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Abstract
Urgent global research demands real-time dissemination of precise data. Wikidata, a 
collaborative and openly licensed knowledge graph available in RDF format, provides an ideal 
forum for exchanging structured data that can be verified and consolidated using validation 
schemas and bot edits. In this research paper, we catalog an automatable task set necessary to 
assess and validate the portion of Wikidata relating to the COVID-19 epidemiology. These tasks 
assess statistical data and are implemented in SPARQL, a query language for semantic 
databases. We demonstrate the efficiency of our methods for evaluating structured non-relational 
information on COVID-19 in Wikidata, and its applicability in collaborative ontologies and 
knowledge graphs more broadly. We show the advantages and limitations of our proposed 
approach by comparing it to the features of other methods for the validation of linked web data 
as revealed by previous research.

Introduction

Since December 2019, the COVID-19 disease has spread to become a global pandemic. This
disease  is  caused  by  a  zoonotic  coronavirus  called  SARS-CoV-2 (Severe  Acute  Respiratory
Syndrome CoronaVirus 2) and is characterized by the onset of acute pneumonia and respiratory
distress. The global impact, with more than 388 million infections and almost 5.7 million deaths
globally (as of February 4, 20221), is frequently compared to the 1918 Spanish Flu (Krishnan,
Ogunwole, & Cooper, 2020). Emerging mRNA vaccines entail serious distribution and storage
challenges, and no therapies are especially effective against late stages of the disease. As with all
zoonotic  diseases,  its  abrupt  introduction  to  humans  demands  an  outsized  effort  for  data
acquisition, curation, and integration to drive evidence-based medicine, predictive modeling, and
public health policy (Dong, Du, & Gardner, 2020; Xu, Kraemer, & Data Curation Group, 2020).

Agile  data sharing and computer-supported reasoning about  the COVID-19 pandemic  and
SARS-CoV-2  virus  allow  us  to  quickly  understand  more  about  the  disease’s  epidemiology,
pathogenesis,  and physiopathology. This understanding can then inform the required clinical,
scholarly,  and  public  health  measures  to  fight  the  condition  and  handle  its  nonmedical
ramifications (Heymann, 2020; Mietchen & Li, 2020; RDA COVID-19 Working Group, 2020).
Consequently,  initiatives  have rapidly emerged to create datasets,  web services,  and tools  to
analyze and visualize COVID-19 data. Examples include Johns Hopkins University’s COVID-19
dashboard  (Dong,  Du,  &  Gardner,  2020)  and  the  Open  COVID-19  Data  Curation  Group’s
epidemiological data (Xu, Kraemer, & Data Curation Group, 2020). Some of these resources are
interactive and return their results based on combined clinical and epidemiological information,
scholarly information, and social network analysis (Cuan-Baltazar, et al., 2020; Ostaszewski, et
al., 2020; Kagan, Moran-Gilad, & Fire, 2020). However, a significant shortfall in interoperability

1 "COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University 
(JHU)". ArcGIS. Johns Hopkins University. Retrieved 4 February 2022.
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is common: although these dashboards facilitate examination of their slice of the data, most of
them lack  general  integration  with other  sites  or  datasets.  The lack  of  technical  support  for
interoperability is exacerbated by legal restrictions: despite being free to access, the majority of
such dashboards are provided under  All Rights Reserved terms or licenses. Similarly, >84% of
the 142,665 COVID-19-related projects  on the GitHub repository for computing projects  are
under All Rights Reserved2 terms (as of 4 February 2022). Restrictive licensing of data sets and
applications severely impedes their dissemination and integration, ultimately undermining their
value for the community of users and re-users. For complex and multifaceted phenomena such as
the COVID-19 pandemic, there is a particular need for a collaborative, free, machine-readable,
interoperable, and open approach to knowledge graphs that integrate the varied data.

Wikidata3 just  fits the need as a CC04 licensed, large-scale,  multilingual  knowledge graph
used to represent human knowledge in a structured format (Resource Description Framework or
RDF) (Vrandečić & Krötzsch, 2014; Turki, et al., 2019). It, therefore, has the advantage of being
inherently  findable,  accessible,  interoperable,  and  reusable,  i.e.,  FAIR (Waagmeester,  et  al.,
2021). It was initially developed in 2012 as an adjunct to Wikipedia, but has grown significantly
beyond its initial parameters. As of now, it is a centralized, cross-disciplinary meta-database and
knowledge base for storing structured information in a format optimized to be easily read and
edited  by  both  machines  and  humans  (Erxleben,  Günther,  Krötzsch,  Mendez,  & Vrandečić,
2014).  Thanks to its  flexible representation  of facts,  Wikidata can be automatically  enriched
using information retrieved from multiple public domain sources or inferred from synthesized
data (Turki, et al., 2019). This database includes a wide variety of pandemic-related information,
including  clinical  knowledge,  epidemiology,  biomedical  research,  software  development,
geographic, demographic, and genetics data. It can consequently be a vital large-scale reference
database to support research and medicine during the COVID-19 pandemic (Turki, et al., 2019;
Waagmeester, et al., 2021).

The key hurdle to overcome for projects such as Wikidata is that several of their features can
make  them  at-risk  of  inconsistent  structure  or  coverage:  1)  collaborative  projects  use
decentralized contributions rather than central oversight, 2) large-scale projects operate at a scale
where manual checking is not possible, and 3) interdisciplinary projects regulate the acquisition
of data to integrate a wide variety of data sources. To maximize the usability of the data, it is
therefore  important  to  minimize  inconsistencies  in  its  structure  and  coverage.  As  a  result,
methods  of  evaluating  the  existing  knowledge  graphs and ontologies,  integral  to  knowledge
graph  maintenance  and  development,  are  of  crucial  importance.  Such  an  evaluation  is
particularly relevant in the case of collaborative semantic databases, such as Wikidata. 

2 120,109 of 142,665 as of 4 February 2022: https://github.com/search?q=covid-
19+OR+covid19+OR+coronavirus+OR+cord19+OR+cord-19 
3 https://www.wikidata.org/ 
4 CC0 is a rights waiver similar to Creative Commons licenses, used to publish material into the public domain. It 
waives as much copyright as possible within a given jurisdiction. Further information can be found at 
https://creativecommons.org/publicdomain/zero/1.0/ .
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Knowledge graph evaluation  is,  therefore,  necessary to  assess  the  quality,  correctness,  or
completeness of a given knowledge graph against a set of predetermined criteria (Amith, He,
Bian,  Lossio-Ventura,  & Tao,  2018).  There  are  several  possible  approaches  to  evaluating  a
knowledge  graph  based  on  external  information  (so-called  extrinsic  evaluation),  including
comparing its structure to a paragon ontology, comparing its coverage to source data, applying it
to a test problem and judging the outcomes, and manual expert review of its ontology (Brank,
Grobelnik,  & Mladenic,  2005).  Different  systematic  approaches  have been  proposed  for  the
comparison of ontologies and knowledge graphs, including NLP techniques, machine learning,
association  rule  mining,  and  other  methods  (Lozano-Tello  & Gomez-Perez,  2004;  Degbelo,
2017; Paulheim, 2017). The criteria for evaluating ontologies typically include Accuracy, which
determines if definitions, classes, properties, and individual entries in the evaluated ontology are
correct;  Completeness, referring to the scope of coverage of a given knowledge domain in the
evaluated  ontology;  Adaptability,  determining  the  range  of  different  anticipated  uses  of  the
evaluated ontology (versatility); and Clarity, determining the effectiveness of communication of
intended  meanings  of  defined  terms  by  the  evaluated  ontology  (Vrandečić,  2009;  Obrst,
Ceusters,  Mani,  Ray,  &  Smith,  2007;  Raad  & Cruz,  2015;  Amith,  et  al.,  2018).  However,
extrinsic  methods  are  not  the  only  ones  that  are  used  for  evaluating  such  a  set  of  criteria.
Knowledge graphs can be also assessed through an intrinsic evaluation that assesses the structure
of  the  analyzed  knowledge  graph thanks  to  the  inference  of  internal  description  logics  and
consistency rules (Amith, et al., 2018).

In this  research paper,  we emphasize  the use of intrinsic  methods to  evaluate  knowledge
graphs  by  presenting  our  approach to  quality  assurance  checks  and corrections  of  statistical
semantic  data in Wikidata,  mainly in the context of COVID-19 epidemiological  information.
This  consists  of a  catalog  of automatable  tasks based on logical  constraints  expected  of the
knowledge graph. Most of these constraints were not explicitly available in the RDF validation
resources of Wikidata before the pandemic and are designed in this work to support new types of
COVID-19 information in the assessed knowledge graph, particularly epidemiological data. Our
approach is built upon the outcomes of previous outbreaks such as the Zika pandemic (Ekins et
al.,  2015) and aims to pave the way towards handling future outbreaks. We implement these
constraints  with  SPARQL  and  test  them  on  Wikidata  using  the  SPARQL endpoint  of  this
knowledge graph, available at  https://query.wikidata.org. SPARQL was officially created in 2008
as a query language and protocol to search, add, modify or delete RDF data available over the
Internet. Its name is a recursive acronym that stands for "SPARQL Protocol and RDF Query
Language".  SPARQL5 allows  a  query  to  be  composed  of  triple  patterns,  conjunctions,
disjunctions,  and  optional  patterns  and  can  consequently  be  used  to  retrieve  contextualized
information  from knowledge  graphs  without  having  to  retrieve  and  process  the  ontological
database. We introduce the value of Wikidata as a multipurpose collaborative knowledge graph

5 An open license SPARQL textbook available in multiple languages can be found at 
https://en.wikibooks.org/wiki/SPARQL.

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

9
10

https://en.wikibooks.org/wiki/SPARQL
https://query.wikidata.org/


for the flexible and reliable representation (Section 2) and validation (Section 3) of COVID-19
knowledge. Furthermore, we cover the use of SPARQL to query this knowledge graph (Section
4). Then, we demonstrate how statistical constraints can be implemented using SPARQL and
applied to verify epidemiological data related to the COVID-19 pandemic (Section 5). Finally,
we  compare  our  constraint-based  approach  with  other  RDF validation  methods  through  the
analysis of the main outcomes of previous research papers related to knowledge graph validation
(Section 6) and conclude future directions (Section 7). 

