
Unified OpenCL Integration Methodology for
FPGA Designs

Topi Leppänen∗, Panagiotis Mousouliotis†, Georgios Keramidas†,
Joonas Multanen∗ and Pekka Jääskeläinen∗

∗Tampere University, Tampere, Finland
Email: {topi.leppanen,joonas.multanen,pekka.jaaskelainen}@tuni.fi

†University of the Peloponnese, Patras, Greece
Email: {p.mousouliotis,g.keramidas}@esdalab.ece.uop.gr

Abstract—OpenCL is a widely adopted open standard for
general purpose programming of diverse heterogeneous paral-
lel platforms that can harness various device types such as
CPUs, DSPs, GPUs, FPGAs and hardware accelerators. It is
an extensive and explicit low level API serving well as a
platform portability layer. However, using OpenCL for diverse
heterogeneous programming in multi-vendor platforms is not
practical due to device vendors each providing their own OpenCL
implementations which do not interoperate efficiently, leading
to inefficient execution coordination and collaborative execution
between various device types from different vendors.

To this end, this paper proposes a vendor-independent open
source method for integration of custom FPGA components to a
common OpenCL platform. The method relies on a streamlined
memory-mapped hardware control interface implemented by the
integrated components. The required OpenCL driver integration
is then automatically provided, enabling easy inclusion of differ-
ent types of FPGA accelerators to the control of a single OpenCL
runtime.

The ease of integration and portability is demonstrated by
integrating two hardware devices in two different FPGA devices.
The resource overhead of the hardware interface is shown to be
negligible and the clock frequency overheads small enough to not
pose efficiency challenges.

Index Terms—heterogeneous computing, hardware integration,
hardware acceleration, FPGA, OpenCL

I. INTRODUCTION

Heterogeneous computing aims to use specialized hardware
for increased energy efficiency, faster execution time or lower
resource footprint. In this paradigm, ideally, each task should
be executed on a hardware device which is optimized for that
task at hand. However, in practice it is unrealistic to assume
each task would have a dedicated hardware accelerator, but
programmability is desired to add flexibility to the function-
ality provided by the device.

Realizing the heterogeneous computing paradigm in prac-
tice has various challenges: How to control the different
types of devices and execute tasks on them? How to ensure
that interoperability is maintained between devices in diverse
heterogeneous platforms which integrate more than one spe-
cialized compute device? How to do all of this in a manner so

978-1-6654-0712-0/21/$31.00 ©2021 IEEE

that the heterogeneous application is portable, at least at the
source code level, to avoid extensive re-engineering whenever
even a single device of the heterogeneous platform is changed
to another?

Open Computing Language (OpenCL [1]) is an open stan-
dard that provides a low level API that enables utilization of
diverse heterogeneous platforms for general compute purposes.
It is adopted by a wide range of hardware vendors and fulfils
relatively well the portability aspect: In theory, when writing
an application against the OpenCL API, it is possible to make
it portable to any device which claims OpenCL support. How-
ever, in practice, this is happening only in a limited manner;
each processor vendor has their own OpenCL implementation
that can control their own devices, but not those from other
vendors. This limits the capabilities of handling diverse multi-
vendor heterogeneous platforms as a whole, implementing
cross-device concerning aspects such as synchronization or
data transfers in the most optimal manner.

The open source OpenCL implementation Portable Comput-
ing Language (PoCL, [2]) was created to address the concern
of multiple vendor implementations having limited interoper-
ability. Its key motivation is not only to be a framework for
more easily adding single-vendor OpenCL support for new
hardware, but eventually to integrate all types of devices from
all vendors to a common OpenCL platform, allowing their
utilization as a collaborating entity rather as multiple “isolated
vendor islands”.

In the recent years, the key FPGA vendors have embraced
OpenCL as an input in their High-Level Synthesis (HLS)
toolflows, significantly easing the programming of the FPGA
fabrics and thus reducing the need for digital hardware design
expertise to utilize them efficiently. However, the OpenCL-
based HLS tools are not compatible, requiring vendor-specific
source code modifications for efficient implementation [3], and
cannot function efficiently with devices from other vendors in
the same context.

In this paper, we propose a method, along with the necessary
hardware and software, to integrate functionality implemented
in FPGA devices to PoCL, a common open source OpenCL
platform. We identify the key contributions of this work as the

following:
• A common hardware interface specification for non-

programmable and programmable co-processors that en-
ables OpenCL kernel execution and device-to-device
work queuing.

