work [17], we focused on
studying the advantages and disadvantages of a decentralized
or a centralized ML solution, emphasising the energy aspect.
Differently, in this work, we build another architecture where
the two RAN tasks share and train a common AE, based on
the MTL principles. Finally, the contributions of this paper are
the following:

« Design of ML models based on single-task and multi-task
paradigms to address two RAN use cases. In particular,
we propose two models based on two different multi-task
techniques, i.e., parallel and incremental learning.

« To encourage the reproducibility of the proposed models
and results, we provide in-depth details of the simulation
scenario and steps to create the databases using an open-
source simulator ns-3.

« Performance evaluation of the proposed solutions by
comparing the results with 3GPP standardized HO and
initial MCS selection schemes.

Last but not least, building upon the above contributions,
we are advancing the state-of-the-art and related work in the
following aspects:

« We present a holistic solution to handover based on
download time that is not limited to adjusting typical HO
parameters but considers previous experience to select a
target next-Generation Node B (gNB) to improve users’
QoE.

Extending our previous work in [16], we introduce an
additional RAN use case, i.e., initial MCS selection.
Compared to the studies in the literature that lean towards
treating these two use cases separately, in this paper, we
study the solutions that allow learning concurrently these
RAN tasks based on the MTL learning paradigm.

We study two possible solutions for MTL in the context
of solving RAN problems, one based on parallel learning
and another based on incremental MTL, which increases
the learning pace and minimizes the delay to deploy RAN
solutions.

We study the performance based on the proposed solu-
tions in comparison to 3GPP standard aligned baselines.

The rest of the paper is organized as follows. In Section
II we discuss the related work. Section III introduces the
system overview and the scenario that we use for synthetic
data generation. Section IV, presents the procedure we adopted
to generate the synthetic data. Section V proposes the RNN
models for single-task and multi-task learning. Section VI
discusses the training of the proposed architectures and the
system level performance results. Finally, Section VII con-
cludes the paper.

1I. RELATED WORK

Recent surveys on the application of ML learning in mobile
networks [18] and their self-organization [19] show that the
ML based solutions would play an essential role in the
management of 5G and beyond networks. In the context of
HO management, we identify three high-level potential ways
to optimize its functionality. The first approach to optimize
the HO process is to use model-based solutions based on
Markov Decision Process (MDP). The objective, in this case,
is to find the probability distribution of taking optimal HO
decisions given the input state, which corresponds to a User
Equipment (UE) state before the HO. In [20], the authors
proposed a Viterbi algorithm to find an optimal HO policy
to maximize the UE average capacity. The algorithm works
under the assumption that the position of the eNBs, the
UE trajectory, and the channel characteristics are known a
priori. The work in [21] proposes a cell selection procedure
based on the Partially Observable Markov Decision Process
(POMDP). Specifically, the POMDP predicts the neighboring

cells” loading information to optimize the HO rate while
maintaining the system throughput. Authors in [22], similarly
to [20], proposed a context-aware HO policy, which optimizes
the Time-to-Trigger parameter for HO by assuming the knowl-
edge about the UE trajectory. These proposed solutions are
based on the assumptions of having strong knowledge about
network dynamics, which in turn are hard to capture in real
networks. Therefore, model-free solutions which optimize the
HO process without this previous and complete information
are worth investigating.

The second approach considers then model-free solutions
for HO parameter tuning. The idea is to adaptively fine tune the
HO parameters defined in the standard to identify the strongest
target cell, e.g., Hysteresis, Time-to-Trigger, HO Margin, and
Cell individual Offset, by employing ML algorithms. In [23], a
Q-learning approach is proposed that aims to optimize the HO
parameters. In particular, the model finds the optimal values
of Hysteresis and Time-to-Trigger parameters to reduce the
radio link failure and ping pong effects. In [24], a method to
adaptively select a Hysteresis value to reduce the number of
unnecessary HO is proposed. Specifically, it uses a predefined
threshold value of Reference Signal Received Quality (RSRQ)
to adapt the Hysteresis value as per the UE measurements.
Authors in [25], proposed a fuzzy logic controller, which finds
an optimal value of the HO Margin parameter to reduce the
signaling cost caused by HO.

These approaches that aim to select the strongest cell,
based on the optimal tuning of HO parameters, have the
shortcoming of considering the strongest signal for target cell
selection before the HO. Furthermore, these schemes do not
consider a long-term vision of performance indicators in the
decision, in terms of, e.g., the perceived QoE, after the HO.
For example, in urban scenarios where the HO to the strongest
neighbour cell is successful, but shortly after the transmission
is deeply affected by the presence of an outage, these HO
approaches could fail to provide a satisfactory solution. Thus,
they are likely to severely degrade QoE performance, due to
the unpredicted cell outage [26].

As a result, the third approach to HO management, which
is also the one considered in this paper and our previous work
[16], is a data-driven approach. It aims at using experience
extracted from network data to include the vision of long-
term optimization in the HO management decision. In [27], the
authors proposed a hybrid HO controller based on deep rein-
forcement learning to minimize the HO rate while maintaining
a certain level of system throughput. In particular, the work
uses a Deep Neural Network (DNN), composed of LSTM
units, which are trained following the supervised learning
approach to predict the probability of selecting a target cell. It
uses a dataset consisting of RSRQ measurements by simulat-
ing a standard compliant HO algorithm before executing the
reinforcement learning approach. Similarly, in [28], a DNN
is trained to solve the multiclass classification problem. In
particular, it uses the Reference Signal Receive Power (RSRP)
measurements reported by the UEs to their serving gNB. Then,
using the softmax activation function for the output layer of the
trained model, it computes the probability for a neighbouring
gNB to become the next serving gNB. The smart HO approach

to select the next serving gNB presented in our paper is
different from what is proposed in [27], [28]. Specifically,
it uses the regression to predict the perceived QoE (i.e., file
download time) for each potential target gNB, and it HOs to
the one, which could provide a better QoE. Moreover, the
inputs to our model, thanks to deep ML architecture, include
not only RSRP and RSRQ, but also many other measurements
from the whole protocol stack, as it will be discussed in
Section IV.

On the other hand, to the best of our knowledge, related
work for the initial MCS selection is limited to the usage of
reinforcement learning. For example, [29] proposed a solution,
that learns the best MCS given the Signal to Noise Ratio
(SNR) at a specific channel state. Differently from [29], the
authors in [30] present a solution that uses Channel Quality
Indicator (CQI) as a metric for the state representation. In this
case, the authors argue that fine discretization of SNR with
discrete MDP leads to a higher state space, which increases
the convergence and exploration time. The authors in [31]
proposed a deep reinforcement learning approach to overcome
the issue of a large state space highlighted by [30]. They
used SNR, Signal to Interference plus Noise Ratio (SINR),
the previous action, and its immediate reward for the state
representation.

In this paper, differently from the above presented solutions
in [23]-[25] and [20]-[22], [27]-[31], we aim to demonstrate
that different RAN functions, such as HO and initial MCS
selection, can be considered as related tasks. Therefore, these
tasks can be jointly trained through shared models for each
task can benefit from other auxiliary tasks. Such an approach
offers multiple implementations and learning advantages like
reduced training effort, improved data efficiency, reduced
overfitting through shared representations, and fast learning
by leveraging auxiliary information. MTL has already been
recently considered in mobile communications literature. In
[32], multi-task Sparse Bayesian Learning (SBL) is applied for
learning time-varying sparse channels in the uplink for multi-
user massive MIMO systems. Results show that it is possible
to considerably reduce the complexity and the required time
for the convergence with a negligible sacrifice of the estimation
accuracy. In [33], MTL is used to train a shared model for
both traffic classification and prediction at the edge of the
network. Classification accuracy and prediction error benefit
from the shared model and return better performance with
respect to single-task neural network architectures. In [34]
multi-task DNN framework for Non-Orthogonal Multiple Ac-
cess (NOMA), namely DeepNOMA, has been proposed to
treat non-orthogonal transmissions as multiple distinctive but
correlated tasks. To the best of the authors’ knowledge, this
work is the first one in literature deeply discussing and proving
the concept of MTL for the efficient automation of the RAN
in future mobile networks, improving so the ability to make
connections between facts, observations, patterns, and other
tasks from which they learn.

