
Open Closures
Disclosing lambda’s inner monomaniac object!

Stefan Monnier

monnier@iro.umontreal.ca

Université de Montréal

Département d’Informatique et Recherche Opérationnelle

Montréal, QC, Canada

ABSTRACT
While folklore teaches us that closures and objects are two sides of

the same coin, they remain quite different in practice, most notably

because closures are opaque, the only supported operation being

to call them.

In this article we discuss a few cases where we need functions

to be less opaque, and propose to satisfy this need by extending

our beloved 𝜆 so as to expose as sorts of record fields some of

the variables it captures. These open closures are close relatives

of CLOS’s funcallable objects as well as of the function objects of
traditional object-oriented languages like Java, except that they are

functions made to behave like objects rather than the reverse.

We present the design and implementation of such a feature in

the context of Emacs Lisp.

CCS CONCEPTS
• Software and its engineering→ Data types and structures;
Procedures, functions and subroutines; Functional languages;
Object oriented languages; Integrated and visual development envi-

ronments.

KEYWORDS
Functional programming, Function objects, Translucent functions,

Emacs Lisp

ACM Reference Format:
Stefan Monnier. 2022. Open Closures: Disclosing lambda’s inner monoma-

niac object!. In Proceedings of the 15th European Lisp Symposium (ELS’22).
ACM, New York, NY, USA, 8 pages. https://doi.org/10.5281/zenodo.6228797

1 INTRODUCTION
Undergraduate programming language courses will often point

out that one can implement objects (in the object-oriented meaning

of the term) as functions, e.g. by making them take a “method

name” as a first argument and dispatching to different behaviors

based on that argument. Yet if we try to take the idea seriously, one

quickly encounters significant drawbacks, whether it’s because of

efficiency concerns, or because of the difficulty to give static types

to the resulting code, or the inability to determine if a function

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ELS’22, March 21–22, 2022, Porto, Portugal
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.5281/zenodo.6228797

obeys this convention before calling it, or any number of other

issues that may come up.

The reverse is a somewhat simpler story: an object can be used

to implement a function, by simply arranging for that object to

have just one method, variously called run, call, exec, or apply.
Depending on the language, this can be syntactically cumbersome

and verbose, and may sometimes require to explicitly specify the

captured variables, but in terms of efficiency at least not much is

lost by treating a function as an object limited to a single method

(often called a function object).
So while in the world of object-oriented languages, it is very

common to add support for functions by encoding them as function
objects, in the world of functional programming languages objects

are usually not encoded as functions but as tuples. Disregarding

issues of aesthetics, the result may appear to be just as good since

we get both functions and objects in either case. Yet, function objects
actually provide a bit more flexibility because they are simultane-
ously functions and objects, which has no equivalent in the world

of functional programming languages.

A notable difference between functions and objects in this respect

is that functions are opaque: the only non-trivial operation allowed

on a function is to call it, but calling a function is a very risky

business if we don’t know what kind of function we’re dealing

with. This is usually not a problem because the responsibility is

traditionally on the code that provides the function to provide one

that works adequately, not on the code that calls it. But function
objects can offer more flexibility since they may come with a type

and may also expose object attributes that can be read via accessors,

so while most attributes as well as the code of their sole method

may be just as opaque as that of a function, the object itself can

reveal extra information when desired.

In this article, we will discuss some situations where this kind

of information is needed, and based on those we show the design

of open closures which are an extension of the usual functions

with extra information exposed in the form of a type and a set of

slots that can be reached via accessors. Good old 𝜆 can then be

redefined as a bare-bones open closure whose type is trivial, with

an empty set of slots. Note that the types used to classify those

open closures fundamentally constrain the set of slots exposed.

These can be seen as a constraint on the captured environment of

closures, and should not be confused with the notion of type used

more traditionally to classify functions according to their signature,

i.e. the set of arguments that the function accepts and the values it

returns. Those two notions of type are orthogonal and in this article

we will not discuss the types in the sense of function signatures.

https://doi.org/10.5281/zenodo.6228797
https://doi.org/10.5281/zenodo.6228797

ELS’22, March 21–22, 2022, Porto, Portugal Stefan Monnier

(defun compose-function (function where orig-fun)
(cond
((eq where :override) function)
((eq where :before)
(lambda (&rest args)

(apply function args)
(apply orig-fun args)))

((eq where :after)
(lambda (&rest args)

(apply orig-fun args)
(apply function args)))

((eq where :around)
(lambda (&rest args)

(apply function orig-fun args)))))

(defun add-function (function where var)
(set var (compose-function function where

(symbol-value var))))

Figure 1: Adding functions to a variable

2 MOTIVATING EXAMPLE
In this section we will see the main example that will help explain

the design of our open closures.

In Emacs, we have many variables holding functions that are

called in various circumstances, in order to be able to customize the

behavior of commands. We generally call them hooks, but you can

just as well think of them as callbacks. They take various forms, but

the form of interest here is when a global variable (or an object’s

slot) holds a single function.

When a package (the name we give to plugins, in Emacs) wants

to affect the corresponding behavior, it will want to modify the

function stored in this variable by composing the old and the new

function. We could provide that functionality as shown in Figure 1.

This would work fine but comes with an annoyance and a serious

problem. The annoyance is that when we try to debug this code,

the composed function will not show us what it is made of, even

if the provided function and the original orig-fun are named

functions. It requires trained eyes looking at the innards of the

closure to decipher what it is made of and reverse engineer where

it may come from.

