Pankaj S. Patel et al

ISSN 2349-7750

CODEN [USA]: IAJPBB

ISSN: 2349-7750

INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES

SJIF Impact Factor: 7.187

Available online at: <u>http://www.iajps.com</u>

Research Article

"SYNTHESIS AND BIOLOGICAL EVALUATION OF 3-{4-[5-(SUBSTITUTED PHENYL)ISOXAZOL-3-YL]PHENYL}-2-(4-HYDROXYPHENYL)-1,3-THIAZOLIDIN-4-ONE"

Nital N. Patel¹, Pankaj S. Patel^{*2}

¹Department of Chemistry, Sheth L.H. Science College, Mansa, Research Scholar of Gujarat University, Ahmedabad. Email: <u>nitalpatel42@gmail.com</u>.

²Department of Chemistry, Sheth L.H. Science College, Mansa, Email: pspatel_mansa@yahoo.co.in

Abstract:

Heterocyclic Compounds have so far been synthesized mainly due to the wide range of biological activities. Isoxazoles plays an important role in biological field. From these reviews we synthesized a new series of 3-{4-[5-(substitutedphenyl]) isoxazol-3-yl]phenyl}-2-(4-hydroxyphenyl)-1,3-thiazolidin-4-one derived from 3-{4-[3-(substitutedphenyl])prop-2-enoyl]phenyl}-2-(4-hydroxyphenyl)-1,3-thiazolidin-4-one and hydroxylamine hydrochloride. The title compounds were characterized by element analysis, IR, NMR and spectral data. All the compounds were tested for their antibacterial and antifungal activities by Cup Borer method. Keywords: Isoxazoles, IR, NMR, Cup Borer method.

Corresponding author:

Dr. Pankaj S. Patel *Head, Department of Chemistry, Sheth L. H. Science College, Mansa, Gujarat, India.*

Please cite this article in press Pankaj S. Patel et al, "Synthesis And Biological Evaluation Of 3-{4-[5-(Substituted Phenyl)Isoxazol-3-YI]Phenyl}-2-(4-Hydroxyphenyl)-1,3-Thiazolidin-4-One", Indo Am. J. P. Sci, 2022; 09(2).

Pankaj S. Patel et al

INTRODUCTION:

Heterocyclic compounds have attracted considerable attention as they act as a bridge between chemical and life sciences. A significant amount of contemporary investigation is currently pursued on these compounds worldwide. The chemistry of isoxazoles has been an interesting field of study for decades because of their prominent potential as analgesic[1], anti-inflammatory[2], anticancer[3], antimicrobial[4], antiviral[5], anticonvulsant[6], antidepressant[7] and immunosuppressant[8]. The literature survey revealed that the substitution of various groups on the isoxazole ring imparts different activity. this review summarizes current propensity in the isoxazole synthetic chemistry and divulges the utility of this potent nucleus as a rich source of new compounds having promising biological activities.

EXPERIMENTAL:

All reagents were of analytical reagent grade and were used without further purification, All the product were synthesized and characterized by their spectral analysis. Melting points were taken in open capillary tube. The IR spectra were recorded on Bruker Model; Alpha, Laser Class1, made in Germany and Brooker instrument used for NMR Spectroscopy was 500 MHz and tetramethyl silane used as internal standard. Solvent used were DMSO. Purity of the compounds was checked by TLC on silica-G plates. Anti-microbial activities were tested by Cup-Borer method.

Reaction Scheme

3-{4-[3-(substitutedphenyl)prop-2-enoyl]phenyl}-2-(4-hydroxyphenyl)-1,3-thiazolidin-4-one

3-{4-[5-(substititedphenyll)isoxazol-3-yl]phenyl}-2-(4-hydroxyphenyl)-1,3-thiazolidin-4-one

Preparation of 3-{4-[3-(substitutedphenyl)prop-2enoyl]phenyl}-2-(4-hydroxyphenyl)-1,3-thiazolidin -4-one.(1a-1j)

То the solution of 3-(4-acetylphenyl)-2-(4hydroxyphenyl)-1,3-thiazolidin-4-one (0.01M) in absolute ethanol (50 ml), substituted aldehyde (0.01M) and 2% NaOH (10 ml) were added and refluxed for 10 hours. After refluxing the reaction mixture was concentrated, cooled, filtered, and neutralized with dil. HCl. The solid residue thus obtained was crystallized by absolute ethanol. IR(1a), cm⁻¹: 3276 (-OH), 3056 (=C-H), 2925 (-C-H stretching), 1725 (>C=O stretching), 1590 (>C=C< Aromatic),1440(-CH₃- bend), 1305 (C-N), 800 (C-Cl), 725 (C-S-C). ¹H-NMR (1b-DMSO, δ, ppm): 3.358 (2H, s, -CH₂-), 5.843 (1H, s, >CH-), 6.643-7.639 (12H, m, Ar-H), 7.955 (2H, d, -CH=CH-), 9.016 (1H, s,-OH).

