PERFORMANCE OF TEXTURE COMPRESSION ALGORITHMS IN LOW-LATENCY
COMPUTER VISION TASKS

Jakub Zddnik, Markku Mcikitalo, Jussi Tho, Pekka Jiiciskelciinen

Tampere University, Finland
{jakub.zadnik, markku.makitalo, jussi.iho, pekka.jaaskelainen} @tuni.fi

ABSTRACT

Deep learning has been successfully used for computer vision tasks,
but its high computational cost limits the adoption in lightweight
devices such as camera sensors. For this reason, many low-latency
vision systems offload the inference computation to a local server, re-
quiring fast (de)compression of the source images. Texture compres-
sion is a compelling alternative to existing compression schemes,
such as JPEG or HEVC, due to its low decoding overhead, straight-
forward parallelization, robustness, and a fixed compression ratio. In
this paper, we study the impact of lightweight bounding box—based
texture compression algorithms, BC1 and YCoCg-BC3, on the ac-
curacy of two computer vision tasks: object detection and semantic
segmentation. While JPEG achieves superior per-pixel error rate,
the YCoCg-BC3 encoding can provide comparable vision accuracy.
The BC1 encoding results in significant degradation of vision perfor-
mance. However, by retraining the FasterSeg teacher network with
a BCl-compressed dataset, we reduced its segmentation mIoU loss
from 2.7 to 0.5 percent. Thus, both BC1 and YCoCg-BC3 encoders
are suitable for use in low latency vision systems, since they both
achieve significantly higher encoding speed than JPEG and their de-
coding overhead is negligible.

Index Terms— Image Compression, Computer Vision, Texture
Compression, Low Latency

1. INTRODUCTION

Computer vision is a necessary component of latency-oriented ap-
plications such as autonomous driving or industrial control. The
growing trend of multi-access edge computing [1] enables to use
lightweight devices as “dumb sensors” connected via a high-speed
network, such as 5G, to edge servers where the neural network (NN)
inference takes place. For this purpose, compression can be neces-
sary to limit the signal bandwidth and speed up the data transfers.
Figure 1 illustrates a compression ratio required to achieve 10,
20, and 50 ms end-to-end latency in a control loop with a FasterSeg
semantic segmentation network [2] running on an edge server at
163.9 frames per second (FPS) (as reported by the authors). The hor-
izontal stripes represent compression ratios of texture compression
formats and a typical compression ratio range of joint photographic
experts group (JPEG) with quality parameters between 20 and 100
(blue region). The diagonal lines represent a bitrate and a compres-
sion ratio when all the time remaining from FasterSeg inference is
spent on a network transfer, without any room for (de)compression
latency or the latency of the network itself. To meet a given la-
tency budget, the compression ratio or the bitrate must increase by
an increment dictated also by the encoding/decoding time of the
(de)compression algorithm. Thus, fast (de)compression is essen-

T \\\\H‘ T T \\\\H‘ T T T 1
50ms 20ms 10ms
100 |7 =
2 | JPEG -
E -
§ ASTC: |
2
5 10 =
g N NG NG T T T T
O BC1
N N N BC3 |
1 L LT L \\\H” L Ll
0.1 1 10

Network bandwidth (Gb/s)

Fig. 1. Theoretical minimum compression ratio required to achieve
an end-to-end latency of 10, 20 and 50 ms assuming a FasterSeg
network in the loop.

tial for transferring over low-bitrate channels or preventing quality
degradation due to strict compression ratio requirements.

Most video and image compression algorithms are optimized for
human perception which, however, might not necessarily be optimal
for computer vision algorithms [3]. Recently, adapting a compres-
sion algorithm for machine perception has been a subject of multiple
studies. However, the works concentrate mostly on JPEG [3-5] or
high efficiency video coding (HEVC) algorithms [6], or designing
a custom algorithm to be integrated as an application-specific inte-
grated circuit (ASIC) [7].

