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Abstract. Existing formalisms for the algebraic specification and representation of networks
of reversible agents suffer some shortcomings. Despite multiple attempts, reversible declen-
sions of the Calculus of Communicating Systems (CCS) do not offer satisfactory adaptation
of notions that are usual in “forward-only” process algebras, such as replication or context.
They also seem to fail to leverage possible new features stemming from reversibility, such as
the capacity of distinguishing between multiple replications, based on how they replicate the
memory mechanism allowing to reverse the computation. Existing formalisms disallow the
“hot-plugging” of processes during their execution in contexts that also have a past. Finally,
they assume the existence of “eternally fresh” keys or identifiers that, if implemented poorly,
could result in unnecessary bottlenecks and look-ups involving all the threads.
In this paper, we begin investigating those issues, by first designing a process algebra endowed
with a mechanism to generate identifiers without the need to consult with the other threads.
We use this calculus to recast the possible representations of non-determinism in CCS, and as
a by-product establish a simple and straightforward definition of concurrency. Our reversible
calculus is then proven to satisfy expected properties, and allows to lay out precisely different
representations of the replication of a process with a memory. We also observe that none of
the reversible bisimulations defined thus far are congruences under our notion of “reversible”
contexts.

Keywords: Formal semantics· Process algebras and calculi· Reversible replication

1 Introduction: Filling the Blanks in Reversible Process Algebras

Reversibility’s Future is intertwined with the development of formal models for analyzing and cer-
tifying concurrent behaviors. Even if the development of quantum computers [24], CMOS adiabatic
circuits [15] and computing biochemical systems promise unprecedented efficiency or “energy-free”
computers, it would be a mistake to believe that when one of those technologies—each with their
own connection to reversibility—reaches a mature stage, distribution of the computing capacities
will become superfluous. On the opposite, the future probably resides in connecting together comput-
ers using different paradigms (i.e., “traditional”, quantum, biological, etc.), and possibly themselves
heterogeneous (for instance using the “classical control of quantum data” motto [31]). In this coming
situation, “traditional” model-checking techniques will face an even worst state explosion problem
in presence of reversiblility, that e.g. the usual “back-tracking” methods will likely fail to circumvent.
Due to the notorious difficulty of connecting heterogeneous systems correctly and the “volatile” na-
ture of reversible computers—that can erase all trace of their previous actions—, it seems absolutely
necessary to design languages for the specification and verification of reversible distributed systems.

⋆ This work has been partially supported by French ANR project DCore ANR-18-CE25-0007.
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Process Algebras offer an ideal touch of abstraction while maintaining implementable specifi-
cation and verification languages. In the family of process calculi, the Calculus of Communicating
Systems (CCS) [29] plays a particular role, both as seminal work and as direct root of numerous sys-
tems (e.g. π- [36], Ambient [27], applied [1] and distributed [17] calculi). Reversible CCS (RCCS) [13]
and CCS with keys (CCSK) [32] are two extensions to CCS providing a better understanding of
the mechanisms underlying reversible concurrent computation—and they actually turned out to be
the two faces of the same coin [21]. Most [3,12,26,28]—if not all—of the latter systems developed
to enhance the expressiveness with some respect (rollback operator, name-passing abilities, proba-
bilistic features) stem from one approach or the other. However, those two systems, as well as their
extensions, both share the same drawbacks, in terms of missing features and missing opportunities.

An Incomplete Picture is offered by RCCS and CCSK, as they miss “expected” features
despite repetitive attempts. For instance, to our knowledge, no satisfactory notion of context was
ever defined: the discussed notions [5] do not allow of the “hot-plugging” of a process with a past
into a context with a past as well. As a consequence, the notions of congruence remains out of
reach, forbidding the study of bisimilarities—though they are at the core of process algebras [35].
Also, recursion and replication are different [30], but only recursion have been investigated [16,19]
or mentioned [13,14], and only for “memory-less” processes. Stated differently, the study of the
duplication of systems with a past have been left aside.

Opportunities Have Been Missed as previous process algebras are conservative extensions
of restricted versions of CCS, instead of considering “a fresh start”. For instance, reversible calculi
inherited the sum operator in its guarded version: while this restriction certainly makes sense when
studying (weak) bisimulations for forward-only models, we believe it would be profitable to suspend
this restriction and consider all sums, to establish their specificities and interests in the reversible
frame. Also, both RCCS and CCSK have impractical mechanisms for keys or identifiers: aside from
supposing “eternal freshness”—which requires to “ping” all threads when performing a transition,
creating a potential bottle-neck—, they also require to inspect, in the worst case scenario, all the
memories of all the threads before performing a backward transition.

Our Proposal for “yet” another language is guided by the desire to “complete the picture”, but
starts from scratch instead of trying to “correct” existing systems3. We start by defining an “identified
calculus” that sidesteps the previous limitations of the key and memory mechanisms and considers
multiple declensions of the sum: 1. the summation [29, p. 68], that we call “non-deterministic
choice” and write >, [38], 2. the guarded sum, +, and 3. the internal choice, ⊓, inspired from the
Communicating Sequential Processes (CSP) [18]—even if we are aware that this operator can be
represented using prefix, parallel composition and restriction [2, p. 225] in forward systems, we
would like to re-consider all the options in the reversible set-up, where “representation” can have a
different meaning. Our formalism meets usual criterion, and allows to sketch interesting definitions
for contexts, that allows to prove that, even under a mild notion of context, the usual bisimulation
for reversible calculi is not a congruence. We also lay out the alternatives to define replication, and
justify precisely why duplicated processes should have their memory “marked”. As a by-product,
we obtain a notion of concurrency, both for forward and forward-and-backward calculi, that rests
solely on identifiers and can be checked locally.

Our Contribution tries to lay out solid foundation to study reversible process algebras in all
generality, and opens some questions that have been left out. Our detailed frame explicits aspects
not often acknowledged, but does not yet answer questions such as “what is the right structural

3 Of course, due credit should be given for those previous calculi, that strongly inspired ours, and into
which our proposal can (partially) be translated, as explained in Sect. 3.3.
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congruence for reversible calculi” [7]: while we can define a structural relation for our calculus, we
would like to get a better take on what a congruence for reversible calculi is before committing.
How our three sums differ and what benefits they could provide is also left for future work, possibly
requiring a better understanding of non-determinism in the systems we model.

All proofs and some ancillary definitions can be found in Appendix A.

2 A Forward-Only Identified Calculus With Multiple Sums

We enrich CCS’s processes and labeled transition system (LTS) with identifiers needed to define
reversible systems: indeed, in addition to the usual labels, the reversible LTS developed thus far all
annotate the transition with an additional key or identifier that becomes part of the memory. This
development can be carried out independently of the reversible aspect, and could be of independent
interest. Our formal “identifier structures” allows to precisely define how such identifiers could be
generated while guaranteeing eternal freshness of the identifiers used to annotate the transitions
(Lemma 1) of our calculus that extends CCS conservatively (Lemma 2).

2.1 Preamble: Identifier Structures, Patterns, Seeds and Splitters

Definition 1 (Identifier structure and pattern). An identifier structure IS = (I, γ,⊕) is s.t.

– I is an infinite set of identifiers, with a partition between infinite sets of atomic identifiers Ia
and paired identifiers Ip, i.e. Ia ∪ Ip = I, Ia ∩ Ip = ∅,

– γ : N → Ia is a bijection called a generator,
– ⊕ : Ia × Ia → Ip is a bijection called a pairing function.

Given an identifier structure IS, an identifier pattern ip is a tuple (c, s) of integers called current
and step such that s > 0. The stream of atomic identifiers generated by an identifier pattern (c, s)
is IS(c, s) = γ(c), γ(c+ s), γ(c+ s+ s), γ(c+ s+ s+ s), . . ..

Example 1. Traditionally, a pairing function is a bijection between N×N and N, and the canonical
examples are Cantor’s bijection and (m,n) 7→ 2m(2n+1)− 1 [34,37]. Let p be any of those pairing
function, and let p−(m,n) = −(p(m,n)).

Then, IZ = (Z, idN, p
−) is an identifier structure, with Ia = N and Ip = Z

−. As an example, the
streams IZ(0, 2) and IZ(1, 2) are the series of even and odd numbers.

Starting now, we assume given a particular identifier structure IS and use IZ in our examples.

Definition 2 (Compatible identifier patterns). Two identifier patterns ip1 and ip2 are com-
patible, ip1 ⊥ ip2, if the identifiers in the streams IS(ip1) and IS(ip2) are all different.

Definition 3 (Splitter). A splitter is a function ∩ from identifier pattern to pairs of compatible
identifier patterns, and we let ∩1(ip) (resp. ∩2(ip)) be its first (resp. second) projection.

We now assume that every identifier structure IS is endowed with such a function.

Example 2. For IZ the obvious splitter is ∩(c, s) = ((c, 2 × s), (c + s, 2 × s)). Note that ∩(0, 1) =
((0, 2), (1, 2)), and it is easy to check that the two streams IZ(0, 2) and IZ(1, 2) have no identifier in
common. However, (1, 7) and (2, 13) are not compatible in IZ, as their streams both contain 15.
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Definition 4 (Seed (splitter)). A seed s is either an identifier pattern ip, or a pair of seeds
(s1, s2) such that all the identifier patterns occurring in s1 and s2 are pairwise compatible. Two seeds
s1 and s2 are compatible, s1 ⊥ s2, if all the identifier patterns in s1 and s2 are compatible.

