Establishing Gen3 to enable better human genome data sharing in Australia

Welcome! The webinar will commence at 1pm AEDT /12pm AEST/ 11:30am ACDT/ 10am AWST

Actively supporting Australian life sciences research through bioinformatics and bioscience data infrastructure

biocommons.org.au 🕒 AustralianBioCommons 🈏 @AusBiocommons

Acknowledgement of Country

We acknowledge the Traditional Owners and their custodianship of the lands on which we meet today.

We pay our respects to their Ancestors and their descendants, who continue cultural and spiritual connections to Country.

We recognise their valuable contributions to Australian and global society.

Housekeeping

Session is recorded

Autogenerated captions available

Questions via Q&A function

Establishing Gen3 to enable better human genome data sharing in Australia

SPEAKERS

Associate Professor Bernie Pope, Australian BioCommons / Melbourne Bioinformatics Professor Oliver Hofmann, University of Melbourne Center for Cancer Research Mr Kamile Taouk, Children's Cancer Institute Dr Marie Wong-Erasmus, Children's Cancer Institute

Predicted global growth of healthcare funded sequenced human genomes

Global storage requirements in 2025 to be exabytes to low zettabytes.

Birney, E., Vamathevan, J., and Goodhand, P. (2017). Genomics in healthcare: GA4GH looks to 2022. bioRxiv

Siloed data

- Human genomics data has often been siloed.
- This limits reuse and reanalysis.
- Public benefit is increased when data is shared.
- Sharing is frequently necessary in human health, especially in rare disease and cancer.
- Large cohorts are needed for statistical power.
- National and international data sharing is highly beneficial but requires considerable collaboration and coordination.

Byrd, J. B., Greene, A. C., Prasad, D. V., Jiang, X. & Greene, C. S. Responsible, practical genomic data sharing that accelerates research. Nat. Rev. Genet. 21, 615–629 (2020).

Towards global standards for data sharing GA4GH Stand

- The Global Alliance for Genomics and Health (GA4GH) is a policy-framing and technical standards-setting organization, seeking to enable responsible genomic data sharing within a human rights framework.
- Australian Genomics is a driver project of GA4GH.
- A key outcome is the specification for standard APIs for data sharing technology.
- Recognition that the data life cycle in human genomics is complex and data storage and analysis are parts of a bigger ecosystem.

GA4GH Standards in the Data Life Cycle

Rehm, H. L. et al. GA4GH: International policies and standards for data sharing across genomic research and healthcare. Cell Genomics 1, (2021).

Infrastructure ecosystem

Australian **BioCommons** Example solutions:

- IAM: CILogon, GA4GH passports
- Data commons: Gen3
- DAC approval: REMS
- Analytics: national infrastructure, institutional infrastructure, commercial cloud
- Integrated: Broad Terra + DUOS

Marion Shadbolt

Establishing Gen3 to enable better Human Genome Data sharing in Australia

- Gen3 was identified as a leading candidate for building a human genomics data commons.
- In Q3 2021 we established a pilot project to assess the use of Gen3 as the foundation for a human genomics data commons.
- That project is now complete, and today we provide an overview of the motivations, process, and findings.

Zero Childhood Cancer - Australia's national paediatric cancer precision medicine program ZERO2: by 2023

> 650 high-risk patients recruited

Scale up and share

ZERO CHILDHOOD CANCER: COLLABORATION MAP

The Zero Childhood Cancer program involves all paediatric oncology units across Australia, these hospitals will work with key medical research institutes, both nationally and internationally.

With only ~1000 new cases of high-risk paediatric cancer per year, it is imperative to aggregate Australian data with global data to develop strategies to effectively treat high-risk childhood cancer

We need to share, analyse, integrate data more easily

image credit: https://www.zerochildhoodcancer.org.au/about/research---clinical-partners

Paediatric data sources

CCI - where's our data?

NetApp

StorageGRID: smart, fast, and future proof object storage

SevenBridges Announces International Collaboration Focused on Personalized Treatment for Kids with Cancer

Expansion of the CAVATICA Platform to Australia Enables Harmonized Analysis of Geographically Separated and Jurisdictionally Protected Data Resources

BOSTON, June 2, 2020—Seven Bridges, the industry-leading bioinformatics ecosystem provider, today announced a collaborative partnership between The Gabriella Miller Kids First Data Resource Center (Kids First DRC), ZERO Childhood Cancer (ZERO), the Children's Brain Tumor Tissue Consortium (CBTTC), the Australian BioCommons and the Australian Research Data Commons (ARDC). The multinational genomic

ustralian

How to share?

We Need:

- a way to SEARCH different catalogues of paediatric data
- a way to easily gain and grant ACCESS to the data
- a way to ANALYSE this data in place if possible

University of Melbourne Centre for Cancer Research Precision Oncology Program

Sean Grimmond

Precision Oncology Program

Recalcitrant Cancers, Rare Cancers, Cancers of the Unknown Primary

UMCCR Genomics Platform Group

Workflow Development

Technology Assessment Standards Development & Implementation

Workflow Development: Rapid WGTS

Workflow Development: Data Flow

Workflow Development: Primary Analysis

Illumina-University of Melbourne Partnership

Partnering to provide the infrastructure, expertise, systems and analysis to translate and implement genomics into routine clinical

care.