III. SYSTEM OVERVIEW

This section first describes the implemented RAN functions
using deep learning solutions. Then, we introduce the target

1200 T T T T T T T T 20

1000

800

600

SINR (dB)

200

n
bbb on s o

=3

400 -200 0 200 400 600 800 1000 1200 1400

Fig. 1:
squares).

Simulation scenario with coverage holes (black

simulation scenario, which is depicted in Fig. 1 [16].

A. Target RAN functions and use cases

Keeping the high-level objectives in mind, we have selected
two RAN functions to be addressed using a supervised learn-
ing approach: 1) HO management, 2) initial MCS selection.

o HO management: We propose a HO management ap-

proach, which allows HO to the cell suggested by a su-
pervised learning algorithm capable of predicting a QoE
indicator through a regression procedure. The supervised
learning algorithm exploits the experience extracted by
data already available in the network (e.g., the Mini-
mization Drive Test database [35]). Based on this, it
detects a most appropriate cell to HO, as a function of
the future expected QoE perceived by the user, instead
of the RSRP or the RSRQ as the standard suggests. We
model the problem as a regression problem, where we
aim to estimate the necessary time to download a file
transmitted over a Transmission Control Protocol (TCP)
transport, while the users move around in a realistic multi-
cell scenario challenged by deep outage zones. Related
to the selection of time to download as a QoE metric, it
is motivated by the fact that it is one of the standardized
Key Quality Indicator (KQI) for the file transfer service in
mobile networks [36] [37]. In the literature, some models
are based on subjective Mean Opinion Score (MOS) to
derive the QoE; however, all of them depend on end-to-
end throughput perceived by the users [38]. On the other
hand, following a similar methodology taken in [39],
we take a more generalized approach, i.e., instead of
using a specific MOS model for file transfer service,
time to download has been used as an indicator of the
QoE perceived by the users. Finally, it is to be noted
that this solution has to be considered a component of a
more sophisticated HO algorithm that also includes other
aspects, e.g., load balancing, QoS requirement of a UE,
etc. However, we think that including these additional
components is out of the scope of this paper.

TABLE I: Simulation network parameters.

P Value
System bandwidth 5 MHz
Inter-site distance 500 m
Handover algorithm A2-RSRP
Adaptive Modulation & Coding)

Scheme Vienna [13]
SINR computation for DL CQI | Control method [13]
gNBs antenna type Parabolic
gNBs antenna Beamwidth 70 degrees
gNBs antenna max 20 dB
Number of macro gNBs 21 (7 cells)
gNBs Tx Power 46 dBm

Numerology 0
Distance between the center

points of the UEs cluster and 100 m
the cell
UEs Cluster diameter 50 m

Number of UEs in the system 210 (30 per sector)

RandomWalk2dMobilityModel

Mobility model Mode: Time, Speed: 10 m/s
Time: 40 sec, Distance: 4000 m

Path loss model Cost231

gNB Antenna height 30 m

Obstacle height 35 m

Traffic TCP Bulk File Transfer

File size 1.5 MB

Simulation time 40 sec

o Intial MCS selection: A standard approach in cellular
networks, is that when the UE first switches to the
CONNECTED Radio Resource Control (RRC) state, the
initial selected MCS follows a conservative approach
that guarantees that initial transmissions go through. As
a result, usually, the lower MCS is selected (i.e., 0).
We propose using knowledge from data reported by the
users to choose an initial MCS in an optimal and non-
conservative way to avoid wasting radio resources in the
initial data exchange.

The selection of the use cases is done without loss of

generality and is instrumental to the high level purpose of
the work.

B. Simulation Scenario

We implement a realistic simulation scenario through ns-
3 LENA LTE - EPC (Evolved Packet Core) simulator [40].
A macro cell outdoor scenario has been considered with
a network consisting of three-sectorial gNBs. A cluster of
UEs is placed in each sector at a fixed distance from the
center of a cell, in which the UEs are dropped at random
positions. Since, in this scenario, we use TCP as the transport
protocol, such deployment of the UEs guarantees to establish
a TCP connection between the remote host and the UEs. The
UEs start moving after receiving the first packet, following
a mobility pattern resulting by tuning the parameters of the
RandomWalk2dMobilityModel in ns-3. In particular, for every
simulation run, a UE picks a random starting position in the
cluster and a random angle in the range of [0° to 360°] to
move away from the source gNB following a straight line.
To increase the communication challenges in the scenario
and to generate more random coverage patterns, we introduce
obstacles in the scenario, which create multiple coverage holes,

TABLE II: List of input and output features used to create the training and testing dataset.

Input feature
Layer M
APP 1. Throughput UL 2. Avg. number of rcvd packets UL 3. Avg. number of rcvd bytes UL
4. Throughput DL 5. Avg. number of revd packets DL 6. Avg. number of rcvd bytes DL
7. Cell ID of serving cell 8. RSRP from serving cell 9. RSRQ from serving cell
RRC 10. Cell ID of neighbour 1 11. RSRP from neighbour 1 12. RSRQ from neighbour 1
31. Cell ID of neighbour 8 32. RSRP from neighbour 8 33. RSRQ from neighbour 8
34. Total number of radio link failures 35. Total number of handovers 36. First target cell ID to handover
37. Total number of txed PDCP PDUs DL 38. Total number of revd PDCP PDUs DL | 39. Total bytes txed DL
PDCP || 40 Avg. PDCP PDU delay DL 41. Min. value of the PDCP PDU delay DL | 42. Max. value of the PDCP PDU delay DL
43. Min. PDCP PDU size DL 44. Max. PDCP PDU size DL 45. Total number of txed PDCP PDUs UL
46. Total number of rcvd PDCP PDUs UL 47. Total bytes txed UL 48. Avg. PDCP PDU delay UL
49. Min. value of the PDCP PDU delay UL | 50, Max. value of the PDCP PDU delay UL| 51. Min. PDCP PDU size UL
52. Max. PDCP PDU size UL
53. Total number of txed RLC PDUs DL 54. Total number of rcvd RLC PDUs DL 55. Total number of bytes txed DL
RLC 56. Total number of bytes rcvd DL 57. Avg. RLC PDU delay DL 58. Min. value of the RLC PDU delay DL
59. Max. value of the RLC PDU delay DL 60. Min. RLC PDU size DL 61. Max. RLC PDU size DL
62. Total number of txed RLC PDUs UL 63. Total number of revd RLC PDUs UL 64. Total bytes txed RLC PDUs UL
65. Total bytes revd RLC PDUs UL 66. Avg. RLC PDU delay UL 67. Min. value of the RLC PDU delay UL
68. Max. value of the RLC PDU delay UL 69. Mini RLC PDU size UL 70. Maximum RLC PDU size UL
Mac || 21 Initial MCS 72 Avg. TB size UL 73. Avg. TB size DL
74. Avg. MCS UL | 75. Avg. MCS DL 76. Avg. RB occupied UL
77. Avg. RB occupied DL 78. DL CQI inband 79. DL CQI wideband
80. UL CQI
PHY 81. Avg. SINR DL 82. AVG. SINR UL 83. Avg. number of DL HARQ NACKs
84. Avg. number of UL HARQ NACKs
Output feature
APP H 1. File download time [sec] 21 Initial DL throughput over 100 msec when a new RRC connection is established
after the second handover

as shown in Fig. 1 [16]. Each UE performs a TCP file transfer
to a remote host in Downlink (DL) and Uplink (UL) direction.
The complete set of simulation parameters are described in
Table 1 [16]. The above simulation scenario is then used to
conduct three extensive simulation campaigns, two for the
single-task approaches, i.e., the HO management and the initial
MCS, and one for the multi-task approach jointly targeting
both the use cases. Each of them is repeated a specific number
of times, which depend on the values of the parameters, i.e.,
the number of independent simulation runs, the maximum
number of neighbours to HO, and the number of initial MCS
values evaluated. The data obtained from these campaigns for
each UE are stored in the form of a dataset, according to the
format described in the next section (Section IV). We will
explain in detail the use of this simulation scenario to build
the databases for single and multi-task learning, targeting the
(WO use cases.