JPEG [8] is a popular image compression format often used for
its simplicity. Compared to JPEG and other codecs based on fre-
quency transform and entropy coding, such as HEVC, texture com-
pression has the advantage of a fixed compression ratio, and there-
fore a random access property where each pixel can be addressed
directly from the compressed representation. Furthermore, texture
decompression is an extremely fast process, further accelerated with
specialized hardware on virtually all modern graphics processing
units (GPUs) to allow fast mapping of textures on a rendered scene.
On the other hand, compressing into modern texture formats, such as
adaptive scalable texture compression (ASTC) [9], is usually more
complex and time-consuming than JPEG encoding if high quality is
desired.

To assess the practicality of using texture compression in low la-
tency computer vision pipelines, this paper compares real-time BC1
and YCoCg-BC3 texture compression algorithms and an offline
high-quality ASTC encoder against the well-known JPEG format in
terms of computer vision performance. We evaluate the computer

vision performance on two common computer vision tasks using
state-of-the-art real-time neural networks: object detection with a
YOLOV4 network [10] and semantic segmentation with a FasterSeg
network [2]. To verify the low-latency potential of the bounding
box-based BC1 and YCoCg-BC3 encoding algorithms, we provide
their runtime measurements and demonstrate their low complexity
against the ASTC encoder. Furthermore, we show that in the case of
the more complex FasterSeg teacher network, the loss of vision ac-
curacy caused by BC1 compression can be recovered from 2.7 to 0.5
percentage points (pp) by retraining the network with a compressed
dataset.

2. TEXTURE COMPRESSION

BC1 [11] can be considered the most basic texture compression for-
mat. The encoder splits an image into 4 x 4 blocks and selects two
endpoints representing the two “most opposite” colors in the block.
Each pixel is then represented as a 2-bit weight pointing at either
one of the two endpoints or one of two values linearly interpolated
equidistantly between the two endpoints. Each BCI-compressed
block occupies 64 bits, therefore its compression ratio is 6, assuming
an RGB source image with 8 bits per channel.

A similar principle is used in other BCn formats, such as BC3,
which compresses an alpha channel into its own 64-bit block on top
of a BC1 block with compressed RGB channels. A YCoCg-BC3
modification of this format [12] exploits the human vision being
most sensitive to luminance by storing the Y channel into the high-
precision alpha block while the Co and Cg channels are encoded
with lower precision in the BC1 block. By using two 64-bit blocks,
the compression ratio of (YCoCg-)BC3 is only 3.

The core of the ASTC [9] format also follows the endpoint-
based principle but expands on the number of possible configura-
tions. For example, it supports block partitioning where each par-
tition has its own set of endpoints, which allows resulting colors to
reach beyond a line in a color space. Also, ASTC allows adjust-
ing the quantization precision tradeoff between the endpoints and
weights, which is a fixed parameter in the BC1 and BC3 formats. A
unique feature of ASTC is the support for different input block sizes
from 4 x 4 to 12 x 12 pixels. Since the encoded block has always
128 bits, by scaling the input block size it is possible to adjust the
rate-distortion tradeoff. More specifically, the achievable compres-
sion ratio of ASTC ranges from 3 to 27 on RGB images with 8 bits
per channel.

Apart from the endpoint-based BCn and ASTC formats, various
other texture compression formats exist, such as ETC1, ETC2, or
PVRTC. We chose the BC1 format since it is the simplest widely
used format and faster to encode than ETC1 or ETC2 [13]. YCoCg-
BC3 allows for superior quality in comparison to BC1, while re-
taining similar simplicity. The third evaluated format, ASTC, pro-
vides us one of the highest quality achievable with existing texture
compression formats at respective bitrates and also reaching lower
bitrates comparable with JPEG at lower quality levels.

Unlike traditional image/video formats mentioned earlier, tex-
ture compression specifies only the data layout of the encoded block
while the encoding procedure depends on the heuristics of a par-
ticular encoder. Thus, the encoding complexity varies significantly
based on the required quality vs. speed tradeoff. The following sec-
tion explains the choice of the evaluated algorithms.