We extend the splitter ∩ and its projections ∩j (for j ∈ {1, 2}) to functions from seeds to seeds
that we write [∩] and [∩j ] defined by

[∩](ip) = ∩(ip) [∩j ](ip) = ∩j(ip)

[∩](s1, s2) = ([∩](s1), [∩](s2)) [∩j ](s1, s2) = ([∩j](s1), [∩j](s2))

That this operation is well-defined is proven in Sect. A.1.

Example 3. A seed over IZ is (id×∩)(∩(0, 1)) = ((0, 2), ((1, 4), (3, 4))).

2.2 Identified CCS and Unicity Property

We will now discuss and detail how a general version of (forward-only) CCS can be equipped with
identifiers structures so that every transition will be labeled not only by a (co-)name, τ or υ4, but
also by an identifier that is guaranteed to be unique in the trace.

Definition 5 (Names, co-names and labels). Let N = {a, b, c, . . .} be a set of names and
N = {a, b, c, . . . } its set of co-names. We define the set of labels L = N∪N∪{τ, υ}, and use α (resp.
µ, λ) to range over L (resp. L\{τ}, L\{τ, υ}). The complement of a name is given by a bijection
· : N → N, whose inverse is also written ·.

Definition 6 (Operators).

P,Q :=λ.P (Prefix)

P | Q (Parallel Composition)

P\λ (Restriction)

P > Q (Non-deterministic choice)

(λ1.P1) + (λ2.P2) (Guarded sum)

P ⊓Q (Internal choice)

As usual, the inactive process 0 is not written when preceded by a prefix, and we call P and Q
the “threads” in a process P | Q.

The labeled transition system (LTS) for this version of CCS, that we denote −−→α , can be read
from Fig. 1 by removing the seeds and the identifiers. Now, to define an identified declension of that
calculus, we need to describe how each thread of a process can access its own identifier pattern to
independently “pull” fresh identifiers when needed, without having to perform global look-ups. We
start by defining how a seed can be “attached” to a CCS process.

Definition 7 (Identified process). Given an identifier structure IS, an identified process is a
CCS process P endowed with a seed s that we denote s ◦ P .

We assume fixed a particular an identifier structure IS = (I, γ,⊕,∩), and now need to introduce
how we “split” identifier patterns, to formalize when a process evolves from e.g. ip ◦a.(P | Q) that
requires only one identifier pattern to (ip1, ip2) ◦ P | Q, that requires two—because we want P and
Q to be able to pull identifiers from respectively ip1 and ip2 without the need for an agreement.
To make sure that our processes are always “well-identified” (Definition 10), i.e. with a matching
number of threads and identifier patterns, we introduce an helper function.

4 We use this label to annotate the “internally non-deterministic” transitions introduced by the operator
⊓. It can be identified with τ for simplicity if need be, and as τ , it does not have a complement.



Enabling Replications and Contexts in Reversible Concurrent Calculus 5

Definition 8 (Splitter helper). Given a process P and an identifier pattern ip, we define

∩?(ip, P ) =

{

(∩?(∩1(ip), P1),∩
?(∩2(ip), P2)) if P = P1 | P2

ip ◦P otherwise

and write e.g. ∩? ip ◦a | b for the “recomposition” of the pair of identified processes ∩?(ip, a | b) =
(∩1(ip) ◦ a,∩2(ip) ◦ b) into the identified process (∩1(ip),∩2(ip)) ◦ a | b.

Note that in the definition below, only the rules act., + and ⊓ can “uncover” threads, and hence
are the only place where ∩? is invoked.

Definition 9 (ILTS). We let the identified labeled transition system between identified processes
be the union of all the relations −−−→i:α for i ∈ I and α ∈ L of Fig. 1. Structural relation is as usual
and presented in Sect. A.2.

Action and Restriction

act.

(c, s) ◦ λ.P −−−−−→
γ(c):λ

∩?(c+ s, s) ◦ P

s ◦ P −−−→i:α
s′ ◦ P ′

a /∈ {α, ᾱ} res.
s ◦ P\a−−−→i:α

s′ ◦ P ′\a

Parallel Group

s1 ◦ P −−−−→
i1:λ

s′1 ◦ P
′ s2 ◦Q−−−−→

i2:λ
s′2 ◦Q

′

s1 ⊥ s2 syn.
(s1, s2) ◦ P | Q−−−−−−→

i1⊕i2:τ (s′1, s
′
2) ◦ P

′ | Q′

s1 ◦ P −−−→i:α
s′1 ◦ P

′

s1 ⊥ s2 |L
(s1, s2) ◦ P | Q−−−→i:α (s′1, s2) ◦ P

′ | Q

s2 ◦Q−−−→i:α
s′2 ◦Q

′

s1 ⊥ s2 |R
(s1, s2) ◦ P | Q−−−→i:α (ip1, ip

′
2) ◦ P | Q′

Sum Group

s ◦ P −−−→i:α
s′ ◦ P ′

>L

s ◦ P > Q−−−→i:α
s′ ◦ P ′

+L

(c, s) ◦ (λ1.P1) + (λ2.P2)−−−−−−→
γ(c):λ1

∩?(c+ s, s) ◦ P1

s ◦Q−−−→i:α
s′ ◦Q′

>R

s ◦ P > Q−−−→i:α
s′ ◦Q′

+R

(c, s) ◦ (λ1.P1) + (λ2.P2)−−−−−−→
γ(c):λ2

∩?(c+ s, s) ◦ P2

⊓L

(c, s) ◦ P ⊓Q−−−−−→
γ(c):υ

∩?(c+ s, s) ◦ P
⊓R

(c, s) ◦ P ⊓Q−−−−−→
γ(c):υ

∩?(c+ s, s) ◦Q

Fig. 1. Rules of the identified labeled transition system (ILTS)
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Example 4. The result of ∩?(0, 1) ◦ (a | (b | (c+ d))) is ((0, 2), ((1, 4), (3, 4))) ◦ (a | (b | (c+ d)), and
a (resp. b, c+ d) would get its next transition identified with 0 (resp. 1, 3).

Definition 10 (Well-identified process). An identified process s ◦ P is well-identified iff s =
(s1, s2), P = P1 | P2 and s1 ◦ P1 and s2 ◦ P2 are both well-identified, or P is not of the form P1 | P2

and s is an identifier pattern.

From now on, we will always assume that identified processes are well-identified.

Definition 11 (Traces). In a transition t : s ◦ P −−−→i:α
s′ ◦ P ′, process s ◦ P is the source, and

s′ ◦P ′ is the target of transition t. Two transitions are coinitial (resp. cofinal) if they have the same
source (resp. target). Transitions t1 and t2 are composable, t1; t2, if the target of t1 is the source
of t2. A sequence of pairwise composable transitions is called a trace, written t1; · · · ; tn.

Lemma 1 (Unicity). The trace of an identified process contains any identifier at most once, and
if a transition has identifier i1 ⊕ i2 ∈ Ip, then neither i1 nor i2 occur in the trace.

Lemma 2. For all CCS process P , ∃s s.t. P −−−→
α1 · · ·−−−→

αn P ′ ⇔ (s ◦ P −−−−→
i1:α1 · · ·−−−−→

in:αn

s′ ◦ P ′).

Definition 12 (Concurrency and compatible identifiers). Two coinitial transitions s◦P −−−−→
i1:α1

s1 ◦ P1 and s ◦ P −−−−→
i2:α2

s2 ◦ P2 are concurrent iff i1 and i2 are compatible, i1 ⊥ i2, i.e. iff






















i1 6= i2 if i1, i2 ∈ Ia

there is no i ∈ Ia s.t. i1 ⊕ i = i2 if i1 ∈ Ia, i2 ∈ Ip

there is no i ∈ Ia s.t. i⊕ i2 = i1 if i1 ∈ Ip, i2 ∈ Ia

for i11, i
2
1, i

1
2 and i22 s.t. i1 = i11 ⊕ i21 and i2 = i12 ⊕ i22, i

j
1 6= ik2 for j, k ∈ {1, 2} if i1, i2 ∈ Ip

Example 5. The identified process s ◦ P = ((0, 2), (1, 2)) ◦ a+ b | a.c has four possible transitions:

t1 : s ◦ P −−−→0:a ((2, 2), (1, 2)) ◦ 0 | a.c t3 : s ◦ P −−−→1:a ((0, 2), (3, 2)) ◦ a+ b | c

t2 : s ◦ P −−−→0:b ((2, 2), (1, 2)) ◦ 0 | a.c t4 : s ◦ P −−−−−→
0⊕1:τ

((2, 2), (3, 2)) ◦ 0 | c

Among them, only t1 and t3, and t2 and t3 are concurrent: transitions are concurrent when they do
not use overlapping identifiers, not even as part of synchronizations.

Hence, concurrency becomes an “easily observable” feature that does not require inspection
of the term, of its future transitions—as for “the diamond property” [23]—or of an intermediate
relation on proof terms [9, p. 415]. We believe this contribution to be of independent interest, and it
will help significantly the precision and efficiency of our forward-and-backward calculus in multiple
respect.