Preparation of 3-{4-[5-(substituted phenyl) isoxazol-3-yl] phenyl}-2-(4-hydroxyphenyl)-1,3thiazolidin-4-one (2a-2j):

A mixture of 3-{4-[3-(substitutedphenyl) prop-2enoyl]phenyl}-2-(4-hydroxyphenyl)-1,3-thiazolidin-4-one (0.01M) in 25ml dioxane, hydroxylamine hydrochloride (0.01M) and 40% potassium hydroxide (KOH) was refluxed for 10 hours. Then the reaction mixture was cooled, poured into crushed ice (100g) and neutralized with HCl. The product separated out was filtered, washed with water, dried and recrystallized from alcohol. IR(2j), cm⁻¹: 3223 (-OH), 3098 (=C-H), 2953 (-C-H stretching), 1694 (>C=O stretching), 1605 (>C=N- stretching), 1550 (N=O), 1515 (>C=C< Aromatic), 1460 (-CH₂- bend), 1302 (C-N),1250 (-C-O), 650 (C-S-C) ¹H-NMR (2f-**DMSO**, δ, ppm): 3.355 (2H, s, -CH₂-), 3.768 (3H, s, -OCH₃), 5.983 (1H, s, >CH-), 6.600 (1H, s, >-C-CH=), 6.534-7.705 (12H, m, Ar-H), 9.003 (2H, s, -OH)

					Elemental Analysis		
Comp'd	R	M.F.	Yield	M.P.	% C	% N	% H
r			%	°C	Found	Found	Found
					(Calcd)	(Calcd)	(Calcd)
29	2 Cl	CarHarClNaOaS	85	179	64.19	6.23	3.80
2a	-2-01	C24111/CIIN2O35			(64.21)	(6.24)	(3.82)
2h	-4-Cl	$C_{24}H_{17}ClN_2O_3S$	81	170	64.20	6.23	3.81
20					(64.21)	(6.24)	(3.82)
20	34 (OCH ₂)	C. H. N.O.S	87	179	65.80	5.88	4.66
20	-3,4- (OCI13)2	$C_{26}I_{22}I_{2}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5$			(65.81)	(5.90)	(4.67)
24	п	C. H. N.O.S	67	160	69.52	6.74	4.34
20	-11	$C_{2411_{181}}$			(69.55)	(6.76)	(4.76)
20	2 04	C. H. N.O.S	73	189	66.64	6.46	4.65
20	-2-011	$C_{2411201} V_{2} O_{4} O_{4$			(66.65)	(6.48)	(4.66)
Of	-4-OH-	C. H. N.O.S	70	190	65.18	6.06	4.37
21	3-OCH ₃	$C_{2511201} N_{2} O_{55}$	70		(65.20)	(6.08)	(4.38)
29	4 04	C. H. N.O.S	65	184	66.92	6.49	4.19
2g	-4-011	$C_{24}I_{18}I_{2}O_{4}O_{4}O_{5}$			(66.96)	(6.51)	(4.21)
26	A N(CH)	СЧМОЯ	83	172	68.23	9.13	5.04
211	-4-IN(CH3)2	$C_{26}\Pi_{23}\Pi_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O_{3}O$			(68.25)	(9.18)	(5.07)
2:	4 OCH	CarHanNaO	85	168	67.52	4.52	6.28
21	-4-OCH3	$C_{2511201}N_{2}O_{4}S$			(67.55)	(4.54)	(6.30)
2:	2 NO	C. H. N.O.S	73	176	62.72	9.12	3.72
∠J	-3-INO ₂	$C_{2411_{17}1N_{3}}O_{5}S$			(62.74)	(9.15)	(3.73)

Fable: 1 -	Physical	constant	of synthes	sized com	pound ((2a-2i)
Labice L	1 nysicai	constant	oj synthes	allea com	pound (-u -j)

RESULTS AND DISCUSSION:

Antibacterial activity: Against Escherichia Coli:

From screening results, substituted derivatives 2g and 2j possesses very good activity against Penicillin and Kanamycin. The compounds 2a and 2d was shown minimum antibacterial activity. Rest of all compounds were found to show good to moderate activity against Saccharomyces as compared to the standard drug Kanamycin.

