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Abstract. This technical report is an extended version of a paper sub-
mitted to Safecomp 2022. We review software-based technologies already
known to be, or expected to become essential for autonomous train con-
trol systems. It is discussed which types of technology can be developed
and certified already today on the basis of existing railway standards.
Other essential technologies, however, require modifications or extensions
of existing standards, in order to provide a certification basis for introduc-
ing these technologies into non-experimental “real-world” rail operation.
Regarding these, we check the novel pre-standard ANSI/UL 4600 with re-
spect to suitability as a certification basis for safety-critical autonomous
train control functions based on methods from artificial intelligence. As a
thought experiment, we propose a novel autonomous train controller de-
sign and perform an evaluation according to ANSI/UL 4600. This results
in the insight that autonomous freight trains and metro trains using this
design could be evaluated and certified on the basis of ANSI/UL 4600.

Keywords: Autonomous train control, Standards, Certification, Verification,
Validation

1 Introduction

This technical report is an extended version of a paper submitted to Safe-
comp 20224.

Motivation Recently, the investigation of autonomous trains has received in-
creasing attention, following the achievements of research and development for

4 https://safecomp22.iks.fraunhofer.de

https://safecomp22.iks.fraunhofer.de


2 Haxthausen, Lecomte, and Peleska

autonomous vehicles in the automotive domain. The business cases for au-
tonomous train control are very attractive, in particular for autonomous rolling
stock and metro trains [21].

It is well known that current safety-related standards for train control sys-
tems are not prepared for verification, validation (V&V), and certification of
autonomous systems. Erskine et al. [8] point out that the current standards
even expressly forbid AI-based software components to be used as soon as the
required safety integrity level is above SIL-1 (ATP and interlocking systems are
SIL-4).

However, if these explicit exclusions of AI-based functions were removed from
today’s standards, they would still be insufficient for autonomous products, be-
cause several essential characteristics of autonomous transportation systems are
not addressed. (1) For modules using machine learning, the safety of the in-
tended functionality no longer just depends on correctness of a specification and
its software implementation, but also on the completeness and unbiasedness of
the training data used [12]. (2) Agent behaviour based on belief databases and
plans cannot be fully specified at type certification time, since the behaviour
can change in a significant way later on, due to machine learning effects, up-
dates of the belief database, and changes of plans during runtime [1]. (3) Laws,
rules applying to the transportation domain, as well as ethical rules, that were
delegated to the responsible humans (e.g. train engine drivers) in conventional
transportation system, are now under the responsibility of the autonomous sys-
tem controllers. Therefore, the correct implementation of the applicable rule
bases, as well as the override conditions for certain rules (e.g. “A red traffic light
may be disobeyed if this helps to avoid an accident”) needs to be validated [9].

In this light, we analyse the pre-standard ANSI/UL 4600 [22] that addresses
the safety assurance of autonomous systems on system level. Together with sev-
eral sub-ordinate layers of complementary standards, it has been approved by the
US-American Department of Transportation for application to autonomous road
vehicles.5 While examples and checklists contained in this document focus on the
automotive domain, the authors claim that the standard should be applicable
to any autonomous system, potentially with a preceding system-specific revision
of the checklists therein. To the best of our knowledge, the ANSI/UL 4600 pre-
standard is the first “fairly complete” document addressing system-level safety
of autonomous vehicles, and its applicability to the railway domain has not yet
been investigated.

Main Contributions We propose a novel design for an autonomous train
control architecture that should serve as the setting for a thought experiment
analysing whether such a system could (and should) be certified on the basis
of conformance to the pre-standard ANSI/UL 4600 [22]. As a design rule, we
advocate the strict separation between conventional control sub-systems that

5 see https://www.youtube.com/watch?app=desktop&v=xCIjxiVO48Q&feature=
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can be certified on the basis of existing standards, and novel, AI-based sub-
systems that are needed to enable autonomy.

We assume a heterogeneous operational environment with diverse track-side
equipment, as can be expected in Europe today. Furthermore, we assume the
availability of controlled allocation and assignment of movement authorities,
as is performed by today’s interlocking systems (IXL, potentially supported
by radio block centres (RBC)). Apart from the communication between train
and RBC/IXL, no further “vehicle-to-X” communication channels are assumed.
Summarising, we analyse scenarios, how autonomous trains could travel through
today’s existing railway networks in a way that a convincing safety case conform-
ing to ANSI/UL 4600 can be elaborated.

We demonstrate that even this fairly moderate scenario of autonomous train
control will only be certifiable for freight trains, metro trains, and trams. In con-
trast to this, we deem the trustworthy safety assurance of high-speed passenger
trains to be infeasible today. This assessment is justified by the fact that obstacle
detection function can only be executed to operate with sufficient reliability for
trains with speed up to 120 km/h.

Distinction from Related Work It is important to point out that visions of
autonomous train control far beyond the “fairly moderate” concepts considered
in this technical report exist. Trentesaux et al. [21] point out the attractiveness
of business cases based on trains autonomously negotiating their way across a
railway network in an open, uncontrolled (i.e. not fully secured) environment. To
this end, they suggest a train control architecture whose behaviour is based on
plans that are continuously adapted to increase safety and efficiency. A typical
software implementation paradigm for this type of behaviour would be belief-
desire-intention (BDI) agents [1]. Unsurprisingly, the authors come to the con-
clusion that the safety assurance and certification of such systems will be quite
difficult. Indeed, we will point out below that exactly this type of train control
is the one with the least prospects of becoming certifiable in the future.

The technical report presented here is inspired by the work of Koopman et
al. discussing certification issues of road vehicles [15,14,13]. It will become clear
in the remainder of this technical report, however, that their results cannot be
“translated in one-to-one fashion” for the railway domain.

Overview In Section 2, the standards and pre-standards of interest in the con-
text of this technical report are briefly reviewed. In Section 3, we describe exist-
ing technology that is needed to realise autonomous train control systems. Up
to now, most of these technologies have been used in proof-of-concept projects,
so that conformance to standards and certification was not yet an issue. In Sec-
tion 4, we present a new reference architecture for autonomous train control
systems that we advocate, due to having fair chances of becoming certifiable in
the near future. In Section 5, we perform an evaluation of certifiability accord-
ing to ANSI/UL 4600 for the reference architecture introduced before. Section 6
contains a conclusion.
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In Appendix A, interfaces and behaviour of essential train control functions
(the so-called kernel) are formally modelled. This model serves as a “proof of
concept” to demonstrate that these functions can still be realised without AI-
based methods and therefore be evaluated and certified according to existing
standards in the railway domain.

Throughout the text, we refer to related work where appropriate.