3. EXPERIMENTAL SETUP

We implement fast GPU-based BC1 and YCoCg-BC3 algorithms
from [12] on an Intel UHD 620 GPU integrated within a laptop
processor instead of a discrete GPU in order to emulate a resource-
constrained scenario. BC1 and YCoCg-BC3 offer only one bitrate
level and encoding configuration, therefore, the measurement con-
sists of only a single data point for each. As the low-latency coun-
terpart of BC1 and YCoCg-BC3, we use a GPU implementation of
JPEG: GPUJPEG compression from [14]'. GPUJPEG was evaluated
at quality levels 20, 30, ..., 90, 95 and 100 without subsampling.

Since the compression ratio of both BC1 and YCoCg-BC3 is
fixed, we also evaluate different block sizes and presets of a sin-
gle instruction multiple data (SIMD)-accelerated central processing
unit (CPU) encoder of the ASTC format astcenc?, version 2.3.
The ASTC encoder was evaluated for three quality presets (fastest,
medium and exhaustive) and different input block sizes (4 x 4, 6 X 6,
8% 8,10 x 10 and 12 x 12). While the fastest preset is optimized for
maximum speed, the exhaustive preset is optimized for maximum
quality. In practice, the fastest and exhaustive presets are rarely used
in production due to low quality and low encoding speed, respec-
tively. However, for our experiments, they provide absolute bounds
of the encoder’s performance.

For evaluation, we consider two computer vision tasks com-
monly used in real-time scenarios:

Object Detection YOLOv4 [10] was used as a real-time object
detection framework evaluated on the validation set of the COCO
dataset, version 2017 [15]. It is worth noting that the COCO dataset
contains images already compressed into a lossy JPEG format (the
average quality parameter of training and validation images is ap-
proximately 94). However, as they have been used in this form
to train the YOLOv4 network, they can be treated as the ground
truth. The vision performance results are presented as mean av-
erage precision for mean intersection over union (mloU) 50-95%
(mAPg.50—0.95).

Semantic Segmentation For the purpose of semantic segmen-
tation we chose a real-time FasterSeg network [2] trained on a high-
resolution (2048 x 1024) Cityscapes dataset [16]. Unlike COCO,
the Cityscapes dataset only contains images compressed losslessly.
The FasterSeg network consists of two networks: lightweight stu-
dent (3.4M parameters) and complex teacher (22M parameters), with
a mloU measured separately for each. During training, the student
distills the learned knowledge from the teacher network, but also op-
timizes for the lowest possible latency, unlike the teacher network.
Thus, we used the student network for evaluating the vision perfor-
mance, as it is the one that would be deployed in a real scenario.
However, the teacher network is later used in the retraining exper-
iment, as its higher number of parameters represents higher learn-
ing capability and allows us to estimate the maximum possible gain
achievable with retraining.

4. EVALUATION

4.1. Computer Vision Performance

Figure 2 shows the mAP¢ 50—_0.95 of the YOLOv4 network on a val-
idation set of the COCO dataset for the following formats: ASTC,
BC1, YCoCg-BC3 and JPEG with configurations described in the
previous section. The bitrate is expressed as bits per pixel (bpp),
where in the case of JPEG, the bitrate was averaged over the whole

"https://github.com/CESNET/GPUJPEG
’https://github.com/ARM-software/astc—encoder

T T T T T
0.5 p =
0 = /
s | ASTC fastest
SI | + —+— ASTC medium | |
af 04l —+— ASTC exhaustive | |
< I R JPEG
g | — BCl1 b
I —— YCoCg-BC3 N
I —— uncompressed | |
03 oy by T T T
0 2 4 6 8 10
T T T T T
50 |-

T T T

PSNR (dB)
I
[en]
T

I T I Y I |

30 -

|

1

bpp

Fig. 2. Mean average precision for intersection over union 50-95%
of YOLOV4 (top) and PSNR (bottom) of a COCO validation set
compressed with different methods.

dataset at each quality level, while the texture compression formats
have a constant compression ratio at a given block size. The bot-
tom plot shows the pixel-wise error between the uncompressed and
compressed COCO validation set expressed as peak signal-to-noise
ratio (PSNR).