3 Reversible and Identified CCS

A reversible calculus is always defined by a forward calculus and a backward calculus. Here, we
define the forward part as an extension of the identified calculus of Definition 9, without copying
the information about the seeds for conciseness, but using the identifiers they provide freely. The
backward calculus will require to make the seed explicit again, and we made the choice of having
backward transitions re-use the identifier from their corresponding forward transition, and to restore
the seed in its previous state. Expected properties are detailed in Sect. 3.2.
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3.1 Defining the Identified Reversible CCS

Definition 13 (Memories and reversible processes). Let o ∈ {>,+,⊓}, d ∈ {L,R}, we define
memory events, memories and identified reversible processes as follows, for n > 0:

e :=〈i, µ, ((o1, P1, d1), . . . (on, Pn, dn))〉 (Memory event)

ms :=e.ms | ∅ (Memory stack)

mp :=[m,m] (Memory pair)

m :=ms | mp (Memory)

R,S :=s ◦m� P (Identified reversible processes)

In a memory event, if n = 0, then we will simply write _. We generally do not write the trailing
empty memories in memory stacks, e.g. we will write e instead of e.∅.

Stated differently, our memory are represented as a stack or tuples of stacks, on which we define
the following two operations.

Definition 14 (Operations on memories). The identifier substitution in a memory event is
written e[i � j] and is defined as substitutions usually are. The identified insertion is defined by

〈i, µ, ((o1, P1, d1), . . . (on, Pn, dn))〉++j (o, P, d) =

{

〈i, µ, ((o1, P1, d1), . . . (on, Pn, dn), (o, P, d))〉 if i = j

〈i, µ, ((o1, P1, d1), . . . (on, Pn, dn))〉 otherwise

The operations are easily extended to memories by simply propagating them to all memory events.

When defining the forward LTS below, we omit the identifier patterns to help with readability,
but the reader should assume that those rules are “on top” of the rules in Fig. 1. The rules for the
backward LTS, in Fig. 3, includes both the seeds and memories, and is the exact symmetric of the
forward identified LTS with memory, up to the condition in the parallel group that we discuss later.
A bit similarly to the splitter helper (Definition 8), we need an operation that duplicates a memory
if needed, that we define on processes with memory but without seeds for clarity.

Definition 15 (Memory duplication). Given a process P and a memory m, we define

δ?(m,P ) =

{

(δ?(m,P1), δ
?(m,P2)) if P = P1 | P2

m� P otherwise

and write e.g. δ?(m)� a | b for the “recomposition” of the pair of identified processes δ?(m, a | b) =
(δ?(m, a), δ?(m, b)) = (m� a,m� b) into the process [m,m]� a | b.

Definition 16 (IRLTS). We let the identified reversible labeled transition system between iden-
tified reversible processes be the union of all the relations −−−→i:α and :::→i:α for i ∈ I and α ∈ L of
Figures 2 and 3, and let ։=→ ∪ . Structural relation can be defined as usual and is presented in
Sect. A.2.

In its first version, RCCS was using the whole memory as an identifier [13], but then it moved
to use specific identifiers [4,25], closer in inspiration to CCSK’s keys [32]. This strategy, however,
forces the act. rules (forward and backward) to check that the identifier picked (or present in the
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Action and Restriction

act.
m� λ.P −−−→i:λ δ?(〈i, λ,_〉.m)� P

m� P −−−→i:α m′
� P ′

a /∈ {α, ᾱ} res.
m� P\a−−−→i:α m′

� P ′\a

Parallel Group

m1 � P −−−−→
i1:λ m′

1 � P ′ m2 �Q−−−−→
i2:λ m′

2 �Q′

syn.
[m1,m2]� P | Q−−−−−−→

i1⊕i2:τ [m′
1[i1 � i1 ⊕ i2],m

′
2[i2 � i2 ⊕ i1]]� P ′ | Q′

m1 � P −−−→i:α m′
1 � P ′

|L
[m1,m2]� P | Q−−−→i:α [m′

1,m2]� P ′ | Q

m2 �Q−−−→i:α m′
2 �Q′

|R
[m1,m2]� P | Q−−−→i:α [m1,m

′
2]� P | Q′

Sum Group

m� P −−−→i:α m′
� P ′

>L

m� (P > Q)−−−→i:α m′ ++i (>, Q,R) ◦ P ′

+L

m� ((λ1.P1) + (λ2.P2))−−−−→
i:λ1 δ?(〈i, λ1, (+, λ2.P2,R)〉.m)� P1

m�Q−−−→i:α m′
�Q′

>R

m� (P > Q)−−−→i:α m′ ++i (>, P,L)�Q′

+R

m� ((λ1.P1) + (λ2.P2))−−−−→
i:λ1 δ?(〈i, λ2, (+, λ1.P1,L)〉.m)� P2

⊓L

m� (P ⊓Q)−−−→i:υ δ?(〈i, υ, (⊓, Q,R)〉.m)� P
⊓R

m� (P ⊓Q)−−−→i:υ δ?(〈i, υ, (⊓, P,L)〉.m)�Q

Fig. 2. Forward rules of the identified reversible labeled transition system (IRLTS)

memory event that is being reversed) is not occurring in the memory, while our system can simply
pick identifiers from the seed without having to inspect the memory, and can go backward simply
by looking if the memory event has identifier in Ia—something enforced by requiring the identifier
to be of the form γ−1(c). Furthermore, memory events and annotated prefixes, as used in RCCS
and CCSK, do not carry information on whenever they synchronized with other threads: retrieving
this information require to inspect all the memories, or keys, of all the other threads, while our
system simply observes if the identifier is in Ip, hence enforcing a “locality” property. However,
when backtracking, the memories of the threads need to be checked for “compatibility”, otherwise
i.e. ((1, 2), (2, 2))◦[〈0, a,_〉, 〈0, a,_〉]�P | Q could backtrack to ((1, 2), (0, 2))◦[〈0, a,_〉, ∅]�P | a.Q
and then be stuck instead of (0, 1) ◦ ∅� a.(P | Q).

3.2 Properties: From Concurrency to Causal Consistency and Unicity

We now prove that our calculus satisfies typical properties for reversible process calculi [11,13,20,32].
Notice that showing that the forward-only part of our calculus is a conservative extension of CCS
is done by extending Lemma 2 to accommodate memories and it is immediate. We give a notion of
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Action and Restriction

act.
∩?(γ−1(i) + s, s) ◦ δ?(〈i, λ,_〉.m)� P :::→i:λ (γ−1(i), s) ◦m� λ.P

s ◦m� P :::→i:α
s′ ◦m′

� P ′

a /∈ {α, ᾱ} res.
s ◦m� P\a :::→i:α

s′ ◦m′
� P ′\a

Parallel Group

The rule syn. (resp. |L) can be applied only if s1 ⊥ s2 and i1 /∈ m′
2, i2 /∈ m′

1 (resp. i /∈ m2).

s1 ◦m1[i1 ⊕ i2 � i1]� P ::::→
i1:λ

s′1 ◦m
′
1 � P ′ s2 ◦m2[i2 ⊕ i1 � i2]�Q ::::→

i2:λ
s′2 ◦m

′
2 �Q′

syn.
(s1, s2) ◦ [m1,m2]� P | Q ::::::→

i1⊕i2:τ (s′1, s
′
2) ◦ [m

′
1,m

′
2]� P ′ | Q′

s1 ◦m1 � P :::→i:α
s′1 ◦m

′
1 � P ′

|L
(s1, s2) ◦ [m1,m2]� P | Q :::→i:α (s′1, s2) ◦ [m

′
1,m2]� P ′ | Q

Sum Group

s ◦m� P :::→i:α
s′ ◦m′

� P ′

>L

s ◦m++i (>, Q,R)� P :::→i:α
s′ ◦m′

� (P ′
> Q)

+L

∩?(γ−1(i) + s, s) ◦ δ?(〈i, λ1, (+, λ2.P2,R)〉.m)� P1 ::::→
i:λ1 (γ−1(i), s) ◦m� ((λ1.P1) + (λ2.P2))

⊓L

∩?(γ−1(i) + s, s) ◦ δ?(〈i, υ, (⊓, Q,R)〉.m)� P :::→i:υ (γ−1(i), s) ◦m� (P ⊓Q)

The rules |R, >R, +R and ⊓R can easily be inferred.

Fig. 3. Backward rules of the identified reversible labeled transition system (IRLTS)

concurrency, and prove that our calculus enjoys the required axioms to obtain causal consistency
“for free” [22]. All our properties, as commonly done, are limited to the reachable processes.

Definition 17 (Initial, reachable and origin process). A process s ◦m� P is initial if s ◦ P
is well-identified and if m = ∅ if P is not of the form P1 | P2, or if m = [m1,m2], P = P1 | P2 and
[∩j ](s) ◦ mj � Pj for j ∈ {1, 2} are initial. A process R is reachable if it can be derived from an
initial process, its origin, written OR, by applying the rules in Figures 2 and 3.