IV. DATA GENERATION

This section describes the characteristics of the collected
dataset that we use as input to our proposed deep learning
solutions. We constructed this dataset by conducting extensive
simulation campaigns in the scenario presented in Subsection
1II-B. As mentioned in Section I, we model the HO man-
agement and initial MCS problems as regression problems,
where we need to estimate, respectively, the QoE expected
from performing HO to a certain target cell, and the initial
throughput obtained by the UEs over a certain window. In
general, when working with supervised learning, such as in
our case, one has to build a DataBase (DB) with enough data

to train, test, and evaluate the model. This dataset consists
of input and output features stored in rows and columns.
For this purpose, we have identified features at the multiple
layers of the simulator protocol stack. These features can
bring information to address not only the targeted RAN
function, but also other RAN use cases that could be later
considered. In particular, we have organized these features
per layer of the 3GPP protocol stack, and presented them
in Table II [16]. 3GPP already contemplates uploading a
part of these measurements, e.g., UE measurements, under
the Minimization of Drive Test (MDT) functionality [35].
All of these measurements are gathered in the simulator,
by leveraging the ns-3 "tracing system", which enables us
to write them in text files as an output of the simulation
program. Successively, we run multiple independent runs of
the simulation scenario and then post-process all the generated
text files to build a unique DB in c¢sv format. The rest of
this section describes the procedures to construct the DB for
training and testing.

A. Procedure to build the database

For the purpose of evaluating and comparing single-task ver-
sus multi-task learning performances, we build four databases,
two for the single-task approaches, i.e., targeting the two
use cases individually, and two for the multi-task approach,
considering the parallel and incremental MTL possibilities.
In the following, we explain the pseudocode procedure to
generate these databases.

1) Single-task HO management database (DB1): In a real-
world scenario, a UE served by a gNB could HO to different

potential neighbor gNBs. It depends on the HO criterion. Ex-
amples of such criteria are the signal strength before the HO,
reported using UE measurements, as traditionally proposed in
standards, or the QoE after the HO, as proposed in this paper.
This decision is usually affected by the UE’s mobility pattern.
However, it may also happen that different mobility patterns
lead to the selection of the same target neighbour, because it is
in all the cases identified as the most suitable neighbour to HO
to. A QoE oriented HO algorithm must take these aspects into
account. Therefore, the simulation campaigns to build the first
DB (DB1) consists of several deterministic HOs to learn the
QOkE, i.e., a file download time for each UE, for the possible
mobility patterns. The procedure to generate DB1 is illustrated
with the help of Pseudocode 1. Specifically, to consider both
the aspects discussed above, the number of deterministic
HOs to be performed by a UE of a gNB would depend on
the number of independent runs used to generate different
mobility patterns of this UE for each HO (first "for" loop of
Pseudocode 1), and on the maximum number of neighbours
this UE manages to see (last "for" loop of Pseudocode 1).
Then, these deterministic HOs have to be simulated for every
gNB (second "for" loop of Pseudocode 1) and every UE
attached to a gNB (third "for" loop of Pseudocode 1) in our
simulation scenario. The measurements resulting from these
HOs will assist the proposed architecture in learning the most
reasonable neighbour to HO. For this DB, we collect the data
focusing only on the HO management use case.

It is also worth mentioning that we engineered this de-
terministic HO procedure to collect a synthetic DB in a
reasonable time. However, in a real network, it would be
possible to collect real online measurements based on the
realistic mobility of the UEs during their lifetime while the
network is normally operating.

2) Single-task initial MCS database (DB2): The second DB
(DB2), targets the initial MCS (i.e., DL) use case. The logic
to construct DB2 is somewhat similar to DB1. The steps to
generate this DB are presented in Pseudocode 2. In particular,
in this case, we have to evaluate all, or a set of initial MCS
values a gNB could use for a newly connected UE. Moreover,
since the MCS depends on the SINR, which depends on the
mobility of a UE, this DB should also consider this aspect.
Therefore, a simulation for each MCS value (second "for"
loop of Pseudocode 2) should be repeated for a number of
independent runs (first "for" loop of Pseudocode 2) to record
the QoE resulting from different mobility patterns of a UE.
Similar to DBI1, this has to be simulated for all the gNBs
and their UEs in our simulation scenario (see, third and fourth
"for" loop of Pseudocode 2). For this use case, the selected
QoE indicator is the throughput achieved over a certain time
window after a successful RRC connection establishment. This
window’s duration should be smaller than the configured DL
CQI reporting interval of a UE, which is typically 200 ms,
after which a gNB adapts the MCS based on the reported
CQl.

3) Parallel MTL database (DB3): The procedure to gener-
ate the third DB (DB3) is the combination of the HO use case
(see Pseudocode to generate DB1), which is then extended to
repeat for all the potential initial MCSs for each gNB. This

TABLE III: Database parameters.

P Value

Total number of input features 84

Maximum neighbours 8

UE measurement periodicity 200 ms

MCS values considered 0 (QPSK), 14 (16 QAM), 28
(64 QAM)
HO use case : 20

Total simulation runs Initial MCS use case : 63
Multi-Task use case : 8

DB is generated using Pseudocode 3.

4) Incr | MTL datab (DB4): For the evaluation of
MTL, we also consider a fourth alternative DB (DB4). This
DB is built incrementally based on the previous availability
of DB1 and DB2. In particular, it starts from DBI1, and it
incrementally adds data from DB2. With this DB we aim
to evaluate the capability of the proposed architecture to
incrementally learn a new task, once it has already been
trained for other tasks. It would allow scalability in the RAN
management, since new RAN tasks could be incrementally
added to the architecture without additional implementation
costs. All these databases could be intuitively expressed in the
form of a dataset, as detailed in the next subsection.

B. Resulting database

A DB generated using any of the aforementioned pseu-
docode can be expressed as a matrix X.

X110 Xi2 Xi,m
< |* X2
X = |21 2,m)
: Xi,j :
Xn,1 Xn2 Xn,m

where the feature vector of size 84 (i.e., the total number of
input feature considered in this paper) is X; ; € X, 1<i<n,
and | < j<m.

The parameter m defines the duration of the time series
to be analyzed (i.e., the number of samples in the total
simulation time, sampled with UE measurement periodicity),
which corresponds to the number of time steps that the LSTM
processes to perform the prediction. This number of time steps
is the same for all the databases since we used the same
periodicity to collect the measurements. On the other hand,
the upper limit of n is different for all the 4 databases, and can
be computed by multiplying the total number of UEs with the
maximum neighbor BSs and/or the initial MCS to explore, and
the total number of simulation runs. During the simulations, it
may happen that some of the data are not available or is not
valid. For example, in the simulations used to build DB1 UEs
might experience a Radio Link Failure (RLF) when forced to
HO to a BS with poor channel conditions. When this happens,
we do not have data since the user is not connected. On the
other hand, for DB2 it might happen that the initial throughput
is not available due to the fact that the download is concluded
before the measurement could be taken (see Section VI-Al
for more details). In these cases, after removing the affected
entries from the databases for the overall simulation scenario,

BN =

AW =

moE W N =

Pseudocode 1: Pseudocode to generate DB1

initialization
numGnbs «— 21 ; numUesPerGnb « 10
numNeighboursPerUe < 8; numRuns < 20
for r < 1 to numRuns do
for e «— 1 to numGnbs do
for u « 1 to numUesPerGnb do
for n «— 1 to numNeighboursPerUe do
Start moving away from the serving gNB,
based on a random direction.
HO to neighbour cell n as per event A2.
Run for simulation time and collect stats with
a configured measurement periodicity.

Pseudocode 2: Pseudocode to generate DB2

initialization
numGnbs < 21 ; numUesPerGnb « 10
numMcsValues «— 3; numRuns «— 63
for r < 1 to numRuns do
for m « 1 to numMcsValues do
for e «— 1 to numGnbs do
for u « 1 to numUesPerGnb do
Fix the Initial MCS of all the UE to m.
Start moving away from the serving gNB,
based on a random direction.
Run for 40 seconds and collect stats every 200
msec.