Similar comparison is shown in Figure 3 for the mloU of a
FasterSeg student network (top) and PSNR of the validation set of
the Cityscapes dataset (bottom). The FasterSeg teacher network
reached mloU 1-2 pp higher in our experiments.

On the object detection task, JPEG outperforms all texture com-
pression algorithms in terms of mAPg 50—0.95, except at the lowest
bitrates where the quality degrades faster than the higher ASTC pre-
sets. YCoCg-BC3 compression achieves mAPq.50—0.95 only 0.24
pp lower than the uncompressed dataset and BC1 compression de-
grades the same metric by 1.94 pp. The PSNR results show an op-
posite trend towards higher bitrates: while the detection precision
converges towards the uncompressed level, the PSNR difference in-
creases.

On the semantic segmentation task, JPEG shows a maximum
achievable mloU lower than all ASTC variants and YCoCg-BC3 at
high bitrates. YCoCg-BC3 achieves only 0.3 pp less mloU than
uncompressed while BC1 compression degrades the segmentation
mloU by 3.5 pp. The PSNR results, on the other hand, show supe-
rior JPEG performance across the whole bitrate range. Interestingly,
the exhaustive ASTC preset achieves higher mIoU than JPEG on all
bitrates while its PSNR is always lower.

T T T ———
0.72 =« .
L ASTC fastest i
=2 071 —+— ASTC medium ||
g I —+— ASTC exhaustive |
| — JPEG]
0.68 B BC1 i
L —x— YCoCg-BC3 |
i —— uncompressed | |

066 3 S S T T R S B N

0 6 8 10
50 B j
a |]
<) | i
g | |
»v 40 |- =
A I i
L [N R S (N NN N NN SN N SN NUNN SN S TR NN N RO N i

[e]
V)
I
D
oo
—_
(@]

bpp

Fig. 3. Mean intersection over union (mloU) of a FasterSeg stu-
dent network (top) and PSNR (bottom) of a Cityscapes validation
set compressed with different methods.

The results show that in terms of only computer vision perfor-
mance, texture compression algorithms compete better against JPEG
towards the higher end of the bitrate spectrum, and also perform bet-
ter than would be apparent from the PSNR results. BC1 yields in-
ferior performance in all evaluated quality metrics but achieves the
fastest compression speed. One factor contributing to the high qual-
ity of YCoCg-BC3 is the high precision of the luminance channel
which plays an important role for both machine and human percep-
tion [3]. Both ASTC and BC1 operate in RGB color space which
might be a limiting factor of these formats.

4.2. Retraining

BC1 compression causes a large decrease in computer vision per-
formance, especially for semantic segmentation. However, its fast
compression speed and higher compression ratio than YCoCg-BC3
still make it an attractive choice when ultra-fast encoding is required.
For this reason, we investigated how much quality could be restored
by retraining the FasterSeg network with a BC1-compressed train-
ing set of the Cityscapes dataset. We focused only on the teacher
network since its higher complexity represents a more achievable
learning capability than the student network, which also optimizes
for the lowest latency and reduces the number of learnable parame-
ters more than five times.

Figure 4 shows two crops from the Cityscapes validation set
(a) with their ground truth segmentation (b). The BC1 compression

Fig. 4. (a) Two crops from a Cityscapes validation set, (b) their
ground truth segmentation, (c) segmentation with a BC1-compressed
input by a pretrained FasterSeg teacher network and (d) segmenta-
tion with a BC1-compressed input by the same network trained on
the BC1-compressed dataset.

causes a missed detection of a person dressed in black (b, top) and a
noticeable gap in the traffic sign segmentation (b, botton) when eval-
uated on the pretrained FasterSeg teacher network. Segmentation by
the network retrained on a BC1-compressed dataset at least partially
recognizes the missing person (d, top) and restores the original traffic
sign shape (d, bottom).

The retraining results are summarized in Table 1. During a 600-
epoch training run, the highest validation mloU was 73.0% at the
epoch 590 which is 0.5 pp less than the mloU achieved with an un-
compressed dataset on the pretrained network. Therefore, it is pos-
sible to largely overcome artifacts introduced by BC1 compression
with retraining.