Core Platform: DRAGEN/ICA

Search

Workflow Development: Post-process / Reporting

Settings Main results Somatic SNVs/InDels

significance

significance

Tier 2 - Variants of pot significance

Noncoding mutations Complete biomarker s MSI status Mutational signatures Kataegis events Documentation

Settings	Sequencing depth tumor		Allelic fraction	tumor	_
/ain results	8				0.95
Somatic SNVs/InDels			0 0.1 0.2	0.3 0.4 0.5 0.6 0.7 0.	8 0.9 1
Tumor mutational burden (TMB)				a	
Tier & variant statistics	CSV Excel			Search:	
Global distribution - allelic support	SYMBOL	CONSEQUENCE	PROTEIN_CHANGE	VARIANT_CLASS	TIER 🝦
Global variant browser	🕑 1 TP53	missense_variant	p.Arg175His	SNV	TIER 2
Tier 1 - Variants of strong clinical nificance	2 WIF1	missense_variant	p.Cys230Tyr	SNV	TIER 3
Tier 2 - Variants of potential clinical nificance	3 PTPRD	missense_variant	p.Tyr1708Phe	SNV	TIER 3
Tier 3 - Variants of unknown clinical	📵 4 GLI1	stop_gained	p.Arg623Ter	SNV	TIER 4
nificance	5 SRGAP1	missense_variant	p.Asp566Asn	SNV	TIER 4
Tier 4 - Other coding mutations	6 IBS4	missense variant	p Ala178Thr	SNV	TIER 4
Noncoding mutations		moonloo_ranam	paration	0.11	
Complete biomarker set	7 TRIM37	missense_variant	p.Pro355Ser	SNV	TIER 4
ISI status	8 DMD	missense_variant	p.Thr2443lle	SNV	TIER 4
lutational signatures	④ 9 CYP4F22	missense_variant	p.Asp228Asn	SNV	TIER 4
ataegis events		missense variant	n Cys524Tyr	SNV	TIER 4
ocumentation		mooonoo_vanant	p.090024191		
	Showing 1 to 10 of 5,000 e	entries	Previous 1 2	3 4 5 50	0 Next

Workflow Development: Reporting

MultiQC, PCGR/CPSR, ...

CASE ACCESSION PHYSICIAN PATIENT SPECIMEN DATE \$ ۷ INDICATION SAMPLE TYPE TYPE NAME CREATED ACTIONS ASSIGNEE NUMBER NAME/PARTICIPANT ID DISFASE SBJ00596_L2101497_1 SBJ00596 Validation Disseminated Plasma 09-Feb-2022 na £03 malignancy of Sample specimen unk... £03 **-**SBJ01142 Validation Disseminated Plasma CUP 09-Feb-2022 SBJ01142_L2101415_1 malignancy of Sample specimen unk... 503 -SBJ01140_L2101413_1 Validation Disseminated Plasma CUP 09-Feb-2022 SBJ01140 Sample malignancy of specimen unk... £03 ₊ SBJ01138_L2101411_1 SBJ01138 Validation Disseminated Plasma CUP 09-Feb-2022 Sample malignancy of specimen unk... Validation £3 -SBJ01136_L2101409_1 SBJ01136 Disseminated Plasma CUP 09-Feb-2022 Sample malignancy of specimen unk...

Workflow Development: Archiving

Subject

Tools

Feature

igv

aws s3

Overview		— Sample	e Info
SUBJECT ID	SBJ01560	INFO	Т
EXTERNAL SUBJECT ID	PMEX108803/PM9323495		
ILLUMINA ID	220204_A01052_0076_AH3TLLDSX3	0	W
RUN	76	0	W
TIMESTAMP	2022-02-04		14
PROJECT NAME	PeterMacPath	•	VV
PROJECT OWNER	CMitchell		

INFO	TYPE	SAMPLE ID	EXTERNAL SAMPLE ID	LIBRARY ID	PHENOTYPE	ASSA
0	WGS	MDX210479	MALE131221- G	L2200102	normal	TsqNa
0	WGS	MDX220026	DNA123308	L2200103	tumor	TsqNa
6	WTS	MDX220027	RNA023376	L2200119	tumor	NebRt

	— Analy	— Analysis Results									
ls											
Open Subject Date in Online IOV	WGS	WTS TSO500									
Open Subject Data in Online IGV	CANCI	ER REPORT									
ture		SBJ01560SBJ01560_MDX220026_L2200103_cancer_report.html	=	15.88 MB							
Workt	flov	v Development:	Por	tal							
	CPSR										
		SBJ01560_SBJ01560_MDX220026_L2200103-normal.cpsr.html	=	6.30 MB							

Workflow Development: Data Sharing

A mandate to share data with the scientific community

Sharing data saves lives THE GLOBAL ALLIANCE FOR GENOMICS & HEALTH

The need:

• Data from *millions of samples* is needed to address questions in rare disease, complex disease and cancer.