Pseudocode 3: Pseudocode to generate DB3

initialization
numGnbs « 21; numUesPerGnb « 10
numMcsValues < 3; numRuns < 8
numNeighboursPerUe « 8;
for r < 1 to numRuns do
for m « 1 to numMcsValues do
for e «— 1 to numGnbs do
for u < 1 to numUesPerGnb do
for n < 1 to numNeighboursPerUe do
Fix the Initial MCS of all the UE to m.
Start moving away from the serving gNB,
based on a random direction.
HO to neighbour cell n as per event A2.
Run for 40 seconds and collect statistics
every 200 msec.

the total number of entries, i.e., the parameter n, are: 33,500
for DB1, 29,648 for DB2, 33,662 for DB3, and 31856 for DB4.
Without loss of generality, the parameters, which dimension
these databases are listed in Table III.

Each simulation, whereby one simulation we mean the
individual run considered for 1 HO to a deterministic target

L many to one
layer |

Fig. 2: Single-Task: Many to one LSTM architecture.

cell and 1 initial MCS, lasts approximately 4,5 hours on an
Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz platform. We
have parallel processing capabilities with 40 cores. The raw
ns-3 traces occupy 250 MB per simulation. ns-3 traces have
been merged in a unique file, where 1 row corresponds to 1 UE
data, and the columns are the features previously introduced.
Each simulation, once post-processed, occupies 11 MB.

V. RNN MODELS FOR SINGLE-TASK AND MULTI-TASK
LEARNING

In this section, we discuss the RNN models to solve the
proposed RAN functions through individual and joined deep
learning models, following a traditional single-task learning
or an MTL approach. A RAN efficient management involves
several RAN functions, which are usually handled by ML
independent control loops. It means that a separate model is
optimized for each task, which results in several task-specific
models. However, the single-task approach presents many
limitations in terms of self-coordination of the different tasks,
negatively interfering among them, and is challenging from the
implementation and computational perspectives. Specifically,
we need models to perform multiple tasks in parallel without
significantly compromising each tasks’ performance. When
it comes to learning multiple tasks under a single model,
MTL techniques have been proposed in the literature as the
solutions.

As mentioned in Section IV, the dataset consists of the
measurements and traces extracted with a certain periodicity
from each layer of the 3GPP protocol stack, which generates
a time series of multivariate features. We believe that, by
exploiting the temporal characteristic of this data one could
understand the impact of HO decisions or select an appropriate
initial MCS. Therefore, we propose different architectures,
employing RNN with LSTM units [41]. LSTM is a special
kind of RNN, which outperforms other ML approaches for
time series analysis [42] [43], and solves the problem of long-
term dependency issue found in vanilla RNN [44]. Specifically,
we propose to model both the target use cases as regression
problems using LSTM-based architectures where we aim to
estimate, respectively, the time to download the file, and the
initial throughput over a certain time window.

TABLE IV: Proposed approaches and RNN models.

RNN Modeks Approaches
. n Single-Task
Iti-1: 1
M 7 o LST™ HO use case using DBT I Initial MCS use case using DB2
Multi-Task
Auto Encoder + MLP neural network Parallel MTL | Incremental MTL
HO use case using DB3 | Tnitial MCS use case using DB3 | HO use case using DB4 [Initial MCS use-case using DB4

Inital throughput

a-oznaon

Input layer

MLP for MCS use case

Hidden layers

Decoder

Encoder

Tene to download

Input layer

idden ayers
MLP for HO use case

Fig. 3: Multi-Task: Joined HO management and initial MCS

architecture consist of AE + MLP neural network.

A. Single-Task Learning

Fig. 2, shows the proposed multi-layer many-to-one LSTM
architecture for single-task solutions, which is individually
designed and trained to address the two selected use cases
for study [16]. This model takes all the 84 features as input
to infer the time to download for the HO management and
the throughput for the initial MCS selection use cases. It
processes them in a lag of 16800 data (i.e., 84 features x 200
time steps) samples with multiple batches of fixed size. In our
previous work [16], we already discussed the effectiveness of
this single-task architecture, in comparison to other options,
for the HO management use case. Therefore, in this study, we
leverage the same model for the initial MCS selection use case
but after fine-tuning its hyperparameters, as discussed in the
next Section VI-A.

B. Multi-task Learning

In MTL, multiple tasks, each of which can be a general
learning task, i.e., supervised, unsupervised, semi-supervised,
or reinforcement learning tasks, are simultaneously learned
through a shared model. It is found that jointly learning

these tasks can lead to performance and/or computational
improvement compared to learning them individually. MTL
is inspired by human learning activities where people often
apply the knowledge learned from previous tasks to help
learn a new task. It helps to alleviate well-known weaknesses
of deep learning, like the large-scale data requirements and
computational demand. We believe that it also brings an added
value to the design of an intelligent RAN, where multiple
correlated tasks have to be executed concurrently. The setting
of multi-task learning is similar to transfer learning. The main
difference, though, lies in the fact that in MTL, there is no dis-
tinction among different tasks, and the objective is to improve
the performance of all the tasks, or reduce the computational
component of all the joined tasks together. On the other hand,
in transfer learning, the objective is to improve a target task
with the support of source tasks. Learning separately multiple
tasks brings difficulties that are not present in multi-task
learning. It may happen that different tasks have conflicting
needs. This may easily happen during the optimization of
the RAN, where different tasks may intervene over the same
parameters to optimize their functions independently. When
the increasing performance of a model of one task hurts the
performance of another task with different needs, we talk about
negative transfer. There are many different factors to consider
when creating a shared architecture, such as the portion of the
model’s parameters that will be shared between tasks. Many
of the proposed architectures for MTL play a balancing game
with the degree of information sharing between tasks: Too
much sharing will lead to negative transfer and can cause
the worse performance of the multi-task than the single-task
model. At the same time, too little sharing does not allow
the model to leverage information between tasks effectively.
One commonly used multi-task architecture in computer vision
follows the general vision of a global feature extractor made
of convolutional layers shared by all tasks, followed by an
individual output branch for each task. This architectural
approach is usually referred to as shared trunk. Other archi-
tectures can follow alternative methods, for example, based
on having a separate network for each task, with information
flows between parallel layers in the different task networks.
In the rest of this section, we discuss the architecture and the
different options for learning that we propose to implement the
MTL vision for efficient RAN management. In particular, we
propose an architecture that follows a shared trunk architecture
with hard parameter sharing [45].

The architecture is based on a multi-layer LSTM AE
[46], in charge of performing the shared feature extraction
in conjunction with a MultiLayer Perceptron (MLP) neural
network, as shown in Fig. 3. An AE is an unsupervised ML
algorithm, which learns a function to approximate an output

identical to the input. Since it is based on the encoder-decoder
paradigm, the input is transformed into a lower-dimensional
space, also known as CodeWord (CW), to more efficiently
model highly non-linear dependencies in the inputs. The
compression operation manages to extract more general and
useful features, which retain essential aspects of a dataset [47].
Our goal is to smartly reduce the data to be used for inferring
the time to download and the initial throughput. We use the
same AE following a hard parameter sharing architecture, but
independent MLPs to estimate the specific QoE indicator of
interest for each RAN function. We opt for this LSTM based
architecture, for the same reason already discussed for the
single-task case, which is to take the best advantage of the
temporal characteristic of the collected data.

In this line, using the model shown in Fig. 3 we propose
the following two different methods for MTL learning:

o Parallel MTL: We explore learning behaviour when no

task is given priority with respect to the others, but all
tasks are concurrently learned. The reference database for
training, in this case, is DB3.
Incremental MTL: In this case, we analyze the learning
behaviour when the learning is inherently incremental,
meaning we first learn for one task and then incorpo-
rate information from new tasks. The advantage of this
approach is that once we have trained the shared trunk
architecture, we can progressively introduce more tasks
to the design of the intelligent RAN, without further
implementation costs. The risk, on the other hand, is that
of the catastrophic forgetting [48], while we aim to in-
corporate information from new tasks without forgetting
the previously learned. The reference databases to train
in this case is DB4.

To summarize, in this work, to address two RAN use cases,
i.e., HO management and initial MCS selection, we design and
evaluate architectures employing different RNN models for
single-task and multi-task approaches, as shown in Table IV.

VI. PERFORMANCE EVALUATION
This section discusses training and system-level perfor-
mance evaluation using the proposed models for the single,
and the two multi-task approaches.