But the more serious problem comes when the package decides

it does not want to modify that variable any more and hence wants

to undo its changes. The easy solution is to stash the old value

somewhere so we can restore it afterwards, but that only works if

all the packages add and remove their modifications in a properly

nested order, which is neither enforced nor desirable. For example,

after:

(defvar my-var #'A)
(add-function #'B :after 'my-var)
(add-function #'C :after 'my-var)

my-var will hold an anonymous function which first calls A, then
B, then C. And if the package that added B has buyer’s remorse, it

would like to be able to do:

(remove-function #'B 'my-var)

(index) 𝑖 ∈ N

(expressions) 𝑒 ::= 𝑐 | 𝑥 | (olam
−−−→
(𝑥 𝑒) (𝑥𝑎) 𝑒𝑏)

| (oapp 𝑒1 𝑒2) | (oref 𝑒 𝑖)

Figure 2: Syntax of the open lambda calculus

After this call, we would like my-var to hold a function which

calls A and then C, but there is no mechanism which would let

remove-function extract the necessary information from my-var
to construct this new function, because the function stored there is

opaque.

Ideally, we would like to be able to test whether a given function

is one of the wrappers built by add-function, and if so, we would

like to be able to extract the “function” and the “orig-fun” from
which they were built, as well as “where” they were composed.

In current functional programming language, this can only be

achieved with a significant amount of extra work, and often with

additional runtime costs when calling the function, such as an addi-

tional indirection if one uses a CLOS-style funcallable object [Kicza-
les et al. 1991]. This is particularly frustrating considering that the

most common internal representation of those closures makes the

corresponding information readily available, if only one were given

a way to access it.

3 OPEN CLOSURES
Wepropose to solve the previous problem by opening up our lambda

abstractions such that some of the captured variables can also

be accessed from outside, like the slots of a tuple. The result is

fundamentally a combination of a tuple and a function. It can be

seen as a function with slots, or as a tuple with code.

Figure 2 shows the syntax of an open lambda calculus which
exposes the core idea in a minimalist way. We use the convention

that
−→𝑚 is a shorthand for (𝑚1 ...𝑚𝑛), and

−−−→
(𝑎 𝑏) is a shorthand for

((𝑎1 𝑏1) ... (𝑎𝑛 𝑏𝑛)).
• 𝑐 stands for a builtin constant.

• 𝑥 is the usual variable reference.

• (oapp 𝑒1 𝑒2) is your usual function application, limited to a

single argument without loss of generality.

• (olam
−−−→
(𝑥 𝑒) (𝑥𝑎) 𝑒𝑏) constructs a function, where (𝑥𝑎) is the

list of arguments, again limited to a single argument, 𝑒𝑏 is

the body, and

−−−→
(𝑥 𝑒) is the (ordered) list of slots. The slots are

accessible both internally and externally. For internal access,

𝑒𝑏 can refer to the value of those slots using the slot’s name

as a variable.

• (oref 𝑒 𝑖) fetches the value of the 𝑖th slot of the function 𝑒 .

The index is an immediate value rather than an expression

only for the purpose of simplifying the static semantics of

the language: in a dynamically typed language, 𝑖 can be gen-

eralized to an arbitrary expression evaluating to an integer.

This calculus is a superset of the standard 𝜆-calculus since we can

encode “𝜆𝑥.𝑒” as (olam () (𝑥) 𝑒) which are those functions that

expose no slots, and hence upon which we cannot apply any “oref”.
And while we can of course encode the usual tuples (𝑒1, ..., 𝑒𝑛)

using a Church-style encoding, we can also encode them more

Open Closures ELS’22, March 21–22, 2022, Porto, Portugal

(values) 𝑣 ::= 𝑐 | 𝑥 | (olam
−−−→
(𝑥 𝑣) (𝑥𝑎) 𝑒)

(ctxts) 𝐸 ::= • | (oapp 𝐸 𝑒) | (oapp 𝑣 𝐸) | (oref 𝐸 𝑖)
| (olam ((𝑥1 𝑣1) ... (𝑥𝑖 𝐸) ... (𝑥𝑛 𝑒𝑛)) (𝑥𝑎) 𝑒𝑏)

𝑒 { 𝑒 ′ Small-step reduction of 𝑒 to 𝑒 ′

(oapp (olam
−−−→
(𝑥 𝑣) (𝑥𝑎) 𝑒) 𝑣𝑎) { 𝑒 [−→𝑣 , 𝑣𝑎/−→𝑥 , 𝑥𝑎]

(𝛽)

(oref (olam
−−−→
(𝑥 𝑣) (𝑥𝑎) 𝑒) 𝑖) { 𝑣𝑖

(𝜋)
𝑒 { 𝑒 ′

𝐸 [𝑒] { 𝐸 [𝑒 ′]

𝑥 ′ ∉ fv(𝑒)

(olam
−−−→
(𝑥 𝑒) (𝑥𝑎) 𝑒𝑏) { (olam

−−−→
(𝑥 𝑒) (𝑥 ′) 𝑒𝑏 [𝑥 ′/𝑥𝑎])

(𝛼1)

𝑥 ′ ∉ fv(𝑒) 𝑥 ′ ∉ −→𝑥 , 𝑥𝑎
(olam ((𝑥1 𝑒1) ... (𝑥𝑖 𝑒𝑖) ... (𝑥𝑛 𝑒𝑛)) (𝑥𝑎) 𝑒𝑏)

{ (olam ((𝑥1 𝑒1) ... (𝑥 ′ 𝑒𝑖) ... (𝑥𝑛 𝑒𝑛)) (𝑥𝑎) 𝑒𝑏 [𝑥 ′/𝑥𝑖])

(𝛼2)

Figure 3: Dynamic semantics of the open lambda calculus

directly as functions of the form (olam ((_ 𝑒1) ... (_ 𝑒𝑛)) (𝑥) 𝑥)
where the traditional projection operation “𝑒.𝑖” is just (oref 𝑒 𝑖).