• Unified means of utilizing FPGA fabrics from different
vendors from standard OpenCL host programs.

• Integration of FPGA-based accelerators to OpenCL plat-
forms with CPUs from multiple vendors for seamless
CPU+FPGA execution.

The paper is structured as follows. Section II covers the key
concepts in two open standards related to heterogeneous com-
puting used in this work. Section III describes the hardware
interface used to unify the “outside view” of the integrated
components. Section IV provides the software point of view
in terms of OpenCL implementation and the application writer.
Section V shows the steps required to integrate a new hardware
component to a common OpenCL platform in the proposed
method. Section VI presents the measurements that were
made to ensure the method produces insignificant overheads
at FPGA implementation side. In Section VII we discuss
how the proposed integration method relates to other previous
technologies, and Section VIII concludes the paper.

II. OPEN HETEROGENEOUS COMPUTING STANDARDS

Open Computing Language (OpenCL [1]) is an interesting
API for providing the lowest layer in heterogeneous computing
software stacks since it is being widely adopted, having an
extensive feature set, as well as being an openly available
standard.

OpenCL follows a model where there is a single host CPU
running the main program that commands one or more co-
processors (devices) which can execute tasks asynchronously
or synchronously. The host program queues work to the
devices through command queues (CQs). A typical command
pushed to the queue is a kernel command which executes a
function on the device, often in the data parallel Single Pro-
gram Multiple Data (SPMD) fashion. Here a kernel function
defines what a single instance (work-item) does in a possibly
multidimensional grid of instances.

Runtime portability of software across the variety of hetero-
geneous devices is achieved by means of online compilation,
which is a standardized way for invoking cross compilers
targeting the device at hand during the host program runtime.
Relevant to the proposed work, a very underused feature in
the standard is the concept of a custom device which abstracts
hardware accelerators which do not necessarily support online
compilation of any general purpose functions, but instead
present a set of built-in kernels for invoking fixed functions.

Whereas OpenCL has been mostly used and considered as
a “single compute node” API with other (typically message
passing APIs) applied on top for computer cluster utilization,
there have been experiments that have shown that the pro-
gramming model is suitable also for (low latency) distributed
execution [4], extending its scope farther.

Another open heterogeneous computing standard relevant
to this work is Heterogeneous System Architecture [5]. HSA
is an ambitious effort of providing a standard where the het-
erogeneous devices are mapped to a unified coherent address
space for easier data sharing across the platform. The overall
concept of presenting a unified memory mapped interface
which the devices (called agents in the HSA specification) can
utilize for execution coordination has inspired the proposed
work. Thanks to HSA being an open specification, it has been
utilized heavily in the proposed integration method.

III. ALMAIF V2: THE COMMON HARDWARE INTERFACE

Driver implementation and its interfacing to the next layers
in the application software stack has major non-recurring
engineering costs when integrating new hardware to software
platforms. The means to invoke the different functionalities
required by the lowest software layers in the integrated
hardware block is device-specific knowledge, which compli-
cates software integration efforts. Furthermore, in order to
implement fully asynchronous execution where the devices
communicate and synchronize with each other directly without
host CPU involvement in a peer-to-peer fashion, each device
pair involved must know the means to do so.

A unified software integration solution and feasible peer-to-
peer communication in diverse heterogeneous platforms calls
for a unified hardware interface which enables common means
to access the devices’ functionalities. The unified hardware
interface would act as a well-specified hardware wrapper that
presents the necessary information and a common means of
control to the software side and the other devices. The goal is
to make the integrated hardware blocks easily “pluggable” to
the software stack with minimal integration engineering work,
and avoid the need for target device-specific state machines or
code paths in the devices that wish to communicate with each
other directly.

The link between the integrated component and the software
driver in the proposed integration method is a memory-mapped
hardware interface with four memory regions reserved for
different purposes as exemplified in Fig. 1. The interface is
called AlmaIF v2. It is named after the first research project
(ALMARVI) in which the first version of it was prototyped
(Almarvi hardware InterFace) [6]. For this work, we utilized
the AlmaIF v1 as a basis and extended it with support for built-
in kernels to integrate fixed function hardware and additional
optimizations necessary for more flexible memory usage. The
roles of the memory mapped regions in the interface are
explained in the following.

