README

Dataset for "Mass loss of the Antarctic ice sheet until the year 3000 under a sustained late-21st-century climate"

25 model experiments

- hist: historical simulation 1990–2015.
- ctrl_proj: constant-climate projection control experiment 2015–3001.
- exp05–10, exp12–13, expA5–A8, expB6–B10: future-climate experiments 2015–3001; see Table 1.
- abuc, abuciso, abuk, abukiso, abum, abumiso: ABUMIP experiments 1000 years into the future (schematic experiments, thus no precise calendar employed); see Table 2.

Zip archives

- hist.zip, ctrl_proj_long.zip, exp05_long.zip, exp06_long.zip, ..., expB10_long.zip, abuc_long.zip, ..., abumiso_long.zip: netCDF output files for the 25 experiments (one file for each variable).
- run_specs_headers.zip
 SICOPOLIS run-specs headers for the 25 experiments.

Scalar state variables

lim –	Total ice mass (kg)
limnsw –	Mass above floatation (kg)
iareagr –	Grounded ice area (m ²)
iareafl –	Floating ice area (m ²)

These variables are provided as yearly snapshots for the following full years: hist: 1991–2015, ctrl_proj and exp05–expB10: 2016–3001, abuc–abumiso: 1–1000 (no precise calendar employed). Time variable: 'time'.

Scalar flux variables

dlimdt	_	Total ice mass change (kg a ⁻¹)
tendacabf	-	Total surface mass balance flux (kg a ⁻¹)
tendlibmassbf	-	Total basal mass balance flux (kg a ⁻¹)
tendlibmassbffl	_	Total basal mass balance flux beneath floating ice (kg a ⁻¹)
tendlicalvf	_	Total calving flux (kg a ⁻¹)

These variables are provided as yearly averages over the intervals bounded by the following years: hist: 1990–2015, ctrl_proj and exp05–expB10: 2015–3001,

abuc–abumiso: 0–1000 (no precise calendar employed). Time variables: 'time', 'time_bnds'.

2D state variables

lithk	_	Ice thickness (m)
orog	_	Surface elevation (m)
base	-	Ice base elevation (m)
topg	-	Bedrock elevation (m)
xvelsurf	_	Surface velocity in x (m a^{-1})
yvelsurf	_	Surface velocity in y (m a^{-1})
zvelsurf	_	Surface velocity in z (m a^{-1})
horvelsurf	_	Horizontal surface velocity (m a ⁻¹)
xvelbase	_	Basal velocity in x (m a^{-1})
yvelbase	_	Basal velocity in y (m a ⁻¹)
zvelbase	_	Basal velocity in z (m a ⁻¹)
horvelbase	_	Horizontal basal velocity (m a^{-1})
xvelmean	_	Mean velocity in x (m a^{-1})
yvelmean	_	Mean velocity in y (m a^{-1})
horvelmean	_	Horizontal mean velocity (m a ⁻¹)
litemptop	_	Surface temperature (K)
litempbot	_	Basal temperature (K)
strbasemag	_	Basal drag (Pa)
sftgif	_	Land ice area fraction (–)
sftgrf	-	Grounded ice sheet area fraction (–)
sftflf	-	Floating ice shelf area fraction (-)

These variables are provided as snapshots for the following years: hist: 1991 (1) 2015, ctrl_proj and exp05–expB10: 2035 (20) 2995, 3001, abuc–abumiso: 20 (20) 1000 (no precise calendar employed). Time variable: 'time'.

2D flux variables

acabf	 Surface mass balance flux (kg m⁻² a⁻¹)
libmassbf	 Basal mass balance flux (kg m⁻² a⁻¹)
licalvf	– Calving flux (kg m ⁻² a^{-1})
dlithkdt	– Ice thickness imbalance (m a^{-1})
hfgeoubed	 Geothermal heat flux (W m⁻²)

These variables are provided as averages over the intervals bounded by the following years: hist: 1990 (1) 2015, ctrl_proj and exp05–expB10: 2015 (20) 2995 + a final snapshot for 3001, abuc–abumiso: 0 (20) 1000 (no precise calendar employed). Time variables: 'time', 'time_bnds'.

Notes

- The variable names follow closely the ISMIP6 convention (e.g., Table A1 of https://tinyurl.com/ismip6-wiki-ais). However, years are used instead of seconds as the time unit (1 a = 31,556,926 s).
- For further details, see the metadata in the netCDF files (e.g., by Linux command 'ncdump –h' or MATLAB command 'ncdisp') and the paper.

Exp_ID	Scenario	GCM	Ocean forcing	Ice-shelf fracture	
ctrl_proj	Control	_		_	
exp05	RCP8.5	NorESM1-M	Medium	No	
exp06	RCP8.5	MIROC- ESM-CHEM	Medium	No	
exp07	RCP2.6	NorESM1-M	Medium	No	
exp08	RCP8.5	CCSM4	Medium	No	Core
exp09	RCP8.5	NorESM1-M	High	No	experiments (Tier 1)
exp10	RCP8.5	NorESM1-M	Low	No	
exp12	RCP8.5	CCSM4	Medium	Yes	
exp13	RCP8.5	NorESM1-M	PIGL- Medium	No	
expA5	RCP8.5	HadGEM2-ES	Medium	No	
expA6	RCP8.5	CSIRO-Mk3.6.0	Medium	No	Extended ensemble
expA7	RCP8.5	IPSL-CM5A-MR	Medium	No	(Tier 2)
expA8	RCP2.6	IPSL-CM5A-MR	Medium	No	
expB6	SSP5-8.5	CNRM-CM6-1	Medium	No	
expB7	SSP1-2.6	CNRM-CM6-1	Medium	No	CMIP6
expB8	SSP5-8.5	UKESM1-0-LL	Medium	No	extension
expB9	SSP5-8.5	CESM2	Medium	No	(Tier 2)
expB10	SSP5-8.5	CNRM-ESM2-1	Medium	No	

Table 1. Extended ISMIP6-Antarctica Tier-1 and Tier-2 future climate experiments for the period 2015–3001. See the paper for further details.

Exp_ID	Scenario	Isostasy
abuc	Control	No
abuciso	Control	Yes
abuk	Ice-shelf removal ('float-kill')	No
abukiso	Ice-shelf removal ('float-kill')	Yes
abum	Extreme sub-ice-shelf melt	No
abumiso	Extreme sub-ice-shelf melt	Yes

Table 2. Extended ABUMIP experiments 1000 years into the future (no precise calendar employed). See the paper for further details.