3.1 Dynamic semantics
Figure 3 shows the corresponding dynamic semantics, with a call-

by-value reduction strategy. The top of the figure defines the syntax

of values 𝑣 , which are a subset of valid expressions, as well as the

syntax of evaluation contexts 𝐸 which define where evaluation

can take place in an expression. The semantics is defined as the

small step relation 𝑒 { 𝑒 ′. Rule 𝛽 shows hows the slot values

are substituted into the body of a function, making them available

internally, while rule 𝜋 shows how oref accesses a slot’s value from
outside. The contexts 𝐸 together with the congruence rule Cong

show where primitive reductions can take place and define a left-to-

right evaluation order. The two 𝛼 renaming rules, where fv returns
the free variables of a term, are only intended to give further details

about the intended semantics.

Notice that the access to slots is done by position rather than by

name. In other words, slot names are only meaningful internally

when accessing them from within the body of the function and

are not exposed outside of the function, so they obey the usual

𝛼-renaming of variable bindings as evidenced by the 𝛼2 rule. This

simplifies the metatheory and lets us rely on the usual conventions

to avoid issues linked to name capture [Urban et al. 2007].

Note also the absence of an 𝜂 rule (olam ? (𝑥) (oapp 𝑒 𝑥)) { 𝑒

because what to put into “?” depends on the slots exposed by 𝑒 . In

other words, while olam encodes the usual 𝜆, it does not enjoy the

same 𝜂-reduction rule.

3.2 Typing rules
While open closures were developed in the context of a dynamically

typed language, they would work just as well in a statically typed

context.

𝜏 ::= Int | ... | (oarw −→𝜏 𝜏𝑎 𝜏𝑟)
Γ ::= • | Γ, 𝑥 :𝜏

Γ ⊢ 𝑒 : 𝜏 𝑒 has type 𝜏 in environment Γ

Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 : 𝜏
(Var)

Γ ⊢ 𝑒 : (oarw −→𝜏 𝜏𝑎 𝜏𝑟)
Γ ⊢ (oref 𝑒 𝑖) : 𝜏𝑖

(Ref)

Γ ⊢ 𝑒1 : (oarw −→𝜏 𝜏𝑎 𝜏𝑟) Γ ⊢ 𝑒2 : 𝜏1

Γ ⊢ (oapp 𝑒1 𝑒2) : 𝜏𝑟
(App)

Γ,−−→𝑥 :𝜏, 𝑥𝑎 :𝜏𝑎 ⊢ 𝑒𝑏 : 𝜏𝑟 ∀𝑖 . Γ ⊢ 𝑒𝑖 : 𝜏𝑖

Γ ⊢ (olam
−−−→
(𝑥 𝑒) (𝑥𝑎) 𝑒𝑏) : (oarw −→𝜏 𝜏𝑎 𝜏𝑟)

(Lam)

Figure 4: Static semantics of the open lambda calculus

To make that clear, Figure 4 shows a possible simple type system

for our calculus. Even without a need for static types, those rules

can be helpful to clarify the intended semantics. The top of the

figure defines the syntax of type environments Γ and of types 𝜏 ,

which can include any number of builtin types plus the new type

of open closures that we denote as (oarw −→𝜏 𝜏𝑎 𝜏𝑟) which is the

type of functions that take an argument of type 𝜏𝑎 , return a result

of type 𝜏𝑟 , and expose slots of type
−→𝜏 . Just like open closures are a

fusion of a function and a tuple, these function types are a fusion

of the traditional function types and the traditional tuple types.

The typing judgment has the form Γ ⊢ 𝑒 : 𝜏 . The typing

rules reflect the dual nature of our open closures as both functions

and tuples: the App rule is the same as the corresponding rule in

the simply typed 𝜆-calculus, expect for the extra −→𝜏 annotation in

(oarw −→𝜏 𝜏𝑎 𝜏𝑟) which is simply ignored, and the Ref rule similarly

matches the classic rule for the operation that projects a specific

slot from a tuple, except for the extra 𝜏𝑎 and 𝜏𝑟 annotations on

(oarw −→𝜏 𝜏𝑎 𝜏𝑟) which are similarly ignored. The more interesting

rule is Lam: the right part of the premises corresponds to the usual

premise for the construction of tuples, but the left part does not quite

match the premise for the typing rule of the usual 𝜆 constructor

because the body 𝑒𝑏 is now typed in an environment that includes

not only the argument 𝑥𝑎 but also all the open closure’s slots
−→𝑥 .

3.3 Compilation
Looking at the syntax and semantics of the open lambda calculus,

one may wonder why it makes sense to introduce these open clo-

sure objects with their dual tuple/function nature, since both the

dynamic and the static semantics suggest that the result is not much

simpler than if we had introduced tuples and functions separately.