2 Standardisation and Certification

In the railway domain, safety-critical track-side and on-board systems in Europe
must be designed, verified and validated according to the CENELEC standards
EN50126, EN50128, and EN50129 [4,3,5], in order to pass type certification.
None of these documents provides guidance for V&V of AI-based sub-functions
involving machine learning, classification techniques, or agent-based autonomous
planning and plan execution. Since, as outlined in Section 3, autonomous train
control depends on such AI-based techniques, this automatically prevents the
certification of autonomous train control systems on the basis of these standards.

To the best of our knowledge, the ANSI/UL 4600 safety pre-standard for the
evaluation of autonomous products [22] is the first document that is sufficiently
comprehensive to serve (in modified and extended form) as a certification ba-
sis for system-level safety aspects of autonomous products in the automotive,
railway, and aviation domains. The standard is structured into 17 sections and
4 annexes. Section 5 addresses the elaboration of safety cases and supporting
arguments in general, and Section 6 covers general risk assessment. For the con-
text of the technical report presented here, Section 7 and Section 8 are the most
relevant parts.

The focus of Section 7 is on interaction between humans, animals and other
systems and the autonomous system under evaluation (denoted as the item in the
standard). While this section needs extensive cover for autonomous road vehicles
in urban environments, its application is more restricted for the railway domain:
here, the pre-planned interaction between humans and autonomous trains takes
place in train stations on platforms, during boarding and deboarding. The safety
of these situations is handled by the passenger transfer supervision sub-system
introduced in Section 4. On the track, humans are expected on railway construc-
tion sites and level crossings, otherwise their occurrence is illegal. For both legal
and illegal occurrences, the on-track interaction between humans and the train
is handled by the obstacle detection sub-system described in Section 4.

Section 8 of the standard explicitly addresses the autonomy functions of a
system, as well as auxiliary functions supporting autonomy. It explains how the
impact of autonomy-related system functions on safety should be addressed by
means of hazard analyses. For the non-negligible risks induced by these functions,
it has to be explained how mitigating functions have been incorporated into the
system design. The operational design domain and its sub-domains for each
operational mode (e.g. degraded functionality in exceptional situations) have to
be specified. To present hazards caused by autonomy functions, associated design
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decisions and mitigations in a well-structured manner, the section is structured
according to the autonomy pipeline

sensing → perception → evaluation (possibly based on machine learning)
→ planning → prediction → control by actuation.

The other sections of ANSI/UL 4600 cover the underlying software and sys-
tems engineering process and life cycle aspects, dependability, data, networking,
V&V, testing, tool qualification, safety performance indicators, and assessment
of conformance to the standard. These aspects are beyond the scope of this
technical report.

3 Technology

A number of technologies are required to implement autonomous train control
on existing railway networks. The non-modification of existing infrastructure, in
particular track-side signalling equipment, is sought in order to facilitate their
deployment at lower cost.

We agree with the recommendations of the Federal Railroad Administration
of the U.S. Department of Transportation [26] who envision a sensor platform
combining several different technologies to identify objects of interest (OOI) (ob-
stacles, landmarks enabling the improvement of position calculation, train sta-
tions, . . . ) and conditions of interest (COI) (“track is free of obstacles up to
location . . . ”, “the train location has distance n meters to its end of move-
ment authority”, . . . ). The perception of the immediate train environment is
mandatory to ensure a correct navigation regarding signalling equipment but
also to avoid catastrophic collisions with obstacles (trains, objects, animals) by
perceiving the scene up to its braking distance. The use of different types of
sensing techniques and technologies (radar, laser, LiDAR, camera time-of-flight,
camera IR) is necessary to obtain a functional capacity for a wide variety of
environmental situations. By using different wavelengths or physical principles
(or combination of), it is possible to avoid receiving incorrect information (from
radar secondary lobe) or becoming completely blind under certain situations. In-
deed, weather conditions (precipitation, snow, humidity, high light levels, mist,
dust, . . . ) have a direct impact on the quality and accuracy of the perceived
information, which can strongly alter the representation of the observed scene.
For example, an occlusion (spot on an optic) could hide an obstacle; a low sun
on the horizon in the axis of the rails could prevent the detection of a light due
to sensor saturation.

Similar to autonomous cars, which have been the subject of numerous high-
profile attacks in recent years (e.g. the addition of tape to speed limit signs,
the transmission of a false GPS signal), the possibility of malicious attacks, that
might have been detected by a human operator, must also be taken into account
when processing perceived information. One can imagine the illumination of a
switched-off signal by an external light source. Deep learning techniques are likely
to be susceptible to these attacks, which will not have been part of the training
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data and will require significant deployment time (building up training and test
vectors, certification, software updates) compared to a vigilance instruction given
to drivers and applied quickly.

These different sensors each provide specific information that will have to
be merged with each other and with the prior knowledge of the environment.
The perception of the environment has to be linked with the known, slowly
evolving topology and train position to minimise false alarm and faulty signalling
element recognition. Localisation is currently based on a number of technologies
such as odometer, beacon (metro, main lines), forthcoming GPS positioning
(ERTMS/ETCS level 3), and associated algorithms / techniques (which differ
from one train manufacturer to another) in order to obtain a target precision.

Moreover localisation could benefit from image analysis from the environment
to detect and identify a number of landmarks: the direction of travel combined
with the azimuth of one or several detected landmarks could be used to precise
the train position with triangulation. However, the geographic position of the
track is currently not always well known (this knowledge was not required be-
fore), at least not with a precision sufficient to ensure a correct positioning. A
number of on-going projects are collecting data to build accurate 3D models in-
cluding precise track positioning. These 3D models represent a picture at a given
time. As such, associated algorithms have to ensure continuous recognition even
if the scene is evolving due to expanding vegetation, new infrastructures near
the tracks, or landform modified by climatic conditions. Regular 3D models and
landmarks would have to be released regularly (with a period to be defined in
accordance with the degree of evolutivity of the environment). Marginally evolv-
ing regulations could also have an negative impact on the recognition process
like the ban on the use of effective herbicides or the installation of anti-noise
walls in dense urbanised areas, both modifying the aspect or signature of the
zones close to the tracks.