Wikidata as a collaborative knowledge graph
Wikidata currently serves as a semantic framework for a variety of scientific initiatives, such as
GeneWiki (Burgstaller-Muehlbacher, et al., 2016), allowing different teams of scholars to upload
valuable  academic  data  into  a  collective  and  standardized  pool.  Its  versatility  and
interconnectedness  are  making  it  a  standard  for  interdisciplinary  data  integration  and
dissemination across fields as diverse as linguistics, information technology, film studies, and
medicine  (Turki,  et  al.,  2019;  Mitraka,  et  al.,  2015;  Mietchen,  et  al.,  2015;  Waagmeester,
Schriml, & Su, 2019, Turki, Vrandečić, Hamdi, & Adel, 2017; Wasi, Sachan, & Darbari, 2020;
Heftberger, Höper, Müller-Birn, & Walkowski, 2020), although its popularity and recognition
across fields still vary significantly (Mora-Cantallops, et al., 2019). It contains concepts, linked
by  their  taxonomic  relations,  allowing  embedding  and  creating  instances  of  subclasses  of
classified data and links between them. Its multilingual nature enables fast-updating dynamic
data  reuse across  different  language versions  of  a  resource  such as  Wikipedia  (Müller-Birn,
Karran,  Lehmann,  &  Luczak-Rösch,  2015),  with  fewer  inconsistencies  from  local  culture
(Miquel-Ribé  &  Laniado,  2018)  or  language  biases  (Kaffee,  et  al.,  2017;  Jemielniak  &
Wilamowski, 2017).

The  data  structure  employed  by  Wikidata  is  intended  to  be  highly  standardized,  whilst
maintaining the flexibility to be applied across highly diverse use-cases. There are mainly two
essential components: Items, which represent objects, concepts, or topics; and properties, which
describe how one item relates to another. A statement, therefore, consists of a subject item (S), a
property that describes the nature of the statement (P), and an object (O) that can be an item, a
value, an external ID, or a string, etc. While items can be freely created, new properties require
community discussion and vote, with about 9500 properties6 currently available. Statements can
be further modified by any number of qualifiers to make them more specific, and be supported by
references  to  indicate  the  source  of  the  information. Thus,  Wikidata  forms  a  continuously
growing,  single,  unified  network  graph,  with  96M  items  forming  the  nodes,  and  1360M
statements forming the edges. A live SPARQL endpoint and query service, regular RDF dumps,
as  well  as  linked  data  APIs  and visualization  tools,  establish  a  backbone  of  Wikidata  uses
(Malyshev, Krötzsch, González, Gonsior, & Bielefeldt, 2018; Nielsen, Mietchen, & Willighagen,
2017).

6 For an updated list of available Wikidata properties, please see https://tools.wmflabs.org/hay/propbrowse/  .  
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Importantly,  Wikidata is based on free and open-source philosophy and software and is a
database  that  anyone can  edit,  similarly  to  the very popular  online  encyclopedia,  Wikipedia
(Jemielniak,  2014).  As a  result,  the emerging ontologies  are created  entirely  collaboratively,
without centralized coordination (Piscopo & Simperl, 2018), and developed in a community-
driven fashion (Samuel, 2017). This approach allows for the dynamic development of areas of
interest for the user community but poses challenges, e.g., to systematize and proportionate class
completeness across topics  (Luggen, Difallah,  Sarasua, Demartini,  & Cudré-Mauroux, 2019).
Also, since the edit history is available to anyone, tracing human and non-human contributions,
as well as detecting and reverting vandalism is available by design and relies on community
management  (Pellissier  Tanon  & Suchanek,  2019)  as  well  as  on  software  tools  like  ORES
(Sarabadani, et al., 2017) or the Item Quality Evaluator7. 

Other  ontological  databases  and  knowledge  graphs  exist  (Färber,  Bartscherer,  Menne,  &
Rettinger, 2018; Pillai, Soon, & Haw, 2019). However, much like the factors that led Wikipedia
to rise to be a dominant encyclopedia (Shafee et al., 2017; Jemielniak & Wilamowski, 2017),
Wikidata’s close connection to Wikimedia volunteer communities and wide readership provided
by Wikipedia have quickly given it a competitive edge. The system, therefore, aims to combine
the wisdom of the crowds with advanced algorithms. For instance, Wikidata editors are assisted
by  a  property  suggesting  system,  proposing  additional  properties  to  be  added  to  entries
(Zangerle, Gassler, Pichl, Steinhauser, & Specht, 2016). Wikidata has subsequently exhibited the
highest growth rate of any Wikimedia project and was the first amongst them to pass one billion
contributions (Waagmeester, et al., 2020).

As  a  collaborative  venture,  its  governance  model  is  similar  to  Wikipedia  (Lanamäki  &
Lindman, 2018), but with some important differences. Wide permissions to edit Wikidata are
manually granted to approved bots and to Wikimedia accounts that are at least 4 days old and
have made at  least  50 edits  using  manual  modifications  or  semi-automated  tools  for  editing
Wikidata8. These accounts are supervised by a limited number of experienced administrators to
prevent misleading editing behaviors (such as vandalism, harassment, and abuse) and to ensure a
sustainable consistency of the information provided by Wikidata9. As such, Wikidata is highly
relevant to the computer-supported collaborative work (CSCW) field, yet the number of studies
of Wikidata from this perspective is still very limited (Sarasua et al., 2019). To understand the
value of using SPARQL to validate the usage of relation types in collaborative ontologies and
knowledge graphs, it is important to understand the main distinctive features of Wikidata as a
collaborative  project. Much  as  Wikidata  is  developed  collaboratively  by  an  international
community of editors, it is also designed to be language-neutral. As a result, it is quite possible to
contribute to Wikidata with only a limited command of English and to effectively collaborate

7 https://item-quality-evaluator.toolforge.org/
8 For an overview of the semi-automated editing tools for Wikidata, please see 
https://www.wikidata.org/wiki/Wikidata:Tools .
9 Further information about the rights and governance of users in Wikidata is shown at 
https://www.wikidata.org/wiki/Wikidata:User_access_levels .
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whilst  sharing  no  common  human  language  -  an  aspect  unique  even  in  the  already  rich
ecosystem of collaborative projects (Jemielniak & Przegalinska, 2020). It may well be a corner
stone  towards  the  creation  of  other  language-independent  cooperative  knowledge  creation
initiatives, such as Wikifunctions, which is an abstract, language-agnostic Wikipedia currently
developed and based on Wikidata (Vrandečić, 2021).

It is also possible to build Wikipedia articles, especially in underrepresented languages, based
on Wikidata data only, and create article placeholders to stimulate encyclopedia articles’ growth
(Kaffee  et  al.,  2018).  This  stems  from  combining  concepts  that  are  relatively  easily  inter-
translatable between languages (e.g., professions, causes of death, and capitals) with language-
agnostic data (e.g.,  numbers, geographical coordinates, and dates). As a result,  Wikidata is a
paragon example of not only cross-cultural cooperation but also human-bot collaborative efforts
(Piscopo,  2018;  Farda-Sarbas,  et  al.,  2019).  Given  the  large-scale  crowdsourcing  efforts  in
Wikidata and the use of bots and semi-automated tools to mass edit Wikidata, its current volume
is higher than what can be reviewed and curated by administrators manually. It is quite intuitive:
as the general number of edits created by bots grows, so grows the number of administrative
tasks to be automated.  Automation may include simplifying alerts,  fully and semi-automated
reverts,  better  user  tracking,  or  automated  corrections.  However,  the  creation  of  automated
methods for the verification and validation of the ontological statements it contains is required
most.

Knowledge graph validation of Wikidata
As Wikidata properties are assigned labels, descriptions, and aliases in multiple languages (Red
in  Fig.  2),  multilingual  information  of  these  properties  can  be  used  alongside  the  labels,
descriptions, and aliases of Wikidata items to verify and find sentences supporting biomedical
statements in scholarly outputs (Zhang, et al., 2019). Such a process can be based on various
natural language processing techniques, including word embeddings (Zhang, et al., 2019; Chen,
et. al., 2020) and semantic similarity (Ben Aouicha & Hadj Taieb, 2016). These techniques are
robust enough to achieve an interesting level of accuracy, and some of them can achieve better
accuracy when the Wikidata classes of the subject and object of semantic relations are given as
inputs (Lastra-Díaz, et al., 2019; Hadj Taieb, Zesch, & Ben Aouicha, 2020). The subjects and
objects of Wikidata relations can likewise be aligned to other biomedical  semantic resources
such as MeSH and UMLS Metathesaurus (Turki, et al., 2019). Thus, benchmarks for relation
extraction based on one of the major biomedical ontologies can be converted into a Wikidata
friendly format and used to automatically enrich Wikidata with novel biomedical relations or to
automatically find statements supporting existing biomedical Wikidata relations (Zhang, et al.,
2018).  Furthermore,  MeSH  keywords  of  scholarly  publications  can  be  converted  into  their
Wikidata equivalents, refined using citation and co-citation analysis (Turki, 2018), and used to
verify  and  add  biomedical  Wikidata  relations,  e.g.,  by  applying  deep  learning-based
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bibliometric-enhanced information retrieval techniques (Mayr, Scharnhorst, Larsen, Schaer, &
Mutschke, 2014; Turki, Hadj Taieb, & Ben Aouicha, 2018).