The real motivation becomes apparent only once we consider the

usual implementation of closures via closure conversion. Closure

conversion turns closures into tuples which contains a reference

to the code of the function plus the values of all the variables

captured by the function. Our open closures take advantage of this

representation to store their extra slots alongside the values of the

captured variables. This way, a degenerate open closure with zero

slots ends up represented exactly as a normal 𝜆 would, and the only

ELS’22, March 21–22, 2022, Porto, Portugal Stefan Monnier

C⟦𝑥⟧𝜎 = 𝜎 (𝑥)
C⟦𝑒1 𝑒2⟧𝜎 = (let 𝑥 C⟦𝑒1⟧𝜎 (call (ref 𝑥 0) 𝑥 C⟦𝑒2⟧𝜎))
C⟦𝜆𝑥𝑎 .𝑒𝑏⟧𝜎 = (tuple (code (𝑥𝑐 𝑥𝑎) C⟦𝑒𝑏⟧𝜎𝑒)

𝜎 (𝑦1) ... 𝜎 (𝑦𝑚))
where

−→𝑦 = fv(𝑒𝑏) − {𝑥𝑎}
𝑥𝑐 is fresh

𝜎𝑒 = {𝑥𝑎 ↦→ 𝑥𝑎,

𝑦1 ↦→ (ref 𝑥𝑐 1), ..., 𝑦𝑚 ↦→ (ref 𝑥𝑐 𝑚)}

C⟦𝑥⟧𝜎 = 𝜎 (𝑥)
C⟦(oref 𝑒 𝑖)⟧𝜎 = (ref C⟦𝑒⟧𝜎 𝑖)
C⟦(oapp 𝑒1 𝑒2)⟧𝜎 = (let 𝑥 C⟦𝑒1⟧𝜎 (call (ref 𝑥 0) 𝑥 C⟦𝑒2⟧𝜎))
C
�
(olam

−−−→
(𝑥 𝑒) (𝑥𝑎) 𝑒𝑏)

�
𝜎
= (tuple (code (𝑥𝑐 𝑥𝑎) C⟦𝑒⟧𝜎𝑒)

𝑒1 ... 𝑒𝑛 𝜎 (𝑦1) ... 𝜎 (𝑦𝑚))
where

−→𝑦 = fv(𝑒𝑏) − {𝑥𝑎, 𝑥1, ..., 𝑥𝑛}
𝑥𝑐 is fresh

𝜎𝑒 = {𝑥𝑎 ↦→ 𝑥𝑎,

𝑥1 ↦→ (ref 𝑥𝑐 1), ..., 𝑥𝑛 ↦→ (ref 𝑥𝑐 𝑛),
𝑦1 ↦→ (ref 𝑥𝑐 𝑛+1), ..., 𝑦𝑚 ↦→ (ref 𝑥𝑐 𝑛+𝑚)}

Figure 5: Example of closure conversion
On the left, the algorithm for a plain 𝜆-calculus and on the right the algorithm for our open lambda calculus.

cost of adding slots to an open closure is to increase the size of the

tuple. It does not introduce any extra indirection nor add any extra

cost when the function is called.

Let’s write C⟦𝑒⟧𝜎 the closure conversion of expression 𝑒 where

𝜎 is a substitution used to remember how to access the free variables

of 𝑒 . And let’s assume the following lower-level language for the

target of the closure conversion:

(exps) 𝑒 ::= 𝑐 | 𝑥 | (call 𝑒1 𝑒2 𝑒3) | (code (𝑥1 𝑥2) 𝑒)
| (let 𝑥 𝑒1 𝑒2) | (tuple −→𝑒) | (ref 𝑒 𝑖)

In this language (code (𝑥1 𝑥2) 𝑒) denotes a chunk of closed code

that could hence be represented as a pointer to piece of machine

code. Without loss of generality, we limited this language to have

only functions (and functions calls) of exactly two arguments.

Figure 5 shows what the closure conversion algorithm may look

like, first for the plain 𝜆 − 𝑐𝑎𝑙𝑐𝑢𝑙𝑢𝑠 , and then for open closures,

where we highlighted the parts that are affected by the slots of open

closures. As you can see, in both cases a function is converted to

something of the form (tuple (code ...) ...) and the only significant

change is the addition of one extra value per slot into the tuple.

We place the extra slots of the open closure at the beginning of

the tuple, which thus push the values of captured variables to later

slots of the tuple. This is done to make it easy to find the exposed

slots of the open closure since it is independent of the number of

captured variables. This choice is not the only one, of course, but it

is the simplest here and makes for an efficient implementation of

(oref 𝑒 𝑖). An alternative would be to place the captured variables

first and the extra slots later, in which case (oref 𝑒 𝑖) would need

to know the number of captured variables of the closure 𝑒 , which

could be stored for example just before the beginning of the code,

so as not to increase the size of the tuples.

More generally, there are many other ways to represent closures

than the flat closures used in this algorithm, and open closures do

not impose the use of flat closures. The only requirement is that

the extra slots’s values be stored somewhere and that (oref 𝑒 𝑖) be
able to find those values, potentially with the help of some extra

information stored somewhere in the closure 𝑒 , such as alongside

its code.

4 OCLOSURES IN EMACS LISP
The calculus in the previous section shows the core idea of open

closures in a minimalist setting, but we have designed and imple-

mented open closures in the context of the Emacs Lisp language, so

we discuss here what such a functionality can look like in a real-life

setting.

Emacs Lisp is a programming language that lacks any namespace

management features, so every globally-visible definition is instead

given a name which includes a “package prefix”. In the case of open

closures, we chose the prefix “oclosure-” for its definitions and
we call its (open) closures “OClosures”.

The most important difference between the previous calculus

and OClosures is that additionally to carrying values in slots, OClo-

sures come with a type. This can be thought of as forcing every

open closure to have an extra slot, placed first, which contains that

runtime type information. In practice it is implemented differently,

because for technical reasons we decided to store that type in a

different place than the first slot.

So the constructor of OClosures has the following form:

(oclosure-lambda (type .
−−−→
(𝑥 𝑒)) args 𝑒𝑏)

Where args follows the usual format of Emacs Lisp formal argu-

ments. The type can be retrieved with oclosure-type. We added

this type information so as to be able to perform type tests and

type-based dispatch, by integrating the feature with the rest of our

CLOS-inspired object system.