Replacing the driver with a sensor platform has side effects on train handling
and the health of the railway system. First because of the wide variety of open
world situations, it is difficult to anticipate problems with the perception of the
environment (and the difficulty to come to a sound decision), especially when
viewed from a perception platform for which there is no/little feedback. The
installation of a remote control link appears necessary to allow a human being
to regain control if necessary. This of course assumes that the autonomous train
has the self-assessment capability to determine if it is in trouble and needs exter-
nal help. Second because the driver could perceive subtle variations in operating
conditions such as the sound of a rail breaking or the excessive amplitude of the
damper stroke during overspeed (switch passed at 170km/h instead of 100km/h
for a TGV 6). Specific technical means must then be used to maintain knowl-
edge of the system status, such as maintenance trains able of analysing the rail
structure with ultrasound or Bayesian networks to optimise maintenance strate-

6 http://www.bea-tt.developpement-durable.gouv.fr/IMG/pdf/rapport_beatt_

2020_01.pdf
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gies [2]. Rail wear can also be addressed with the design of lightweight trains,
suitable for regional lines with low traffic.

A number of concurrent projects are underway to demonstrate the feasibility
of operating autonomous trains on standard tracks. The Rio Tinto unmanned
trains operated since 2019 over 1500km network paved the way of automated
heavy-haul freight railway after 10 years of effort. The challenge is now to re-
produce this performance with saturated train lines and many possibilities for
interaction with the intertwined natural and urban environments. SNCF (French
railways) has initiated projects aimed at freight and passenger transport. Exper-
iments were carried out to test both the perception and recognition systems for
signals located along the track, and the geolocation system. The focus is on the
development of the semi-autonomous driving system which includes automatic
acceleration and braking of the train. As for autonomous cars, the experiments
are carried out under the supervision of a human driver and with a limited
speed (up to 25km/h). Other experiments like EcoTrain 7 or FerroCampus 8

are dedicated to low emission trains for low traffic lines. Finally Supraways 9

or UrbanLoop 10 explore new mobilities, suspended or through connected loops,
and as such and are likely to use significantly different capture technologies.

4 A Reference Architecture for Autonomous Train
Controllers

Operational Design Domain The operational design domain (ODD) is de-
fined in ANSI/UL 4600 as “The set of environments and situations the item is
to operate within.” [22, 4.2.30]. Safety cases conforming to this standard need
to refer to the applicable ODD sub-domains, when presenting safety arguments
for autonomous system functions.

For the autonomous trains architecture advocated in this technical report, we
structure the ODD into four sub-domains, as shown in Fig. 1. The autonomous
trains admissible in this ODD are restricted to the classes freight trains, metro
trains, and trams. This decision will be justified below when analysing the per-
ception functions involved: according to the state of the art, obstacle detection
can only be expected to operate reliably up to a train speed of 120 km/h [18]. We
are not aware of any available technology providing reliable obstacle detection
functionality for high-speed trains.

In the autonomous normal operation (ANO) sub-domain, the train is fully
functional and controlled with full autonomy within the range of its current po-
sition and the end of movement authority (MA) obtained from the interlocking
system (IXL) via radio block controller (RBC). The only special environment
conditions required is that an operative IXL is able to communicate with the

7 https://www.dailymotion.com/video/x7ujwl0
8 https://www.ferrocampus.fr/ferrocampus/defis-et-road-map/
9 http://www.supraways.com/

10 https://urbanloop.univ-lorraine.fr/



8 Haxthausen, Lecomte, and Peleska

Non-Autonomous Manual Control 
(NAC-M)

Non-Autonomous Remote Control 
(NAC-R)

Autonomous Degraded 
Operation (ADO)

Autonomous 
Normal Operation 

(ANO)

Fig. 1. Subdomains of the ODD for autonomous trains.

train. The system is supposed to be operative under arbitrary weather condi-
tions, on single track or multi-track rail networks, day and night, in broad day-
light, in tunnels, and in train stations. However, the ANO sub-domain requires
that certain sub-systems of the overall train control system are operative.

In autonomous degraded operation (ADO), the train is operated still au-
tonomously, but with degraded performance (e.g., with lower speed). The ADO
sub-domain is entered from ANO, for example, if the available position informa-
tion is not sufficiently precise, so that the train needs to be slowed down until
trustworthy position information is available again (e.g. because the train passed
a balise with precise location data). Another example for a transition from ANO
to ADO is the situation where a train trip has been caused due to a violation
of an end-of-MA, so that the train had to be stopped by emergency brakes and
resides outside its MA. After having come to a standstill, the train may still be
controlled autonomously, but under command of an RBC telling the train to
reverse to the most recent end-of-MA, or to proceed to the next safe location.

In case of a loss of vital autonomous sub-functions (see description of these
functions below), the train enters one of the non-autonomous control (NAC)
domains. In NAC-R, the train can still be remotely controlled by a human from
some centralised facility. The remote control technology exists for decades al-
ready, and it can be verified, validated , and certified by conventional means. If
no remote control facility is available, the train has to be manually controlled
by a train engine driver boarding the train or by another manually controlled
locomotive that can be used to tow the train to the next station (or any other
suitable maintenance point). The transitions between the four ODD sub-domains
can be formally modelled and hard-coded at type certification time. They need
not rely on AI-based methods (see Appendix A).

In the subsequent paragraphs, we will investigate an autonomous on-board
train controller, whose functional top-down decomposition is shown in Fig. 2.



Standardisation for Autonomous Train Control 9

On Board Control System

Radio Communication (RC) Train Interface Unit (TIU) Balise Transmission Module
(BAL)

Line Transmission Module
(LT)

Odometry (ODO) Kernel (KER)

Obstacle Detection (OD) Refined Positioning (RP)

Juridical Recording (JR)

Passenger Transfer
Supervision (PTS)

Disruption Handler (DR)

Train Signal Classification
(TSC)

0..*

Vehicle Health Supervision
(VHS)

Additional Positioning     
Sub-systems (APS)

Fig. 2. Reference architecture of autonomous train to be considered for certification.

The grey boxes are functions required for autonomous trains only, the white
boxes are typical components of modern conventional on-board units support-
ing automated train protection (ATP) [23]. These modules can be re-used (in
case of the kernel in extended form) for the autonomous case, as explained be-
low. We advocate that autonomous train architectures should carefully separate
conventional ATP modules from (potentially AI-based) modules supporting au-
tonomous automated train operation (ATO). Such a careful segregation in the
on-board controller design allows for conventional certification of the conven-
tional modules, so that only the modules implementing the grey boxes shown in
Fig. 2 need to be certified according to novel standards.