Concurrency To define concurrency in the forward and backward identified LTS is easy when both
transitions have the same direction: forward transitions will adopt the definition of the identified
calculus, and backward transitions will always be concurrent. More care is required when transitions
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have opposite directions, but the seed provides a good mechanism to define concurrency easily. In
a nutshell, the forward transition will be in conflict with the backward transition when the forward
identifier was obtained using the identifier pattern(s) that have been used to generate the backward
identifier, something we call “being downstream”. Identifying the identifier pattern(s) that have been
used to generate an identifier in the memory is actually immediate:

Definition 18. Given a backward transition t : s ◦m� P :::→i:α
s′ ◦m′

� P ′, we write ipt (resp. ip1t ,
ip2t ) for the unique identifier pattern(s) in s′ such that i ∈ Ia (resp. i1 and i2 s.t. i1 ⊕ i2 = i ∈ Ip)
is the first identifier in the stream generated by ipt (resp. are the first identifiers in the streams
generated by ip1t and ip2t ).

Definition 19 (Downstream). An identifier i is downstream of an identifier pattern (c, s) if

{

i ∈ IS(c, s) if i ∈ Ia

there exists j, k ∈ Ia s.t. j ⊕ k = i and j or k is downstream of (c, s) if i ∈ Ip

Definition 20 (Concurrency). Two different coinitial transitions t1 : s◦m�P −−−−→→
i1:α1

s1◦m1�P1

and t2 : s ◦m� P −−−−→→
i2:α2

s2 ◦m2 � P2 are concurrent iff

– t1 and t2 are forward transitions and i1 ⊥ i2 (Definition 12);
– t1 is a forward and t2 is a backward transition and i1 (or i11 and i21 if i1 = i11 ⊕ i21) is not

downstream of ipt2 (or ip1t2 nor ip2t2);
– t1 and t2 are backward transitions.

Example 6. Re-using the process from Example 5 and adding the memories, after having performed
t1 and t3, we obtain the process s ◦ [m1,m2]� 0 | c, where s = ((2, 2), (3, 2)), m1 = 〈0, a, (+, b,R)〉
and m2 = 〈1, a,_〉, that has three possible transitions:

t1 : s ◦ [m1,m2]� 0 | c−−−→3:c ((2, 2), (5, 2)) ◦ [m1, 〈3, c,_〉.m2]� 0 | 0

t2 : s ◦ [m1,m2]� 0 | c :::→1:a ((2, 2), (1, 2)) ◦ [m1, ∅]� 0 | a.c

t3 : s ◦ [m1,m2]� 0 | c :::→0:a ((0, 2), (3, 2)) ◦ [∅,m2]� a+ b | c

Among them, t2 and t3 are concurrent, as they are both backward, as well as t1 and t3, as 3 was not
generated by ipt3 = (0, 2). However, as 3 is downstream of ipt2 = (1, 2), t1 and t2 are not concurrent.

Causal Consistency We now prove that our framework enjoys causal consistency, a property
stating that an action can be reversed only provided all its consequences have been undone. Causal
consistency holds for a calculus which satisfies four basic axioms [22]: Loop Lemma—“any reduc-
tion can be undone”—, Square Property—“concurrent transitions can be executed in any order”—,
Concurrency (independence) of the backward transitions—“coinitial backward transitions are con-
current”— and Well-foundedness—“each process has a finite past”. Additionally, it is assumed that
the semantics is equipped with the independence relation, in our case concurrency relation.

Lemma 3 (Axioms). For every reachable processes R, R′, IRLTS satisfies the following axioms:

Loop Lemma: for every forward transition t : R −−−→i:α R′ there exists a backward transition t• :
R′

:::→i:α R and vice versa.
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Square Property: if t1 : R−−−−→→
i1:α1 R1 and t2 : R−−−−→→

i2:α2 R2 are two coinitial concurrent transitions,

there exist two cofinal transitions t′2 : R1 −−−−→→
i2:α2 R3 and t′1 : R2 −−−−→→

i1:α1 R3.

Backward transitions are concurrent: any two coinitial backward transitions t1 : R ::::→
i1:α1 R1

and t2 : R ::::→
i2:α2 R2 where t1 6= t2 are concurrent.

Well-foundedness: there is no infinite backward computation.

We now define the “causal equivalence” [13] relation on traces allowing to swap concurrent
transitions and to delete transitions triggered in both directions. The causal equivalence relation is
defined for the LTSI which satisfies the Square Property and re-use the notations from above.

Definition 21 (Causal equivalence). Causal equivalence, ∼, is the least equivalence relation on
traces closed under composition satisfying t1; t

′
2 ∼ t2; t

′
1 and t; t• ∼ ǫ— ǫ being the empty trace.

Now, given the notion of causal equivalence, using an axiomatic approach [22] and that our
reversible semantics satisfies necessary axioms, we obtain that our framework satisfies causal con-
sistency, given bellow.

Theorem 1 (Causal consistency). In IRLTS, two traces are coinitial and cofinal iff they are
causally equivalent.

Finally, we give the equivalent to the “unicity lemma” (Lemma 2) for IRLTS: note that since
the same transition can occur multiple times, and as backward and forward transitions may share
the same identifiers, we can have the exact same guarantee that any transition uses identifiers only
once only up to causal consistency.

Lemma 4 (Unicity for IRLTS). For a given trace d, there exist a trace d′, such that d′ ∼ d
and d′ contains any identifier at most once, and if a transition in d′ has identifier i1 ⊕ i2 ∈ Ip, then
neither i1 nor i2 occur in d′.

3.3 Links to RCCS and CCSK: Translations and Comparisons

We give the details of a possible encoding of our IRLTS terms into RCCS and CCSK terms in
Sect. A.5. Our calculus is more general, since it allows multiple sums, and more precise, since the
identifier mechanisms is explicit, but has some drawbacks with respect to those calculi as well.

While RCCS “maximally distributes” the memories to all the threads, our calculus for the
time being forces all the memories to be stored in one shared place. Poor implementations of this
mechanism could result in important bottlenecks, as memories need to be centralized: however, we
believe that an asynchronous handling of the memory accesses could allow to bypass this limitation
in our calculus, but reserve this question for future work. With respect to CCSK, our memory events
are potentially duplicated every time the δ? operator is applied, resulting in a space waste, while
CCSK never duplicates any memory event. Furthermore, the stability of CCSK’s terms through
execution—as the number of threads do not change during the computation—could constitute
another advantage over our calculus.

We believe the encoding we present to be fairly straightforward, and that it will open up the
possibility of switching from one calculus to another based on the needs to distribute the memories
or to reduce the memory footprint.
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4 Advances and New Features in Reversible Calculi

4.1 Replication, and Why We Cannot Create Exact Copies of Memory Events

Adding replication to the identified calculi is easy: it suffices to add the replication operator !P to
the operators (Definition 6) and the “replication group” of Fig. 4 to the ILTS rules (Fig. 1). We

Replication Group

[∩2](s) ◦ P −−−→
i:µ

s′ ◦ P ′

repl.1
s◦!P −−−→

i:µ
([∩1]s, s

′)◦!P | P ′

[∩2]([∩1](s)) ◦ P −−−−→
i1:λ

s1 ◦ P
′ [∩2]([∩2](s)) ◦ P −−−−→

i2:λ
s2 ◦ P

′′

repl.2
s◦!P −−−−−−→

i1⊕i2:τ ([∩1](s), (s1, s2))◦!P | (P ′ | P ′′)

Fig. 4. Additional rules for the identified labeled transition system

adopt a pair of rules to obtain a finitely branching transition system without loosing computational
nor decisional power [10, Section 4.3.1]. The handling of the identifier components is guided by the
intuition: repl.1 can be seen as a two-steps procedure, combining the operations of splitting s◦!P
into [∩](s)◦!P | P and then performing the transition from [∩2](s) ◦ P . The situation with repl.2 is
similar, with s◦!P split in three (id×[∩])([∩](s))◦!P | (P | P ) to let the two last threads synchronize.

Proving that the rules are still well-formed (Lemma 8) amounts to verify that [∩1](s) and [∩2](s)
are compatible, and that they remain compatible after any transition. This gives the unicity property
(Lemma 1) as well as the other properties listed in Sect. A.3 for free.

We would like now to argue that there are essentially four options in the handling of the memory
for the forward part of the reversible calculus: we detail in Fig. 5 only the forward part of repl.1,
ignoring the seeds and assuming the existence of an operator ? to tag memories and of a “memory
difference” operator m′ \m that returns the events in m′ not in m. Note that the rules c) and d)

Replication Group

m� P −−−→i:λ m′
� P ′

repl.
a)
1

m�!P −−−→i:λ [?m, ?m′]�!P | P ′

m� P −−−→i:λ m′
� P ′

repl.
c)
1

m�!P −−−→i:λ [?m, ?(m′ \m)]� 0 | P ′

m� P −−−→i:λ m′
� P ′

repl.
b)
1

m�!P −−−→i:λ [?m, ?(m′ \m)]�!P | P ′

m� P −−−→i:λ m′
� P ′

repl.
d)
1

m�!P −−−→i:λ [?m, [∅, ?(m′ \m)]]� 0 | (!P | P ′)

Fig. 5. Forward rules of the identified reversible labeled transition system with replication
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are not exactly extensions of the identified rule, but enable to “split” a duplicated process between
its future and its past, preserving a copy of its current state in d). More conservatively, those rules
could impose m = δ?∅ to prevent the duplication of memory altogether.