The challenge:

- Data in silos.
- Lack of standard analysis methods.
- Different approaches to regulation, consent and data sharing.

Genomic Profile Sample Counts					KM Plot: Overall Survival (months)	Number of Sample	es Per Patient	Muta	Sample Class			
Molecular F	Profile		#	Freq *	T			T Gene	# Mut	#	Freq 🔻	
Consensus p	outative gene l	evel co	2,703	92.5%	100%-			TP53	938	902	33.6%	
Mutations			2,683	91.8%	500			TTN	589	22.0%		
mRNA expre	ession (FPKM_	UQ)	1,210	41.4%	50%-	2,30	06	MUC16	874	356	13.3%	2,919
mRNA expre	ession z-scores	s relativ	1,210	41.4%	0%			KRAS	278	273	10.2%	
miRNA expression (UQ normalized) 749 25.6%		25.6%	0 50 100		L	LRP1B	355	239	8.9%			
miRNA expr	miRNA expression z-scores (log 749 25.6%		25.6%	Mutation	n Count		PCLO	372	235	8.8%	Alcohol	
								CSMD3	321	232	8.6%	
					300-250-			RYR2	305	209	7.8%	
					200-150-			USH2A	279	203	7.6%	1,478
					100-50-			SYNE1	324	200	7.5%	
					5,00000000000	5012 3 12 12 12 12 12 12 12 12 12 12 12 12 12	あるうち	CSMD1	294	194	7.2%	
Search						000000		Search				د ا
	CNA Genes	(2703 profile	d samples)		Cance	r Туре			Cancer Type Deta	iled		Alcohol History Intensity
T Gene	CNA Genes Cytoband	(2703 profile CNA	d samples) #	Freq 🔻	Cancer	r Type #	Freq ▼		Cancer Type Deta	iled #	Freq 🔻	Alcohol History Intensity
T Gene MYC	CNA Genes Cytoband 8q24.21	(2703 profile CNA AMP	d samples) #	Freq ▼ 17.6%	Cancer	r Type # 381	Freq ▼ 13.0%	Hepatocellular C	Cancer Type Detai	iled #	Freq ▼ 11.1%	Alcohol History Intensity
T Gene MYC CCAT1	CNA Genes Cytoband 8q24.21 8q24.21	(2703 profile CNA AMP AMP	d samples) # 0 475 0 468	Freq ▼ 17.6% 17.3%	Cancer Pancreatic Cancer Hepatobiliary Cancer	r Type # 381 358	Freq ▼ 13.0% 12.3%	 Hepatocellular C Pancreatic Ader 	Cancer Type Detai Carcinoma locarcinoma	iled # 323 231	Freq ▼ 11.1% 7.9%	Alcohol History Intensity
T Gene MYC CCAT1 POU5F1B	CNA Genes Cytoband 8q24.21 8q24.21 8q24.21	(2703 profile CNA AMP AMP AMP	d samples) # 475 468 464	Freq ▼ 17.6% 17.3% 17.2%	Cancer Pancreatic Cancer Hepatobiliary Cancer Prostate Cancer	r Type # 381 358 275	Freq ▼ 13.0% 12.3% 9.4%	 Hepatocellular C Pancreatic Ader Prostate Adenoc 	Cancer Type Detai	iled # 323 231 207	Freq ▼ 11.1% 7.9% 7.1%	Alcohol History Intensity
T Gene MYC CCAT1 POU5F1B CCAT2	CNA Genes Cytoband 8q24.21 8q24.21 8q24.21 8q24.21	(2703 profile CNA AMP AMP AMP AMP	d samples) # 475 468 464 463	Freq ▼ 17.6% 17.3% 17.2% 17.1%	Cancer Pancreatic Cancer Hepatobiliary Cancer Prostate Cancer Renal Cell Carcinoma	r Type # 381 358 275 235	Freq ▼ 13.0% 12.3% 9.4% 8.0%	 Hepatocellular C Pancreatic Ader Prostate Adenoc Breast Invasive I 	Cancer Type Detai Carcinoma occarcinoma carcinoma Ductal Carcinoma	iled # 323 231 207 207 177	Freq ▼ 11.1% 7.9% 7.1% 6.1%	Alcohol History Intensity
▼ Gene MYC CCAT1 POU5F1B CCAT2 CASC8	CNA Geness Cytoband 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21	(2703 profile) CNA AMP AMP AMP AMP AMP	d samples) # 475 468 468 468 463 463 463 463	Freq ▼ 17.6% 17.3% 17.2% 17.1% 17.1%	Cancer Pancreatic Cancer Hepatobiliary Cancer Prostate Cancer Renal Cell Carcinoma Breast Cancer	r Type # 381 358 275 235 235	Freq ▼ 13.0% 12.3% 9.4% 8.0% 7.3%	 Hepatocellular C Pancreatic Ader Prostate Adenoc Breast Invasive I Renal Clear Cell 	Cancer Type Detai carcinoma ocarcinoma carcinoma Ductal Carcinoma Carcinoma	iled	Freq ▼ 11.1% 7.9% 7.1% 6.1% 5.5%	Alcohol History Intensity