Conventional On-Board Modules The central module of the conventional
ATP functionality is the kernel which executes the essential ATP operations
like speed monitoring, update and observation of movement authorities, and
brake control. All decisions about interventions of the normal train operation
are taken in the kernel. Based on the status information provided by the other
sub-systems, the kernel controls the transitions between ODD sub-domains. This
control function can be specified and implemented in the conventional way, since
a comprehensive behavioural model can be provided. Therefore, the kernel can
still be certified by conventional means, though it has to be extended by new
functions induced by autonomous operation.
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Interventions are executed by the kernel through access to the train inter-
face unit, for activating or releasing the service brakes or emergency brakes.
The decisions about interventions are taken by the kernel based on the infor-
mation provided by peripheral modules: (1) The odometry module and balise
transmission module provide information for extracting trustworthy values for
the actual train positions. In modern high-speed trains, additional positioning
sub-systems provide satellite positioning information in combination with radar
sensor information to improve the precision and the reliability of the estimated
train location. (2) The radio communication module provides information about
movement authority and admissible speed profiles, as sent to the train from
interlocking systems via radio block centres. In the train-to-trackside transmis-
sion direction, the train communicates its actual position to radio block cen-
tre/interlocking system. (3) The line transmission module provides signal status
information provided by trackside equipment for the train. (4) The juridical
recording module stores safety-relevant kernel decisions and associated data.

Note that, depending on the technical stage of construction of the track-side
equipment, not all the data providers listed above in (1) to (3) will be available.
In the non-autonomous case, the missing information is compensated by the
train engine driver who, for example, visually interprets signals if trackside line
transmission equipment is unavailable.

Note that the kernel is extended by additional sub-modules that become
necessary in the autonomous case. This is specified in more detail below. These
additional sub-modules, however, do not required AI-based technology, and their
behaviour can be fully specified before type certification time. Consequently, this
extended kernel can still be evaluated and certified according to the CENELEC
standards.

Modules Supporting Autonomous Trains Operation The obstacle detec-
tion module (OD) uses a variety of sensors (cameras, LiDAR, radar, infrared,
. . . ) [26] to determine whether obstacles are on the track ahead. In case of an
obstacle detection, an estimate for the distance from train to obstacle is needed
in order to decide (in the kernel) whether an activation of emergency brakes is
required or if the service brakes suffice. A further essential functional feature is
the distinction between obstacles on the train’s track and obstacles or approach-
ing trains on neighbouring tracks, where no braking intervention is necessary.
Camera-based obstacle detection can be performed by conventional computer
vision algorithms or by means of image classification techniques based on neu-
ral networks and machine learning [18,27]. None of the available technologies
are sufficiently precise and reliable to be used alone for obstacle detection [26].
Instead, a sensor fusion based on several technologies is required. In any case,
experimental evidence is only available for train speeds up to 120 km/h [18], this
induces our restriction to autonomous freight trains, metro trains, and trams.
From the perspective of the autonomy pipeline described in Section 2, the obsta-
cle detection module performs sensing and perception. It provides the “obstacle
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present in distance d” information to the kernel which operates on a state space
aggregating all situational awareness data.

The refined positioning module (RP) provides additional train location infor-
mation, with the objective to compensate for the train engine driver’s awareness
of the current location that is no longer available in the autonomous case. A
typical use case for refined positioning information is the train’s entry into a
station, where it has to stop exactly at a halt sign. To achieve the positioning
precision required for such situations, signposts and other landmarks with known
map positions have to be evaluated. This requires image classification, typically
based on trained neural networks [20]. Again, conventional image recognition
based on templates for signs and landmarks to expect can be used [16] to allow
for fusion of conventional and AI-based sub-sensors.

The train signal classification module (TSC) is needed on tracks without line
transmission facilities. Signals and other signs need to be recognised and classi-
fied. This task is very similar to that of identifying traffic signs in autonomous
cars. Again, implementations are based on trained neural networks or on con-
ventional technology [19,16], enabling mixed conventional and AI-based sensor
fusion.

Summarising, the OD, RP, and TSC modules represent perception functions
helping the kernel to update its situational awareness status. All three modules
can be realised by means of sensor fusion techniques involving both conventional
image recognition methods and trained neural networks. These observations be-
come important in the sample evaluation performed in Section 5.

The passenger transfer supervision module (PTS) is needed to ensure safe
boarding and deboarding of passengers. It applies to the fully autonomous case
of passenger trains being operated without any personnel. This module requires
sophisticated image classification techniques, for example, to distinguish between
moving adults, children, and other moving objects (e.g. baggage carts on the
platform). Again, PTS is a perception function providing the kernel with the
“passengers still boarding/deboarding at door . . . ” and “passengers or animals
dangerously close to train” information which shall prevent the train from start-
ing to move and leave the station. Sensor fusion with conventional technology
could be provided by various sorts of light-sensors, in particular, safety light
curtains11.

The vehicle health supervision module (VHS) is needed to replace the train
engine drivers’ and the on-board personnel’s awareness of changes in the vehicle
health status. Indications for such a change can be detected by observing acous-
tic, electrical, and temperature values. The conclusion about the actual health
status, however, strongly relies on the experience of the personnel involved. This
knowledge needs to be transferred to the health supervision in the autonomous
case [21]. Since the effect of human experience on the train’s safety is very hard
to assess, it is quite unclear how “sufficient performance” of module VHS should
be specified, and how it should be evaluated. Therefore, we do not consider this
component anymore in the sequel.

11 https://en.wikipedia.org/wiki/Light_curtain

https://en.wikipedia.org/wiki/Light_curtain
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The disruption handler (DH) is responsible for re-starting and controlling the
train after a trip situation leading to an emergency stop [25]. In conventional
trains, this situation is handled under the responsibility of the train engine driver
who manually steers the train with low speed to the next safe location from where
normal operation can be resumed.

We suggest that only very limited capabilities should be implemented in the
disruption handler, so that these can be triggered by well-defined conditions and
modelled by a library of fully specified state machines (e.g. “After a train trip
due to violation of end-of-MA, communicate with RBC to obtain a safe target
destination from where a restart in ANO is possible”). As a consequence, the
disruption handler can be integrated into the kernel and verified, validated, and
certified by conventional means.

The obvious disadvantage of these limited disruption handler capabilities is
that human interaction due to transitions to sub-domains NAC-R or NAC-M is
more frequently required. A more powerful disruption handler, however, would
have to be capable of fully rule-based behaviour according to very general prin-
ciples and priorities, because this is the only available basis of action for coping
with unforeseen events [9]. Unfortunately, the situation-dependent rules for train
control are extremely extensive, and they vary between European countries in
a considerable way [21]. Therefore, the verification and validation of rule base
adequacy would require a tremendous effort. In the light that also the proof of
timing accuracy of rule-based decision making is extremely hard to verify, we
conclude that such an addition of capabilities is not desirable. It is much more
advisable to strengthen the capabilities of the disruption handler by adding sce-
narios that can be specified and implemented in the conventional way, to cover
more situations.

Dual Channel Plus Voting Design Pattern As a further design decision,
we introduce a two-channel design pattern for the modules OD, TSC, RP, and
PTS, as shown in Fig. 3.