Without this restriction, we argue that un-distinguishable copies of events cannot exist while
maintaining Theorem 1. Let us illustrate this point with two examples, using the a) and b) rules:

(0, 1) ◦ ∅� a.!b−−−→0:a (1, 1) ◦ 〈0, a,_〉�!b (act.)

−−−→2:b ((1, 2), (4, 2)) ◦ [〈0, a,_〉, 〈2, b,_〉.〈0, a,_〉]�!b | 0 (repl.
a)
1 )

:::→2:b ((1, 2), (2, 2)) ◦ [〈0, a,_〉, 〈0, a,_〉]�!b | b (act.)

:::→0:a (0, 1) ◦ ∅� a.(!b | b) (act.)

(0, 1) ◦ ∅� a.!b−−−→0:a (1, 1) ◦ 〈0, a,_〉�!b (act.)

−−−→2:b ((1, 2), (4, 2)) ◦ [〈0, a,_〉, 〈2, b,_〉]�!b | 0 (repl.
b)
1 )

:::→2:b ((1, 2), (2, 2)) ◦ [〈0, a,_〉, ∅]�!b | b (act.)

Note that in the first case the origin of the process changed and that in the second, the process
cannot backtrack to an initial process anymore, as it can not undo the transition identified by 0 any-
more. Both cases make it impossible to preserve causal consistency (Theorem 1). Stated differently,
forward rules in the replication group must be un-done using corresponding backward rules, but as
the copy of the replicated process does not keep track of its “duplicated status”, the only way to
enforce this rule is to mark the memories.

This observation implies that at least in the a) and b) rules, the ? operator is a necessity if causal
consistency needs to be preserved. More liberal definition of our seed mechanism could allow process
resulting from the application of the c) and d) rules to backtrack to an initial process, that would
be different from the original process: if and how this mechanism could be exploited to execute
in parallel the future and the past of the same process remains to be determined. In any case, by
using the ? operator in the memory to “force” the backward transitions to fold up the replicated
process back to the state before the execution, we conjecture that none of the usual properties
would be lost. Furthermore, we conjecture that introducing different ? symbols for the rules a)–d)
and adopting the exact symmetric rules for the backward transitions would allow the four rules to
co-exist, opening the ability to represent different behaviors when it comes to duplicating processes
or memories.

4.2 Contexts, and How We Do Not Have Congruences in Reversible Calculi Yet

We remind the reader of the definition of contexts C[·] on CCS terms P, before introducing contexts
C I[·] (resp. M [·], CR[·]) on identified terms I (resp. on memories M, on identified reversible terms
R).

Definition 22 (Term Context). A context C[·] : P → P is inductively defined using all process
operators and a fresh symbol · (the slot) as follows (omitting the symmetric contexts):

C[·] := λ.C[·] | P | C[·] | C[·]\λ | λ1.P + λ2.C[·] | P > C[·] | P ⊓ C[·] | ·
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When placing an identified term into a context, we want to make sure that a well-identified
process remains well-identified, something that can be easily achieved by noting that for all process
P and seed s, (∪?∩?s) ◦ P is always well-identified, for the following definition of ∪?:

Definition 23 (Unifier). Given a process P and a seed s, we define

∪?(ip, P ) = ip ◦P ∪?((s1, s2), P ) =

{

(∪?(∩1(s1), P )) if s1 is not of the form ip1

(∩1(s1), P ) otherwise

Definition 24 (Identified Context). An identified context C I[·] : I → I is defined using term
contexts as C I[·] = (∪?∩?·) ◦ C[·].

Example 7. A term (0, 1) ◦ a+ b placed in the identified context (∪?∩?·) ◦ · | a would result in the
term ((0, 2), (1, 2)) ◦ a + b | a from Example 5. The term ((0, 2), (1, 2)) ◦ a | b placed in the same
context would give ((0, 4), (1, 4)), (2, 4)) ◦ (a | b) | a.

We now turn our attention to memory contexts, and write M for the set of all memories.

Definition 25 (Memory Context). A memory context M [·] : M → M is inductively defined
using the operators of Definition 13, the operations of Definitions 14 and 15, an “append” operation
and a fresh symbol · (the slot) as follows:

M [·] := [M [·],m] | [m,M [·]] | e.M [·] | M [·].e | δ?M [·] | M [·][j � k] | M [·] ++j (o, P, d) | ·

Where e.m = [e.m1, e.m2]and m.e = [m1.e,m2.e] if m = [m1,m2], and m.e = m′.e.∅ if m = m′.∅.

Definition 26 (Reversible Context). A reversible context CR[·] : R → R is defined using term
and memory contexts as CR[·] = (∪?∩?·) ◦M [·] � C[·]. It is memory neutral if M [·] is built using
only ·, [∅,M [·]] and [M [·], ∅].

Of course, a reversible context can change the past of a reversible process R, and hence the
initial process OR to which it corresponds (Definition 17).

Example 8. Let CR[·]1 = [∅, ·] � P | C[·] and CR[·]2 = δ?[·] � P | C[·]. Letting R = (1, 1) ◦
〈0, a,_〉 � b, we obtain CR[R]1 = ((1, 2), (2, 2)) ◦ [∅, 〈0, a,_〉] � P | b and CR[R]2 = ((1, 2), (2, 2)) ◦
[〈0, a,_〉, 〈0, a,_〉]� P | b, and we have

CR[R]1 :::→0:a ((1, 2), (0, 2)) ◦ [∅, ∅]� P | a.b CR[R]2 :::→0:a (0, 1) ◦ ∅� a.(P | b)

Note that not all of the reversible contexts, when instantiated with a reversible term, will give
accessible terms. Typically, a context such as [∅, ·]� · will be “broken” in the sense that the mem-
ory pair created will never coincide with the structure of the term and its memory inserted in
those slots. However, even restricted to contexts producing accessible terms, reversible contexts
are strictly more expressive that term contexts. To make this more precise in Lemma 5, we use
two bisimulations close in spirit to Forward-reverse bisimulation [33] and back-and-forth bisimula-
tion [8], but that leave some flexibility regarding identifiers and corresponds to Hereditary-History
Preserving Bisimulations [6]. Those bisimulations—B&F and SB&F—are recalled in Sect. A.6 and
proven below not to be congruences, not even under “memory neutral” contexts.
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Lemma 5. For all non-initial reversible process R, there exists reversible contexts CR[·] such OCR[R]

is reachable and for all term context C[·], C[OR] and OCR[R] are not B&F.

Theorem 2. B&F and SB&F are not congruences, not even under memory neutral contexts.

Proof. The processes R1 = (1, 1) ◦ 〈0, a,_〉� b+ b and R2 = (1, 1) ◦ 〈0, a, (+, b.a,R)〉� b are B&F,
but letting CR[·] = · � · + c, CR[R1] and CR[R2] are not. Indeed, it is easy to check that R1 and
R2, as well as OR1

= (0, 1) ◦ ∅ � a.(b + b) and OR2
= (0, 1) ◦ ∅ � (a.b) + (a.b), are B&F, but

OCR[R1] = (0, 1) ◦ ∅� a.((b+ b) + c) and OCR[R2] = (0, 1) ◦ ∅� (a.(b+ c)) + (a.b) are not B&F, and

hence CR[R1] and CR[R2] cannot be either. The same example works for SB&F.

We believe similar reasoning and example can help realizing that none of the bisimulations
introduced for reversible calculi are congruences under our definition of reversible context. Some
congruences for reversible calculi have been studied [5], but they allowed the context to be applied
only to the origins of the reversible terms: whenever interesting congruences allowing contexts to
be applied to non-initial terms exist is still an open problem, in our opinion, but we believe our
formal frame will allow to study it more precisely.

References

1. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: Mobile values, new names, and secure
communication. J. ACM 65(1), 1:1–1:41 (2018). https://doi.org/10.1145/3127586

2. Amadio, R.M.: Operational methods in semantics. Lecture notes, Université Denis Diderot Paris 7 (Dec
2016), https://hal.archives-ouvertes.fr/cel-01422101

3. Arpit, Kumar, D.: Calculus of concurrent probabilistic reversible processes. In: ICCCT. p. 34–40.
ICCCT-2017, ACM, New York, NY, USA (2017). https://doi.org/10.1145/3154979.3155004

4. Aubert, C., Cristescu, I.: Reversible barbed congruence on configuration structures. In: ICE 2015.
EPTCS, vol. 189, pp. 68–95 (2015). https://doi.org/10.4204/EPTCS.189.7

5. Aubert, C., Cristescu, I.: Contextual equivalences in configuration structures and reversibility. J. Log.
Algebr. Methods Program. 86(1), 77–106 (2017). https://doi.org/10.1016/j.jlamp.2016.08.004

6. Aubert, C., Cristescu, I.: How reversibility can solve traditional questions: The example of hereditary
history-preserving bisimulation. In: CONCUR. LIPIcs, vol. 2017, pp. 13:1–13:24. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.CONCUR.2020.13

7. Aubert, C., Cristescu, I.: Structural equivalences for reversible calculi of communicating systems (oral
communication). Tech. rep. (2020), https://hal.archives-ouvertes.fr/hal-02571597