Control registers region includes the registers used to
initialize and reset the component. It also contains constant
value registers describing the essential device features for
automatic device discovery. The data for discovering the
essential features of the device are needed by the OpenCL
runtime, and is made part of the hardware interface to ensure
easy plugging of components with minimal data passed to the
driver through other means. This includes, e.g., the structure
of the memory map for initializing the memory manager of

TABLE I
ALMAIF V2: MEMORY MAPPED CONTROL REGISTERS

Offset Bits Name Purpose / explanation
0x000 3 Status Status of the accelerator. Bit 0 is

high when the execution is stalled
due to any reason, bit 1 is high
when the external freeze signal
(pauses the hardware temporarily)
is active, and bit 2 is high when
the accelerator reset is active.

0x100 64 Command
queue read
position
index

Only increased (wraps around).
The actual position in the CQ is
determined using a modulo with
the CQ size.

0x108 64 Command
queue write
position
index

Only increased (wraps around).
The actual position in the CQ is
determined using a modulo with
the CQ size.

0x200 3 Command Command register to control ex-
ecution. Writing 1 to this regis-
ter resets the accelerator, writing 2
lifts reset and the external freeze,
and writing 4 enables the external
freeze signal, pausing execution (4
is an optional feature).

0x300 32 Device class Optional OpenCL vendor ID of the
component.

0x304 32 Device ID Device ID of the accelerator. Cur-
rently unused by the driver.

0x308 32 AlmaIF ver-
sion

Version number of the interface.
Currently at value 2

0x30C 32 Core count Number of compute units in the
device

0x314 32 Configuration
memory size

Size of the configuration memory
region in bytes.

0x318 64 Configuration
memory
starting
address

Starting address of the device’s
configuration memory region.

0x320 64 Command
queue
memory size

The command queue ring
buffer fills the entire region,
so the size of this memory
is Max number of packets *
packet size. Maximum number of
packets must be a power-of-two.

0x328 64 Command
queue
starting
address

Starting address of the device’s
command queue memory.

0x330 64 Data
memory
size

Size of the data memory region.

0x338 64 Data
memory
start

Starting address of the device’s
data memory.

0x340 64 Feature flags Boolean feature flags. Bit seman-
tics: Bit 0 = Bus master interface
available. The device can access
the whole memory space through
a master interface.

0x348 16 Number
of built-in
(Nb) kernels
supported

Defines the number of functions
supported (max 64 in AlmaIF v2).
The built-in kernel IDs are given in
the successive memory locations.

0x34A
...

16 x
Nb

The ID(s)
of the
supported
built-in
kernel(s)

There are as many as the compo-
nent supports in successive mem-
ory locations.

Control
registers

Configuration
memory

Commands

CQ
memory

Data
memory

AlmaIF controller

Example of a fixed
function accelerator

Kernel

(Optional) AXI Master to fetch
data from external buffers

Custom interface
depending on the
type of the kernel,
could be e.g. HLS

function call.

Slave
Interface

AlmaIF regions

Fig. 1. AlmaIF v2 memory regions highlighted with blue dashed line, with
an example wrapped hardware component (in this case a fixed function
accelerator) highlighted in red.

Control
registers

Configuration
memory

CQ
and
Data

memory

Example of a soft processor

 Core

(Optional) AXI
Master to access
external buffers

Load-Store
Unit

Instruction
Fetch

Control
InterfaceSlave

Interface

AlmaIF regions

Fig. 2. AlmaIF v2 memory regions highlighted with blue dashed line, with an
example wrapped hardware component (in this case a software programmable
core) is highlighted in red. Here the configuration memory is used to store the
program image. In addition, this design utilizes the same physical memory
for mapping both the Command queue and the Data memories.

the software side. Table I shows the type, address, and size of
the control data accessible through this region.

The region also includes the read and write indices to the
command queue ring buffer, part of the command queue mem-
ory. The read index is assumed to be atomically incremented
by the component after it has picked a command for execution,
whereas the write index is maintained by the host or the peers
to queue commands to the device. These indices are used by
the driver to assess if there is space in the CQ for more work
and by the device if there are more commands to process.

Configuration memory is optional and not needed for
fixed function accelerators. It is used for uploading the
program binary images in case of software programmable
devices (see Fig. 2). It can be also utilized for target-specific

firmware/configuration bit purposes to better support, for ex-
ample, reconfigurable multi-function accelerators (left as a
future work).