Table 1. Segmentation accuracy of the FasterSeg teacher network.

compression (eval) compression (train) mloU

BCl1 none (pretrained) 70.8 %

BCl1 BC1 73.0 %

none none (pretrained) 73.5 %
4.3. Runtime

Depending on the task and bitrate, ASTC can rival JPEG in terms of
computer vision performance. However, while JPEG can be encoded
in real time even at 8K resolution [14], the fastest ASTC configura-
tion in our experiments (12x 12 with fast preset) still took about 20
ms on average to compress a single Cityscapes image (2048 x 1024)
on a 32-core processor (AMD Threadripper 2990WX) with AVX2
SIMD acceleration.

To verify the runtime performance of BC1 and YCoCg-BC3 al-
gorithms on resource-constrained devices, we reimplemented them
on an Intel laptop integrated GPU and measured their encoding
speed. The used integrated GPU (Intel UHD 620) has 192 pro-
cessing elements (PEs) with limited cooling options compared to a
typical desktop GPU which can have thousands of PEs (for exam-
ple NVIDIA GTX 1080 used in [17] has 2560 PEs). The results,
together with comparison to related work, are shown in Table 2
and do not include memory transfers from/to a GPU (unless noted
otherwise). Since different implementations work with different
resolutions, as a common metric we extrapolated the throughput
reported for each method, and used it to calculate a hypothetical

encoding time it would take the encoder/decoder to process an 8K
frame (denoted as Tsk).

In our case, the difference between YCoCg-BC3 and BCl1 en-
coding speed is more than 2.7, although [14] reports a smaller
difference on a desktop GPU. From [14] it can also be seen that
JPEG encoding on a GPU is about 2.2-2.6x slower than BC1 or
YCoCg-BC3 on the same GPU. However, JPEG decompression is
even slightly slower than the compression, while texture decompres-
sion can be faster by more than an order of magnitude. In our ex-
periments using NVIDIA RTX 2070 GPU, rendering of an 8K frame
compressed as BC1 and YCoCg-BC3 took 0.53 and 0.54 ms, respec-
tively, with the latter including the YCoCg — RGB restoration in a
fragment shader.

Table 2. Encoding/decoding time of 8K resolution (Tsk, millisec-
onds) and compression ratio (CR) of different coding methods.

method device CR Tsk

[12]** BCl1 enc Intel 6 9.9
YCoCg-BC3 enc UHD 620 3 268

R BCl1 dec NVIDIA 6 053
YCoCg-BC3 dec RTX 2070 3054
ASTC enc AMD 27 323"

asteenc ox12fastest)y 2990WX

BCl enc 6 9.5

(14] YCoCg-BC3enc NVIDIA 3 113
JPEG Q95 enc GTX 580 | ~4.8 25.1

JPEG Q95 dec ~48 313
BCl1 enc Intel 6 45
[13] ETCI enc Xeon 6 9.0"
ETC2 enc E5-2699 6 117
(7] JPEG XS*dec NVIDIA 247 20.9i
GTX 1080 | 24 26.1

* Extrapolated when direct 8K results are not available
* Our implementation * Including CPU — GPU memory transfer
T Input with 4:2:2 subsampling

4.4. Complexity Analysis

To illustrate the complexity difference between the evaluated texture
compression algorithms, we implemented single-threaded CPU ver-
sions of the BC1 and YCoCg-BC3 encoders and compared them to
the astcenc encoder built with any manual SIMD vectorization
disabled and running on a single thread. By purposefully disabling
both multi-threading and manual SIMD optimizations it is easier to
compare the relative complexity between encoders (the compiler is
still allowed to auto-vectorize). Figure 5 shows the average scalar
encoding rate in megapixels per second of five astcenc presets
(black lines), a custom “restrict” preset forcing the astcenc en-
coder to always use only a single encoding configuration (blue),
BCI1 (+) and YCoCg-BC3 (x). To reduce the variance between
datasets, we composed a custom 64-image dataset containing the
Kodak dataset [18] as well as a random selection of images from the
COCO and Cityscapes validation sets. All benchmarks were per-
formed on a single thread of AMD Threadripper 2990WX.