Each channel has a sensor front end (camera, radar, LiDAR, light sensor, . . . ,
as described in Section 3) for receiving environment information. The sensor front
ends use redundant hardware (HW sensors, wiring, power suplies, . . . ) so that
they can be assumed to be stochastically independent with respect to hardware
faults. The remaining common cause faults for the sensors (like sand storms
blinding all camera lenses) can be detected with high probability, because both
sensor data degrade nearly simultaneously.

The sensor frontends pass their raw data to the perception sub-modules,
where one should be based on conventional evaluation technology and the other
on AI-based methods. Both perception sub-modules pass their result data and
possibly failure information from the sensor front ends to a joint voting function
that compares the results of both channels and relays the voting result or a
failure flag to the kernel. The calculation of the voting result depends on the
perception function, as described next.
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Voting Function

failure : 𝔹

data

Channel 1

Channel 2
Sensor frontend 
(conventional 
technology)

Perception (AI-based technology)

Sensor frontend 
(conventional 
technology)

Perception (conventional technology)

Fig. 3. Two-channel design pattern used for modules OD, TSC, RP, and PTS.

Design of Voting Functions For the obstacle detection (OD), the voting
function raises the failure flag if both channels provided contradictory “no ob-
stacle/obstacle present” information over a longer time period. For unanimous
“obstacle present” information with differing distance estimates, the function
“falls to the safe side” and relays the shorter distance to the kernel.

For the refined positioning module (RP), the voting function raises a failure
if the channels detect different landmarks over a longer period, or if the distance
and angle information provided by both channels for the same landmark differs
too much. Otherwise, the landmark classifications with mean values calculated
from distances and angles are passed on to the kernel.

For the train signal classification module (TSC), the failure flag is raised if
different signals are detected by the two channels or if they indicate contradictory
signal aspects, or if the train-to-signal distance information differs too much.
Otherwise, the signal aspect, together with the shorter distance value is passed
on to the kernel.

For passenger transfer supervision (PTS), a failure is raised if one channel
continuously shows absence of passengers in the supervised locations, while the
other channel indicates the presence of passengers. Otherwise, the “all clear”
information is passed to the kernel, as soon as both channels indicate that no
passengers are present in any of the supervised locations. Conversely, the “pas-
sengers present” flag is set, as soon as at least one channel indicates the presence
of passengers.

Note that it may be advisable to use either more than one two-channel sensors
for a given task or one n-channel sensor with n > 2. For obstacle detection,
for example, channels with time-of-flight camera, infrared camera, radar, and
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LiDAR may become necessary to provide sufficient robustness for day/night
changes, long/short distances, and various weather conditions. The 2-channels-
with-voter principle described here can obviously be extended to an n-channel
design.

Extended Kernel – Detailed Design and Behaviour The structure of the
operational design domain and the modules supporting autonomy induce kernel
extensions. Their design and behaviour is described in Appendix A.

5 A Sample Evaluation according to ANSI/UL 4600

Evaluation Procedure In this section, Section 8 (Autonomy Functions and
Support) of ANSI/UL 4600 is applied to analyse whether a safety case for the
autonomous train control architecture described in Section 4 conforming to this
standard could be constructed. The procedure required is as follows [22, 8.1].
(1) Identify all hazards related to autonomy and specify suitable mitigations.
(2) Specify the autonomy-related implications on the ODD. (3) Specify how
each part of the autonomy pipeline contributes to the identified hazards and
specify the mitigations designed to reduce the risks involved to an acceptable
level.

Effect of Separation Between Conventional and AI-based Modules on
Evaluation As described in Section 4, the central control functions deployed
on the kernel module of the autonomous train design advocated here can be
evaluated and certified by conventional means, on the basis of the CENELEC
standards listed in Section 2. In particular, all planning, prediction, and actu-
ation activities performed by the kernel and its train interface unit are fully
specified at type certification time. The control behaviour can be completely
modelled by means of state machines with formal semantics [7]. This includes
all discrete control aspects (e.g. “While in ODD sub-domain ANO, never start
moving without movement authority”, or “trigger emergency brake if close ob-
stacle is detected”), as well as dynamic control functions (e.g. “start braking to
target according to current speed and position”, or “slow down train if confidence
in actual position is too low”). Moreover, the conditions for transiting between
the ODD sub-domains introduced in Fig. 1 (e.g. “Transit to NAC-R in case of
obstacle detection module failure, if train can be remotely controlled; otherwise
transit to NAC-M”) can be modelled by a state machine whose behaviour is
fully specified at type certification time.

As described in Section 4, sensing and perception for each of the modules OD,
RP, TSC, and PTS (see Fig. 2) are based on a two-channel design, each channel
containing a sensor and a perceptor sub-component (see Fig. 3). The sensing
parts are based on conventional technology, and common cause failures in the
redundant sensors can be detected with high probability. We conclude that the
sensing parts can be evaluated according to the existing CENELEC standards.
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Indeed, according to our analysis, the requirements of ANSI/UL 4600 regarding
sensor evaluation are equivalent to those of the CENELEC standards, as long as
no novel AI-related technology is already applied in the sensing part [22, 8.3].

As a result of this discussion, we have reduced the evaluation obligations ac-
cording to ANSI/UL 4600, Section 8, Step (3) of the evaluation procedure to the
demonstration that the perceptor components used in the two channels of mod-
ules OD, RP, TSC, and PTS conform to the requirements of the ANSI/UL 4600
pre-standard [22, 8.4 and 8.5]. If the perceptor is designed and implemented with
conventional technology, only Section 8.4 of ANSI/UL 4600 needs to be applied;
we denote this as evaluation step (3a). If, however, the perceptor uses AI-based
technology, Section 8.5 (Machine learning and “AI”-techniques) of the standard
has to be applied as well; we denote this as evaluation step (3b).

Step 1. Hazard Identification of Autonomy Functions – Risk Mitiga-
tion It is obvious that failures in any of the four autonomy functions OD, RP,
TSC, and PTS shown in Fig. 2 can cause collisions or derailing, leading to severe
injuries for some or very many passengers, as presented in Table 1. Therefore, it
is obvious that none of these autonomy functions can conform to the standard
without providing risk mitigations.

Table 1. Hazards associated with autonomy functions shown in Fig. 2.