Another  option  of  validating  biomedical  statements  based  on  the  labels  and  external
identifiers of their subjects, predicates, and objects in Wikidata can be the use of these labels and
external IDs to find whether the assessed Wikidata statements are available in other knowledge
resources (e.g., Disease Ontology) and in open bibliographic databases (e.g., PubMed). Several
tools  have been successfully  built  using this  principle such as the  Wikidata  Integrator10 that
extracts the Wikidata statements of a given gene, protein or cell line using SPARQL, compares
them with their equivalents in other structured databases like NCBI's Gene resources, Uniprot or
Cellosaurus and adjusts them if needed,  Mismatch Finder11 that identifies Wikidata statements
that  are  not  available  in  external  databases,  Structured  Categories12 that  uses  SPARQL  to
identify how the members of a Wikipedia Category are described using Wikidata statements and
to reveal whether a statement is missing or mistakenly edited for the definition of category items
(Turki, Hadj Taieb, & Ben Aouicha, 2021), and RefB13 (Fig. 1) that extracts biomedical Wikidata
statements not supported by references using SPARQL and identifies the sentences supporting
them  in  scholarly  publications  using  the  PubMed  Central  search  engine  and  a  variety  of
techniques such as concept proximity analysis.

Figure 1. RrefB workflow. Process of RefB, a bot that adds scholarly references to biomedical Wikidata statements based on
PubMed  Central  [Source:  https://w.wiki/an$,  License:  CC  BY  4.0].  The  source  code  of  RefB  is  available  at
https://github.com/Data-Engineering-and-Semantics/refb/.

In addition to their multilingual set of labels and descriptions, Wikidata properties are assigned
object types using wikibase:propertyType relations (Blue in Fig. 2). These relations allow the

10 Wikidata Integrator is a bot framework for automatically curating genetic information provided by Wikidata 
(https://github.com/SuLab/WikidataIntegrator). For Wikidata bots using this framework, refer to 
https://www.wikidata.org/wiki/Wikidata:WikiProject_Gene_Wiki#Bot_accounts. The framework has been adapted 
to various specific contexts, e.g., the curation of cell lines indexed in Cellosaurus, as per https://github.com/calipho-
sib/cellosaurus-wikidata-bot .
11 https://www.wikidata.org/wiki/Wikidata:Mismatch_Finder
12 https://www.wikidata.org/wiki/Wikidata:Structured_Categories
13 RefB: Description at https://www.wikidata.org/wiki/Wikidata:Requests_for_permissions/Bot/RefB_(WikiCred),
Source code at https://github.com/Data-Engineering-and-Semantics/refb/, Wikidata edits at 
https://www.wikidata.org/wiki/Special:Contributions/RefB_(WikiCred).
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assignment of appropriate objects to statements, so that non-relational statements cannot have a
Wikidata item as an object, while objects of relational statements are not allowed to have data
types like a value or a URL (Vrandečić & Krötzsch, 2014).

Figure  2.  Example  of  a  Wikidata  property  and  its  annotations. Wikidata  page  of  a  clinical  property  [Source:
https://w.wiki/aeF,  Derived  from:  https://w.wiki/aeG,  License:  CC0].  It  includes the labels,  descriptions,  and aliases  of  the
property in multiple languages (Red), the object data type (Blue), statements where the property is the subject (Green) as well as
property constraints (Brown).
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Just like a Wikidata item, a property can be described by statements (Green in Fig.  2).  The
predicates of these statements link a property to its class (instance of [P31]), to its corresponding
Wikidata item (subject item of this property [P1629]), to example usages (Wikidata property
example [P1855]), to equivalents in other IRIs14 (equivalent property [P1628]), to Wikimedia
categories that track its usage on a given wiki (property usage tracking category [P2875]), to its
inverse property (inverse property [P1696]),  or to its  proposal discussion (property proposal
discussion [P3254]),  etc.  These  statements  can  be  interesting  for  various  knowledge  graph
validation purposes. The class, the usage examples, and the proposal discussion of a Wikidata
property  can  be  useful  through  the  use  of  several  natural  language  processing  techniques,
particularly semantic similarity, to provide several features of the use of the property such as its
domain of application (e.g., the subject or object of a statement using a Wikidata property related
to medicine should be a medical item) and consequently to eliminate some of the erroneous use
by screening the property usage tracking category. The class of the Wikidata item corresponding
to the property can be used to identify the field of work of the property and thus flag some
inappropriate applications. In addition, the external identifiers of such an item can be used for the
verification  of biomedical  relations  by their  identification within the semantic  annotations  of
scholarly publications  built  using the  SAT+R (Subject,  Action,  Target,  and Relations)  model
(Piad-Morffis, Gutiérrez, & Muñoz, 2019). The inverse property relations can identify missing
Wikidata statements, which are implied by the presence of inverse statements in other Wikidata
resources.

Despite the importance of these statements defining properties,  property constraint  [P2302]
relations (Brown in Fig. 2) are the semantic relations that are primarily used for the validation of
the usage of a property. In essence, they define a set of conditions for the use of a property,
including several heuristics for the type and format of the subject or the object, information about
the characteristics of the property, and several description logics for the usage of the property as
shown in Table 1. Property constraints are either manually added by Wikidata users or inferred
with high accuracy from the knowledge graph of Wikidata or the history of human changes to
Wikidata statements (Pellissier Tanon, Bourgaux, & Suchanek, 2019; Hanika, et al., 2019).

Wikidata ID Constraint type Description
Q19474404 single value constraint Constraint used to specify that this property generally contains a 

single value per item
Q21502404 format constraint Constraint used to specify that the value for this property has to 

correspond to a given pattern
Q21502408 mandatory constraint status of a Wikidata property constraint: indicates that the specified

constraint applies to the subject property without exception and 
must not be violated

Q21502410 distinct values constraint Constraint used to specify that the value for this property is likely 

14 Internationalized Resource Identifier (IRI) is a standardized character string (e.g., a URL) that recognizes a given
item in a semantic resource
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to be different from all other items
Q21510852 Commons link constraint Constraint used to specify that the value must link to an existing 

Wikimedia Commons page
Q21510854 difference within range 

constraint
Constraint used to specify that the value of a given statement 
should only differ in the given way. Use with qualifiers minimum 
quantity/maximum quantity

Q21510856 mandatory qualifier constraint Constraint used to specify that the listed qualifier has to be used
Q21510862 symmetric constraint Constraint used to specify that the referenced entity should also 

link back to this entity
Q21510863 used as qualifier constraint Constraint used to specify that a property must only be used as a 

qualifier
Q21510864 value requires statement 

constraint
Constraint used to specify that the referenced item should have a 
statement with a given property

Q21510495 relation of type constraint relation establishing dependency between types/meta-levels of its 
members

Q21510851 allowed qualifiers constraint Constraint used to specify that only the listed qualifiers should be 
used. Novalue disallows any qualifier

Q21510865 value type constraint Constraint used to specify that the referenced item should be a 
subclass or instance of a given type

Q21514353 allowed units constraint Constraint used to specify that only listed units may be used
Q21510857 multi-value constraint Constraint used to specify that a property generally contains more 

than one value per item
Q21510859 one-of constraint Constraint used to specify that the value for this property has to be 

one of a given set of items
Q21510860 range constraint Constraint used to specify that the value must be between two 

given values
Q21528958 used for values only constraint Constraint used to specify that a property can only be used as a 

property for values, not as a qualifier or reference
Q21528959 used as reference constraint Constraint used to specify that a property must only be used in 

references or instances of citation (Q1713)
Q25796498 contemporary constraint Constraint used to specify that the subject and the object have to 

coincide or coexist at some point in history
Q21502838 conflicts-with constraint Constraint used to specify that an item must not have a given 

statement
Q21503247 item requires statement 

constraint
Constraint used to specify that an item with this statement should 
also have another given property

Q21503250 type constraint Constraint used to specify that the item described by such 
properties should be a subclass or instance of a given type

Q54554025 citation needed constraint Constraint specifies that a property must have at least one reference
Q62026391 suggestion constraint status of a Wikidata property constraint: indicates that the specified

constraint merely suggests additional improvements, and violations
are not as severe as for regular or mandatory constraints

Q64006792 lexeme value requires lexical 
category constraint

Constraint used to specify that the referenced lexeme should have a
given lexical category

Q42750658 value constraint class of constraints on the value of a statement with a given 
property. For constraint: use specific items (e.g., "value type 
constraint", "value requires statement constraint", "format 
constraint", etc.)

Q51723761 no bounds constraint Constraint specifies that a property must only have values that do 
not have bounds

Q52004125 allowed entity types constraint Constraint used to specify that only listed entity types are valid for 



this property
Q52060874 single best value constraint Constraint used to specify that this property generally contains a 

single “best” value per item, though other values may be included 
as long as the “best” value is marked with a preferred rank

Q52558054 none of constraint Constraint specifying values that should not be used for the given 
property

Q52712340 one-of qualifier value property 
constraint

Constraint used to specify which values can be used for a given 
qualifier when used on a specific property

Q52848401 integer constraint Constraint used when values have to be integer only
Q53869507 property scope constraint Constraint to define the scope of the property (main value, 

qualifier, references, or combination); only supported by KrBot 
currently

Table 1. Constraint types for the usage of Wikidata properties. Each property constraint is given with its Wikidata identifier,
an English label and an English description.