▼ Gene MYC CCAT1 POU5F1B CCAT2 CASC8 TMEM75	CNA Geness Cytoband 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21	(2703 profile CNA AMP AMP AMP AMP AMP	d samples) # 475 468 464 463 463 461 463	Freq ▼ 17.6% 17.3% 17.2% 17.1% 17.1% 17.0%	Cancer Pancreatic Cancer Hepatobiliary Cancer Prostate Cancer Renal Cell Carcinoma Breast Cancer	r Type # 381 358 275 235 235 235	Freq ▼ 13.0% 12.3% 9.4% 8.0% 7.3%	 Hepatocellular C Pancreatic Ader Prostate Adenoc Breast Invasive I Renal Clear Cell 	Cancer Type Detai Carcinoma ocarcinoma carcinoma Ductal Carcinoma Carcinoma	iled # 323 231 207 177 160	Freq ▼ 11.1% 7.9% 7.1% 6.1% 5.5%	Alcohol History Intensity 1,478 913 1,478 913 S
▼ Gene MYC CCAT1 POU5F1B CCAT2 CASC8 TMEM75 PCAT1	CNA Geness Cytoband 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21	(2703 profile CNA AMP AMP AMP AMP AMP	a samples) # 475 468 464 463 463 461 463 465 459 458	Freq ▼ 17.6% 17.3% 17.2% 17.1% 17.0% 16.9%	Cancer Pancreatic Cancer Hepatobiliary Cancer Prostate Cancer Renal Cell Carcinoma Breast Cancer	r Type # 381 358 275 235 213	Freq ~ 13.0% 12.3% 9.4% 8.0% 7.3%	 Hepatocellular C Pancreatic Adeno Prostate Adenoc Breast Invasive I Renal Clear Cell 	Cancer Type Detail	# 323 231 207 177 160	Freq ▼ 11.1% 7.9% 7.1% 6.1% 5.5%	Alcohol History Intensity 1,478 913 s
MYC CCAT1 POU5F1B CCAT2 CASC8 TMEM75 PCAT1 PRNCR1	CNA Geness Cytoband 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21	(2703 profile CNA AMP AMP AMP AMP AMP AMP	d samples) # 475 468 464 464 461 461 459 459 458	Freq ▼ 17.6% 17.3% 17.2% 17.1% 17.1% 16.9%	Cancer Pancreatic Cancer Hepatobiliary Cancer Prostate Cancer Renal Cell Carcinoma Breast Cancer (Agggrega	r Type	Freq • 13.0% 12.3% 9.4% 8.0% 7.3%	 Hepatocellular C Pancreatic Adeno Prostate Adenoc Breast Invasive I Renal Clear Cell A Sha 	Cancer Type Detail	# 323 231 207 177 160	Freq • 11.1% 7.9% 7.1% 6.1% 5.5% Bio	Alcohol History Intensity 1,478 913 Portal
▼ Gene MYC CCAT1 POU5F1B CCAT2 CASC8 TMEM75 PCAT1 PRNCR1 PVT1	CNA Geness Cytoband 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21	(2703 profile CNA AMP AMP AMP AMP AMP AMP AMP	d samples) # 475 468 464 464 463 461 459 459 459 459 459	Freq ▼ 17.6% 17.3% 17.2% 17.1% 17.1% 16.9% 16.4%	Cancer	r Type # 381 358 275 235 213 213 A 1 1 1	Freq ▼ 13.0% 12.3% 9.4% 8.0% 7.3% Date 4.5%	 Hepatocellular C Pancreatic Adeno Prostate Adenoc Breast Invasive I Renal Clear Cell Anno Anno Esophageal Ade 	Cancer Type Detail	# 323 231 207 177 160	Freq 11.1% 7.9% 7.1% 6.1% 5.5% Bio 3.3%	Alcohol History Intensity 1,478 913 s Portal 1,734
▼ Gene MYC CCAT1 POU5F1B CCAT2 CASC8 TMEM75 PCAT1 PRNCR1 PVT1 LRATD2	CNA Genes Cytoband 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21	(2703 profile CNA AMP AMP AMP AMP AMP AMP AMP AMP	d samples) # 475 468 464 464 463 461 459 459 459 459 459 459 459	Freq ▼ 17.6% 17.3% 17.2% 17.1% 17.1% 16.9% 16.4%	Cancer Ca	r Type # 381 358 275 235 213 213 213 131 131 120	Freq • 13.0% 12.3% 9.4% 8.0% 7.3% Data 4.5% 4.1%	 Hepatocellular C Pancreatic Adeno Prostate Adenoc Breast Invasive I Renal Clear Cell Anone Esopnageai Adee Medulloblastom 	Cancer Type Detail	Hed # 323 231 207 177 160 - - - - - - - - - - - - -	Freq 11.1% 7.9% 7.1% 6.1% 5.5% Bio 3.3% 3.2%	Alcohol History Intensity 1,478 913 913 913 s Portal 1,734
▼ Gene MYC CCAT1 POU5F1B CCAT2 CASC8 TMEM75 PCAT1 PRNCR1 PVT1 LRATD2 TRIB1	CNA Genes Cytoband 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21 8q24.21	(2703 profile CNA AMP AMP AMP AMP AMP AMP AMP AMP AMP	d samples) # 475 468 464 464 463 461 459 459 459 459 459 459 452	Freq ▼ 17.6% 17.3% 17.2% 17.1% 17.1% 17.1% 16.9% 16.4% 16.1%	Cancer Ca	r Type # 381 358 275 235 213 213 213 131 120 107	Freq • 13.0% 12.3% 9.4% 8.0% 7.3% Data 4.5% 4.1% 3.7%	 Hepatocellular C Pancreatic Adero Prostate Adenoc Breast Invasive I Renal Clear Cell A Sha Esopnageal Ade Medulloblastom Pilocytic Astrocy 	Cancer Type Detail	Hed # 323 231 207 177 160 CE 97 93 89	Freq 11.1% 7.9% 7.1% 6.1% 5.5% Bio 3.3% 3.2% 3.0%	Alcohol History Intensity 1,478 913 s Portal 1,734