8. Bednarczyk, M.A.: Hereditary history preserving bisimulations or what is the power of the future
perfect in program logics. Tech. rep., Instytut Podstaw Informatyki PAN filia w Gdańsku (1991),
http://www.ipipan.gda.pl/~marek/papers/historie.ps.gz

9. Boudol, G., Castellani, I.: Permutation of transitions: An event structure semantics for CCS and
SCCS. In: Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency,
School/Workshop, Noordwijkerhout, The Netherlands, May 30 - June 3, 1988, Proceedings. LNCS,
vol. 354, pp. 411–427. Springer (1988). https://doi.org/10.1007/BFb0013028

10. Busi, N., Gabbrielli, M., Zavattaro, G.: On the expressive power of recursion, replication and iteration
in process calculi. MSCS 19(6), 1191–1222 (2009). https://doi.org/10.1017/S096012950999017X

11. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible p-calculus. In: LICS.
pp. 388–397. IEEE Computer Society (2013). https://doi.org/10.1109/LICS.2013.45

12. Cristescu, I., Krivine, J., Varacca, D.: Rigid families for CCS and the π-calculus. In: ICTAC 2015 -
12th International Colloquium Cali, Colombia, October 29-31, 2015, Proceedings. LNCS, vol. 9399, pp.
223–240. Springer (2015). https://doi.org/10.1007/978-3-319-25150-9_14

https://doi.org/10.1145/3127586
https://hal.archives-ouvertes.fr/cel-01422101
https://doi.org/10.1145/3154979.3155004
https://doi.org/10.4204/EPTCS.189.7
https://doi.org/10.1016/j.jlamp.2016.08.004
https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://hal.archives-ouvertes.fr/hal-02571597
http://www.ipipan.gda.pl/~marek/papers/historie.ps.gz
https://doi.org/10.1007/BFb0013028
https://doi.org/10.1017/S096012950999017X
https://doi.org/10.1109/LICS.2013.45
https://doi.org/10.1007/978-3-319-25150-9_14


16 Clément Aubert and Doriana Medić

13. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR.
LNCS, vol. 3170, pp. 292–307. Springer (2004). https://doi.org/10.1007/978-3-540-28644-8_19

14. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.) CONCUR. LNCS,
vol. 3653, pp. 398–412. Springer (2005). https://doi.org/10.1007/11539452_31

15. Frank, M.P., Brocato, R.W., Tierney, B.D., Missert, N.A., Hsia, A.H.: Reversible computing with fast,
fully static, fully adiabatic CMOS. In: ICRC 2020, Atlanta, GA, USA, December 1-3, 2020. pp. 1–8.
IEEE (2020). https://doi.org/10.1109/ICRC2020.2020.00014

16. Graversen, E., Phillips, I., Yoshida, N.: Event structure semantics of (controlled) reversible CCS. In:
RC 2018, Leicester, UK, September 12-14, 2018, Proceedings. LNCS, vol. 11106, pp. 102–122. Springer
(2018). https://doi.org/10.1007/978-3-319-99498-7_7

17. Hennessy, M.: A distributed Pi-calculus. CUP (2007). https://doi.org/10.1017/CBO9780511611063

18. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
19. Krivine, J.: Algèbres de Processus Réversible - Programmation Concurrente Déclarative. Ph.D. thesis,

Université Paris 6 & INRIA Rocquencourt (2006), https://tel.archives-ouvertes.fr/tel-00519528

20. Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.: Concurrent
flexible reversibility. In: ESOP. LNCS, vol. 7792, pp. 370–390. Springer (2013).
https://doi.org/10.1007/978-3-642-37036-6_21

21. Lanese, I., Medić, D., Mezzina, C.A.: Static versus dynamic reversibility in CCS. Acta Inform. (Nov
2019). https://doi.org/10.1007/s00236-019-00346-6

22. Lanese, I., Phillips, I.C.C., Ulidowski, I.: An axiomatic approach to reversible computation. In: FOS-
SACS, Dublin, Ireland, April 25-30, 2020, Proceedings. LNCS, vol. 12077, pp. 442–461. Springer (2020).
https://doi.org/10.1007/978-3-030-45231-5_23

23. Lévy, J.J.: Réductions correctes et optimales dans le lambda-calcul. Ph.D. thesis, Paris 7 (Jan 1978),
http://pauillac.inria.fr/~levy/pubs/78phd.pdf

24. Matthews, D.: How to get started in quantum computing. Nature 591(7848), 166–167 (Mar 2021).
https://doi.org/10.1038/d41586-021-00533-x

25. Medić, D., Mezzina, C.A.: Static VS dynamic reversibility in CCS. In: Devitt, S.J., Lanese, I. (eds.) RC
2016. LNCS, vol. 9720, pp. 36–51. Springer (2016). https://doi.org/10.1007/978-3-319-40578-0_3

26. Medić, D., Mezzina, C.A., Phillips, I., Yoshida, N.: A parametric framework for reversible π-calculi. Inf.
Comput. 275, 104644 (2020). https://doi.org/10.1016/j.ic.2020.104644

27. Merro, M., Zappa Nardelli, F.: Behavioral theory for mobile ambients. J. ACM 52(6), 961–1023 (2005).
https://doi.org/10.1145/1101821.1101825

28. Mezzina, C.A., Koutavas, V.: A safety and liveness theory for total reversibility.
In: TASE 2017, Sophia Antipolis, France, September 13-15. pp. 1–8. IEEE (2017).
https://doi.org/10.1109/TASE.2017.8285635

29. Milner, R.: A Calculus of Communicating Systems. LNCS, Springer-Verlag (1980).
https://doi.org/10.1007/3-540-10235-3

30. Palamidessi, C., Valencia, F.D.: Recursion vs replication in process calculi: Expressiveness. Bull. EATCS
87, 105–125 (2005), http://eatcs.org/images/bulletin/beatcs87.pdf

31. Perdrix, S., Jorrand, P.: Classically-controlled quantum computation. Electron. Notes Theor. Comput.
Sci. 135(3), 119–128 (2006). https://doi.org/10.1016/j.entcs.2005.09.026

32. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. In: Aceto, L., Ingólfsdóttir, A. (eds.)
FoSSaCS. LNCS, vol. 3921, pp. 246–260. Springer (2006). https://doi.org/10.1007/11690634_17

33. Phillips, I., Ulidowski, I.: Reversibility and models for concurrency. Electron. Notes Theor. Comput.
Sci. 192(1), 93–108 (2007). https://doi.org/10.1016/j.entcs.2007.08.018

34. Rosenberg, A.L.: Efficient pairing functions - and why you should care. Int. J. Found. Comput. Sci.
14(1), 3–17 (2003). https://doi.org/10.1142/S012905410300156X

35. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. CUP (2011)

36. Sangiorgi, D., Walker, D.: The Pi-calculus. CUP (2001)

37. Szudzik, M.P.: The rosenberg-strong pairing function. CoRR abs/1706.04129 (2017)

https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/11539452_31
https://doi.org/10.1109/ICRC2020.2020.00014
https://doi.org/10.1007/978-3-319-99498-7_7
https://doi.org/10.1017/CBO9780511611063
https://tel.archives-ouvertes.fr/tel-00519528
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/s00236-019-00346-6
https://doi.org/10.1007/978-3-030-45231-5_23
http://pauillac.inria.fr/~levy/pubs/78phd.pdf
https://doi.org/10.1038/d41586-021-00533-x
https://doi.org/10.1007/978-3-319-40578-0_3
https://doi.org/10.1016/j.ic.2020.104644
https://doi.org/10.1145/1101821.1101825
https://doi.org/10.1109/TASE.2017.8285635
https://doi.org/10.1007/3-540-10235-3
http://eatcs.org/images/bulletin/beatcs87.pdf
https://doi.org/10.1016/j.entcs.2005.09.026
https://doi.org/10.1007/11690634_17
https://doi.org/10.1016/j.entcs.2007.08.018
https://doi.org/10.1142/S012905410300156X


Enabling Replications and Contexts in Reversible Concurrent Calculus 17

38. de Visme, M.: Event structures for mixed choice. In: Fokkink, W., van Glabbeek,
R.J. (eds.) CONCUR. LIPIcs, vol. 140, pp. 11:1–11:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.CONCUR.2019.11,
http://www.dagstuhl.de/dagpub/978-3-95977-121-4

https://doi.org/10.4230/LIPIcs.CONCUR.2019.11
http://www.dagstuhl.de/dagpub/978-3-95977-121-4


18 Clément Aubert and Doriana Medić

A Appendix

A.1 Proof for Sect. 2.1 – Preamble: Identifier Structures, Patterns, Seeds and
Splitters

Lemma 6 (Seed splitter is well-defined). For all identifier structure IS and seed s, [∩](s) is a
seed.

Proof. We simply have to prove that all the identifier patterns occurring in [∩](s) are pairwise
compatible. If s = ip, then it comes from the splitter’s definition (Definition 3). If s = (s1, s2), then
it follows by induction on the degree of nesting of seeds: if (s1, s2) is a pair of identifier patterns
(ip1, ip2), then we know they are compatible, and so are

[∩](ip1, ip2) = ([∩](ip1), [∩](ip2)) = (∩(ip1),∩(ip2)) (1)

If (s1, s2) is a pair of seeds, or a seed and an identifier pattern, then it follows by induction.