A. Training the proposed architectures

The implementation of the models is done in Python, using
Keras and Tensorflow as backend. In particular, to speed up
the training, testing, and evaluation of these models, we use
fast LSTM implementation with Nvidia CUDA Deep Neural
Network (CuDNN) library for GPUs [49]. The DBs for each
of the proposed approaches have been randomly divided into
training and validation sets, using a split ratio of 0.75 and
0.25, respectively. We train and validate the models using
the training and validation sets to minimize the reconstruction
error over 200 epochs, in case of the AE, or prediction error,
in case of the single-task LSTM and MLP. The loss function
used to train the models is the Mean Square Error (MSE),
and the RMSProp algorithm is used to optimize the learning
process. Moreover, a linear activation function is used for the

10

0.020
—— Training [84x62x42)
- Validation [84x62x42)

0.015

0.010

Loss

0.005

sk

0.000 3 e 3
0 20 40 60 80 100 120 140 160 180 200

Epoch
(@) P
0.0016

— Training (84x42x22]
0.0014 + Validation [84x42x22]
0.0012
0.0010

0.0008

Loss

0.0006
0.0004

0.0002

0.0000
0

20 40 60 80 100 120 140 160 180 200

Epoch
(b)
Fig. 4: Single-task training MSE per epoch. (a) HO manage-
ment use case LSTM 84x62x42 (b) Initial MCS use case
LSTM 84x42x22.

output layer of the LSTM (see Fig. 2) and MLP, while the
Leaky ReLU activation function is used for the hidden layers
of MLP. We discuss in the following the details of the training
and selected architecture for the single task and multi-task
architectures.

1) Single-task architectures: We have trained the LSTM
architecture shown in Fig. 2 for the single task learning
based on DBI1. To select the hyperparameters of this model,
i.e., the number of layers and the number of LSTM units
(blue LSTM blocks in Fig. 2) in each hidden layer, we have
tested nine different combinations. Then, we have selected the
hyperparameters resulting in the lowest average MSE (over
200 epochs). Fig. 4.(a) shows the MSE per epoch of the single-
task model trained to address the HO management task, using
2 and 3 layers of LSTM nodes, where the numbers separated
by “x” in the legend represent the number of hidden LSTM
units in each layer. We observe that, after 140 epochs, this
model is able to achieve and maintain very low testing loss
independently from the number of layers and cells per layer.
Based on the results in Fig. 4.(a), the architecture we stick
with is [84x62x42].

We follow a similar approach to train another model based
on the single-task architecture in Fig. 2, to tackle the initial

0.0300
— CW 100
0.0275
0.0250
0.0225

0.0200

Loss

0.0175

0.0150

0.0125

0 20 40 60 80 100 120 140 160 180 200

Epoch

Fig. 5: Multi-task training (parallel MTL): MSE between
original data and decoder for the AE trained with dB3 for
codeword length 100.

0.015

—— Training [80x40x20]
- Validation [80x40x20]

0.012

0.009

Loss

0.006

0.0031°

0.000

0 20 40 60 80 100 120 140 160 180 200

Epoch
(a) P

0.0020

= Training [80x40x20]
+ Validation [80x40x20]

0.0018
0.0016
0.0014
0.0012
0.0010

Loss

0.0008
0.0006 »
0.0004 ~
0.0002

60 80 100 120 140 160 180 200

Epoch

0 20 40

(b)

Fig. 6: Multi-task parallel MTL training MSE per epoch. (a)
HO management use case AE + MLP 80x40x20 (b) Initial
MCS use case AE + MLP 80x40x20.

MCS use case. As shown in Table III, we focus on three
MCSs (0, 14, and 28), representative of the three main
available modulations (e.g., QPSK, 16QAM, 64QAM). The
output to be estimated in the regression problem is the initial

throughput computed over a window of 100 ms when a new
RRC connection is established. The initial throughput at the
beginning of the session cannot be considered because, during
the initial window of a TCP connection, we are only able
to capture messages from its initial handshake, which results
in the same initial throughput for all UEs. As a result, we
focus on the initial throughput after the second HO. We
avoid taking the measurement after the first HO because the
first HO is deterministic for the HO management use case.
Consequently, the output of the initial throughput would be
influenced by the imposed decision. Fig. 4.(b) shows the
regression loss, measured as MSE, obtained with the selected
LSTM architecture, i.e., [84x42x22].

2) Multi-task architecture trained with parallel MTL: For
the multi-task architectures, we use a similar approach to the
single-task one. The architecture now is based on a shared
trunk approach, which first considers a multi-layer LSTM AE
in charge of performing the shared feature extraction, and then
a per task MLP is used to perform the regression. To train
and validate these models, we used DB3, obtained to target
both initial MCS and HO management use cases. It is also
worth mentioning that we consider 8 runs to build DB3, in
order to maintain a similar dimension for DB1 and DB2. In
this training process, first we select the CW length of the
AE, among five different CW lengths of 50, 100, 200, and
300. In particular, we select a CW equal to 100 to take into
the account the tradeoff between the length of the CW and
the MSE of the decoder. Fig. 5 shows the AE reconstruction
error, i.e., the MSE between original data and the one after
decoding, common to the two use cases, using CW length of
100. Then, using this selected CW as an input to the MLP
neural network, one set of hyperparameters, among 7 (based
of the lowest average MSE), is chosen for the two MLPs (see
Fig. 3). Similarly, Fig. 6.(a)-(b) show the regression loss of
the AE plus MLP structure for the chosen MLP structure of
three layers [80x40x20], to estimate the time to download and
the initial throughput, for the HO use case, and for the initial
MCS use case, respectively.

3) Multi-task architecture trained with incremental MTL:
Fig. 7, shows the loss of the AE, considering incrementally
increasing databases for training (DB4). We start from the AE
trained with DB1, which is indicated in the figure with “0
runs”Then, we progressively add runs from DB2, and observe
the behavior of the loss of the AE. We consider that the
loss is comparable in all cases. Furthermore, Fig. 8.(a)-(b)
show the loss of the regressors to estimate respectively the
time to download the file for the HO use case, and the initial
throughput for the initial MCS use case, as a function of the
different number of runs. Different behaviours can be observed
in the loss of the two regressors. It depends on whether the
architecture is first trained for one task, or another task is
incrementally learned after the first one, by adding training
data to the training DB. In the HO use case, for which the
architecture is initially individually trained, we observe that
the loss increases when 8 runs are introduced from DB2. It
is because the architecture has to suddenly adapt to new data
coming from a DB built for a different purpose. However, as
we add more runs from DB2, the loss trend is to get reduced.

0.0144
0.0135
00126
0.0117
0.0108
0.0099
0.0090

11 0.0081
O 0.0072

— 00063
0.0054
0.0045
0.0036
0.0027
0.0018
0.0009
0.0000

0runs 8 runs 16 runs 32 runs 48 runs

Fig. 7: Multi-task training (incremental MTL): Average MSE
over 200 epochs between original data and decoder as a
function of the incremental runs for the AE of codeword length
100.

00054
0.0045
0.0036
w
3 0.0027
-
0.0018
0.0009
0.0000
8 runs 16 runs 32 runs 48 runs
Runs
(a)
0.0014
0.0012
0.0010
o
0.0008
[]
-
0.0006
0.0004
0.0002
0.0000
16 runs 32 runs 48 runs
Runs
(b)

Fig. 8: Multi-task incremental MTL training average MSE over
200 epochs. (a) HO management use case AE + MLP 64x32
(b) Initial MCS use case AE + MLP 64x32.

On the other hand, the loss in the estimation of the initial
throughput for the initial MCS use case, which is the new
use case we aim to learn by adding the new data, linearly

1.0
0.8
w06
[a)
2
0.4
02 —5— SingleTask
=&- MultiTask-parallel
0.0 —e— MultiTask-incrementa
0 1 2 3 4 5 6 7
Time [sec]

Fig. 9: ECDF of the difference of download time obtained by
the benchmark A2-based HO benchmark and the ML based
architectures.

decreases with the number of runs that we add from DB2.
This behaviour of the loss is reasonable, since the architecture
gradually improves its learning performance, as we add more
information related to the MCS use case. We select the
combination of AE CW length of 100 and the MLP of [64x32],
which provided us the lowest average MSE for all the tested
run values.