As shown in Fig. 2, a property constraint is defined as a relation where the property type is
featured as an object and the detailed conditions of the constraint to be applied on Wikidata
statements are integrated as qualifiers to the relation. When a property constraint is violated, the
corresponding statement is automatically included in a report of property constraint violations15

and is marked by an exclamation mark on the page of the subject item (Fig. 3) so that it can be
quickly processed and adjusted by the community or by Wikidata bots if applicable.

Figure 3. Example of a property constraint violation indicated via the Wikidata user interface. On the page of the Wikidata
item Q3603152 (flash blindness), a constraint violation is indicated by the encircled exclamation mark. Clicking on it reveals the
display of the popup with some further explanation. [File available on Wikimedia Commons: https://w.wiki/ZuJ, License: CC0].

Although these methods are important to verify and validate Wikidata, they are not the only ones that are
used for  these  purposes.  In 2019,  Wikidata  announced the adoption  of the Shape Expressions
language  (ShEx)  as  part  of  the  Mediawiki  entity  schemas  extension16.  ShEx  was  proposed
following an RDF validation workshop that was organized by W3C17 in 2014 as a concise, high-
level  language to describe and validate  RDF data (Prud'hommeaux,  Labra  Gayo,  & Solbrig,
2014).  This  Mediawiki  extension  uses  ShEx to store  structure definitions  (EntitySchemas  or
Shapes) for sets  of Wikidata entities that  are selected by some query pattern (frequently the
involvement of said entities  in a Wikidata class).  This  provides collaborative quality  control

15 https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations
16 https://www.mediawiki.org/wiki/Extension:EntitySchema
17 https://www.w3.org/2012/12/rdf-val/report
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where the community can iteratively develop a schema and refine the data to conform to that
schema. For those familiar with XML, ShEx is analogous to XML Schema or RelaxNG. SHACL
(Shapes Constraint Language), another language used to constraint RDF data models, uses a flat
list of constraints, analogous to XML’s Schematron. SHACL was adapted from SPIN (SPARQL
Inference  Notation)  by  the  W3C Data  Shapes  working  group  in  2014  and  became  a  W3C
recommendation  in  2017 (Knublauch & Kontokostas,  2017).  However,  ShEx was chosen to
represent EntitySchemas in Wikidata,  as it has a compact syntax that makes it more human-
friendly, supports recursion, and is designed to support distributed networks of reusable schemas
(Labra Gayo, Prud'hommeaux, Boneva, & Kontokostas, 2017). Besides the possibility to infer
ShEx expressions from the screening of a large set of concerned items, they can be easily and
intuitively written by humans.

In Wikidata, ShEx-based EntitySchemas are assigned an identifier (a number beginning with
an E) as well as labels, descriptions, and aliases in multiple languages, so that they can be easily
identified by users.  Entity  schemas are defined using the ShEx-compact  syntax18,  which is  a
concise, human-readable syntax. A schema usually begins with some prefix declarations similar
to those in  SPARQL. An optional  start  definition declares  the shape which will  be used by
default. In the example (Fig. 4), the shape <app> will be used, and its declaration contains a list
of properties, possible values, and cardinalities. By default, shapes are open, which means that
other properties apart from the ones declared are allowed. In this example, the values of property
wdt:P31 are  declared  to  be  either  a  COVID-19 dashboard (wd:Q90790055),  a  search  engine
(wd:Q91136116), or a dataset (wd:Q91137337).  The EXTRA directive indicates that there can be
additional  values  for  property  wdt:P31 that  differ  from  the  specified  ones.  The  value  for
property wdt:P1476 is declared to be zero or more literals. The cardinality indicators come from
regular expressions, where ‘?’ means zero or one, ‘*’; means zero or more, and ‘+’ means one
or more. While the values for the other properties are declared to be anything (the dot indicates
no constraint) zero or more times, except for the properties  wdt:P577 and wdt:P7103  that are
marked as optional using the question mark. Further documentation about ShEx can be found at
http://shex.io/ and in Labra Gayo et al. (2017).

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>
PREFIX wd:  <http://www.wikidata.org/entity/>

start = @<app>

<app>  EXTRA wdt:P31  {
  wdt:P31   [ wd:Q90790055 # instance of COVID-19 dashboard or
              wd:Q91136116 # search engine or
              wd:Q91137337 # dataset
            ] ; 

18 ShEx schemas can also be defined in RDF-based representations like Turtle or JSON-LD.
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  wdt:P1476 LITERAL * ; #title
  wdt:P366  .       * ; #use
  wdt:P123  .       * ; #publisher
  wdt:P178  .       * ; #developers
  wdt:P495  .       * ; #country of origin
  wdt:P306  .       * ; #operating system
  wdt:P856  .       * ; #official website
  wdt:P921  .       * ; #main subject
  wdt:P144  .       * ; #based on
  wdt:P577  .       ? ; #publication date
  wdt:P7103 .       ? ; #start of covered period
  wdt:P275  .       * ; #copyright license
  wdt:P5008 .       * ; #on focus list of Wikimedia project
}

Figure 4. Entity Schema example. EntitySchema for COVID-19 dashboards, search engines and datasets [Source: 
https://www.wikidata.org/wiki/EntitySchema:E205 . File available on Wikimedia Commons: https://w.wiki/4rg5, License: 
CC0. ]. 

Due to the ease of using ShEx to define EntitySchemas, it has been used successfully to validate
Danish lexemes in Wikidata (Nielsen, Thornton, & Labra-Gayo, 2019) and biomedical Wikidata
statements (Thornton, et al., 2019). During the COVID-19 pandemic, Wikidata’s  data model of
every COVID-19-related class as well as of all major biomedical classes has been converted to
an EntitySchema, so that it can be used to validate the representation of COVID-19 Wikidata
statements (Waagmeester, et al., 2021). These EntitySchemas were successfully used to enhance
the development and the robustness of the semantic structure of the data model underlying the
COVID-19 knowledge graph in Wikidata and are accordingly made available at a subpage of
Wikidata’s  WikiProject  COVID-19,  accessible  via
https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19/Data_models.  Significant  efforts  are
currently underway to further simplify the definition of EntitySchemas by making them more
intuitive and concise, enabling an increase of the usage of ShEx to validate semantic knowledge
in Wikidata (Samuel, 2021).

Beyond these interesting methods, validation constraints can be inferred and used to verify
semantic statements in a knowledge graph through the use of the full screening of RDF dumps or
the use of SPARQL queries. RDF dumps are particularly used for screening Wikidata items in a
class to identify common features of the assessed entities based on a set of formal rules (Marx &
Krötzsch, 2017; Hanika et al. 2019). These features involve common characteristics of the data
model of the concerned class with patterns of used Wikidata properties such as symmetry and are
later  used to  verify  the  completeness  of  the class  and validate  the  statements  related  to  the
evaluated  class.  The  analysis  of  RDF dumps  for  Wikidata  can  be  coupled  to  the  federated
screening of the RDF dumps of other knowledge graphs such as DBpedia through the alignment
of the types of relational and non-relational statements to benefit from the positive and negative
rules already defined and verified from the other knowledge resources to enrich the validation
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tools of Wikidata (Ahmadi & Papotti, 2021). Nowadays, efforts are provided to extend inference-
based  methods  for  the  validation  of  Wikidata  through  the  development  of  probabilistic
approaches to identify when a statement is unlikely to be defined for an item allowing to enhance
the evaluation of the completeness of Wikidata as an open knowledge graph (Arnaout, et al.,
2021).  As SPARQL has  been designed to extract  a  searched pattern  from a semantic  graph
(Pérez, Arenas, & Gutierrez, 2009), it has been used to query the competency questions19, and to
evaluate ontologies and knowledge graphs in a context-sensitive way (Vasanthapriyan, Tian, &
Xiang,  2017;  Bansal  & Chawla,  2016;  Martin,  2018).  Indeed,  a  sister  project  presents  how
SPARQL can be used to generate data visualizations20 (Nielsen, Mietchen & Willighagen 2017;
Shorland, Mietchen & Willighagen, 2020). Validating RDF data portals using SPARQL queries
has been regularly proposed as an approach that gives great flexibility and expressiveness (Labra
Gayo & Alvarez Rodríguez, 2013). However, academic literature is still far from revealing a
consensus  on  methods  and  approaches  to  evaluate  ontologies  using  this  query  language
(Walisadeera, Ginige, & Wikramanayake, 2016), and other approaches have been proposed for
validation (Thornton, et al., 2019; Labra-Gayo, et al., 2019). Currently, there is mostly an effort
to  normalize  how  to  define  SPARQL  queries,  particularly  for  knowledge  graph  validation
purposes, to save runtime and ameliorate the completeness of the output of a query using a set of
heuristics and axioms (Salas & Hogan, 2022).