Failure in Function . . . . . . induces hazards

Obstacle detection (OD) Collisions between train and humans, animals,
cars and other obstacles; derailing as consequence
of collision

Train signal classification (TSC) Only in absence of line transmission: collisions be-
tween train and other trains, humans, animals,
cars and other obstacles; derailing due to unrecog-
nised speed restriction

Refined positioning (RP) Collision with buffer stop in train station, halt in
train station with passenger cars outside platform

Passenger transfer supervision (PTS) Injury of boarding/deboarding passengers

As risk mitigation strategy, the two-channel design with voting described in
Section 4 for each of the modules OD, TSC, RP, and PTS is suitable to reduce
the risks involved to an acceptable value: due to the methodological diversity of
the algorithms involved, the conventional perceptor in Channel 1 and the AI-
based perceptor in Channel 2 may be regarded as stochastically independent,
provided that both are free of systematic errors. This independence-assumption
is justified, because the conventional perceptor uses hand-crafted algorithms to
extract features (a pair of rails, an obstacle) from image frames, whereas the AI-
based perceptor uses neural networks whose weights have been calibrated during
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training phases and possibly further AI-based algorithms for object separation
and classification in images. Therefore, the failure probability of the perceptor
pair is the product of the individual failure probabilities. The voters attached
to the two channels will produce results “on the safe side” as explained in Sec-
tion 4. A safety-critical failure of the voter (e.g. indicate “no obstacle present”
though there is an obstacle) can only occur if the two perceptors of the channel
not only fail simultaneously but also fail with the same erroneous result. Due
to the stochastic independence between the two perceptors, this probability is
significantly lower than that of a simultaneous failure.

The voters that are part of the two-channel design either deliver results “to
the safe side” or indicate a sensor/perceptor failure. In the unsafe failure case,
the mitigation actions specified in Table 2 are adequate to avoid hazardous
situations (a more general theory of risk mitigation by means of synthesised
safety supervisors has been presented by Gleirscher et al. [10]). Both voters and
mitigation actions can be specified and implemented by conventional means and
evaluated on the basis of the CENELEC standards.

These considerations serve to justify the adequateness of the mitigation strat-
egy for the risks involved in failures of modules OD, RP, TSC, and PT: the
two-channel design pattern leaves us with an acceptable risk, if the sensor and
perceptor components are free of systematic errors.12

Table 2. Mitigation actions associated with autonomy functions from Table 1.

Failure in Function . . . . . . leads to mitigation action

Obstacle detection (OD) Emergency stop and transition to ODD sub-
domain ADO.

Train signal classification (TSC) Only in absence of line transmission: emergency
stop and transition to ODD sub-domain ADO.

Refined positioning (RP) Speed reduction

Passenger transfer supervision (PTS) Halt train in station until boarding/deboarding
with manual assistance has been completed.

Step 2. Autonomy-related Implications on the ODD The operational
design domain has already been described in Section 4. As explained there, the
transition between ODD sub-domains can be completely and deterministically
specified by means of state machines. These state machines will also trigger the
mitigation actions listed in Table 2 when required.

12 To prove full conformance to ANSI/UL 4600, it is also necessary to perform a quan-
titative calculation of the residual risks. This, however, is beyond the scope of this
technical report.
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Step 3a. Perceptor Evaluation Both conventionally designed and AI-based
perceptors need to be evaluated according to Section 8.4 of ANSI/UL 4600. For
the AI-based perceptors, an additional evaluation step is required [22, 8.5.] which
is discussed below in Step 3b. In a comprehensive evaluation, this step would
be performed of each of the perceptor types needed for the modules OD, TSC,
RP, and PTS. Here, we just describe the crucial evaluation steps and provide
examples from the perception sub-components of these modules.

All perceptors (conventional or AI-based) but one use image classification
techniques: the conventional perceptor for passenger transfer supervision is based
on light curtain sensor technique, so it just reports “object present in door
area/object in danger zone close to the train/sensor failure” without further
classification. Therefore, this constitutes a trivial perceptor which just relays
light sensor information to the voter. This can be verified and validated by
conventional means and will not be considered further here.

All perceptors using image classification techniques need a well-documented
test data set which is under configuration control. It has to be argued that the
test data set is sufficiently large to cover the ODD. For the passenger transfer
supervision (PTS) module, for example, this means that the test data set needs
to cover all objects occurring on train platforms: adults, children, disabled per-
sons, animals, baggage trolleys etc. Furthermore, the test data set needs to be
unbiased, in the sense that it tests all objects occurring in the ODD, with a
uniform distribution of test cases.

Next, an ontology needs to be specified, and it has to be checked during
testing, that the perception results map correctly to the ontology. For the PTS
module, for example, a test should fail if the AI-based perceptor produces result
“adult in door area” for a child in the door area. For the OD module, the ontology
would be simpler, since no detailed classification of obstacles would be needed.
However, a suitable ontology would need to introduce at least concepts like “my
track” and “other tracks” and “obstacle [far from/close to/on] own track”. A
test should fail, for example, if no obstacle is present, but the OD classifies the
situation as “some object on other track” which would still lead in the correct “no
obstacle close to/on own track” information, but with an erroneous evaluation
for the other tracks.

The data set has to provide sufficiently many images to cover all ontologies
used internally by the perception component: a conventional image processing
algorithm for obstacle detection, for example, might first reduce the image to a
“relevant” sub-image corresponding to the area that is close enough to the train’s
track to be of interest. Then the data set needs to contain image material covering
boundary cases like “obstacle on boundary between relevant and irrelevant image
areas”.

It has to be tested that the perceptor works acceptably robust with objects
and events outside the ontology. For example, the PTS classifier should not
malfunction if unknown objects (e.g. pieces of furniture not captured in the
ontology) are present on the platform.
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The sufficiency of the test evaluation criteria has to be justified. For obstacle
detection, for example, the false positive and the false negative rates of the
“obstacle present” flag are insufficient: additionally, the precision of the obstacle
distance estimates needs to be taken into account.

We do not discuss the standard evaluation requirements that are specified in
ANSI/UL 4600, like verification of software by means of analyses, inspections,
and tests that do not differ from the existing CENELEC standards.

Step 3b. Evaluation of AI-based Perceptors All AI-based perceptors in
our design apply image classification techniques. To this end, neural networks
are trained with deep learning strategies [18]. Therefore, Section 8.5 (“Machine
learning and AI-techniques”) needs to be applied for further evaluation.

In contrast to conventional image processing methods, a training data set is
used to calibrate the weights of the underlying neural network. Of course, the
training data must be disjoint from the test data set. Similar to the test data
set, the training data requires qualification [22, 8.5.3.2]. To this end, it has to be
justified why the training data set covers the ontology13 in an appropriate way
and why it is unbiased. It has to be ensured that the probability for erroneous
classifications is distributed uniformly over the elements of the ontology: it would
be unacceptable, for example, if the overall correctness rate for classifications in
the PTS system would be very good, but the system would fail systematically
for an ontology subset like “persons in wheel chairs”. Referring to ODD and
ontologies, it has to be demonstrated that “events with low probability but high
severity of failure” have been taken into account in the training data.