Command queue memory contains a ring buffer imple-
menting a command queue that the device should execute
next. The commands in the queue follow the HSA Architected
Queue Language (AQL) specification [5], which defines the
command structure down to bit level accuracy, and thus serves
as an excellent source for more detailed documentation. It
suffices to summarize here that the integrated devices focus
on two main types of AQL packets in the command queue:
1) Kernel Dispatch Packets, which are used to launch kernels
in the device and 2) Barrier-AND Packets which are used to
implement OpenCL event based synchronization utilizing “sig-
naling slots” that are memory locations which are monitored
for a change to zero, indicating event completion.

Data memory is a piece of on-chip memory where the
OpenCL runtime can allocate data which are expected to be
frequently accessed by the device when it executes kernels,
thus should be stored in a physically close memory for fast
access. This data includes the OpenCL kernel command’s
function arguments, in some cases the buffers used by the
kernel, and the optional OpenCL kernel command metadata
(e.g. work-group sizes).

IV. SOFTWARE INTERFACE

The software interface of the integration method is built
on the open source PoCL [2] framework to benefit from its
code base and to seamlessly connect to other devices it already
supports. PoCL provides a user space driver layer where a new
general driver we call custom was implemented. It interacts
with the common hardware interface and in the typical case
requires none or very little custom software side code to be
added for new integrated FPGA components.

There are two main categories of integrated devices that the
custom PoCL driver supports: 1) Fixed-function accelerators,
that cannot be software programmed, but are exposed as
OpenCL custom devices with a set of built-in kernels and
2) co-processors which provide support for any OpenCL
kernel compiled from source code or one of the intermediate
languages supported by the standard. The latter can also
support fixed acceleration functionality. We outline the support
for these accelerator types in the following.

A. Fixed-function accelerators

The fixed-function accelerators can only execute built-in
functionality, meaning something with predefined semantics
which cannot be reconfigured. The wrapped component is ex-
pected to advertise the built-in kernels it supports by exposing
them in its control interface.

The built-in kernels are invoked by using integer identifiers,
which map the kernel to its semantics. Since the semantics
of the built-in kernels in the OpenCL specifications are un-
defined, and only referred by their name (C string) in the
OpenCL-using programs, there has to be a specification for the
meanings of known built-in kernels (with an assigned integer

ID) which provides the guidance to the OpenCL application
writers. This semantical connection is provided as part of the
integration method: A registry is maintained over time that lists
known and supported built-in kernels along with their exact
semantics as well as the bit exact definitions of parameter
passing. This registry is maintained within the PoCL source
code base and will be kept up-to-date with functionalities of
interest. A range of IDs is dedicated for custom functionality
defined by the FPGA designer that needs not be defined in the
registry.

The built-in kernels are invoked in the wrapped accelerator
by specifying the integer ID to launch in the kernel command
packet queued to the device. It is then the responsibility of the
component to invoke the functionality requested by utilizing
the arguments in the data memory.

B. Co-processors with software programmability

Software programming capabilities as defined by the “online
kernel compilation support” of the OpenCL specifications are
supported by the integration. The feature relies on the PoCL’s
standard compilation passes for converting the input defini-
tions down to executable binaries by utilizing the LLVM [7]
Project as the compilation infrastructure.

The integrated component can advertise the compiler sup-
port by defining a special built-in kernel ID in its list of
supported built-in kernels. The special ID is the maximum
built-in kernel ID value of 0xFFFF in AlmaIF v2.

Fig. 3 shows how the integrated component can tap into
the OpenCL kernel compilation mechanics of PoCL: When
the device driver is initialized for the component in question,
custom driver queries from the control registers region if it
finds the special built-in ID. If it is found, the next step
is to figure out how to generate code for the device. For
this, the vendor ID is utilized; it is used to find the correct
LLVM “target triple” for the device at hand which is needed
to perform target-specific code generation.

In case the target has an LLVM backend available in the
LLVM the PoCL was built against, there is no need to define
anything in the driver for invoking the correct compiler since
the PoCL kernel build process is portable and generic in
most parts. Only the code generation phase differs for each
instruction-set architecture. However, if special compilation
steps are required, the compilation steps can be overriden per
triple. One such (likely rare) special case is the TCE (also
known as the OpenASIP) [8] created devices which require
a target description file to be given at code generation time
to drive the instruction scheduler due to the customizable
processor instruction set architecture.