A.2 Structural Relations for IRLTS and ILTS

We introduce the structural relation for our two calculi, IRLTS and ILTS below, starting with
IRLTS and then restricting it to ILTS.

Definition 27 (Structural Relation for IRLTS). The structural relation ≡ for IRLTS is de-
fined in Fig. 6. For the rules in the Sum and Restriction groups, the seed and memory are unchanged
and hence left implicit: both sides are prefixed by “s ◦m�”.

We have four comments about this relation:

1. We do not require it to be a congruence at this point: as the correct notion of context is not
completely clear (see Sect. 4.2), we prefer to put it on hold for now.

2. Alpha-equivalence can be applied only on memory-less processes: how renaming should incor-
porate past memory events may not be straightforward. Indeed, applying a substitution to a
sub-term’s memory but not another can result in two events having the same identifier but
different labels, a case not included in our IRLTS for now.

3. The commutativity rules for sums allows to remove the R and L indications from the memory
events.

4. We expect all the properties listed in Sect. 3.2 to hold, but did not included it in the discussion
for simplicity.

Definition 28 (Structural Relation for ILTS). The structural relation for ILTS can be read
from the one for IRLTS (Definition 27) by simply removing the memories.

A.3 Proofs for Sect. 2.2 – Identified CCS and Unicity Property

Lemma 7. For every P ,

1. for every ip, ∩? ip ◦P is well-identified,
2. for every s and j ∈ {1, 2}, if s ◦ P is well-identified then [∩j ](s) ◦ P is.
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Sums

P +Q ≡ Q+ P (C+)

(P +Q) +R ≡ P + (Q+R)
(A+)

P + P ≡ P (I+)

P > Q ≡ Q > P (C>)

(P > Q) > R ≡ P > (Q > R)
(A>)

P > P ≡ P (I>)

P > 0 ≡ P (Z>)

P ⊓Q ≡ Q ⊓ P (C⊓)

(P ⊓Q) ⊓R ≡ P ⊓ (Q ⊓R)
(A⊓)

P ⊓ P ≡ P (I⊓)

P ⊓ 0 ≡ P (Z⊓)

Alpha-equivalence

s ◦ ∅� P ≡ s ◦ ∅�Q if P =α Q (α)

Where =α is the α-equivalence defined as usual.
Parallel Composition

[s1, s2] ◦ [m1,m2]� P1 | P2 ≡ [s2, s1] ◦ [m2,m1]� P2 | P1 (C|)

[[s1, s2], s3]] ◦ [[m1,m2],m3]]� (P1 | P2) | P3 ≡ [s1, [s2, s3]] ◦ [m1, [m2, m3]]� P1 | (P2 | P3) (A|)

∩
?(s) ◦ [m, ∅]� P | 0 ≡ s ◦m� P (Z|)

Restriction

(P\a)\b ≡ (P\b)\a (C\)

(P +Q)\a ≡ (P\a) + (Q\a) (D
\
+)

(P > Q)\a ≡ (P\a) > (Q\a) (D
\
>)

(P ⊓Q)\a ≡ (P\a) ⊓ (Q\a) (D
\
⊓)

0\a ≡ 0 (Z\)

(P | Q)\a ≡ (P\a) | Q if a, a /∈ fn(Q) (E1)

P\a ≡ P if a, a /∈ fn(P ) (E2)

Where fn(P ) is defined as the set of free names in P , the only binder being restriction.

Fig. 6. Structural relation for IRLTS
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Proof. 1. Immediate from Definitions 8 and 10.
2. If P is not of the form P1 | P2, then it is immediate. Otherwise, s is of the form (s1, s2) and so

is [∩j ](s) by (1) and it follows by induction.

Lemma 8. The rules are well-formed.

Proof. The only aspect to check is that all the seeds created contain only pairwise compatible
identifier patterns, which is immediate.

Lemma 9. If s◦P is a well-identified term and there exists a transition P −−−→i:λ
s′ ◦P ′, then s′ ◦P ′

is well-identified.

Proof. By simple inspection of the rules and repeated use of Lemma 7.

Lemma 1 (Unicity). The trace of an identified process contains any identifier at most once, and
if a transition has identifier i1 ⊕ i2 ∈ Ip, then neither i1 nor i2 occur in the trace.

Proof. It is immediate for all the rules except for the parallel group, where it amounts to see that
since we only split seeds or “increment” them, if two seeds are compatible, then they can not have
been obtained from seeds that were incompatible using split and increment, hence the two traces
never used the same identifiers.

Lemma 10 (Identifiers substitution). For all s, s′, P , P ′, i and λ such that s ◦ P −−−→i:λ
s′ ◦ P ′,

then for all j ∈ {1, 2}, there exists i′, s′′ such that [∩j ](s) ◦ P −−−→i′:λ
s′′ ◦ P ′.

Proof. By induction on the height of the derivation tree of s ◦ P −−−→i:λ
s′ ◦ P . It is always possible

to replace s with ∩j(s) in all the leaves, and by (1) this substitution can be propagated down until
we reach the conclusion.

Lemma 2. For all CCS process P , ∃s s.t. P −−−→
α1 · · ·−−−→

αn P ′ ⇔ (s ◦ P −−−−→
i1:α1 · · ·−−−−→

in:αn

s′ ◦ P ′).

Proof. ⇒ By induction on the height of the derivation tree. The only condition that can possibly be
blocking is in the parallel group, but it can be side-stepped using substitution and Lemma 10:
if s1 ⊥ s2 does not hold, then replace them with [∩1](s1) and [∩2](s1), which are compatible by
definition, and propagate that substitution.

⇐ Trivial, as it suffices to remove the seed and the identifier to get CCS labeled transition system.

A.4 Proofs for Sect. 3.2 – Properties: From Concurrency to Causal Consistency and
Unicity

Lemma 11. For all CCS process P , ∃s s.t. P −−−→
α1 · · · −−−→

αn P ′ ⇔ (s ◦ m � P −−−−→
i1:α1 · · · −−−−→

in:αn

s′ ◦m� P ′, with s ◦m� P initial).

Proof. The reasoning is similar as for Lemma 2. The addition of the memory is not giving any
constraint to the forward executions. Notable that we are limited on reachable processes.

Lemma 12 (Loop Lemma). For every reachable process R and forward transition t : R−−−→i:α R′

there exists a backward transition t• : R′
:::→i:α R and vice versa.
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Proof. Given a transition t : R −−−→i:α R′, the proof is done by the induction on the derivation of
transition t. The statement of the lemma follows from the fact that forward and backward rules are
symmetric.

Given a transition t• : R′
:::→i:α R the proof is done by the induction on the derivation of

transition t•, where the statement of the lemma follows from the fact that process R is reachable
and that forward and backward rules are symmetric.

Lemma 13 (Square Property). If t1 : R−−−−→→
i1:α1 R1 and t2 : R−−−−→→

i2:α2 R2 are two different coini-

tial concurrent transitions, there exist two cofinal transitions t′2 : R1 −−−−→→
i2:α2 R3 and t′1 : R2 −−−−→→

i1:α1 R3.

Proof. Given a process R = s ◦m � P and two different coinitial concurrent transitions t1 and t2,
by Definition 20, CCS process P has at least one parallel operator on the top-level and transitions are
executed on different components in parallel, let us denote them Q1 and Q2 with their corresponding
seeds and memories s1,m1 and s2,m2, respectively (it is noted that s1, s2 ∈ s and m1,m2 ∈ m).
Since transitions are concurrent and coinitial, after the execution of transition t1, seed and memory
s2,m2 are not changed and transition t′2 can take place producing the process R3. Similar if we
consider transition t2.

Lemma 3 (Axioms). For every reachable processes R, R′, IRLTS satisfies the following axioms:

Loop Lemma: for every forward transition t : R −−−→i:α R′ there exists a backward transition t• :
R′

:::→i:α R and vice versa.

Square Property: if t1 : R−−−−→→
i1:α1 R1 and t2 : R−−−−→→

i2:α2 R2 are two coinitial concurrent transitions,

there exist two cofinal transitions t′2 : R1 −−−−→→
i2:α2 R3 and t′1 : R2 −−−−→→

i1:α1 R3.

Backward transitions are concurrent: any two coinitial backward transitions t1 : R ::::→
i1:α1 R1

and t2 : R ::::→
i2:α2 R2 where t1 6= t2 are concurrent.

Well-foundedness: there is no infinite backward computation.

Proof. The proofs of Loop Lemma and Square Lemma follow from Lemma 12 and 13, respectively.

Backward transitions are concurrent is a direct consequence of the definition of concurrency
(Definition 20).

Well-foundedness follows from the fact that backward computation consumes memory. When
the memory does not contain any memory event anymore, backward transitions are impossible.

Lemma 4 (Unicity for IRLTS). For a given trace d, there exist a trace d′, such that d′ ∼ d and
d′ contains any identifier at most once, and if a transition in d′ has identifier i1 ⊕ i2 ∈ Ip, then
neither i1 nor i2 occur in d′.

Proof. It follows from Theorem 1 and Lemma 2: every identifier occurring two times or more in
d must occur in forward and backward transitions, and causal consistency allows to replace any
pair of transitions with the same identifier with the empty trace to obtain d′. Hence, every atomic
identifier will occur at most once in d′.