For example, in the case of the composed functions presented in

Section 2, we called the type of those OClosures advice. This is use-
ful in remove-functionwhere can now distinguish the case where

myvar contains an advice, so we know we can look at its slots to

find its component functions. It also lets us change the printer by

defining a new method which dispatches on the specializer advice
so as to print those functions in a more human-friendly way.

4.1 OClosure types
Of course, before using a new type, we need to define it. While the

types of open closures in Section 3.2 constrain both the set of slots

and the signature of the function, OClosure types leave the arity

and return types unconstrained, and only specify their slots. While

positional access to slots was convenient for our little calculus, it

Open Closures ELS’22, March 21–22, 2022, Porto, Portugal

(defun uncompose-function (function listfunc)
(if (not (eql (oclosure-type listfunc) 'advice))

listfunc ;; Nothing to remove.
(let ((sva (slot-value listfunc 'car))

(svd (slot-value listfunc 'cdr))
(svw (slot-value listfunc 'where)))

(if (eql sva function)
svd ;; Found it!

(compose-function
sva svw
(uncompose-function function svd))))))

(defun remove-function (function var)
(set var (uncompose-function function

(symbol-value var))))

Figure 6: Removing a function from a variable

is more convenient in real life to be able to access slots by name.

Type definitions thus indicate the list of slots that are to be included

for OClosures of that type. They work very much like Common

Lisp’s defstruct and defclass. The syntax is loosely based on

defstruct:

(oclosure-define (name . props) . slots)

Where slots is the list of slots included in this type, where each slots

can come with some extra information, the only such extra infor-

mation currently used is whether it’s mutable or not, the default

being for slots to be immutable.

The type’s properties specified in props can include a list of

parents, which allows subtyping, including multi-inheritance.

4.2 OClosure copies
Going back to our motivating example from Section 2, the function

add-function can now create OClosures which work just as well

as the old functions, but with extra information easily available.

We can define the type advice of those OClosures as follows:

(oclosure-define (advice) car cdr where)

We chose cdr and car as the name of the slots holding resp. the

original function and the added function because the repeated

addition of functions creates a list structure.

The type information and the now exposed slots make it now

possible for remove-function to do its job, by finding out the new

set of functions to compose and reconstruct a new function after

removing some element, as shown in Figure 6.

While this does work, we can do better if we consider that the

last 4 lines of uncompose-function construct the same function

as listfunc, except with a different cdr. For such use-cases, we

have added the ability to perform functional updates of OClosures.

We call them copiers. For example the previous type definition can

be changed to:

(oclosure-define (advice
(:copier advice-with-cdr (cdr)))

car cdr)

This defines a new function advice-with-cdr which will take an

advice as first argument and any function as second argument and

will return a new advice identical to the first except that its cdr
slot will contain the function provided as second argument. With

this function, we can simplify uncompose-function to:

(defun uncompose-function (function listfunc)
(if (not (eql (oclosure-type listfunc) 'advice))

listfunc ;; Nothing to remove.
(let ((sva (slot-value listfunc 'car))

(svd (slot-value listfunc 'cdr)))
(if (eql sva function)

svd ;; Found it!
(advice-with-cdr
listfunc
(uncompose-function function svd))))))

Notice that we did not need the where slot any more nor did we

have to call compose-function any more. A side effect is that this

code is more efficient because it can blindly copy all the bits of

listfunc and then just change the cdr slot, although this was not

the motivation since speed of remove-function is not a concern.
OClosure copiers offer a second way to construct OClosures

(besides oclosure-lambda) and they offer a limited way in which

one can access the still opaque content of a closure, in the sense

that they read the slots of the tuple containing the reference to

the code and the values of captured variables that are not directly

exposed as OClosure slots.

It should be noted that they impose an additional constraint

on the system, in the sense that in order to be able to perform

such a functional update, it is imperative that we be able to find

all the places where the content of a slot are stored in the closure.

In most closure representations, this is not a problem since the

value of each captured variable is only stored in a single place, but

there are exceptions such as when using run-time code generation

to specialize the code of a closure to the particular values of the

variables it captures [Lee and Leone 1996], or when the compiler

notices that a captured variable always has the same value and

decides to apply constant propagation to it.

4.3 Mutability
As mentioned earlier, when defining a type, each slot can be speci-

fied as being either mutable or immutable and that the default is

for slots being immutable. Emacs Lisp is a language that is usually

not in the business of preventing users from shooting themselves

in the foot (preferring to merely try and make it easier for the users

not to shoot themselves in the foot), so the choice of immutability

deserves some explanation.

When a variable is both mutated and captured, the closure con-

version will apply a store conversion to turn the variable into an

immutable variable pointing to a “box” in which the real value is

kept. This extra indirection can be avoided in some cases, but in

the general case it is indispensable in order to handle a variable

captured by several closures that need to share its state.

For this reason, when accessing the content of a slot, we need to

know if that slot has been store-converted or not. One could store

this auxiliary information alongside the code, inside a closure, but

in order to make slot access more efficient, and to avoid having

ELS’22, March 21–22, 2022, Porto, Portugal Stefan Monnier

to store that auxiliary information alongside the code, we decided

instead to make this choice ahead of time in oclosure-define: if
a slot is defined as mutable we simply force store-conversion on it.

Another, probably better option would be to never perform store-

conversion on OClosure slots. Instead, such mutable slots would

“live” in the OClosure object and any other closure that wants to

refer to it will just have to keep a reference to the whole OClosure.

This requires more changes in the closure conversion algorithm, so

we decided to put it in the wishlist for now.

Another important reason to declare beforehand when a slot is

mutable is that the evaluation of a 𝜆 usually does not guarantee

it returns a fresh new object. This is a problem for example with

Guile’s set-procedure-property! [Guile 2021] which may end

up affecting more functions than intended. But if one of the slots is

declaredmutable, then oclosure-lambdawill know that it needs to

return a fresh new object, avoiding these unpredictable semantics.