V. STEPS TO INTEGRATE A NEW COMPONENT

Since the contribution of this paper is a new method for
easy integration of custom FPGA components to a unified and
open OpenCL platform, it is necessary to summarize the steps
which the FPGA component integrators need to go through:

1) Hardware component wrapping. To be able to plug in
a new hardware component, it is enough to create a hardware

Yes

No

Does the device
support

compilation?

Device
initialization

Yes

No

Does device's
LLVM target triple

require custom
compilation steps

Driver maps the LLVM
triple to a custom

initialization function
pointer and calls it

PoCL kernel
compilation

(outputs LLVM
IR)

Target-specific
code generation

Program
bits

When compiling the kernel

LLVM
compilation
initialization

LLVM code
generation

based on the
target triple

YesNo

Does the device
require custom

code generation?

When initalizing the device

Fig. 3. Supporting kernel compilation based on either LLVM target triple or
custom target-specific compilation flow.

device with the memory map described in Section III and
make sure that its memory map is accessible from the host
CPU running PoCL. The component must be able to process
the command queue, thus perform packet processing tasks
and honor the SPMD execution model. This is made straight-
forward by providing a ready made template implementation
in simplified C which passes through the most popular HLS
flows and calls the kernel functionality for each work-item in
the SPMD fashion. In the usual case, this is the only action
needed.

2) Optional step for completely new FPGA platforms:
Enable access to the FPGA device’s physical memory in
the host. The driver code relies on physical regions memory
mapped to the host virtual address space. Therefore, it is
enough to be able to map the FPGA physical memory regions
to the host, or access them using FPGA device-specific APIs.
For a typical user, this part is not needed, since several FPGA
memory access methods are supported by the custom driver
and more will be added in the future. For this paper, two
methods were implemented as examples in the custom driver:
Using simple mmaping of the physical memory space for
system-on-chip SoC based FPGAs and a Xilinx-specific access
to the memory through library calls (for utilizing their PCIe
card based FPGAs).

3) Optional step for new built-in kernel functionality: Reg-
ister new built-in kernels. In case the integrated component
implements a kernel that is not yet in the built-in kernel
registry, the kernel can be added to the registry or a custom
built-in kernel ID is used. Adding new built-in kernels is
simple: Registering the kernel to the driver by defining a name
and integer identifier pair and specifying the number and types
of the arguments. This way, the driver knows how to fill the
argument buffer for the built-in kernel. The arguments can be
pointers to buffers or scalars.

4) Optional step for online compiler supported components:
If the component supports online kernel compilation, it
should advertise 0xFFFF in its supported built-in kernel IDs
list. Then, to add the software side support, the steps depend
on whether the target has a backend in the LLVM the PoCL
was compiled with or not. In case it does not, a new entry has
to be added to the custom driver, which overrides the necessary
parts of the default PoCL kernel compilation process with
the required alternative ones. One key parameter to define is
whether the target inputs SPMD kernels (work-item functions)
directly or if it needs the de-SPMD passes supported by
PoCL to generate “work-group functions” which execute all
the work-items in the work-group. The rest of the steps are
handled by the framework: The program image is uploaded to
the configuration memory region when the kernel needs to be
launched and the compiled-in device main program handles
also command queue processing tasks.

VI. EVALUATION

In order to evaluate the implementation feasibility of the
integration method and to demonstrate the applicability over
different means to generate the integrated components, two
example hardware components were integrated to two FPGA
devices.

The integrated components were created with two different
methods: One was a customized software programmable soft
core design created using the OpenASIP tools [8] and the other
was produced by feeding a C language-based implementation
of the packet processing functionality and the built-in kernels
to the commercial FPGA HLS tool Vitis HLS 2020.2 [9].

The portability of the integration method was tested by
using two devices with different sizes and different methods
for accessing the FPGA’s physical memories. The smaller
FPGA device was a SoC-based Xilinx Zynq XC7Z020 and
the large one a PCIe card with an Xilinx Alveo U280.

For the purpose of focusing solely on the overheads from
the integration method itself, the integrated components im-
plement only two very simple built-in kernels: 32-bit integer
element-wise vector addition and multiplication. The kernels
are thus one dimensional; the single global size parameter
indicates the length of the vector to process.