UMCCR Genomics Platform Group

Workflow Development **Technology Assessment** Standards Development & Implementation

UMCCR Genomics Platform Group

Workflow Development **Technology Assessment** Standards Development & Implementation

Victor San Kho Lin

Andrew Patterson

Florian Reisinger

Community 🔻

Gen3 is how data commons are made.

A data commons is a cloud-based software platform for managing, analyzing, harmonizing, and sharing large datasets. Gen3 is an open source platform for developing data commons. Data commons accelerate and democratize the process of scientific discovery, especially over large or complex datasets.

Get Started

	N3						About Products						rod	ucts				Get Started ▼	Resources	•	Community 🔻	
RopenCB IVA v2.0.0-dev Variation Projects / family / corpasome	nt Browser • Variant An	nlysis • Cl	inical Analysis + Catalog Metadata + GA4GH +										¥	Studie	ies - 😧 /	About	\rm derrrou	puser +				
Variant Browser	# TABLE RESULT	M AGGRE	GATION STATS																			
Filters Aggregation	FILTERS Bee	npe – protein_coa	ting Consequence Type 💶 📼												₫ CLEAR	T F	ILTERS +			1		
STUDY AND COHORTS	Showing 1-10 of 796 records						Deleteriousne	ss 0		Conservati	in O		Popula	tion Frequenci	COLUMNS -	# 0 Ph	ownLOAD -	·-				
Studies Filter 0	Variant	dosne id	Gene	Type	Consequence Type	SIFT	Polyphen	CADD	PhyloP	PhastCo	ns CE	8P	1000 Genomes	8707	nAD Genomes	clink	er Cosmi	anis				
Corpas Family *	+ 11:67641906 A/C		ALDH3R2	SNV	splice_donor_variant			9.70	-0.126	0	021 2	.300				×	×			+~+		
In any of (DR) In all (AND)	+ 11:67765164 -/0		UNC9381	INDEL	frameshift_variant				0.455	0	996 4	.710				*	~	- E	_			
	+ 11:57785065 -/C		ALDH381	INDEL	frameshift_variant				0.445	0	714 2	.770				×	*	× X	8			
	+ 11:67709294 -/C		ALDHIB1, RPS-901A4.1	INDEL	frameshift_variant				0.650	0	437 3	.890				*	*	*				
GENOMIC	+ 11:67795379 ·/C		NDUF58.ALDH381.RP5-901A4.1	INDEL	splice_donor_variant				0.463	0	908 -1	.880				×	×	×				
Chromosomal Location 0	+ 11/76954709 -/A		CDPD4	INDEL	frameshift variant				-0.408		129 1	.240				*	*					
3:444-55555,1:1-100000	+ 11:77500040 C/T		AAMDC, RP11-91P24.6, RP11-91P24.1, RP11-91P24.7	SNP	stop_gained			40.00	0.650		998 4	.350				*	*	. 7				
	+ 11:62495924 -/G		TTC9C, HNRNPUL2-BSCL2, HNRNPUL2	INDEL	frameshift_variant				0.563	0	290 2	.680				×	~	- (
Easture IDr (nene SNRr 1)	+ 11:52548487 A/C		51.022A24	SNV	stop_gained			39.00	0.481	0	646 2	.330				×	~	-)				
Frank in Case Darkets	+ 11:62910849 T/C		SLC22A24, SLC22A10	SNV	splice_donor_variant			16.76	-1.100	0	070 2	.290				×	*	× /				
BRCA2.ENSG00000139618.ENST0000 0544455.rs28897700	Showing 1 to 10 of 796 rows	10 - rows	bet haffe											< 1	2 3	4 5	- 80					
d	Variant: 11:674	441906:	A:C															1				
Select SO terms																						
10 items selected +	Summary Conseq	uence Type	Population Prequencies Cohort Stats Samples	Beacon	Reactome Pathways																	
Disease Panels	ID rs7947754 HGVS ENST00000	530069/ENSC	00000132746[x-245+6741T+G																			
democ	ratize tł	ne p	rocess of scienti	ific	discove	ry	es	pe	cia	ly		.			->				- (C)) _			
										-												
over la	rge or c	om	plex datasets.															1				
																		-7				
Exc		De		<u> </u>		4																11
EX	perience	De	mo	Ge	et Starte	a																
									-													