The paradigm of explainable AI needs to be applied. During testing, a cor-
rect classification result (e.g. “child in door region”) must only pass the test if
the classification was obtained for the correct reasons (e.g. the object has been
classified as a child, because of its size and its face, and not just because it car-
ries a doll). The technology for performing such checks is already available [20].
Moreover, it has to be demonstrated that the training data set covers the edge
cases of the machine learning algorithm.

Finally, it has to be demonstrated that the perceptor is sufficiently robust,
so that it not only works well with the training and the test database.

If it were planned that the AI-based perceptors should continue to learn
during system operation, then it has to be demonstrated that this can never
affect the system safety. We consider this to be very difficult. Therefore, we
advocate to refrain from learning in operation. Instead, neural networks should
be re-calibrated with additional data as a maintenance activity, and only become
operative again after re-evaluation.

We consider all evaluation Steps (1), (2), (3a,b) to be feasible for the spec-
ified ODD. The redundant pairing of conventional and AI-based channels for
sensors and perceptors reduces the evaluation task for AI-based perceptors to
demonstrating that they are free of systematic errors. This can be performed

13 which in turn needs to cover the ODD
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with smaller test and training data sets than would be needed if perceptors
based on machine learning were the only ones used.

6 Conclusion

We have presented an architecture for autonomous train controllers and demon-
strated how this could be evaluated and certified on the basis of the novel
ANSI/UL 4600 pre-standard dedicated to the assurance of autonomous trans-
portation systems. As a main result, it has been shown that such an evaluation is
feasible, and, consequently, such systems are certifiable for freight trains, metro
trains, and trams. This restriction is necessary because no reliable solutions for
obstacle detection in high speed trains seem to be available today.

The architecture presented here has the advantage that most of the system
(sub-)components can be verified, validated and certified based on the CEN-
ELEC standards applicable today in the railway domain. Only the analysis of
hazards induced by autonomy-related functions, their mitigations, and the eval-
uation of AI-based perceptor sub-functions need to be evaluated according to
the ANSI/UL 4600, since these aspects are not addressed in the CENELEC
standards.

We consider the 2-channel concept suggested for sensing and perception,
where conventional technologies are paired with AI-based ones to be essential
for the certifiability of the train control architecture advocated here. This pairing
ensures that functionality based on machine learning and neural networks can
never represent a single point of failure for any of the modules supporting auton-
omy. We are aware that the redundant channel design combining conventional
and AI-based techology is costly. However, the image collections available for
training data in the railway domain are significantly smaller than those available
in the automotive domain. As a consequence, the estimation of classification fail-
ure rates and the demonstration of unbias is far less trustworthy than in the case
of autonomous road vehicles. Therefore, from our perspective, an autonomous
train control system exclusively using trained AI-based perceptors is currently
not certifiable, and also not advisable from the safety perspective.
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A Extended Kernel Design

The extended kernel design presented here is a revised and extended version
of an initial and more limited design proposed by Eder et al. [6]. The crucial
extensions presented here concern

– the controlled change between ODD sub-domains,
– the distinction between service brake and emergency brake,
– introduction of door control,
– introduction of sub-controllers for non-autonomous operation, and
– re-distribution of behaviour across ODD sub-domain controllers.

The informal system description given above is now modelled using UML
state machines [17]. The formal model semantics can be specified, for example,
by associating a variant of Kripke structures with state machines, as described
in [11]. Alternatively, the model can be flattened and transformed into a symbolic
finite state machine, whose interpretation is slightly simpler, because SFSMs can
be regarded as a simpler sub-class of these Kripke structures. In the following,
we explain the behaviour formalised with these machines in an intuitive way.

Fig. 4. Kernel software decomposition.

Kernel structure and interfaces The kernel software is structured as shown
in Fig. 4. The Positioning and Forecast (PF) task aggregates the actual train
position from values provided by odometry (ODO), additional positioning sub-
systems (APS), refined balise (BAL), and positioning (RP). Each port interface
p is structured as a pair (xp, ζp), where xp is the position estimate achieved by
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the positioning source (ODO, APS, BAL, or RP), and ζp ∈ [0, 1] is a confidence
value, where value zero stands for “no estimate available”.

From these inputs, the positioning and forecast task determines

– a position estimate x ∈ R≥0,
– a confidence value c ∈ [0, 1] for x,
– a speed estimate v ∈ [−vMax, vMax],
– estimates xStop ∈ R≥0 and xEStop ∈ R≥0 for the position where the train

would come to a standstill if the service brakes and the emergency brakes
would be applied in the next processing cycle14, respectively, and

– a flag inStation ∈ B indicating whether the train in its current position is
inside a station.15

For interface failure indication on the ports described below, we define enu-
meration type

Faults = {OK, transientFault, permanentFault}

The main controller (MC) task receives inputs on the following interfaces.

– Reset information from the reset port reset : B.
– Obstacle detection information from ODPort, structured as tuples

(obs, xobs, fail) ∈ B× R≥0 × Faults.

If fail = OK, obstacle detection is indicated by obs = true, and xobs is the
estimate for the distance from train to obstacle.

– Passenger transfer supervision information on port PTSPort, structured as
tuple lists

(d1, p1, fail1) . . . (dk, pk, failk) ∈ (Location× B× Faults)∗,

where di denotes locations where passengers need to be detected (doors and
other positions dangerously close to the train), Boolean pi indicates whether
passengers have been detected at the specified location, and faili indicates
the sensor/perceptor status at the specified location.
For freight trains, the PTS module and the associated port are removed from
the model described here.

– Line transmission information on port LTPort, structured as tuples

(xsig, aspect, fail) ∈ R≥0 × Aspects× Faults,

where Aspects is an abstraction of the possible signal aspects. Since there are
very many signal types and associated aspects used in Europe, we abstract

14 We assume a cyclic execution of the PF and MC tasks on a single-core system.
15 This information is extracted from configuration data (typically sent by the RBC).

We omit the information about whether the platform is on the left-hand side or
right-hand side and let the train controller simply release doors for opening and
close doors without side distinctions.
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here from the possible values in this type. Instead, we assume the existence
of functions

aspectToMaxSpeed : Aspects −→ [0, vMax] ∪ {noEffect}
aspectToEoA : Aspects −→ R≥0 ∪ {noEffect}

mapping aspect values to their effect (if any) on speed and end of movement
authority.