4.4 Implementation
OClosures are currently implemented as a set of functions and

macros that are loaded fairly early on during the bootstrap, but

they are not implemented as a core data-structure. Most impor-

tantly, Emacs Lisp’s lambda is not defined as a special case of

oclosure-lambda as it arguably should. It’s rather the reverse.

As far as we know, the only reliable way to implement something

like oclosure-lambda involves defining it as a new special form of

the language. Yet, introducing new special forms in Emacs Lisp is

tricky because it can break existing packages which rely on code-

walkers in their macros. So, instead we decided to implement it as a

macro, and make it rely on cooperation from the closure conversion

phase of the compiler.

At its simplest that macro looks like:

(defmacro oclosure--lambda
(type bindings args &rest body)

`(let ,(reverse bindings)
(lambda ,args
(:documentation ,type)
(if t nil ,@(mapcar #'car bindings))
,@body)))

The name has two hyphens, because this is an internal macro, used

by the real oclosure–lambda macro, among other things because

it takes its args in a slightly different form.

The way this macro works is as follows: it adds the desired slots

as “normal” variables in the context of a normal lambda and then

arranges two things: first it makes sure that those variables will

be captured into the closure, and then it controls the placement of

those variables into the closure.

For both of those, it relies on knowledge about the way the

code will be compiled, so the macro itself does not tell the whole

story, and it requires cooperation from the compiler. You can see

that it arranges for the variables to be captured by adding a piece

of dummy code (wrapped in an if test to make sure it’s never

executed). To control the placement of the slots, it relies on the

closure conversion which places the captured variables according

to their position in the environment (one could say they are ordered

by increasing de Bruijn index), which is why it uses reverse on the

bindings so that the first slot gets added last to the environment.

The type information is handled specially, stashed as if it were

the docstring of the function. A more obvious choice might have

been to store that information in the first slot of the closure, except

that we need to be able to distinguish reliably an OClosure from a

normal closure that happens to have captured a variable holding a

type information and placed it in its first slot.

The real macro is a bit more complex in order to handle the case

of mutable slots, on which we want to force store conversion. This

is obtained very simply by changing the dummy code that’s never

executed so that instead of only referring to the variable it performs

an update on it. This relies on the fact that the current closure

conversion naively performs store conversion on any variable that

is both captured and mutated.

Clearly, the current state of implementation is not ideal, but it

works well enough for now. It will likely be replaced by something

cleaner when (or if) OClosures are made into a core data structure

such that lambda is defined as a special case of oclosure-lambda,
but there are various backward compatibility hurdles along the way,

which will take some years to iron out.

5 EXPERIENCE
OClosures were developed in response to a growing set of use cases

collected over the years. Here are the highlights, showing cases

where the alternatives had significant shortcomings.

5.1 Advice
While there are various ways to solve the problem presented in Sec-

tion 2, we did not want to pay the corresponding run time price of

incurring an additional indirection or storing the extra information

in a separate eq-indexed hash table. So the preexisting implemen-

tation of those advice functions relied on manually constructed

closures. It worked well enough but made for rather obscure code.

The use of OClosures made the code much cleaner, removing

all the low-level implementation-dependent tricks from it. It also

made it possible to implement the pretty printing with a normal

defmethod rather than the previous ad-hoc test which intruded

into the more generic part of the pretty printer. Other than that,

the actual runtime representation of those objects ends up being

virtually identical.

5.2 next-method-p
CLOS defines next-method-p to return a non-nil if there is a next

method (which call-next-method will invoke when called) and

nil otherwise. These two functions can only be called from within

methods. Internally, the code of methods can be implemented in

various ways, but as far as I can tell, they are usually implemented

as in Figure 7 which shows the relevant code used in Closette. In

that code, form is the actual body of the method received by the

defmethod macro. As you can see, the method is compiled to a

function that takes the actual arguments args that were passed

to the generic function, of course, and it takes an additional ar-

gument next-emfun which holds the next method to call. This ar-

gument is nil when there is no next method, so next-method-p
is trivial and efficient, but in return for that call-next-method
has to test next-emfun with an if before it can call it. This is the

Open Closures ELS’22, March 21–22, 2022, Porto, Portugal

`(lambda (args next-emfun)
(flet ((call-next-method (&rest cnm-args)

(if (null next-emfun)
(error "No next method for the~@

generic function ~S."
(method-generic-function ',method))

(funcall next-emfun (or cnm-args args))))
(next-method-p ()

(not (null next-emfun))))
(apply #'(lambda ,(kludge-arglist lambda-list)

,form)
args))))))

Figure 7: Implementation of a method in Closette

wrong trade-off since next-method-p is used much less often than

call-next-method.
Now, arguably, this if test is fairly minor: call-next-method

is not called very often and most of the performance issues have

to do instead with the cost of creating the various closures and the

layers of function calls. So more efficient implementations, such as

PCL spend a fair deal of efforts optimizing this code but they still

leave this if test untouched.
To remove this if we need to replace the nil representation of

the error case with a function which will signal the error when

called. This makes the call-next-method code simpler and more

efficient, but it introduces a problem in next-method-p: how can

we tell if next-emfun is one of those functions representing the “no

next method” case?