OpenCGA

Overture
GEN DATA COMMONS	3		Abo	out	Pro	oducts		Get	Starte	d ▼	Resources	s ▼ Community ▼
BODEnCE IVA v2.82.4wv Variant Projects family corporative Variant Browser © RUN	Brower - Variant Analysis - Clinical Analys	s. Catalog Meedes. CACH.			4 60 E	🛢 Studies • 🛛 🕢 Abor	at 🕒 dermauser •					
Fites Agregation STUDY AND COHORTS Soudies Fiter Corpos Family in an and family in all factors	Explore Data	DEARDOURD DEARDOURD Pierreposite Pierrep	xplore Guides	Metadata Pi	pelines Ana	Ilysis Tools (Q s	iearch all cont	ient ates [®]	kesources V	y ∩ #	
CENOMIC Onexamination Control Location	Combine Queries and a line of the set of the	ery Explore Data: DCP 2.0 Data are search all filters Cell Line Type stem cell Clear All 1.5M Estimated Cells 5 Specimens 5 Donors 99 File	Donor 431.59 GB FI	✓ Tissue Typ	e v Sp	ecimen 🗸	Method	•	File	~	Export Selected Data	00
Select 50 terms	Available Data Files	Projects Samples Files	Downloads Sp	cies Sample Type	Anatomical Entity	Organ Part	Model Organ	Selected Cell	Library N Construction S Method	lucleic Acid	Paired End Analysis Protocol	
democ over la	Aligned Reads Roo Aligned Reads 900 Aligned Reads mill Aligned Reads – gVCF 900	Kee (4) Metadat Capturing human trophoblast development with naive pluripotent stem cells in vitro Comparative analysis of kidney organoid and adult human kidney	a Matrices (1)	(3) n cellLines n organoids	(3) embryo	(5) blastocyst	(4) embryo	(5) mono	(5) (; 10X 3' v3 s 10X 3' v2 sequencina, s	2) ingle cell	(1) (4) false analysis_protoci false optimus_post_p	
Ехр	perience Demo	single cell and single nucleus transcriptomes Profiling of CD34+ cells from human bone marrow to understand hematopoiesis Single Cell RNA-Seq profiling of human emphysnic kidney organoid cells	d Ho	n cellLines	hematopoi	bone marrow blastocyst, j	hematopoi	CD34	Drop-seq 10X v2 sequencing ^S 10x 3' v2 s	ingle cell	optimus_v42.3 false optimus_v42.2 false analysis_protoco	

HCA-Store

Community 🔻

Gen3 is how data commons are made.

A data commons is a cloud-based software platform for managing, analyzing, harmonizing, and sharing large datasets. Gen3 is an open source platform for developing data commons. Data commons accelerate and democratize the process of scientific discovery, especially over large or complex datasets.

Get Started

Community 🔻 About Products Get Started **v** Resources 🔻 Webinars Forums 🗗 Join us on Slack! 🗷 Gen3 on GitHub 🕑 :=

Gen3 is how data commons are made.

A data commons is a cloud-based software platform for managing, analyzing, harmonizing, and sharing large datasets. Gen3 is an open source platform for developing data commons. Data commons accelerate and democratize the process of scientific discovery, especially over large or complex datasets.

Get Started

Actively Maintained Code

"A piece of software is being sustained if people are using it, fixing it, and improving it rather than replacing it."

software-carpentry.org/blog/2014/08/sustainability.html

ilters + Q is:pris:open	C Labels 65 C Milestones 3 New pull reque
1 31 Open 🗸 723 Closed	Author • Label • Milestones • Reviews • Assignee • Sort
1 testing datadog connection ✓ (test-portal-homepageTest) #763 opened 2 days ago by haraprasadj • Review required 🗜 1 task	
Bump pathval from 1.1.0 to 1.1.1 × dependencies #762 opened 3 days ago by dependabot (bot) • Review required	
1 feat(mtls): add mtls support to drs performance test script × #758 opened 4 days ago by Avantol13 • Review required	
3 Bump cached-path-relative from 1.0.2 to 1.1.0 × dependencies	
#751 opened 18 days ago by dependabot (bot) • Review required	
4751 opened 18 days ago by dependabot bot br. • Review required	ç
	ς
	c