In order to evaluate the feasibility of the hardware wrapping
needed for integration, the resource overhead and the clock
frequency impact are the most interesting characteristics to
assess. As seen from the results in Table II, the overhead
from the control interface is small enough to be considered

TABLE II
FPGA RESOURCE UTILIZATION OF TWO HARDWARE COMPONENTS

WRAPPED IN THE ALMAIFV2 WITH TWO DIFFERENT FPGA DEVICES.
GIVEN AS TOTAL RESOURCES AND AS A PERCENTAGE OF ALL RESOURCES

AVAILABLE ON THE FPGA FABRIC. THE RIGHTMOST COLUMN SHOWS
THE MAXIMUM CLOCK FREQUENCY OF THE DESIGN IN THE MORE

RESOURCE CONSTRAINED ZYNQ.

LUTs Registers Block
RAMs

FMax
(MHz)

OpenASIP soft core
Zynq XC7Z020 1952

(3.7%)
2166
(2.0%)

2
(1.4%)

162

Alveo U280 1931
(0.15%)

2163
(0.08%)

2
(0.10%)

Vitis HLS generated component
Zynq XC7Z020 561

(1.1%)
721
(0.68%)

1
(0.71%)

152

Alveo U280 627
(0.05%)

620
(0.02%)

1
(0.05%)

negligible related to the total resources of the FPGA. This
is especially visible with the Vitis HLS wrapped component
implemented with the FPGA vendor’s own proprietary tools.
Here, the OpenASIP soft processor has approximately three
times higher utilization than the minimal HLS-based compo-
nent. This is due to the added logic and memory required by
the software programmability.

We also performed a validation run where a CPU (in that
case an Intel desktop CPU driven by the PoCL’s pthread
driver) and the FPGA component executing in the Alveo board
were running in parallel in the same PoCL OpenCL context,
controlled with different command queues. This proved that
the unified CPU+FPGA collaborative execution functions in
an integrated manner.

VII. RELATED WORK

Intel Open Programmable Acceleration Engine
(OPAE, [10]) is similar in its goals to the proposed integration
method. It enables unified integration of components in Intel
FPGAs to the higher-level software stacks, by means of a
vendor-specific C library for the lowest level access. Similarly,
Xilinx XRT [11] is a stack for managing Xilinx FPGA and
ACAP devices. It works for both PCIe and MPSoC type
Xilinx devices. The kernel control interface includes a method
for launching, resetting and pipelining kernel executions along
with kernel arguments.

Both OPAE and Xilinx XRT stacks resemble ideas in our
integration method. A key difference is that their method
has more of the functionality handled in the host code,
whereas our proposed method is designed to be decentral-
ized to enable asynchronous peer-to-peer execution between
devices. Furthermore, while both Intel and Xilinx provide
complete OpenCL flows from program description to the
kernel execution in FPGAs, their methods are still specific to
their own FPGA devices. Even though these vendors provide
some of the sources for their flows in open source, there
are no significant efforts for easy and efficient cross-vendor
unification happening in practice. Additionally, there is no easy

way to integrate different types of devices or devices from
other vendors to their OpenCL context for asynchronous multi-
command queue execution with event-based synchronization.
This creates limitations on device-to-device inter-operability
related to e.g. synchronization or efficient data transfers. In
our proposed method the FPGA vendor-specific tools might
only needed to access the FPGA physical memory, if even
that.

HOpenCL [12] is an execution model inspired by OpenCL
which supports the execution of both software kernels on
soft processors and hardware kernels generated by e.g. high-
level synthesis tools. The intention is similar to the proposed
method, but in our case we do not deviate from the OpenCL
specifications; our integration flow does not require any ex-
tensions to the OpenCL standard, but utilizes only its core
specification features. This is important in order to maintain
the OpenCL application-level portability between different
platforms. Steinert et al. [13] proposed cloud acceleration with
FPGAs, but the approach similarly relies on a custom API
for invoking the accelerators instead of using a standardized
execution model. Similarly, Galapagos [14] is a promising
integration approach, but targets the MPI programming model
whereas our work focus on the widely adopted OpenCL
standard for maximal heterogeneous platform diversity.