In Emacs Lisp, we used to do just that with a really gross and

brittle hack which dug into the innards of the closures to compare

them against a sample. With OClosures we now simply defined

a trivial type with no slot, (oclosure-define cl–generic-nnm),
then use oclosure-lambda when building those functions, and

finally replaced the 20 line monster of magic incantations with just:

(eq (oclosure-type cnm) 'cl--generic-nnm)

5.3 Keyboard macros
Emacs’s keyboard macros are not macros in Lisp’s sense but are

simply a sequence of key presses recorded by the user so they can

replay them later at will. Originally, they were represented as a

simple vector of key presses and still several parts of Emacs support

this form, but then the kmacro package extended that functionality

and needed more info for that, making it unable to use the built in

support to treat a mere vector as a kind of executable object. Instead

it represented keyboard macros as a sort of object implemented

as a list holding a vector of key presses, plus 2 other pieces of

information, and in order to make it executable, it then wrapped it

into a function.

The nasty part was when kmacro needed to look at such a func-

tion, in order to extract the 3-element list from it, either to print it

in a human-friendly way, or even to let the user edit it. Contrary to

the previous two examples, those functions constructed by kmacro
did not need to run fast and could use more or less any calling con-

vention they wanted, so where able to implement in a less hideous

way, by arrange for the function to return its contents when called

with a special argument, and simply using a special docstring to

recognize those functions (which was needed simply to know that

it’s safe to call it with that special argument).

The new code uses an OClosure to replace both the list of 3

elements and the wrapper function, making most of the code sig-

nificantly cleaner. Contrary to the previous two cases, this is a use

case where something like funcallable objects would have worked

almost as well since the extra indirection it would have imposed

would be of no consequence.

5.4 Commands
Emacs Lisp functions are actually not quite as opaque as the 𝜆-

calculus wants them to be. We can not only get to know a func-

tion’s arity but we can also query a bit more information about it:

Emacs Lisp functions can carry and expose a docstring as well as

an interactive form. The first is used for documentation purposes

only (except for exceptional cases as in kmacro), while the second
makes it possible to use function names as interactive commands:

an interactive form is a chunk of code which constructs the list

of arguments to pass to the function when the user invokes the

command.

These are basically ad-hoc forms of OClosure slots. Emacs also

defines a subtype of functions, called commands which corresponds

to those functions which have an interactive form.

The current OClosure code makes these ad-hoc forms of func-

tion slots and function subtypes obsolete, by defining the type

of oclosure-command containing an interactive-form slot, and

making it possible to use OClosure slots to carry a function’s doc-

string and interactive form. Nevertheless, the obsolete support is

still in very heavy use because of the subtle incompatibilities that

are introduced when using the new code.

5.5 Threesomes
Another circumstance where we have found a need to look inside a

function is when trying to avoid accumulating function wrappers.

These accumulations can typically occur for wrappers implement-

ing coercions, as in type-directed unboxing [Leroy 1992] or in

gradual typing [Siek and Taha 2006]. A solution to those accumu-

lations consists in collapsing those wrappers by recognizing that

some of them inevitably cancel others [Minamide and Garrigue

1998]. Siek and Wadler [2010] provide such a solution for the case

of gradual typing. In the calculus they use to solve the problem,

they introduce threesomes which are coercions written ⟨𝑇 𝑅⇐ 𝑆⟩𝑠 ,
where a the term 𝑠 of type 𝑆 is coerced to type 𝑇 via type 𝑅. The

way they avoid accumulating coercions is by having a rule which

reduces ⟨𝑇
𝑅1⇐ 𝑈 ⟩⟨𝑈

𝑅2⇐ 𝑆⟩𝑠 to ⟨𝑇
𝑅1&𝑅2⇐ 𝑆⟩𝑠 , so coercions can never

accumulate.

In their calculus, those ⟨𝑇 𝑅⇐ 𝑆⟩𝑠 don’t reduce to functions when
𝑠 itself is a function, instead they are part of the possible runtime

values, which means that function calls have to handle the case of

a 𝜆 differently than the case of a coercion. The other option when

implementing such a system is to make those coercions (when ap-

plied to functions) reduce to functions implemented using wrappers.

This can simplify and speed up the all important functions calls.

But it is only an option if there is still a way to recognize those

ELS’22, March 21–22, 2022, Porto, Portugal Stefan Monnier

wrapper functions so we can combine them when we try to apply

a wrapper on top of another. If all you have is a plain 𝜆, there is

no other option than to get your hands dirty and look under the

abstraction barrier. With OClosures instead, you can have your

cake and eat it: simple and efficient function calls, with efficient

wrappers, while still able to quickly recognize those wrappers and

extract whichever information is needed in order to collapse them.

6 RELATEDWORK
The idea of treating functions as objects is quite old.

As mentioned, the AMOP [Kiczales et al. 1991] uses funcallable
objects which are somewhat like OClosures with a single slot which

do nothing more than pass their arguments to that slot’s value,

which should be another function. They suffer from the fact that

they tend to introduce an indirection between the funcallable object
and the actual underlying function, and the fact that the code of

the function cannot directly access the funcallable object’s slots.

In return for that, the contained function can be changed by side-

effect, whereas it would be difficult to allow changing the code of

an OClosure.

MIT Scheme [MIT-Scheme 2020] provides similar functionality

under the name application hooks. The more interesting of them

are called entities which contain a function and another object.

When called, an entity calls its contained function, passing it the

arguments it received plus itself. This somewhat reduces the prob-

lem mentioned above that the function cannot directly access the

funcallable object’s slots.

GNU Kawa [Kawa 2020] and GNU Guile [Guile 2021] allow

functions to carry extra properties, called procedure properties that
can be added via side effect and queried. Again, the function itself

does not have any direct access to those properties, limiting their

applicability.