Active development on Github

github.com/uc-cdis

🖟 uc-cdis / gen3-qa (Public)	⊙ Watch 26 +	양 Fork 1 ☆ Star 3					
		CTDS - 🕜	# gen3_community Please note we appreciate as much conversation in this channel a				
 ◇ Code îî Pull requests ai ○ Actions ○ Security △ Insights Filters - Q ispriscopen îî 31 Open ✓ 723 Closed îî testing datadog connection ✓ test portal-homepageTest #763 opened 2 days ago by harpinsad - Review required □ 1 task îñ Bump pathval from 1.1.0 to 1.1.1 × dependencie #762 opened 3 days ago by dependabot (bot) - Review required îñ feat(mtis): add mtis support to drs performance test script × #758 opened 4 days ago by davantoli 3 - Review required îñ Bump cached-path-relative from 1.0.2 to 1.1.0 × dependencies #751 opened 18 days ago by dependabot (bot) - Review required îñ Updating the DD host for test_results ● #749 opened 18 days ago by athanarata - Approved îñ Bump node-fetch from 2.6.1 to 3.1.1 × dependencies 	Stabels 65 ← Author + Label + Milestones +	 ♥ Threads ♥ Mentions & reactions ♀ Saved Items ⋮ More Channels # gen3_community ▲ Add channels > Direct messages 	Luca Gragla 6:05 AM HJ, I started having a weird behavior with rec. findsy. Febnary 11th w ut and log back in with a different user lonky see on the page a join in the form of ["username": "musername@google.com"] [222-02-10 15:44:39,438][fence][ERROR] (an't get user info Traceback (most recent call last): File "fine: fence/resources/openid/pogle.gouth2.py", line 53, in get_user_id claims = self.get_jwtc.lotims.identity(token.endpoint, jwks.endpoint, code) File "fine: fence/resources/openid/ub_outh2.py", line 65, in get_user_id claims = self.get_token(token.endpoint, code) File "fine: fence/resources/openid/ub_outh2.py", line 43, in get_user_id unt=token.endpoint, code=code.proxites=self.get_proxits() File "fuser/local/lib/ythdn3.foit=packages/auth1b/outh2/client.py", line 194, in _fetch_token headers-headers, "session.komgs File "rusr/local/lib/ythdn3.foit=packages/auth1b/outh2/client.py", line 135, in parse_response_token self.parse_response_token(reso.jiste-packages/auth1b/outh2/client.py", line 135, in parse_response_token self.handle_error(error, description) File "rusr/local/lib/ythdn3.foit=packages/auth1b/outh2/client.py", line 135, in parse_response_token self.handle_error(error, description) File "rusr/local/lib/ythdn3.foit=packages/auth1b/outh2/client.py", line 114, in handle_error raise 0#uthError(error_tor_m_handle][EROOR] 400 HITP error occured. ID: 82183c51-a19b-47e2-bb9f- 41ac515261d Xanile Taoki 1:200PM Kanile Taoki 1:200PM				
#748 opened 23 days ago by dependabot bot - Review required 11 Bump log4js from 6.3.0 to 6.4.0 × dependencies #746 opened 23 days ago by dependabot bot - Review required			something we have to implement ourselves?				
11 Bump node-forge from 0.10.0 to 1.0.0 × dependencies #744 opened on Jan 14 by dependabot (bot) • Review required 11 test dataguid according to manifest dist × (test spis-dbgaptest) #743 opened on Jan 13 by jingh8 • Review required			The Gener were average average instantion and cart regure out What Might be Cataling it. On thy local observer compose installation I have a Project's tab in the explorer that can successfully show all site of 'Acknowledgees' and 'Consent codes' in the display table by using et to collapse fields, and guppy recognises them as an array of strings i.e.: [String]. However, when I use the same FIL and globos configuration on our cloud automation installation, the FIL doesn't seem to lide correctly, as it makes it just a String variable and the graphiq query fails with this error: ["errors":["message": "String cannot represent value: [\citeRU"], "locations":[['time':13, "colum':5]], "path":["project"; 0, "consent_codes"],]. Fill post more info in thread. Any tips on how we could debug this would be awesome. (edited) [String Ling Ling Ling Ling Ling Ling Ling L				

Lively Slack channel

NIH NATIONAL CANCER INSTITUTE Cancer Research Data Commons

BDGC

AccessClinicalData@NIAID

The AnVIL

The AnVIL supports the management, analysis and sharing of human disease data for the research community and aims to advance basic understanding of the genetic basis of complex traits and accelerate discovery and development of therapies, diagnostic tests, and other technologies for diseases like cancer. The data commons supports cross-project analyses by harmonizing data from different projects through the collaborative development of a data dictionary, providing an API for data queries and download, and providing a cloud-based analysis workspace with rich tools and resources.

Submit Data 🐧

NHGRI Analysis Visualization & Informatics Lab-space

gen3.theanvil.io/

Gen3: Graph Data Model

Relationships between subjects, clinical, biological and molecular data

Gen3: Microservices

Modular components with defined interfaces

Gen3: Sheepdog

Data ingestion and validation service (UI and API)

Gen3: Windmill

Web portal for data submission, query, exploration, and analysis

Gen3: IndexD

ID management, checksum and size catalogue

Gen3: IndexD

Supports multiple URLs for stored objects

Gen3: Fence

Authentication and Authorisation – OpenID Connect with support for Google, eRA Commons, eduGain, ...