Against Staphylococcus aureus:

Biological evaluation of present investigation revealed the maximum antibacterial activity was shown by the compound 2c and 2h. The minimum antibacterial activity was shown by the compound 2d. The remaining compounds were found to show good to moderate activity against Staphylococcus aureus as compared to the standard drug Kanamycin.

Antifungal activity:

Against Candida albicans: Biological evaluation of present investigation

revealed the maximum antifungal activity was shown by the compound 2f. The minimum antifungal activity was shown by the compound 2b and 2i. Rest of all compounds were found to show good to moderate activity against Saccharomyces as compared to the standard drug Amphotericin.

	Comp. No.	R	Zone of Inhibitions in mm				
Sr. No.			Antibacter	Antifungal activity			
			E. coli	S. aureus	C. albicans		
1	2a	-2-Cl	13	15	17		
2	2b	-4-Cl	15	14	16		
3	2c	-3,4- (OCH ₃) ₂	18	17	14		
4	2d	-H	14	13	13		
5	2e	-2-OH	16	15	16		
6	2f	-4-OH- 3-OCH ₃	15	14	17		
7	2g	-4-OH	17	16	15		
8	2h	-4-N(CH ₃) ₂	14	17	14		
9	2i	-4-OCH ₃	16	16	13		
10	2j	-3-NO ₂	17	14	15		
11	SD - 1	Penicillin	15	17	-		
12	SD - 2	Kanamycin	17	19	-		
13	SD - 3	Baycor 25 w.p.	-	-	18		
14	SD - 4	Amphotericin	-	-	20		
15	Solvent	DMF	11	12	12		

Acknowledgement:

The authors are thankful to the Principal Dr. Janakkumar R. Shukla, Department Head Dr. Pankaj S. Patel and Management of Sheth L. H. Science College, Mansa for providing facilities for carrying out research work.

REFERENCES:

- 1. Karthikeyan K, Veenus Seelan T, Lalitha KG, Perumal PT. Synthesis and antinociceptive activity of pyrazolyl isoxazolines and pyrazolyl isoxazoles. *Bioorg Med Chem Lett*, 2009; 19: 3370–3373.
- 2. Rajanarendar E, Rama Krishna S, Nagaraju D, Govardhan Reddy K, Kishore B, Reddy YN. Environmentally benign synthesis, molecular

properties prediction and anti-inflammatory activity of novel isoxazolo[5,4-d]isoxazol-3-ylaryl-methanones via vinylogous Henry nitroaldol adducts as synthons. *Bioorg Med Chem Lett*, 2015; 25:1630–1634

- Kumbhare RM, Kosurkar UB, Janaki Ramaiah M, Dadmal TL, Pushpavalli SNCVL, Pal-Bhadra M. Synthesis and biological evaluation of novel triazoles and isoxazoles linked 2-phenyl benzothiazole as potential anticancer agents. *Bioorg Med Chem Lett*, 2012; 22: 5424–5427
- 4. Basha SS, Divya K, Padmaja A, Padmavathi V. Synthesis and antimicrobial activity of thiazolyl pyrazoles and isoxazoles. *Res Chem Intermed*, 2015; 41:10067–10083

- Lee YS, Park SM, Kim BH. Synthesis of 5isoxazol-5-yl-2'-deoxyuridines exhibiting antiviral activity against HSV and several RNA viruses. *Bioorg Med Chem Lett*, 2009; 19: 1126– 1128
- Frølund B, Jensen LS, Storustovu SI, Stensbøl TB, Ebert B, Kehler J, Krogsgaard-Larsen P, Liljefors T. 4-Aryl-5-(4-piperidyl)- 3-isoxazolol GABA A antagonists: synthesis, pharmacology, and structure-activity relationships. J Med Chem, 2007; 50: 1988–1992
- 7. Yu L-F, Tückmantel W, Eaton JB, Caldarone B, Fedolak A, Hanania T, Brunner D, Lukas RJ, Kozikowski AP. Identification of novel $\alpha 4\beta^2$ nicotinic acetylcholine receptor (nAChR) agonists based on an isoxazole ether scaffold that demonstrate antidepressant-like activity. *J Med Chem*, 2012; 55: 812–823
- Ye N, Zhu Y, Chen H, Liu Z, Mei FC, Wild C, Chen H, Cheng X, Zhou J. Structure-activity relationship studies of substituted 2-(isoxazol-3yl)-2-oxo-N'-phenyl-acetohydrazonoyl cyanide analogues: identification of potent exchange proteins directly activated by cAMP (EPAC) antagonists. *J Med Chem*, 2015; 58: 6033–6047