VIII. CONCLUSIONS

In this paper we proposed a method to integrate FPGA-
based accelerators to a unified OpenCL platform. The hard-
ware overhead of the required component wrapper interface
was measured to be insignificant. We identify the benefits
of this work in enabling FPGA designers to loosen the
dependency on vendor-specific OpenCL HLS flows and APIs,
allowing them to treat their FPGA designs as any other
OpenCL device in a unified OpenCL platform. In the future
we plan to expand this work for efficient OpenCL 2.0 pipe
implementation for portable on-chip streaming support and test
the method on a wider range of FPGA devices from different
vendors.

ACKNOWLEDGMENT

The work for this publication was funded by ECSEL
Joint Undertaking (JU) under grant agreement No 783162
(FitOptiVis). The JU receives support from the European
Union’s Horizon 2020 research and innovation programme
and Netherlands, Czech Republic, Finland, Spain, Italy. It was
also supported by European Union’s Horizon 2020 research
and innovation programme under Grant Agreement No 871738
(CPSoSaware) and Academy of Finland (decision #331344).
We would also like to thank Xilinx for donating the Alveo
FPGA and its related software used in this work and HSA
Foundation for the financial support and the useful specifica-
tion work.

REFERENCES

[1] Khronos® OpenCL Working Group, “The OpenCL™
Specification,” https://www.khronos.org/registry/OpenCL/specs/3.0-
unified/pdf/OpenCL API.pdf, accessed: 2021-08-27.

[2] P. Jääskeläinen, C. Sanchez de La Lama, E. Schnetter, K. Raiskila,
J. Takala, and H. Berg, “pocl: A performance-portable OpenCL im-
plementation,” International Journal of Parallel Programming, vol. 43,
no. 5, pp. 752–785, 2015.

[3] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there
yet? a study on the state of high-level synthesis,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 5, pp. 898–911, 2019.

[4] J. Solanti, M. Babej, J. Ikkala, V. K. M. Vadakital, and P. Jääskeläinen,
“PoCL-R: A Scalable Low Latency Distributed OpenCL Runtime,” in In-
ternational Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation (SAMOS) XXI, July 2021.

[5] HSA™ Foundation, “HSA Platform System Architecture Specifi-
cation v1.2,” http://hsa.glossner.org/wp-content/uploads/2021/02/HSA-
SysArch-1.2.pdf, accessed: 2021-08-27.

[6] J. Hoozemans, J. van Straten, T. Viitanen, A. Tervo, J. Kadlec, and Z. Al-
Ars, “”ALMARVI Execution Platform: Heterogeneous Video Processing
SoC Platform on FPGA”,” Journal of Signal Processing Systems, vol. 91,
no. 1, pp. 61–73, Jan. 2019.

[7] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[8] P. Jääskeläinen, T. Viitanen, J. Takala, and H. Berg, HW/SW Co-design
Toolset for Customization of Exposed Datapath Processors. Springer
International Publishing, 2017, pp. 147–164.

[9] Introduction to Vitis HLS, Xilinx. [Online]. Avail-
able: https://www.xilinx.com/html docs/xilinx2021 1/vitis doc/ intro-
ductionvitishls.html

[10] E. Luebbers, S. Liu, and M. Chu, “”Simplify Software Integration
for FPGA Accelerator with OPAE (white paper)”,” 2017. [On-
line]. Available: https://01.org/sites/default/files/downloads/opae/open-
programmable-acceleration-engine-paper.pdf

[11] Xilinx Runtime (XRT) Architecture, Xilinx. [Online]. Available:
https://xilinx.github.io/XRT/master/html/index.html

[12] H. Ding and M. Huang, “A unified OpenCL-flavor programming
model with scalable hybrid hardware platform on FPGAs,” in 2014
International Conference on ReConFigurable Computing and FPGAs
(ReConFig14), 2014, pp. 1–7.

[13] F. Steinert, P. Kreowsky, E. L. Wisotzky, C. Unger, and B. Staber-
nack, “A hardware/software framework for the integration of fpga-
based accelerators into cloud computing infrastructures,” in 2020 IEEE
International Conference on Smart Cloud (SmartCloud), 2020, pp. 23–
28.

[14] N. Tarafdar, N. Eskandari, V. Sharma, C. Lo, and P. Chow, “Galapagos:
A full stack approach to fpga integration in the cloud,” IEEE Micro,
vol. 38, no. 6, pp. 18–24, 2018.