The comparison shows major differences between the encoding
rates: Both BC1 and YCoCg-BC3 are more than an order of a magni-
tude faster than the fastest ast cenc preset. Furthermore, the differ-
ence between the fastest and exhaustive presets is between two and
three orders of magnitude. At the exhaustive preset, astcenc per-

E 2 [! Ll ‘ ‘ |
g 10 g ¥ . g
o L i
£ 10'E \ E
o)) £ E
=] []
g & \ 1
g 100
i & \\\]
=

154 L B
T 07 £
$ w02 |
E SRR RRRTRRRIRRE REE IRRR TRRR TRRE FRRE] poicfiii) IR R i
n 0 2 4 6 8 10

bpp

Fig. 5. Encoding rate in megapixels per second of five astcenc
presets (black line, from bottom to top: exhaustive, thorough,
medium, fast and fastest) a custom “restrict” preset (red line, top)
at five block sizes (from left to right: 12x12, 10x10, 8x8, 6x6 and
4x4), BC1 (4) and YCoCg-BC3 (%), running on a single core.

forms the most thorough search of the possible configuration space.
Scaling down the preset, the encoder is allowed to only search a
more and more limited subset of the configuration space. At the
fastest preset, the encoder only chooses between a handful of con-
figurations. Further modifying the encoder to only use one configu-
ration (“restrict” preset, shown as a blue line in Fig. 5) and skipping
the algorithm for choosing the color endpoint mode (which is redun-
dant in case of only one option), we managed to further decrease the
encoding time by over 60%.

The encoding time achieved with the “restrict” preset does not
include any configuration space search and most of its runtime is
spent calculating the weights’ alignment and a refinement pass. At
this point, the only way to speed up the calculation is to replace
the algorithms with faster variants. Both BC1 and YCoCg-BC3 en-
coders use a bounding box method for the endpoint estimation which
simply selects the minimum and maximum color values within a
block and does not rely on the weight alignment step: The weights
are directly selected based on their distance to the quantized endpoint
values. The refinement pass is also skipped entirely. Combined to-
gether, the simplified encoding method leads to more than an order
of magnitude improvement of the encoding speed in comparison to
the artificial “restrict” preset.

5. RELATED WORK

Compression for Computer Vision Several publications proposed
optimizing JPEG for NN inference. In [3], the authors proposed
the GRACE method, for optimizing the RGB-YUV transform and
quantization of the JPEG algorithm by offline probing a target NN
without modifying it. The GRACE method achieved accuracy higher
than retraining with unmodified JPEG dataset. [4] and [5] also op-
timize the JPEG for NN inference by focusing on the quantization
table.

In [6], the authors optimized HEVC for machine perception by
dynamically adjusting the quality based on a fast saliency map com-
putation. They achieve an encoding speed of ~10—40 ms per 1080p
frame. The authors of [19] optimized the parameters of a low-latency
JPEG XS [20] encoder for semantic segmentation task, leading to a
significant bitrate reduction at the same accuracy. In [7], the au-

thors propose an ASIC circuit for frame memory compression in the
HEVC algorithm optimized for computer vision.

To the best of our knowledge, no work has been published about
the effects of texture compression on machine perception.

A different approach from compressing images and tailoring the
compression for machine perception is to compress the intermediate
NN features [21-23]. Finally, to bridge the gap between the com-
pression for human and machine vision, the moving pictures experts
group (MPEG) has launched an exploration on a new paradigm of
video coding for machines (VCM), optimizing for both targets in
tandem [24,25]. Both approaches were shown to outperform tradi-
tional coding methods in terms of coding efficiency. However, in
this work, we focus on the former approach of compressing images,
as it is the most common method of supplying inputs to the neural
network and does not require any additional architectural changes.