Gen3 Auth

Gen3: DAC

Role-Based Data Access Control (RBAC) engine

Gen3 rich query

Gen3: Peregrine

Graph-based metadata queries

Gen3 Lightweight Workspaces with JupyterHub

Gen3: Lightweight Workspaces

Basic support for Jupyter notebooks for analysis and visualization in R, Python

Setting up Gen3

Uc-cdis / compose-services Public ⊙ Watch 21 - ♀ Fork 30 🔂 Star 11 👻 Code 12 Pull requests 2 (*) Actions (1) Security // Insights P master - compose-services / docs / setup.md Go to file 👩 🛛 uwwint Highlighted the note to update docker config to 6GB. I walked straigh... 🔤 🗙 Latest commit bala880 on Nov 2, 2021 SHistory 🙉 3 contributors 🛛 🚍 📆 🚳 <> 🗅 Raw Blame 🖵 🖓 🗘 ⋮ 114 lines (84 sloc) | 10 KB Setup Dependencies OpenSSL Docker and Docker Compose Docker and Docker Compose Setup If you've never used Docker before, it may be helpful to read some of the Docker documentation to familiarize yourself with containers. You can also read an overview of what Docker Compose is here if you want some extra background information.

The official Dacker installation page can be found here. The official Dacker Compose installation page can be found here. For Windows and Mac, Dacker Compose is included into Dacker Desktop. If you are using Linux, then the official Dacker installation does not come with Dacker Compose; you will need to install Dacker Engine before installing Dacker Compose. Go through the steps of installing Dacker Compose for your platform, then proceed to set up credentials. Note, that Dacker Desktop is set to use 2 GB runtime memory by default.

Quick: Compose-Services

github.com/uc-cdis/compose-services

Intermediate: Compose-Services on AWS

github.com/umccr/gen3-doc/blob/main/poc/AWS.md

Scalable: Cloud

github.com/uc-cdis/cloud-automation and github.com/umccr/gen3-doc

AWS EC2 instances:

- 4x Worker nodes (t3.xlarge)
- 1x Admin VM (t2.micro)
- 1x Forward Proxy VM (t2.medium)

AWS RDS Databases:

• 3x RDS PostgreSQL instances (db.t2.small)

AWS Elasticsearch:

• 1x Elasticsearch (t3.small.elasticsearch)

AWS Elastic Kubernetes Service (EKS):

• 1x Kubernetes cluster

Others:

- 1x Virtual Private Cloud (VPC)
- 1x NAT Gateway
- 1x Elastic Load Balancer (ELB)

Scalable: Cloud

github.com/umccr/gen3-doc/blob/main/cloud/AWS.md

AWS Services Terraform Kubernetes, Docker, Linux ElasticSearch PostgreSQL GraphQL, Graph and DAG, ETL process ReactJS SPA Identity Provider (IdP), Federated AuthN/Z, Single-SignOn (SSO) setup ... Good troubleshooting skills

Scalable: Clour

Scalable: Cloud

github.com/umccr/gen3-doc/blob/main/cloud/AWS.md

Quickstart: Sample Data Models

Define a data model Generate a commons with a Gen3 API Load data into the commons Start exploring

Limitations and Difficulties

- Complicated infrastructure
- Data models are complex; one per instance
- Lack of granular control over permissions and data access

A national approach to genomics information management (NAGIM)

- The vision for human genomics data sharing in Australia requires considerable coordination and collaboration.
- The NAGIM Blueprint sets out a series of principles to guide decision-making on the responsible collection, storage, use and management of genomic data.
- Australian Genomics is developing recommendations for implementing NAGIM.
- In 2021 Australian Genomics led an implementation prototyping phase in response to NAGIM.
- A panel of external assessors are evaluating prototype submissions presently.

A National Approach to Genomic Information Management, Australian Genomics Implementation Recommendations Progress Report, November 2021

Supporting Australian Cardiovascular Disease Research

- We have begun working with partners from the Australian Cardiovascular Alliance to establish systems to support identification of biomarkers of increased risk of heart attack.
- We're currently mid way through an 8 month project to establish a new Gen3 instance and populate with 3 coronary artery disease cohorts.
- Data harmonisation across the cohorts is underway.
- We've populated the instance with synthetic data to allow functionality testing.

Acknowledgements

Australian BioCommons & Melbourne Bioinformatics

- Jeff Christiansen
- Lisa Phippard
- Jess Holliday
- Marion Shadbolt
- Steven Manos
- Uwe Winter
- Andrew Lonie
- Nuwan Goonasekera

UMCCR

- Victor San-Kho Lin
- Florian Reisinger
- Andrew Patterson
- (Grant Lee)
- (Lavinia Gordon)

Australian Genomics

- Tiffany Boughtwood
- Marie-Jo Brion
- Sarah Casauria

Children's Cancer Institute, Sydney Zero Childhood Cancer program

- Marie Wong-Erasmus
- Kamile Taouk
- Mark Cowley
- Vanessa Tyrrell

Children's Hospital of Philadelphia

- Allison Heath
- Adam Resnick
- Miguel Brown Yuankun Zhu
- Bailey Farrow

Questions?

Conservation genomics in the age of extinction

Dr Carolyn Hogg, University of Sydney

8 March 2022

biocommons.org.au/events

Tell us what you thought ...

Feedback survey

Thanks for joining us!

The Australian BioCommons is enabled by NCRIS via Bioplatforms Australia funding