In  Wikidata,  the  Wikidata  Query  Service  (https://query.wikidata.org)  allows  querying  the
knowledge graph using SPARQL (Malyshev, et  al.,  2018; Turki,  et  al.,  2019).  The required
Wikidata prefixes are already supported in the backend of the service and do not need to be
defined (Malyshev, et al., 2018). What the user needs to do is to formulate their SPARQL query
(Black in Fig. 5) and click on the Run button (Blue in Fig. 5). After a compilation period, the
results will appear (Green in Fig. 5) and can be downloaded in different formats (Brown in Fig.
5), including JSON, TSV, CSV, HTML, and SVG. Different modes for the visualization of the
query  results  can  be  chosen  (Purple  in  Fig.  5),  particularly  table,  charts  (line,  scatter,  area,
bubble), image grid, map, tree, timeline, and graph. The query service also allows users to use a
query helper (Red in Fig. 5) that can generate basic SPARQL queries, and to get inspired by
sample queries (Yellow in Fig. 5), especially when they lack experience. It also allows users to
generate a short link for the query (Pink in Fig. 5) and code snippets to embed the query results
in web pages and computer programs (Brown in Fig. 5) (Malyshev, et al., 2018).

19 Competency questions: A set of requirements ensuring consistency of a knowledge graph, constraints 
determining what knowledge to be involved in a knowledge graph (Wiśniewski, Potoniec, Ławrynowicz, & Keet, 
2019). 
20 For SPARQL-based visualizations of COVID-19 information in Wikidata, see   https://speed.ieee.tn/  , 
https://egonw.github.io/SARS-CoV-2-Queries/, 
https://www.wikidata.org/wiki/Wikidata:WikiProject_COVID-19/Queries, and 
https://scholia.toolforge.org/topic/Q84263196.
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Figure 5. Web interface of the Wikidata Query Service. It involves a query field (Black), a query builder (Red), a short link
button (Pink),  a Run button (Blue),  a  visualization mode button (Purple),  a  download button (Brown),  an embedding code
generation button (Grey), a results field (green), and a sample query button (Yellow). [Source: https://w.wiki/aeH, Derived from:
https://query.wikidata.org, License: CC0]. 
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Constraint-driven heuristics-based validation of epidemiological data
The characterization of epidemiological data is possible using a variety of statistical measures
that show the acuteness, the dynamics, and the prognosis of a given disease outbreak. These
measures include the simple cumulative count of cases (P1603 [199569 statements, Orange in
Fig. 6], noted c, as defined before), deaths (P1120 [243250 statements21, Black in Fig. 6], noted
d), recoveries (P8010 [36119 statements, Green in Fig. 6], noted r), clinical tests (P8011 [21249
statements, Blue in Fig. 6], noted  t), and hospitalized cases (P8049 [5755 statements, Grey in
Fig. 6], noted h) as well as several measurements done by the synthesis of the values of simple
epidemiological counts such as case fatality rate (P3457 [51504 statements, Red in Fig. 6], noted
m), basic reproduction number (P3492, noted R0), minimal incubation period in humans (P3488,
noted mn), and maximal incubation period in humans (P3487, noted mx) (Rothman, Greenland,
& Lash, 2008). For all these statistical data, every information should be coupled by a point in
time (P585,  noted  Z)  qualifier  defining  the  date  of  the  stated  measurement  and  by  a
Determination  method (P459,  noted  Q)  qualifier  identifying  the measurement  method of  the
given  information  as  these  variables  are  subject  to  change  over  days  or  according  to  used
methods of computation. 

21 As of August 8, 2020. For updated statistics, see https://w.wiki/Z5m.
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Figure 6. Sample statistical data available through Wikidata. The item about the COVID-19 pandemic in Tunisia is shown.
[Adapted from: https://www.wikidata.org/wiki/Q87343682, Source: https://w.wiki/uUr, License: CC0].
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From simple count statistics  (c,  t,  d,  h,  and  r statements),  it  is  possible to compare regional
epidemiological variables and their variance for a given date (Z) or date range, and relate these to
the  general  disease  outbreak  (each  component  defined  as  a  part  of [P361]  of  the  general
outbreak) as shown in Table 2. Such comparisons are enabled using simple statistical conditions
that  are  commonly  used  in  epidemiology  (Zu,  et  al.,  2020).  Tasks  V1  and  V2  have  been
generated from the evidence that COVID-19 started in late 2019 and that its clinical discovery
can only be done through medical diagnosis techniques (Zu, et al., 2020). Tasks V3 and V4 have
been derived from the fact that c, d, r, and t are cumulative counts. Consequently, these variables
are only subjects to remain constant or increase over days. Task V5 is motivated by the fact that
a simple epidemiological count cannot return negative values. Tasks V6, V7, V8, and V9 are due
to the evidence that d, r, and h cannot be superior to c as COVID-19 deaths are the consequence
of  severe  infections  by  SARS-CoV-2  that  can  only  be  managed  in  hospitals  (Rothman,
Greenland, & Lash, 2008) and as a patient needs to undergo COVID-19 testing to be confirmed
as a case of the disease (Zu, et al., 2020). V10 is built upon the assumption that c, d, r, h, and t
values can be geographically aggregated (Rothman, Greenland, & Lash, 2008).

Task Description Sample filtered deficient statement
Validating qualifiers of COVID-19 epidemiological statements
V1 Verify Z as a date > November 01, 2019 COVID-19 pandemic in X <number of cases> 5 

<point in time> March 25, 20
V2 Verify Q as any subclass of (P279*) of medical 

diagnosis (Q177719)
COVID-19 pandemic in X <number of cases> 5 
<point in time> March 25, 2020 <determination 
method> COVID-19 Dashboard

Ensuring the cumulative pattern of c, d, r, and t
V3 Identify c, d, r and t statements having a value in

date Z+1 not superior or equal to the one in date 
Z (Verify if dZ ≤ dZ+1, rZ ≤ rZ+1, tZ ≤ tZ+1, and cZ

≤ cZ+1)

(COVID-19 pandemic in X <number of cases> 5 
<point in time> March 25, 2020) AND (COVID-19 
pandemic in X <number of cases> 6 <point in time> 
March 24, 2020)

V4 Find missing values of c, d, r and t in date Z+1 
where corresponding values in dates Z and Z+2 
are equal

(COVID-19 pandemic in X <number of cases> 5 
<point in time> March 24, 2020) AND (COVID-19 
pandemic in X <number of cases> 6 <point in time> 
March 26, 2020) AND (COVID-19 pandemic in X 
<number of cases> no value <point in time> March 
25, 2020)

Validating values of epidemiological data for a given date
V5 Identifying c, d, r, h, and t statements with 

negative values
COVID-19 pandemic in X <number of cases> -5 
<point in time> March 25, 2020

V6 Identify h statements having a value superior to 
the number of cases for a date Z

(COVID-19 pandemic in X <number of hospitalized 
cases> 15 <point in time> March 25, 2020) AND 
(COVID-19 pandemic in X <number of cases> 5 
<point in time> March 25, 2020)
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V7 Identify c statements having a value superior or 
equal to the number of clinical tests for a date Z

(COVID-19 pandemic in X <number of clinical 
tests> 4 <point in time> March 25, 2020) AND 
(COVID-19 pandemic in X <number of cases> 5 
<point in time> March 25, 2020)

V8 Identify c statements having a value inferior to 
the number of deaths for a date Z

(COVID-19 pandemic in X <number of deaths> 10 
<point in time> March 25, 2020) AND (COVID-19 
pandemic in X <number of cases> 5 <point in time> 
March 25, 2020)

V9 Identify c statements having a value inferior to 
the number of recoveries for a date Z

(COVID-19 pandemic in X <number of recoveries> 
10 <point in time> March 25, 2020) AND (COVID-
19 pandemic in X <number of cases> 5 <point in 
time> March 25, 2020)

V10 Comparing the epidemiological variables of a 
general outbreak with the ones of its components

(COVID-19 pandemic in X <number of cases> 10 
<point in time> March 25, 2020) AND (COVID-19 
pandemic in Y <number of cases> 5 <point in time> 
March 25, 2020) WHERE X is a district of Y

Table 2. Tasks for the heuristics-based evaluation of epidemiological data using the Wikidata SPARQL endpoint. Each
validation task is given with its identifier, a brief description of the heuristic validation criteria and an example where the data
does not fit them. See the section "Constraint-driven heuristics-based validation of epidemiological data" for definitions of the

epidemiological variables. 

This task set has easily been applied using ten simple SPARQL queries that can be found in
Appendix A where <PropertyID> is the Wikidata property to be analyzed and has returned 5496
deficiencies in the COVID-19 epidemiological information (as of August 8, 2020) as shown in
Table 3. Among these mistaken statements, 2856 were number of cases statements, 2467 were
number of  deaths statements,  189 were  number of  recoveries statements,  9  were  number of
clinical tests statements, and 10 were number of hospitalized cases statements. This distribution
of the deficiencies among epidemiological properties is explained by the dominance of number
of cases and number of deaths statements on the COVID-19 epidemiological information. Most
of these mistakes are linked to a violation of the cumulative pattern of major variables. These
deficiencies  can  be  removed  using  tools  for  the  automatic  enrichment  of  Wikidata  like
QuickStatements  (cf.  Turki,  et  al.,  2019)  or  adjusted  one  by  one  by  active  members  of
WikiProject COVID-19.

c d r t h Overall

V1 18 9 10 2 1 40

V2 2 91 6 0 0 99

V3 660 92 6 5 763

V4 2081 2247 149 1 4478

V5 0 0 0 0 0 0
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V6 8 8 8

V7 1 1 1

V8 9 9 9

V9 17 17 17

V10 60 19 1 0 1 81

Overall 2856 2467 189 9 10 5496

Table 3. Matrix overview of data quality issues identified per validation task and epidemiological Wikidata property. 
Rows represent validation tasks as defined in Table 2, columns the corresponding epidemiological Wikidata properties, and the

value in a given cell represents the number of deficient statements identified by the row's specific task for the column's
epidemiological Wikidata property on a given date (August 8, 2020). 