The Lisp Machine Lisp [Stallman et al. 1984] did not really sup-

port lexical scoping like we now have in Scheme and Common

Lisp, but it had a closure operator that took a list of (dynamically

scoped) variables and a function and returned a new function which

called its argument function with the vars temporarily re-bound to

the value they had when you created that “closure”. The relevant

part here is that you could access the list of closed-over variables

and extract their values, just as we do in OClosures. Going even

further, Lisp Machine Lisp had the entity operator which worked

almost identically, except that it made it possible to assign a type to

the returned function, which was typically used to allow specialized

pretty printing output for those entities.
More recently, Scheme’s SRFI 229 suggests the notion of tagged

procedure, which is a procedure that comes with one extra im-

mutable slot (called its tag) holding an arbitrary value. Beside the

fact that it is limited to a single slot, it is also more limited than

open closures in the sense that the tagged procedure’s body cannot

directly refer to the tag, so when that is needed, the tag value will

probably end up duplicated in the object: one copy in the tag slot

and another among the captured variables.

Of course, OClosures correspond to objects limited to a single

method, used quite widely in OO-style languages that do not have

a separate notion of function. They differ a bit in the sense that

they conflate oclosure-define and oclosure-lambda and force

every function with a different body to have a different type (since

the method is associated with the class).

The function objects of Python are also similar: one can get the

list of captured variables of a Python function as well as query (and

modify) their values. But this is mostly a result of its introspection

facilities, offering no way for the programmer to control which

captured variables are exposed and which aren’t.

Siskind and Pearlmutter [2007] propose to make closures more

transparent by providing a map-closure function which is like

mapcar but for closures, applying a given function to each of the

values captured within the closure. The name of the captured vari-

ables is not made available, so this cannot be used to extract targeted

information such as the value of a particular slot, and in this sense

their functions remain quite opaque (in a sense analogous to secu-

rity through obscurity, maybe).

7 CONCLUSION
We have presented the idea of making functions a bit less opaque in

the form of open closures, then shown a design and implementation

of this feature in Emacs Lisp under the name of OClosures, and

given a sense of how they can be applied in a variety of circum-

stances where using either tuples or functions or a combination of

both is not quite satisfactory.

ACKNOWLEDGMENTS
The author would like to thank the readers of emacs-devel for

their naming suggestions and in particular Qiantan Hong who

proposed the name of “open closures”.

This work was supported by the Natural Sciences and Engi-

neering Research Council of Canada grants № 298311/2012 and

RGPIN-2018-06225. Any opinions, findings, and conclusions or rec-

ommendations expressed in this material are those of the author

and do not necessarily reflect the views of the NSERC.

REFERENCES
Guile 2021. GNU Guile Reference Manual (3.0.7 ed.). https://www.gnu.org/software/

guile/manual/

Kawa 2020. The Kawa Scheme Language – Reference Documentation (3.1.1 ed.). https:

//www.gnu.org/software/kawa/pt01.html

Gregor Kiczales, Jim Des Rivières, and Daniel G. Bobrow. 1991. The Art of the Metaobject
Protocol. MIT Press.

Peter Lee and Mark Leone. 1996. Optimizing ML with Run-Time Code Generation. In

Programming Languages Design and Implementation. ACM Press, Philadelphia, PA,

137–148.

Xavier Leroy. 1992. Unboxed Objects and Polymorphic Typing. In Symposium on
Principles of Programming Languages. 177–188.

Yasuhiko Minamide and Jacques Garrigue. 1998. On the runtime complexity of type-

directed unboxing. In International Conference on Functional Programming. ACM
Press, 1–12.

MIT-Scheme 2020. MIT/GNU Scheme Reference (11.2 ed.). https://www.gnu.org/

software/mit-scheme/documentation/stable/mit-scheme-ref/index.html

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In

Scheme Workshop. 81–92.
Jeremy G. Siek and Philip Wadler. 2010. Threesomes, with and without blame. In

Symposium on Principles of Programming Languages. 365–376. https://doi.org/10.

1145/1707801.1706342

Jeffrey Mark Siskind and Barak A. Pearlmutter. 2007. First-class Nonstandard Interpre-

tations by Opening Closures. In Symposium on Principles of Programming Languages.
71–76. https://doi.org/10.1145/1190216.1190230

Richard Stallman, Daniel Weinreb, and David Moon. 1984. Lisp Machine Manual (6th

ed.). MIT. https://hanshuebner.github.io/lmman/frontpage.html

Christian Urban, Stefan Berghofer, and Michael Norrish. 2007. Barendregt’s Variable

Convention in Rule Inductions. In International Conference on Automated Deduction.
35–50. https://doi.org/10.1007/978-3-540-73595-3_4

https://www.gnu.org/software/guile/manual/
https://www.gnu.org/software/guile/manual/
https://www.gnu.org/software/kawa/pt01.html
https://www.gnu.org/software/kawa/pt01.html
https://www.gnu.org/software/mit-scheme/documentation/ stable/mit-scheme-ref/index.html
https://www.gnu.org/software/mit-scheme/documentation/ stable/mit-scheme-ref/index.html
https://doi.org/10.1145/1707801.1706342
https://doi.org/10.1145/1707801.1706342
https://doi.org/10.1145/1190216.1190230
https://hanshuebner.github.io/lmman/frontpage.html
https://doi.org/10.1007/978-3-540-73595-3_4

	Abstract
	1 Introduction
	2 Motivating example
	3 Open Closures
	3.1 Dynamic semantics
	3.2 Typing rules
	3.3 Compilation

	4 OClosures in Emacs Lisp
	4.1 OClosure types
	4.2 OClosure copies
	4.3 Mutability
	4.4 Implementation

	5 Experience
	5.1 Advice
	5.2 next-method-p
	5.3 Keyboard macros
	5.4 Commands
	5.5 Threesomes

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