Runtime Measurements Runtime results of GPU execution
times of the BC1 and YCoCg-BC3 compression algorithms were
published in the original publication [12]. The same algorithms were
evaluated in [14] on 1080p, 4K, and 8K resolutions. Real-time BC1
encoding was also implemented on a server-grade CPU as a part of
an in-home streaming system [13]. The authors also present their im-
plementation of ETC1 and ETC2 encoders. The ASTC encoding had
usually been considered too slow for even real-time purposes. How-
ever, in [26], the authors replace the complex configuration search
by a NN inference, accelerating the computation by up to 10x. To
compare with other types of compression methods, in [17] the au-
thors evaluate the decoding speed of a JPEG XS decoder, including
memory transfer times.

6. CONCLUSION

We evaluated the computer vision performance of low-complexity
BC1 and YCoCg-BC3 encoders. The results of YCoCg-BC3 en-
coding show accuracy comparable to both ASTC and JPEG, despite
reaching lower PSNR than both. Despite BC1 compression reach-
ing very low accuracy, especially on the semantic segmentation task,
retraining results on the FasterSeg teacher network suggest its com-
pression artifacts can be mostly recovered: The mloU after retrain-
ing is only 0.5 pp lower than on the uncompressed dataset, compared
to 2.7 pp without retraining.

A modern ASTC encoder, astcenc can slightly outperform
JPEG in computer vision performance, depending on the task, bi-
trate and encoding preset. However, ASTC encoding is very slow
due to its massive configuration search space and complex algo-
rithms, making it impractical for real-time use. Compared to even
the fastest preset, both BC1 and YCoCg-BC3 encoding was faster
by more than an order of magnitude when benchmarked on a single
thread without vectorization. Previous work also shows that iden-
tical GPU-based BC1 and YCoCg-BC3 encoders are faster than a
GPU-based JPEG encoder. The texture compression formats, how-
ever, reach more than an order of magnitude higher decoding speed,
thus significantly outperforming JPEG.

A further study focused on reducing the configuration space and
simplification of its core algorithms would allow leveraging the main
advantage of the format: the ability to scale its input block size to en-
able more bitrates, which is a unique property among texture com-
pression formats. Our future work includes adapting simple encod-
ing techniques from BC1 and YCoCg-BC3 to the versatile ASTC
format, unlocking lower achievable bitrates than 6 and 3 bits per
pixel, respectively. The results of retraining the segmentation net-
work with a BC1-compressed dataset suggest that a significant part
of the lost quality can be recovered via retraining.

7. ACKNOWLEDGMENTS

The work was financially supported by the Tampere University ITC
Graduate School. This project has received funding from the ECSEL
Joint Undertaking (JU) under grant agreement No 783162. The JU
receives support from the European Union’s Horizon 2020 research
and innovation programme and Netherlands, Czech Republic, Fin-
land, Spain, Italy. It was also supported by European Union’s Hori-
zon 2020 research and innovation programme under Grant Agree-
ment No 871738 (CPSoSAware).

(1]

(2]

(3]

[4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

8. REFERENCES

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and
D. Sabella, “On multi-access edge computing: A survey of
the emerging 5G network edge cloud architecture and orches-
tration,” Communications Surveys & Tutorials, vol. 19, no. 3,
2017.

W. Chen, X. Gong, X. Liu, Q. Zhang, Y. Li, and Z. Wang,
“FasterSeg: Searching for faster real-time semantic segmenta-
tion,” arXiv:1912.10917, 2019.

X. Xie and K.-H. Kim, “Source compression with bounded
DNN perception loss for IoT edge computer vision,” in Proc.
of the International Conference on Mobile Computing and Net-
working (MobiCom), 2019.

Z.Liu, T. Liu, W. Wen, L. Jiang, J. Xu, Y. Wang, and G. Quan,
“DeepN-JPEG: A deep neural network favorable JPEG-based
image compression framework,” in Proc. of the the Design
Automation Conference (DAC), 2018.

Z. Li, C. De Sa, and A. Sampson, “Optimizing JPEG
quantization for classification networks,” arXiv preprint
arXiv:2003.02874, 2020.