Concerning the variables issued from the integration of basic epidemiological counts (m, R0, mn,
and  mx statements),  they give a summary overview of the statistical  behavior  of the studied
infectious pandemic and that is why they can be useful to identify if the stated evolution of the
morbidity and mortality caused by the outbreak is reasonable (Delamater, et al., 2019). However,
the validation of these variables is more complicated due to the complexity of their definition
(Delamater, et al., 2019; Backer, Klinkenberg, & Wallinga, 2020; Li, et al., 2020). The basic
reproduction number (R0) is meant to be a constant that characterizes the dissemination power of
an infectious disease. It is defined as the expected number of people (within a community with
no prior exposure to the disease) that can contract a disease via the same infected individual.
This variable should exceed the threshold of 1 to define a contagious disease (Delamater, et al.,
2019).  Although  R0 can  give  an  idea  about  the  general  behavior  of  an outbreak of  a  given
disease, any calculated value depends on the model used for its computation (e.g., SIR Model) as
well as the underlying data and is consequently a bit imprecise and variable from one study to
another (Delamater, et al., 2019). That is why it is not reliable to use this variable to evaluate the
accuracy of simple epidemiological counts for a given pandemic. The only heuristic that can be
applied to this variable is to verify if its value exceeds 1 for diseases causing large outbreaks.
The incubation period of a disease gives an overview of the silent time required by an infectious
agent to become active in the host organism and cause notable symptoms (Backer, Klinkenberg,
& Wallinga, 2020; Li, et al., 2020). This variable is very important, as it reveals how many days
an  inactive  case  can  spread  the  disease  in  the  host’s  environment  before  the  host  is  being
symptomatically  identified.  As a result,  it  can  give  an  idea  about  the  contagiousness  of  the
infectious disease and its basic reproduction number (R0). However, the determination of the
incubation period - especially for a novel pathogen - is challenging, as a patient often cannot
identify with precision the day when they had been exposed to the disease, at least if they did not
travel to an endemic region or had not been in contact with a person they knew to be infected.
This factor was behind the measurement of falsely small incubation periods for COVID-19 at the
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beginning  of  the  COVID-19  epidemic  in  China  (Backer,  Klinkenberg,  &  Wallinga,  2020).
Furthermore,  the  use  of  minimal  (mn)  and maximal  (mx)  incubation  periods  in  Wikidata  to
epidemiologically describe a disease instead of the median incubation period is a source of a lack
of accuracy of the extracted values (Backer, Klinkenberg, & Wallinga, 2020; Li, et al., 2020).
Minimal and maximal incubation periods for a given disease are obtained in the function of the
mean (X ) and standard deviation (σ ) of the measures of the confidence interval of observed

incubation periods in patients. Effectively, mn is equal to X − z∗σ

√n
 and mx is equal to X+

z∗σ

√n
where  n is  the number of analyzed observations  and  z is  a characteristic  of the hypothetical
statistical distribution and of the statistical confidence level adopted for the estimation (Altman,
et al., 2013). As a consequence,  mn and mx variables are modified according to the number of
observations (n) with a smaller difference between the two variables for higher values of n. The
two measures also vary according to the used statistical distribution and that is why different
values  of  mn and  mx were  reported  for  COVID-19  when  applying  different  distributions
(Weibull, gamma, and log-normal distribution) using a confidence level of 0.95 on the same set
of observed cases (Backer, Klinkenberg, & Wallinga, 2020). Similarly,  the two variables can
change  according  to  the  adopted  confidence  level  (p -  1)  when  using  the  same  statistical
distribution where a higher confidence level is correlated with a higher difference between the
calculated mn and mx values, as shown in Fig. 7 (Ward & Murray-Ward, 1999; Altman, et al.,
2013). Given these reasons and despite the significant importance of the two measures, these two
statistical variables cannot be used to evaluate statistical epidemiological counts for COVID-19
due to their lack of precision and difficulty of determination.

Figure 7. Distribution statistics. Confidence intervals for different p-values (p) when using a normal distribution [Source:
https://w.wiki/aKT, License: Public Domain] (after Ward & Murray-Ward, 1999).

As for the reported case fatality rate (m), it is simply the quotient of the cumulative number of
deaths (d) and the cumulative number of cases (c) as stated in official reports. It is consequently
easy to validate for a given disease by comparing its values with simple reported counts of cases
and deaths (Rothman, Greenland, & Lash, 2008). Here, two simple heuristics can be applied
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using SPARQL queries as shown in Appendix B. As the number of deaths is less than or equal to
the number of cases of a given disease,  m values should be set between 0 and 1. That is why
Task M1 is defined to extract m statements where m > 1 or m < 0. Also, as m = d / c for a date Z,
m values that are not close to the corresponding quotients of deaths by disease cases should be
identified as deficient and m values should be stated for a given date Z if mortality and morbidity
counts exist. Thus, Task M2 is created to extract m values where the absolute value of (m - d/c)
is superior to 0.001, and Task M3 is developed to identify (item, date) pairs where m statements
are missing and c and d statements are available in Wikidata. Absolute values for Task M2 are
obtained using SPARQL’s ABS function, and deficient (item, date) pairs are eliminated in Task
M3 where m > 1 and c < d.

As a result of these three tasks, we interestingly identified 143 deficient  m statements and
7116 missing m statements. 133 of the mistaken statements are identified thanks to Task M2 and
concern 25 Wikidata items and 31 distinct dates, and only 10 deficient statements related to 3
Wikidata  items  and  8  distinct  dates  are  found using  Task  M1.  These  statements  should  be
verified against reference datasets to verify their values and to determine the reason behind their
deficiency. Such a reason can be the integration of the wrong case and death counts in Wikidata,
or a bug or inaccuracy within the source code of the bot making or updating such statements. The
verification process can be automatically done using an algorithm that compares Wikidata values
(c,  d, and  m statements)  with their  corresponding ones in other databases (using file or API
reading libraries) and subsequently adjusts statements using the Wikidata API directly or via
tools like QuickStatements (Turki et al., 2019). As for the missing m statements returned by M3,
they  are  linked  to  395  disease  outbreak  items  and  to  205  distinct  dates  and  concern  70%
(7116/10168) of the (case count, death count) pairs available in Wikidata. The outcome of M3
proves  the  efficiency  of  comparative  constraints  to  enrich  and  assess  the  completeness  of
epidemiological data available in a knowledge graph, particularly Wikidata, based on existing
information. Consequently, derivatives of Task M3 can build to infer d values based on c and m
statements or to find  c values based on  d and  m statements. The missing statements found by
such tasks can be integrated in Wikidata using a bot based on Wikidata API and Wikidata Query
Service to ameliorate the completeness and integrity of available mortality data for epidemics,
mainly the COVID-19 pandemic (Turki, et al., 2019). 

Discussion 

The results presented here demonstrate the value of our statistical constraints-based validation
approach for knowledge graphs like Wikidata across a range of features (Tables 2 and 3). These
tasks successfully address most of the competency questions, particularly conceptual orientation
(clarity),  coherence  (consistency),  strength  (precision),  and  full  coverage  (completeness).
Combined with previous findings in the context of bioinformatics (Bolleman, et al., 2020; Marx
& Krötzsch, 2017; Darari, et al., 2020), this proves that the efficiency of rule-based approaches to
evaluate  semantic  information  from  scratch  displays  a  similar  accuracy  as  other  available
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ontology evaluation algorithms (Amith, et al., 2019; Zhang & Bodenreider 2010). The efficiency
of these constraint-based assessment methods can be further enhanced by using machine learning
techniques to perform imputations and adjustments on deficient data (Bischof, et al., 2020). The
scope of rule-based methods can be similarly expanded to cover other competency questions
such as non-redundancy (conciseness) through the proposal of other logical constraints to tackle
them, such as a condition to find taxonomic relations to trim in a knowledge graph (examples can
be  found  at  https://www.wikidata.org/wiki/Wikidata:Database_evaluation).  The  main  limitation  of
applying the logical constraints using SPARQL in the context of Wikidata is that the runtime of a
query that infers or verifies a complex condition or that analyzes a huge amount of class items or
property use cases can exceed the timeout limit of the used endpoint (Malyshev, et al., 2018;
Chah & Andritsos, 2021).  Here,  the inference of logical  constraints  and the identification of
inconsistent semantic information through the analysis of full dumps of Wikidata can be more
efficient,  although  this  comes  with  advanced  storage  and  processing  requirements  (Chah  &
Andritsos, 2021).