For paired identifiers, the reasoning is similar, and uses furthermore that any transition identified
with i1⊕i2 forbid any other transition identified by i1 or i2 to take place by definition of concurrency,
and reciprocally.
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A.5 Details on the Encodings to RCCS and CCSK

To translate a IRLTS process s ◦m� P into an RCCS or CCSK process, we assume that

1. The process s ◦m� P is reachable,
2. All identifiers in Ip occuring in m have been replaced by one of their component uniformly, i.e.

i1 ⊕ i2 and i2 ⊕ i1 have both been replaced with, say, i1,
3. The operators > and ⊓ do not occur in P or m, and this latter furthermore has no occurence

of υ,
4. All memory events of the form 〈i, λ1, (+, λ2.P2,R)〉 have been replaced with 〈i, λ1, λ2.P2〉, and

similarly for L: as the sum operator + is commutative in RCCS and CCSK, the side on which
the process was do not matter anymore, and since there is only one sum available, there is no
need to record which one was used.

Both encodings are done with the help of the auxiliary function zip defined bellow. During the
encoding we let [m′,m′′].ms be a valid memory, where ms is a stack and could be ∅.

Definition 29 (zip function). The function zip is defined on the memory m of a reachable process
s ◦m� P as

zip([m′,m′′]) = zip([zip(m′), zip(m′′)]) (z1)

zip([m′.ms,m
′′,ms]) = [m′,m′′].ms (z2)

zip(ms) = ms (z3)

Stated differently, (z1) makes sure that zip is applied to every pair and stack in m, then (z2)
“zips” the common parts of pairs, and (z3) leaves the stack unchanged. After the application of the
function zip, every memory can be written as [m′,m′′].ms, and we let ∅.ms = ms.

Example 9. Let us consider the process R = s ◦ [[〈0, a,_〉, 〈4, c,_〉.〈0, a,_〉], 〈0, a,_〉] � (b | 0) | d.
Applying zip gives:

zip([[〈0, a,_〉, 〈4, c,_〉.〈0, a,_〉], 〈0, a,_〉])

= zip([zip([〈0, a,_〉, 〈4, c,_〉.〈0, a,_〉]), zip(〈0, a,_〉)])

= zip([zip([zip(〈0, a,_〉), zip(〈4, c,_〉.〈0, a,_〉)]), 〈0, a,_〉])

= zip([zip([〈0, a,_〉, 〈4, c,_〉.〈0, a,_〉]), 〈0, a,_〉])

= zip([[∅, 〈4, c,_〉].〈0, a,_〉, 〈0, a,_〉])

=[[∅, 〈4, c,_〉], ∅].〈0, a,_〉

Encoding to RCCS The encoding function H·I : R → RRCCS is defined inductively:

Hs ◦m� P I = Hzip(m)� P I (H·I1)

H[m′,m′′].ms � P | QI = Hm′. g .ms � P I | Hm′′.g .ms �QI (H·I2)

Hms � P I = ms � P (H·I3)

With rule (H·I1) the identifier mechanism is removed and zip is applied to the memory. Rule
(H·I2) splits the encoding and annotates the memory with RCCS’s “fork symbol” g, while rule (H·I3),
with the condition that ms is a stack, produce the final RCCS thread. Note that, as is done in RCCS,
the “ |” symbol is used as a constructor for both CCS and RCCS threads, and that our encoding
maximally apply the “distribution of memory” rule of their structural congruence [13, p. 297].
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Example 10. Let us consider the process R = s ◦ [[〈0, a,_〉, 〈4, c,_〉.〈0, a,_〉], 〈0, a,_〉] � (b | 0) | d
and its memory “zipping” from Example 9, applying the encoding we just defined gives:

HRI = H[[∅, 〈4, c,_〉], ∅].〈0, a,_〉� (b | 0) | dI

= H[∅, 〈4, c,_〉]. g .〈0, a,_〉� b | 0I | Hg.〈0, a,_〉� dI

= (Hg. g .〈0, a,_〉� bI | H〈4, c,_〉. g .g .〈0, a,_〉� 0I) | g.〈0, a,_〉� d

= (g. g .〈0, a,_〉� b | 〈4, c,_〉.g . g .〈0, a,_〉� 0) | g.〈0, a,_〉� d

Encoding to CCSK We write X for CCSK processes and let 0.X = X .

The encoding function L·M : R → RCCSK is defined inductively:

Ls ◦m� P M = Lzip(m), P M (L·M1)

L∅, XM = X (L·M2)

L[m′,m′′].ms, P | QM = L[Lm′, P M, Lm′′, QM].ms,_M (L·M3)

L[X1, . . . , Xn],_M = X1, . . . , Xn (L·M4)

L[X1, . . . , Xn].ms,_M = Lms, X1 | . . . | XnM (L·M5)

L〈i, λ,Q〉.ms, XM = Lms, λ[i].P +QM (L·M6)

L〈i, λ,_〉.ms, XM = Lms, λ[i].P M (L·M7)

Rule (L·M1) removes the identifier mechanism, applies zip and separates the process from its
memory. The encoding terminates with (L·M2) when the memory part is empty. With rule (L·M3),
the encoding can “enter” into the memory pair and translate it, while bringing the CCS process
inside and leaving the empty space _ as the starting encoding step. When the internal encodings
are finished, rules (L·M4) and (L·M5) fill the empty space _ with obtained processes X1, . . . , Xn and
compose them in parallel. Then the encoding continues by translating the memory ms or finishes
if ms = ∅. With the last two rules, memory events for prefix and sum are translated into history
prefixes of CCSK processes.

Example 11. Let us consider the process R = s ◦ [[〈0, a,_〉, 〈4, c,_〉.〈0, a,_〉], 〈0, a,_〉] � (b | 0) | d
and its memory “zipping” from Example 9, applying the encoding we just defined gives:

LRM =L[[∅, 〈4, c,_〉], ∅].〈0, a,_〉, b | 0 | dM

=L[L[∅, 〈4, c,_〉], b | 0M, L∅, dM].〈0, a,_〉,_M

=L[L[L∅, bM, L〈4, c,_〉, 0M],_M, d].〈0, a,_〉,_M

=L[L[b, L∅, c[4].0M],_M, d].〈0, a,_〉,_M

=L[L[b, c[4].0],_M, d].〈0, a,_〉,_M

=L[b, c[4].0, d].〈0, a,_〉,_M

=L〈0, a,_〉, b | c[4].0 | dM

=L∅, a[0].(b | c[4].0 | d)M

=a[0].(b | c[4].0 | d)
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A.6 Back-and-forth-bisimulations and Proofs for Sect. 4.2

Below, assume given two reachable processes R1 and R2, and if f : A → B is such that f(a) = b, we
write f \ {a 7→ b} for f↾A\{a} and f ∪ {a 7→ b} for the function defined as f on A that additionally
maps a /∈ A to b. We also let I(R) be the set of identifiers occurring in the memory of R.

Definition 30 (B&F and SB&F bisimulations [6]). A relation R ⊆ R × R × (I ⇀ I) such that
(∅�OR1

, ∅�OR2
, ∅) ∈ R and if (R1, R2, f) ∈ R, then f is a bijection between I(R1) and I(R2) and

(6–9) hold is called a back-and-forth-bisimulation (B&F) between R1 and R2.

∀S1, R1 −−−→
i:α S1 ⇒ ∃S2, g, R2 −−−→

j:α
S2, g = f ∪ {i 7→ j}, (S1, S2, g) ∈ R (6)

∀S2, R2 −−−→
i:α S2 ⇒ ∃S1, g, R1 −−−→

j:α
S1, g = f ∪ {i 7→ j}, (S1, S2, g) ∈ R (7)

∀S1, R1 :::→i:α S1 ⇒ ∃S2, f, R2 :::→
j:α

S2, g = f\{i 7→ j}, (S1, S2, g) ∈ R (8)

∀S2, R2 :::→i:α S2 ⇒ ∃S1, g, R1 :::→
j:α

S1, g = f\{i 7→ j}, (S1, S2, g) ∈ R (9)

If we remove the requirements on f and g in the second part of (6–9), we call R a simple back-and-
forth bisimulation (SB&F). We write that R1 and R2 are B&F (resp. SB&F) if there exists a B&F
(resp. SB&F) relation between them.

Lemma 5. For all non-initial reversible process R, there exists reversible contexts CR[·] such OCR[R]

is reachable and for all term context C[·], C[OR] and OCR[R] are not B&F.

Proof. As R is not initial, it is of the form e.∅ � P for some memory event e (we assume that the
memory is a stack with only one event, but the proof is the same if it is a pair or contains more
than one event), and its origin is of the form a.P ′ (similarly, the proof can easily be adapted for
processes that do not have a prefix as the main connector of their origin). Taking b to be a name
not occuring in OR and letting CR[·] = · � · + b makes OCR[R] to be of the form a.(P ′ + b). As a
term context cannot insert an occurence of b “under” the prefix a, the only possible option is to use
a context of the form C[·] = ·+ a.b. But a.(P ′ + b), after a transition on a, can still decide between
P ′ and b while C[OR] cannot: hence, C[OR] and OCR[R] are not B&F.
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