L. Galteri, M. Bertini, L. Seidenari, and A. Del Bimbo, “Video
compression for object detection algorithms,” in Proc. of
the International Conference on Pattern Recognition (ICPR),
2018.

L. Guo, D. Zhou, J. Zhou, S. Kimura, and S. Goto, “Lossy

compression for embedded computer vision systems,” [EEE
Access, vol. 6, 2018.

G. K. Wallace, “The JPEG still picture compression standard,”
Transactions on Consumer Electronics, vol. 38, no. 1, 1992.

J. Nystad, S. Lassen, A. Pomianowski, S. Ellis, and T. Olson,
“Adaptive scalable texture compression,” in Eurographics /
ACM SIGGRAPH Symposium on High Performance Graphics,
2012.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao,

“YOLOv4: Optimal speed and accuracy of object detec-
tion,” arXiv:2004.10934, 2020.

K. L. Iourcha, K. S. Nayak, and Z. Hong, “System and method
for fixed-rate block-based image compression with inferred
pixel values,” US Patent 5,956,431, 1999.

J. M. P. Van Waveren and I. Castafio, “Real-time YCoCg-DXT
compression,” Technical report, id Software, Inc. and NVIDIA
Corp., 2007.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

D. Pohl, D. Jungmann, B. Taudul, R. Membarth, H. Hariha-
ran, T. Herfet, and O. Grau, “The next generation of in-home
streaming: Light fields, 5K, 10 GbE, and foveated compres-
sion,” in Proc. of the Federated Conference on Computer Sci-
ence and Information Systems (FedCSIS), 2017.

P. Holub, M. Srom, M. Pulec, J. Matela, and M. Jirman, “GPU-
accelerated DXT and JPEG compression schemes for low-
latency network transmissions of HD, 2K, and 4K video,” Fu-
ture Generation Computer Systems, vol. 29, no. 8, 2013.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollar, and C. L. Zitnick, “Microsoft coco: Com-
mon objects in context,” in European conference on computer
vision. Springer, 2014, pp. 740-755.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele, “The
Cityscapes dataset for semantic urban scene understanding,”
in Proc. of the Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

V. Bruns, T. Richter, B. Ahmed, J. Keinert, and S. Foel, “De-
coding JPEG XS on a GPU,” in Proc. of the Picture Coding
Symposium, 2018.

R. Franzen, “Kodak lossless true color image suite,” [online]
Available: http://r0k.us/graphics/kodak.

B. Brummer and C. de Vleeschouwer, “Adapting JPEG XS
gains and priorities to tasks and contents,” in Proc. of the Con-
ference on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2020.

A. Descampe, J. Keinert, T. Richter, S. Folel, and G. Rouvroy,
“JPEG XS, a new standard for visually lossless low-latency
lightweight image compression,” in Proc. of the Applications
of Digital Image Processing XL, 2017.

H. Choi and L. V. Bajié, “Deep feature compression for collab-
orative object detection,” in Proc. of the International Confer-
ence on Image Processing (ICIP), 2018.

H. Choi and I. V. Bajic, “High efficiency compression for ob-
ject detection,” in Proc. of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2018.

J. Shao and J. Zhang, “Bottlenet++: An end-to-end approach
for feature compression in device-edge co-inference systems,”
in Prof. of International Conference on Communications Work-
shops (ICC Workshops), 2020.

L. Duan, J. Liu, W. Yang, T. Huang, and W. Gao, ‘“Video
coding for machines: A paradigm of collaborative compression
and intelligent analytics,” Transactions on Image Processing,
vol. 29, 2020.

Y. Hu, S. Yang, W. Yang, L.-Y. Duan, and J. Liu, “Towards
coding for human and machine vision: A scalable image cod-
ing approach,” in Proc. of the International Conference on
Multimedia and Expo (ICME), 2020.

S. Pratapa, T. Olson, A. Chalfin, and D. Manocha, “TexNN:
Fast texture encoding using neural networks,” Computer
Graphics Forum, vol. 38, no. 1, 2019.