B. System level performance

The performance evaluation of these models is performed in
an offline manner. In particular, to perform this evaluation, we
consider another dataset generated with two extra simulation
campaigns using a Run value which was not used to build the
training dataset (i.e., Run 21 for the HO use case and Run
65 for the initial MCS use case). It allows us to evaluate the
models in a common new data set which is different from the
data sets used to learn. In the following, we analyse the results
obtained using the trained models for the two use cases.

1) HO use case: For the HO management, we compare the
real time to download for each UE, obtained after selecting the
target cell providing the lowest predicted time to download,
to the one achieved by using a benchmark approach, i.e.,
A2-RSRP based HO algorithm. The first campaign aims at
gathering the file download time using the benchmark HO
algorithm (e.g., A2-RSRP). The second simulation campaign
is conducted in a similar way as the one to build the training
dataset, i.e., it consists of 8 deterministic HOs. Following this
approach, we construct 8 input strings for each neighbour of
a UE, which consists of 1 row and 16800 columns (i.e, 84
features x 200 time steps). These strings are used individually
as their input to obtain a predicted time to download for all
the architectures, i.e., single task and multi-task (parallel and
incremental learning). Finally, for each UE, we select the
gNB with the minimum predicted time to download for the
HO. We compare results of the ML based and the benchmark
approaches for the UEs that successfully finalize the download.
In particular, we compare the number of UEs completing the
download and the time needed to download the file.

~8— |msi 63-Benchmark
e ImSi-63ML

= |msi 183 Benchmark
e ISi-AB3-ML

Radio Link Failure
delayed with ML

RSRP (dBm)

EEE

o

ERKBEEREEBDB

ver

- I I A R 4
UE Measurement TX time

Fig. 10: Example of reduction in the duration of radio link
failure with proposed ML models.

We first compare the performance of the benchmark HO
algorithm with the single-task and the parallel MTL archi-
tectures. Fig. 9 shows the Empirical Cumulative Distribution
Function (ECDF) of the difference between the download
time observed by these UEs using the benchmark and the
proposed models. The results obtained using the benchmark
HO algorithm show that there are 63 (i.e., 30%) UEs out of
210, which are able to finalize the download. On the other
hand, 77 (i.e., ~37%) UEs are able to download the file
successfully using the single-task and parallel MTL models.
It means that the ML approach manages to increase by 18%
the number of UEs able to finalize the download during the
simulation time. Moreover, there are 62 common UEs, which
were always able to download the file, irrespective of the tested
HO solution, i.e., benchmark or ML based.

Out of these 62 UEs, the ECDF trend in Fig. 9 on the
positive x-axis shows that we can reduce the file download
time for 56 UEs compared to the benchmark case using the
single-task or the parallel MTL architectures. However, there
are 6 UEs that experience marginally higher download time
than the benchmark (see the trend on —ve x-axis). We believe
that their performance can be improved by increasing the size
of the database used to train the models and by further fine
tuning their hyper-parameters. Moreover, this evaluation shows
that the MLP, fed with the AE CW of 100 performs similarly
to the LSTM. It proves that the AE has efficiently transformed
the inputs into a lower-dimensional space without losing the
meaningful information of the dataset for the use case of the
HO.

We now evaluate the capabilities of incremental MTL
offered by the AE based architecture. In particular, we want to
prove that an AE that is trained for a specific use case (e.g.,
the HO) can be reused for another use case. As mentioned
in Section VI-A3, we first consider the AE and MLP model
trained with DB1. In this DB we removed the entries where
the initial throughput is not available for the reasons described
carlier, e.g., when the file download finishes before the second
HO. We observe that the HO performance based on this
architecture is similar to the one obtained with the single-task

TABLE V: Summary of HO use case results.

% of UEs | % of UEs
A h izing the ing the
download time to download
A2 based | 3000 out of 210) | -
ML based 37% (out of 210) | 90% (out of 62)

learning. It is reasonable since with “0 runs” the DB is still
purely built to handle the HO use case only. However, using
the other four incrementally trained models, we notice that the
performance of the HO algorithm is the same for all of them.
The reason is that, even while observing some difference, the
regression losses of these models are comparable and low
enough to provide comparable system performance. This result
is further validated when compared to the results achieved
using single-task and parallel MTL, as shown in Fig. 9. In
this figure, to simplify the representation, we only present the
results using the incremental MTL model trained with “8 runs”
from DB2.

The offline evaluation performance for the HO use case
reaches exactly the same results for all the approaches. It
allows us to conclude that incrementally introducing runs from
a different database adding new information to the system,
does not jeopardize the previously learned information, in our
case, where the features of the two databases are the same.
For our case and the nature of the database, we do not observe
any phenomenon of catastrophic forgetting, i.e., the tendency
of an artificial neural network to entirely and abruptly forget
previously learned information upon learning new information.
More research should be conducted to evaluate how different
DB1 and DB2 can be to maintain the same conclusion that
we reach here.

Furthermore, in Fig. 10, we present, as an example, 2 UEs
out of 56 UEs for which ML reduced the time spent in RLF
and, consequently, the time to download the file (there are
more UEs in the scenario experiencing the same performance
advantage when using the ML technique). We notice that these
UEs experience an RLF just before the first HO irrespective of
the scheme used, i.e., benchmark or ML. In fact, once the UE
is inside a coverage hole generated by an obstacle, all gNBs are
unable to offer any service, and there is no coverage from any
of the surrounding gNBs. As a result, an obstacle impairs the
coverage of all gNBs equally. However, in those challenging
situations, with the help of ML models, we can reduce the RLF
duration for these UEs by 400 ms (i.e., 400 Transmission Time
Intervals (TTIs)), which also improves their time to download.
The reason is that ML models, thanks to their capability of
learning from past experience, can identify a more appropriate
neighbour gNB to HO to provide more extended service
than the benchmark, and doing so reduces the RLF duration.
Finally, Table V summarizes the comparative results between
the different approaches for the HO use case.

2) Initial MCS use case: We evaluate the initial MCS per-
formance, following an offline strategy, as we did previously
for the HO use case, using an extra run, “Run 65”. First we
consider traces for the three evaluated MCSs, which provide
three different input strings for each UE to get the predicted

1.0
0.8
w 0.6
o
it
0.4
02 —5— SingleTask
—&—- MultiTask-parallel
0.0 =e— MultiTask-incremental

0.00 0.25 050 0.75 1.00 125 150 1.75
Throughput [Mbit/s]

Fig. 11: ECDF of the difference between initial throughput
obtained with benchmark MCS selection and the ML based
architectures.

initial throughput for the selected MCS values. Then, for
each UE, we choose the MCS, which results in higher initial
throughput. At this point, we further filter out some UEs for
those cases when the proposed ML models select MCS 0.
In particular, the throughput achieved by the UEs using the
benchmark scheme, which always selects MCS 0, is the same
that we get when the ML based solutions also consider the
same MCS. Therefore, we consider only those UEs for the
performance evaluation for which the ML based models select
MCS values different 0, i.e., 14 and 28.

Similar to what was observed for the HO management, it
is also observed for the initial MCS use case. In particular,
the gain in the performance is the same when using any
of the proposed ML based models. In total, we obtain 86
UEs out of 210 for which the initial throughput takes a
valid value, and the proposed approaches select a different
MCS from 0. Out of these 86 UEs, 44 (i.e., 51.16%) select
MCS 28 and 42 (i.e., 48.83%) select MCS 14. From the
analysis of the results in Fig. 11, we conclude that all the
86 UEs that obtained a valid initial throughput get better
initial throughput than the benchmark, when considering the
ML based approaches. The average initial throughout per
UE considering the benchmark with MCS 0 is 0,051 Mbit/s,
while the average initial throughput attained using the ML
based models is 0,1944 Mbps. Thus, on average, we obtain
a 73.35% increment of initial throughput per UE. Moreover,
for the incremental MTL approach we observe no difference
in the performance of the selection of the appropriate initial
MCS, when using 8, 16, 32, or 48 runs from DB2, to train
the AE and MLP. In this case, we also believe that the
average MSE using the traces only from 8 runs is already
low enough (see Fig. 8.(b)) to provide the performance similar
to the one using the single-task or parallel MTL approaches.
Therefore, in Fig. 11 we plot only the results obtained using
the incrementally trained model using 8 runs.