These  evaluation  assignments  covered  by our  approach  can  be  done  by other  rule-based
(structure-based and  semantic-based)  ontology  evaluation  methods.  Structure-based methods
verify whether a knowledge graph is defined according to a set of formatting constraints, and
semantic-based methods check whether  concepts and statements  of a knowledge graph meet
logical conditions (Amith, et al., 2018). Some of these methods are software tools, particularly
Protégé extensions such as OWLET (Lampoltshammer & Heistracher,  2014) and OntoCheck
(Schober, et al., 2012). OWLET infers the JSON schema logics of a given knowledge graph,
converts  them  into  OWL-DL axioms,  and  uses  the  semantic  rules  to  validate  the  assessed
ontological  data (Lampoltshammer  & Heistracher,  2014).  OntoCheck screens an ontology to
identify  structural  conventions  and  constraints  for  the  definition  of  the  analyzed  relational
information and consequently to homogenize the data structure and quality of the ontology by
eliminating typos and pattern violations (Schober, et al., 2012). Here, the advantage of applying
constraints using SPARQL is that its runtime is faster, as it does not require the download of the
full dumps of the evaluated knowledge graph (Malyshev, et al., 2018). The benefit of our method
and other structure-based and semantic-based web-based tools for knowledge graph validation
like OntoKeeper (Amith, et al., 2019) and adviseEditor (Geller, et al., 2013), when compared to
software tools, is that the maximal size of the knowledge graphs that can be assessed by web
services is larger than the one that can be evaluated by software tools because the latter depends
on the requirements and capacities of the host computer (Lampoltshammer & Heistracher, 2014;
Schober,  et  al.,  2012).  These drawbacks of other structure-based tools  can indeed be solved
through the simplification of the knowledge graph by reducing redundancies using techniques
like  ontology  trimming  (Jantzen,  et  al.,  2011)  or  through  the  construction  of  an  abstraction
network  to  decrease  the  complexity  of  the  analyzed  knowledge  graph (Amith,  et  al.,  2018;
Halper, et al., 2015). However, knowledge graph simplification processes are time-consuming,

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

https://www.wikidata.org/wiki/Wikidata:Database_evaluation


and resulting time gain can consequently be insignificant (Jantzen, et al., 2011; Amith, et al.,
2018; Halper, et al., 2015).

Such  tasks  can  be  also  solved  using  data-driven  ontology  evaluation  methods.  These
techniques  process  texts  in  natural  languages  to  validate  the  concepts  and  statements  of  a
knowledge graph and currently include intrinsic (lexical-based) and extrinsic (cross-validation,
big data-based, and  corpus-based) methods (Amith, et al., 2018). Lexical-based methods use
rules implemented in SQL or SPARQL to retrieve items and glosses corresponding to a concept
and their  semantic  relations  (mostly  subclass  of statements)  (Rector  & Iannone,  2012;  Luo,
Mejino Jr, & Zhang, 2013).  These items are then compared against a second set of rules to
identify inconsistencies in their labels, descriptions, or semantic relations (Amith, et al., 2018).
The output can then be analyzed using natural language processing techniques such as hamming
distance  measures  (Luo,  Mejino  Jr,  &  Zhang,  2013),  semantic  annotation  tools  (Rector  &
Iannone, 2012), and semantic similarity measures (Amith, et al., 2018) to comparatively identify
deficiencies in the semantic representation, labelling, and symmetry of the assessed knowledge
graph. Conversely, extrinsic data-based methods extract the usage and linguistic patterns from
raw text corpuses such as bibliographic databases and clinical records (Corpus-based methods)
or from gold standard semantic resources like large ontologies and knowledge graphs (Cross-
validation methods) or social media posts and interactions, Internet of Things data or web service
statistics (Big data-based methods) (Amith,  et al.,  2018; Sebei, Hadj Taieb, & Ben Aouicha,
2018;  Rector,  Brandt,  & Schneider,  2011;  Gangemi,  et  al.,  2005)  using  structure-based  and
semantic-based ontology evaluation methods as explained above (Rector, Brandt, & Schneider,
2011) as well as a range of techniques including machine learning (Bean, et al., 2017; Zhang, et
al.,  2018),  topic modeling  using Latent  Dirichlet  Analysis  (Abd-Alrazaq, et  al.,  2020),  word
embeddings (Zhang, et al., 2019), statistical correlations (Vanderkam, et al., 2013) and semantic
annotation  methods  (Li,  et  al.,  2016).  The  returned  features  of  the  analyzed  resources  are
compared to the ones of the analyzed knowledge graph to assess the accuracy and completeness
of the definition and use of concepts and properties (Amith, et al., 2018).

When  compared  to  our  proposed approach,  lexical-based methods  have  the  advantage  to
identify  and adjust  characteristics  of  a  knowledge  graph item based on its  natural  language
information of a knowledge graph item, particularly terms and glosses (Rector & Iannone, 2012;
Luo, Mejino Jr, & Zhang, 2013). The drawback of using semantic similarity, word embeddings,
and topic modeling techniques in such approaches is that these techniques are sensitive to the
used parameters,  to  input  characteristics,  and to  the  chosen models  of  computation  and can
consequently give different results according to the context of determination (Lastra-Díaz, et al.,
2019; Hadj Taieb, Zesch, & Ben Aouicha, 2020). The current role of constraints in the extraction
of lexical information and respective semantic relations (Rector & Iannone, 2012; Luo, Mejino
Jr,  & Zhang,  2013) proves  that  the scope of  constraint-based validation  should not  only  be
restricted  to  rule-based evaluation  but  also  to  lexical-based  evaluation.  Yet,  the  function  of
logical conditions should be expanded to refine the list of pairs (lexical information, semantic
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relation)  to  more  accurately  identify  deficient  and  missing  semantic  relations  and  defective
lexical data and to support multilingual lexical-based methods. This would build on the many
SPARQL functions that analyze strings in knowledge graphs22 such as STRLEN (length of a
string),  STRSTARTS  (verification  of  a  substring  beginning  a  given  string),  STRENDS
(verification of a substring finishing a given string), and CONTAINS (verification of a substring
included in a given string) (DuCharme, 2013; Harris, Seaborne, & Prud’hommeaux, 2013). 

As for the extrinsic data-driven methods, they are mainly based on large-scale resources that
are  regularly  curated  and  enriched.  Raw-text  corpora  are  mainly  composed  of  scholarly
publications (Raad & Cruz, 2015) and blog posts (Park, et al., 2016). Information in scholarly
publications  is  ever-changing  according  to  the  dynamic  advances  in  scholarly  knowledge,
particularly medical data (Jalalifard, Norouzi, & Isfandyari-Moghaddam, 2013). This expansion
of scientific information in scholarly publications is highly recognized in the context of COVID-
19 where detailed information about COVID-19 disease and the SARS-CoV-2 virus is published
within less than six months (Kagan, Moran-Gilad, & Fire, 2020). Big data is the set of real-time
statistical and textual information that is generated by web services including search engines and
social media and by the Internet of Things objects including sensors (Sebei, Hadj Taieb, & Ben
Aouicha, 2018). This data is characterized by its value, variety, variability, velocity, veracity,
and volume (Sebei, Hadj Taieb, & Ben Aouicha, 2018) and can be consequently used to track the
changes of the community knowledge and consciousness over time (Abd-Alrazaq, et al., 2020;
Turki, et al., 2020). Large semantic resources are ontologies and knowledge graphs that are built
and curated by a community of specialists and that are regularly verified, updated, and enriched
using human efforts and computer programs (Lee, et al., 2013). These resources represent broad
and reliable information about a given specialty through machine learning techniques (Zhang, et
al.,  2018)  and  the  crowdsourcing  of  scientific  efforts  (Mortensen,  et  al.,  2014)  and  can  be
consequently compared to other semantic databases for validation purposes. Examples of these
resources are the COVID-19 Disease Map (Ostaszewski, et al., 2020) and SNOMED-CT23 (Lee,
et al., 2013).

Large-scale  knowledge graphs are  dynamic  corpora.  Changes  in  the  logical  and semantic
conditions for the definition of knowledge in a particular domain need to be identified to adjust
the assessed knowledge graph accordingly. Rule-based and lexical-based approaches (especially
constraints-based methods) are therefore less simple to apply than extrinsic data-driven methods
(Amith, et al., 2018). Nonetheless, the growing and changing nature of gold-standard resources
require  continuous  human  efforts  and  an  advanced  software  architecture  to  maintain  (e.g.,
structure-based  and  semantic-based  methods),  process  (e.g.,  word  embeddings  and  latent
Dirichlet  analysis),  and  store  (e.g.,  Hadoop and  MapReduce)  these  reference  resources
(Mortensen,  et  al.,  2014;  Le,  et  al.,  2013;  Sebei,  Hadj  Taieb,  & Ben  Aouicha,  2018).  This

22 Detailed information about string functions in SPARQL can be found at https://www.w3.org/TR/sparql11-
query/#func-strings.
23 Systematized Nomenclature Of Medicine - Clinical Terms
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architecture has advanced hardware requirements and its results are subject to change according
to the used parameters (Sebei, Hadj Taieb, & Ben Aouicha, 2018). 

These tasks are in line with the usage of Shape Expressions as well as property constraints
and relations for the validation of data quality and completeness of the semantic information of
class items in knowledge graphs as shown in the “Knowledge graph validation of Wikidata”
section. A ShEx ShapeMap is a pair of a triple pattern for selecting entities to validate and a
shape against which to validate them. This allows for the definition of the properties to be used
for the items of a given class (Prud'hommeaux, Labra Gayo, & Solbrig, 2014; Waagmeester, et
al., 2021) and property constraints and relations based on the meta-ontology (i.e., data skeleton)
of Wikidata. Expressions written in shape-based property usage validation languages for RDF
(e.g.,  SHACL)  can  be  used  to  state  conditions  and  formatting  restrictions  for  the  usage  of
relational and non-relational properties (Erxleben, et al., 2014; Thornton, et al., 2019; Gangemi,
et al., 2005). SPARQL can be more efficient in inferring such information than the currently
existing techniques that screen all the items and statements of a knowledge graph one by one to
identify  the  conditions  for  the  usage of  properties  (e.g.,  SQID)  mainly  because  SPARQL is
meant to directly extract information according to a pattern without having to evaluate all the
conditions against all items of a knowledge graph (Marx & Krötzsch, 2017; Hanika, et al., 2019;
Pérez, Arenas, & Gutierrez, 2009).