It is also worth mentioning that in the case of incremental
MTL, we are able to obtain already acceptable results for
both use cases by using the joined DB, which has a similar

TABLE VI: Summary of initial MCS use case results.

N | %of UEs | % of UEs | 1zt througl
- MCS 28 | MCs 14 | morease per UE
ML based | 51.16% | 48.83% | 73.15%

dimension as of the individual DB1 or DB2. On the other
hand, to target the use cases with single-task approaches, we
should train two independent architectures with a database
of a dimension twice as big as the one we need with the
incremental MTL use case. The advantage that we get with
the incremental MTL, with respect to the parallel MTL or
the separated single-task approaches, is at the implementation
level since, at any moment, we are able to add a new
function to our learning architecture by incrementally training
the model. It guarantees scalability concerning all the RAN
functions we wish to add to the design. Finally, Table VI
summarizes the gains obtained using ML approaches over the
benchmark scheme for the initial MCS use case.

VII. CONCLUSIONS

In this paper, we have presented an MTL approach based
on deep architectures to provide models that optimize the
operational efficiency of managing multiple RAN functions
executed concurrently. To prove our MTL concept in the
efficient RAN management domain, we selected two RAN
use cases, 1) the HO management and 2) the selection of
an initial MCS when UEs establish a new connection with
a gNB. We trained our proposed models following single-
task and MTL paradigms. In particular, to exploit the network
data’s temporal characteristics, we proposed an RNN based on
LSTM for single-task learning, and an LSTM AE along with
an MLP for the MTL approach.

As for the single task approaches, the results proved that
the proposed ML models outperform the A2 event-based
benchmark HO algorithm in terms of the number of successful
downloads and time to download statistics. Besides this, our
proposed models also provided the gain in terms of the
increased initial throughput by selecting a better MCS than
a benchmark scheme, which always selects MCS 0 upon
establishing a new RRC connection. Furthermore, the results
show that the models based on AE, used for the MTL parallel
and incremental learning, perform similarly to the single-task
model using only the LSTM. It is proven that the AE could
efficiently compress the inputs into a lower-dimensional space
without losing the dataset’s meaningful information. The MTL
solution, which allows sharing training models among RAN
tasks, provides then a series of advantages at implementation,
coordination, and training levels. Additionally, the model
trained by employing the incremental learning approach did
not suffer from the phenomenon of catastrophic forgetting.

REFERENCES

[1T “GSMA,” https://www.gsma.com/, accessed: 2021-08-01.

[2] J. Wang, H. Roy, and C. Kelly, “OpenRAN: The next generation of radio
access rks,,” https://tel infraproj; fopenran/, Nov 2019.

[3] 3GPP TS 32.500, “Self-Organising Networks (SON): Concepts and
requirements,” Version 0.5.1, Release 8.

[41

[5

[6

7

8

9

[10]

[12]

[13]
[14]

[15]

[16]

(171

[18]

[191

[20]

(211

[22]

[23]

24

125

[26]

Huawei, “White Pdper Next Generali(m SON fur SG," hllps:
//wwwhuawei /s stry-insigh bil

. for-Sg.
1. Moysen dnd L. Gluppum. “From 4G to 5G: Self-organized network

management meets machine learning,” Computer Communications, vol.
129, pp. 248-268, Sept 2018.
N. Baldo, L. Giupponi, and J. “Big Data Emp Self Or-

1271

28]

IEEE/IFIP Network Op and M S
Istanbul, Turkey, Apr 2016, pp. 794-798.

Z. Wang, L. Li, Y. Xu, H. Tian, and S. Cui, “Handover Optimization
via Asynchronous Multi-User Deep Reinforcement Learning,” in Proc.
IEEE I ional C on C s (ICC), Kansas City,
MO, USA, Jul 2018, pp. 1-6.

C. Lee, H. Cho, S. Song, and J. Chung, “Prediction-Based Conditional

(NOMS),

ganized Networks,” in Proc. IEEE 20th E Wireless Confe
Barcelona, Spain, May 2014, pp. 1-8.

O-RAN Alliance, “O-RAN Use Cases and Deployment Scenarios,”
https://www.o-ran.org/resources.

C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Communications Surveys Tutori-
als, vol. 21, no. 3, pp. 2224-2287, Mar 2019.

R. Caruana, “Multitask Learning: A Knowledge-Based Source of In-
ductive Bias,” in Proc. Tenth I ional Ce on Mach
Learning, Amherst MA, USA, Jul 1993, pp. 41-48.

Y. Bengio, A. Courville, and P. Vincent, “Representation Learning: A
Review and New Persp " IEEE Tr ions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, pp. 1464-1468, Jun 2013.

129]

301

131]

Hand for 5G mm-Wave Networks: A Deep-Learning Approach,”
IEEE Vehicular Technology Magazine, vol. 15, no. 1, pp. 54-62, 2020.
J. P. Leite, P. H. P. de Carvalho, and R. D. Vieira, “A flexible framework
based on reinforcement learning for adaptive modulation and coding in
OFDM wireless systems,” in Proc. IEEE Wireless Communications and
Networking Confereme (WCNC), Paris, France, Jun 2012, pp. 809-814.
R. Bruno, A. N hia, and A. F 1la, “Robust Adaptive Modu-
lation and Coding (AMC) Selection in LTE Syslems Uslng Remforce-
ment Learning,” in Proc. IEEE 80th Vehicul y Co
(VTC2014-Fall), Vancouver, BC, Canada, Dec 2014, pp. I—6
L Zhang, J. Tan, Y. Llang. G Feng, and D. Niyato, “Deep Rein-
Learning-Bas Jlation and Coding Scheme Selection
in Cogmuve Heterogeneous Networks,” IEEE Transactions on Wireless
C .

Y. Ju, J. Guo, and S. Lui, “A Deep Learning Melhod Combined

[32]

vol. 18, no. 6, pp. 3281-3294, Apr 2019.
A. i, “Sparse Multi-Task Learning of Time-

Sparse Autoencoder with SVM,” in Proc. I I Conf e
on Cyber-Enabled Distributed C ing and Knowledge Discovery,
Xi’an, China, Sept 2015, pp. 257-260.

M. Ghifari, W. Kleijn, M. Zhang, and D. Balduzzi, “Domain General-
ization for Object Recognition with Multi-task Autoencoders,” in Proc.
International Conference on Computer Vision, Santiago, Chile, 2015,
pp- 2551-2559.

ns 3. 2020, “Network Simulator,” http://code.nsnam.org/ns-3-dev.

M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,
G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying
forgetting in classification tasks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. early access, pp. 1-1, Feb 2021.

M. Kanakis, D. Bruggemann, S. Saha, S. Georgoulls, A. Obukhov,
and L. Van Gool, izing C for I
Multi-Task Learning Without Task Interference,” in Proc. European
Conference on Computer Vision (ECCV), Glasgow, UK, 2020, pp. 689—
707.

Z. Ali, M. Miozzo, L. Giupponi, P. Dini, S. Denic, and S. Vassaki, “Re-
current Neural Networks for Handover Management in Next-Generation
Self-Organized Networks,” in Proc. IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications, London, UK, Sept
2020, pp. 1-6.

M. Miozzo, Z. Ali, L. Giupponi, and P. Dini, “Distributed and Multi-
Task Learning at the Edge for Energy Efficient Radio Access Networks,”
IEEE Access, vol. 9, pp. 12491-12505, 2021.

J. Wang, C. Jiang, H. Zhang, Y. Ren, K. C. Chen, and L. Hanzo, “Thirty
Years of Machine Learning: The Road to Pareto-Optimal Wireless
Networks,” IEEE Communications Surveys Tutorials, vol. 22, no. 3, pp.
1472-1514, 2020.

P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A Survey
of Machine Learning Techniques Applied to Self-Organizing Cellular
Networks,” IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp.
2392-2431, 2017.

1. Pappalardo, A. Zanella, and M. Zorzi, “Upper Bound Analysis of
the Handover Performance in HetNets,” /EEE Communications Letters,
2017.

P. Tseng, K. Feng, and C. Huang,
tion Schemes for Wireless Networks,”
vol. 18, no. 5, pp. 797-800, 2014.

F. Guidolin, I. Pappalardo, A. Zanella, and M. Zorzi, “Context-Aware
Handover Policies in HetNets,” IEEE Transactions on Wireless Commu-
nications, vol. 15, no. 3, pp. 1895-1906, 2016.

S. S. Mwanje and A. Mitschele-Thiel, “Distributed cooperative Q-
learning for mobility-s ive handover imization in LTE SON,”
in Proc. IEEE Symp on Comp and C ications (1SCC),
Funchal, Portugal, Jun 2014, pp. 1-6.

Z. Becvar and P. Mach, “Adaptive Hysteresis Margin for Handover in
Femtocell Networks,” in Proc. 6th International Conference on Wireless
and Mobile Communications, Valencia, Spain, Nov 2010, pp. 256-261.
J. Wu, J. Liu, Z. Huang, and S Zheng, “Dynamic fuzzy Q-learning
for hand i in 5G ti-tier networks,” in
Proc. International Conference on Wireless Communications Signal
Processing (WCSP), Nanjing, China, Dec 2015, pp. 1-5.

Z. Ali, N. Baldo, J. Mangues, and L. Giupponi, “Machine Learning
Based Handover Management for Improved QoE in LTE” in Proc.

“POMDP-Based Cell Selec-
IEEE Communications Letters,

[33]

[34]

1351
[36]
1371

[38]

1391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

Varying M.nsswe MIMO Channels With Dynamic Filtering,” /EEE

Wireless Communications Letters, vol. 9, no. 6, pp. 871-874, Feb 2020.

A. Rago, G. Piro, G. Boggia, and P. Dini, “Multi-Task Learning at the

Mobile Edge: An Effective Way to Combine Traffic Classification and
diction,” IEEE Transactions on icular Technology, vol. 69, no. 9,

pp 10362-10374, Jun 2020.

N. Ye, X. Li, H. Yu, L. Zhao, W. Liu, and X. Hou, “DeepNOMA: A

Umhed Framework for NOMA Usmg Deep Multi-Task Learning,” IEEE

i on Wireless C ions, vol. 19, no. 4, pp. 2208-

2225. Jan 2020.

3GPP TS 36.331, “Radio 11 for Minimization of

Drive Tests (MDT); Overall description,” version 10.4.0, Release 10.

3GPP TR 32.862, “Study on Key Quality Indicators (KQIs) for service

experience,” Version 14.0.0, Release 14.

ITU-T Recommendation, “Estimating end-to-end performance in IP

networks for data applications,” Series G, G.1030.

M. Khan and U. Toseef, “User utility funclmn as quality of expenem:e

(QoE),” in Proc. of the Tenth I [Ce on

The Netherlands, Jan 2011, pp. 99-104.

J. Mendoza, 1. de-la Bandera, D. Palacios, and R. Barco, “Qoe optimiza-

tion in a live cellular network through rlc parameter tuning,” Sensors,

vol. 21, no. 16, 2021.

N. Baldo, M. Miozzo, M. Requena-Esteso, and J. Nin-Guerrero, “An

open source product- onemed LTI: network simulator based on ns-3,”

Proc. 14th ACM I l Ce e on Modeling, Analysis zmd

Simulation of Wireless and Mobile Syslenu (MSWiM), Miami, Florida,

USA, Oct 2011, pp. 293-298.

S. Hoch and J. A. ber, “Long short-term memory,” Neural

Computation, vol. 9, no. 8, pp. 1735-1780, Nov 1997.

J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang, and D. Yang,

“S deling and prediction in cellular A big

data enabled deep learning approach,” in Proc. IEEE INFOCOM - IEEE

Conference on Computer Communications, May 2017, pp. 1-9.

H. D. Trinh, L. Giupponi, and P. Dini, “Mobile traffic prediction

from raw data using LSTM networks,” in Proc. IEEE 29th Annual

International Symposium on Personal, Indoor, and Mobile Radio Com-

munication (PIMRC), Bologna, Italy, Sept 2018, pp. 1827-1832.

F. A. Gers, J. A. Schmidhuber, and F. A. Cummins, “Learning to forget:

Continual prediction with 1stm,” Neural Comput., vol. 12, no. 10, pp.

2451-2471, Oct 2000.

M. Crawshaw, “Multi-task learning with deep neural networks: A

survey,” ArXiv, vol. abs/2009.09796, Sept 2020.

A. M. Dai and Q. V. Le, “Semi-supervised sequence learning,” in Proc.

Advances in Neural Information Processing Systems 28, 2015, pp. 3079-

3087.

J. Masci, U. Meier, D. Ciregan, and J. Schmidhuber, “Stacked convo-

lutional auto-encoders for hierarchical feature extraction,” in Proc. 21st

International Conference on Artificial Neural Networks, Espoo, Finland,

Jun 2011, pp. 52-59.

R. M. French, “C in ks,”

Trends in Cognitive Smemer. vol. 3, no. 4, pp. 128-135, Apr 1999.

F. Chollet et al., “Keras,” https://keras.io, 2015.

Zoraze Ali received his MSc degree in Radio Com-
munication from Blekinge Institute of Technology,
Karlskrona Sweden. He joined Centre Tecnologic de
Telecomunicacions de Catalunya (CTTC) in Septem-
ber 2014 as a research assistant to pursue his PhD

] degree on Self Organizing Networks (SON), Big
Data and Machine Learning with particular focus

- v on LTE/LTE-A and 5G networks at Telematics En-

} < gineering Department of Universitat Politeécnica de
> 7‘ Catalunya (UPC), Barcelona. His research interests

include wireless communications and machine learn-

Lorenza Giupponi received her Ph.D. degree from
UPC, Barcelona, Spain, in 2007. She joined the
Radio Communications Group of UPC in 2003 with
a grant of the Spanish Ministry of Education. During
2006 and 2007 she was assistant professor in UPC.
In September 2007 she joined the CTTC where she
is currently a Research Director i in the Mobile Net-
works D of the C ion Networks
Division. Smce 2007 she is also a member of the
Executive Committee of CTTC, where she acts as
the Director of Institutional Relations. She is the co-
recipient of the IEEE CCNC 2010, IEEE 3rd Int. workshop on Indoor and
Outdoor Femto Cells 2011, and IEEE WCNC 2018 best paper awards. Since
2015 she is a member of the Executive Committee of ns-3 consortium.

Marco Miozzo received his M.Sc. degree in
Telecommunication Engineering from the University
of Ferrara (Italy) in 2005 and the Ph.D. from the
Technical University of Catalonia (UPC) in 2018.
After graduated, he worked as a Research Engineer
in wireless networking for the Consorzio Ferrara
Ricerche (CFR), where he collaborated with the
Department of Information Engineering (DEI) of the
University of Padova, both in Italy. In June 2008
he joined the Centre Tecnologic de Telecomunica-
cions de Catalunya (CTTC). In CTTC he has been
involved in the development of an LTE module for the network simulator 3
(ns-3) in the framework of the LENA project. Currently he is collaborating
with the EU founded H2020 SCAVENGE (MSCA ETN). He participated in
several R&D pro_]ecl.s, dmong them 5G-Crosshaul, Flex5Gware and SANSA,
working on ble mobile ks with energy harvesting
capabilities through learning techniques. His main research interests are:
sustainable mobile networks, green wireless networking, energy harvesting,
multi-agent systems, machine learning, green Al, energy ethical consumerism,
transparent and explainable AL

Paolo Dini received MSc and PhD from Universita
di Roma La Sapienza, in 2001 and 2005, respec-
tively. He served as a Post-Doc Researcher at the
Research Centre on Software Technology (RCOST)
- Universita del Sannio, and contracted Professor at
Universita di Roma La Sapienza in 20()5 He is now
with the Centre Tecnologic de T

de Catalunya (CTTC) as a Senior Researcher. He
received two awards from the Cisco Silicon Valley
Foundation for his research on heterogeneous mobile
networks in 2008 and 2011, respectively. He has
been involved in over 25 research projects related to network management,
optimization and energy iency. He is currently the Coordinator of the
EU H2020 MSCA SCAVENGE European Training Network on sustainable
mobile networks with energy harvesting (.dpdhl'llle\ His rase.m.h interests
include sustainable networking and p distributed opti ion and
optimal control, machine learning and data andlyucs