The separate execution of value-based constraints is common in the quality control of XML
data. Typically, structural constraints are managed by RelaxNG or XML Schemas, while value-
based constraints are captured as Schematron. Much as Schematron rules are typically embedded
in RelaxNG, the consistency constraints presented above can be embedded in Shape Expressions
Semantic Actions or in SHACL-SPARQL as shown in Fig. 8 (Melo & Paulheim, 2020). These
supplement structural schema languages with mechanisms to capture value-based constraints and
in doing so, provide context for the enforcement of those constraints. The implementation of
value-based  constraints  shown  in  the  “Constraint-driven  heuristics-based  validation  of
epidemiological data” section can likewise be implemented in a shapes language (Labra-Gayo, et
al.,  2019).  Parsing  the  rules  in  the  Table  2  would  allow  the  mechanical  generation  or
augmentation  of  shapes,  providing  flexibility  for  how  the  rules  are  expressed  while  still
exploiting  the power of  shape languages  for  validation.  More generally,  ontology-based and
knowledge graph-based software tools  have the  potential  to  provide  wide data  and platform
interoperability, and thus their semantic interoperability is relevant for a range of downstream
applications such as IoT and WoT technologies (Gyrard, Datta, & Bonnet, 2018).
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Figure 8. Key elements of data quality workflows on Wikidata. Interactions between consistency rules, property statements,
and RDF validation languages [Source: https://w.wiki/ao5, License: CC BY 4.0]

Conclusion
In  this  paper,  we  investigate  how  to  best  assess COVID-19  epidemiological  knowledge  in
collaborative  ontologies  and  knowledge  graphs  based  on  the  example  of  Wikidata  using
statistical  constraints.  Collaborative  databases  produced  through  the  cumulative  edits  of
thousands of users can generate huge amounts of structured information (Turki, et al., 2019) but
as a result of their  rather uncoordinated development, they often result in uneven coverage of
crucial  information and inconsistent  expression of that  information.  The  resulting gaps are a
significant  problem  (conflicting  values,  reasoning  deficiencies,  and  missing  statements).
Avoiding, identifying,  and closing these gaps is therefore of top importance.  We presented a
standardized methodology for auditing key aspects of data quality and completeness for these
resources24.

This  approach  complements  and  informs  shape-based  methods  for  data  conformance  to
community-decided schemas. The SPARQL execution does not require any pre-processing, and
is not only applicable to the validation  of the representation of a  given item according to a
reference  data  model  but  also  to  the  comparison  of  the  assessed  statistical  statements. Our
method is demonstrated as useful for measuring the overall accuracy and data quality on a subset
of Wikidata and  thus highlights a necessary first step in any pipeline for detecting and fixing
issues in collaborative ontologies and knowledge graphs.

This work has shown the state of the knowledge graph as a snapshot in time. Future work will
extend this to investigate how the knowledge base evolves as more biomedical knowledge is
integrated into it  over  time.  This will  require  incorporating  the  edit  history in  the  SPARQL
endpoint APIs of knowledge graphs (Pellissier Tanon & Suchanek, 2019, Dos Reis, Pruski, Da
Silveira, & Reynaud-Delaître, 2014)  to dynamically visualize time-resolved SPARQL queries.

24 This method can be adapted to meet the needs of the user. For instance, the SPARQL queries can be slightly 
adjusted to assess other patterns in collaborative ontologies such as the usage of classes.
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We will also couple the information inferred using this method25 with Shape Expressions and the
explicit  constraints  of relation types to provide a more effective enrichment,  refinement,  and
adjustment of collaborative ontologies and knowledge graphs with statistical data. This will be
an excellent infrastructure to enable the support of non-relational information.  We look forward
to  extending  our  proposed  approach  to  allow  knowledge  graphs  to  handle  non-relational
statements about future epidemics and other disasters such as earthquakes.
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Appendix A: SPARQL queries for the heuristics-based validation of 
epidemiological counts in Wikidata
Task SPARQL query
V1 SELECT * WHERE {

  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196].
  ?x p:<PropertyID> [ps:<PropertyID> ?value; pq:P585 ?date].
  FILTER(YEAR(?date) < 2019)
  }

V2 SELECT * WHERE {
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196].
  ?x p:<PropertyID> [ps:<PropertyID> ?value; pq:P459 ?method].
  FILTER NOT EXISTS {?method wdt:P279* wd:Q177719}
  }

V3 SELECT * WHERE {
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196].
  ?x p:<PropertyID> [ps:<PropertyID> ?value; pq:P585 ?datep].
  ?x p:<PropertyID> [ps:<PropertyID> ?value1; pq:P585 ?date].
  FILTER(?value > ?value1)
  FILTER(?datep - ?date = -1)
  }

V4 SELECT * WHERE {
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196].
  ?x p:<PropertyID> [ps:<PropertyID> ?value; pq:P585 ?datep].
  ?x p:<PropertyID> [ps:<PropertyID> ?value1; pq:P585 ?datef].
  FILTER(?value = ?value1)
  FILTER(?datep - ?datef = -2)
  FILTER NOT EXISTS { ?x p:<PropertyID> [ps:<PropertyID> ?value2; 
pq:P585 ?date].
                      FILTER(?date = ?datep + 1)
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                    }
}

V5 SELECT * WHERE {
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196].
  ?x p:<PropertyID> [ps:<PropertyID> ?value; pq:P585 ?date].
  FILTER(?value < 0)
  }

V6 SELECT * WHERE {
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196].
  ?x p:P8049 [ps:P8049 ?h; pq:P585 ?date].
  ?x p:P1603 [ps:P1603 ?c; pq:P585 ?date].
  FILTER(?h > ?c)
  }

V7 SELECT * WHERE {
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196].
  ?x p:P8011 [ps:P8011 ?t; pq:P585 ?date].
  ?x p:P1603 [ps:P1603 ?c; pq:P585 ?date].
  FILTER(?c >= ?t)
  }

V8 SELECT * WHERE {
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196].
  ?x p:P1603 [ps:P1603 ?c; pq:P585 ?date].
  ?x p:P1120 [ps:P1120 ?d; pq:P585 ?date].
  FILTER(?c < ?d)
  }

V9 SELECT * WHERE {
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196].
  ?x p:P1603 [ps:P1603 ?c; pq:P585 ?date].
  ?x p:P8010 [ps:P8010 ?r; pq:P585 ?date].
  FILTER(?c < ?r)
  }

V10 SELECT ?y ?date ((?count - ?c1) AS ?diff) WHERE {
SELECT ?y ?c1 ?date (SUM(?c) AS ?count) WHERE {
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196].
  ?x p:<PropertyID> [ps:<PropertyID> ?c; pq:P585 ?date].
  ?x wdt:P361 ?y.
  ?y p:<PropertyID> [ps:<PropertyID> ?c1; pq:P585 ?date]. 
  }
GROUP BY ?y ?c1 ?date
}
ORDER BY DESC(?diff)

The SPARQL queries that were used for the Tasks defined in Table 2, to be run against the Wikidata 

Query Service available at https://query.wikidata.org/ . Note that this query service has Wikidata-

specific prefixes predefined, so they do not need to be re-stated in a query.

Appendix B: SPARQL queries for the validation of case fatality rate 
statements in Wikidata
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Task SPARQL query

M1 SELECT * WHERE {
  ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196].
  ?x p:P3457 [ps:P3457 ?value; pq:P585 ?date].
  FILTER((?value > 1) || (?value < 0))
  }

M2 SELECT ?x ?c ?d ?value ?date (ABS(?value - ?d / ?c) > 0.001 AS ?diff)
WITH {
  SELECT ?x {
    ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196].
  }
} as %outbreaks
WITH {
  SELECT ?x ?value ?date {
    INCLUDE %outbreaks.
    ?x p:P3457 [ps:P3457 ?value; pq:P585 ?date].
  }
} as %casefatalityrates
WITH {
  SELECT ?x ?d ?date {
    INCLUDE %outbreaks.
    ?x p:P1120 [ps:P1120 ?d; pq:P585 ?date].
  }
} as %deaths
WITH {
  SELECT ?x ?c ?date {
    INCLUDE %outbreaks.
    ?x p:P1603 [ps:P1603 ?c; pq:P585 ?date].
  }
} as %cases
WHERE {
  INCLUDE %casefatalityrates. INCLUDE %deaths. INCLUDE %cases.
}
ORDER BY DESC(?diff)

M3 SELECT ?x ?c ?d ?date ((?d / ?c) AS ?m)
WITH {
  SELECT ?x {
    ?x p:P31 [ps:P31 wd:Q3241045; pq:P642 wd:Q84263196].
  }
} as %outbreaks
WITH {
  SELECT ?x ?d ?date {
    INCLUDE %outbreaks.
    ?x p:P1120 [ps:P1120 ?d; pq:P585 ?date].
  }
} as %deaths
WITH {
  SELECT ?x ?c ?date {
    INCLUDE %outbreaks.
    ?x p:P1603 [ps:P1603 ?c; pq:P585 ?date].
  }
} as %cases
WHERE {
  INCLUDE %deaths. INCLUDE %cases.
  FILTER NOT EXISTS {?x p:P3457 [ps:P3457 ?value; pq:P585 ?date].}
}



These SPARQL queries correspond to the Tasks M1, M2 and M3 that address heuristics 
concerning the case fatality rate m.
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