– Train signal classification information on port TSCPort, typed just as LTPort.
– Position and forecast information

(x, xStop, x
E
Stop, v, c) ∈ R≥0 × R≥0 × R≥0 × [−vMax, vMax]× [0, 1]

from task PF.
– From the radio communication module, the main controller receives inputs

on port TCPort typed as tuples

(EoA, vCeil, rc, fail) ∈ R≥0 × [0, vMax]× B× Faults,

where EoA denotes the current end of movement authority, and vCeil denotes
the admissible ceiling speed in the current track section.16 Boolean flag rc

indicates whether remote control is available. As usual, fail indicates the
status of the radio communication module.

The main controller task writes to the following output ports.

– Train interface data on port TIUPort, structured by pairs

(a, d) ∈ {aE−, a−, a0, a+} × {release, close}

The first component a abstracts the interaction with service brake, emer-
gency brake, and engine by means of acceleration values: a = aE− is the neg-
ative acceleration of the train to be achieved when activating the emergency
brakes. a = a− is the negative acceleration to be achieved when activating
the service brakes. a = a0 (no acceleration) is achieved by by releasing all
brakes and keeping the speed constant. a = a+ is achieved by releasing all
brakes and accelerating the train (we abstract from different positive accel-
eration values).
The second component controls the doors: d = release releases the door
locks, so that passengers may open the doors. d = close closes the doors
and locks them (typically by keeping the air pressure high).

– In the output direction of the radio communication port RCPort, the train
transmits its current position estimate x ∈ R≥0 to RBC/IXL.

– On the interface to the juridical recording system (port JRPort), the main
controller transmits all safety-relevant decisions (start, brake, stop the train),
together with the causes leading to these decisions. The associated behaviour
is outside the scope of this technical report.

16 We abstract here from more realistic implementations, where the RBC transmits
lists of (location, ceiling speed) pairs, so that the train controller can extract the
applicable ceiling speed from this list, using its actual position value.
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Main Controller The control of transitions between ODD sub-domains is mod-
elled by the state machine shown in Fig. 5.

Fig. 5. Transitions between ODD sub-domains.

The autonomous operational modes (see also Fig. 1) are controlled by sub-
machines ANOController and ADOController. The latter implements the disrup-
tion handler introduced in Section 4. When falling back to non-autonomous op-
eration, the behaviour is controlled by sub-machines NACRController (if remote
control is available) and NACMController (if manual control by a train engine
driver is required).

The NACRController processes the remote control commands sent from the
control centre to the train via radio communication. Moreover, it activates the
video camera streaming from the train to the control centre that is required
for remote supervision of the track. The NACMController enables manual train
control by a train engine driver through a conventional dashboard and provides
the display information at the man-machine interface. These sub-machines for
manual, non-autonomous operation are outside the scope of this report and will
not be discussed further.

When having entered one of the two non-autonomous ODD sub-domains,
there are no direct transitions leading back to autonomous operation: the au-
tonomous mode needs to be reinstated manually by resetting the kernel con-
troller, as indicated by the reset-selfloop of state ODDControl.
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After each reset, the main controller enters the appropriate operational mode
as specified by the guard conditions in transitions t1, t2, t3, t4.

t1 ≡ [c > cMin ∧ RCPort.fail = OK ∧ (ODPort.fail = OK ∧ ¬ODPort.obs) ∧
(¬inStation ∨ PTSPort.fail = OK) ∧
OK ∈ {LTPort.fail,TSCPort.fail}]

The guard of t1 contains all conditions to enter full autonomous mode; these
conditions are

– sufficient confidence in the actual train location,
– fully functional radio communication and obstacle detection and no obstacle

present,
– fully functional passenger transfer supervision, if the train is in a station,

and
– fully functional line transmission (LT) or train signal classification (TSC).

Transition t2 enters the degraded autonomous mode; its guard is specified as
follows.

t2 ≡ [permanentFault 6∈ {RCPort.fail,ODPort.fail} ∧(
0 < c ≤ cMin ∨

(RCPort.fail = transientFault ∨ RCPort.obs) ∨
ODPort.fail = transientFault ∨
(inStation ∧ PTSPort.fail = transientFault) ∨
(OK 6∈ {LTPort.fail,TSCPort.fail} ∧ transientFault ∈ {LTPort.fail,TSCPort.fail})

)
]

As specified in this guard condition, the degraded mode will be entered if there
is insufficient confidence in the current position, or if any of the essential sub-
systems have a non-permanent fault, from which the associated sensor/perceptor
sub-system can recover.

Transition t3 applies if neither the guard of t1, nor that of t2 is fulfilled,
but remote control is available (flag RCPort.rc = true). Otherwise transition
t4 applies. When already in one of the autonomous operational modes, sub-
system failures captured by the guard of t3 lead to a change event triggering
compound transition t7; t8. Failures captured by the guard of t4 lead now to
change events triggering compound transition t7; t9. When the train is in non-
autonomous remote control mode, failure of the communication line or of the
video streaming connection to the remote control centre trigger transition t10,
so that the non-autonomous manual mode is entered.

When entering the non-autonomous modes, the train is always brought to a
stop, before non-autonomous train movement can commence. This also applies
when the remotely controlled mode is left, and the manual mode is entered.

When in fully functional autonomous mode controlled by sub-machine ANOCon-
troller, non-permanent failures or insufficient position confidence trigger a change
event with the same condition as the guard of t2. This triggers transition t6 and
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leads to degraded autonomous operation controlled by the disruption handler.
From there, full autonomous mode can be reached again via transition t5, if the
respective sub-systems have recovered from transient faults and sufficient posi-
tion confidence is available. This transition is triggered by a change event with
the same condition as the guard of t1.

ANO Controller. The behaviour of the control sub-task for autonomous nor-
mal operation is structured by a hierarchic state machine whose top-level layer
is shown in Fig. 6. Initially, the maschine branches according to the conditions
“ movement authority available [EoA− x > α]/not available [EoA− x ≤ α]”. The
guard conditions evaluate the current value EoA of the end-of-MA received from
the interlocking on port RCPort, the current location estimate x received from
the positioning and forecast task, and a small constant value α > 0: condition
EoA− x ≤ α evaluates to true if the train is so close to end-of-MA (or even has
overrun the end-of-MA) that it should stop or remain stopped, until a new MA
is provided. Conversely, EoA− x > α means that the train still has to move to
reach the EoA location.

Fig. 6. ANOController behaviour – top-level state machine.

In state WAIT FOR MA, the train is braked to a stop (if not already halted),
as specified in sub-machine in Fig. 7.

If a movement authority is available and the train is still far enough from
its destination (EoA− xStop > δ), the controller branches into submachine SAFE
DRIVING.MAXIMAL SPEED. There, the train will be accelerated to its maximal
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speed vMax, as shown in state machine Fig 8. The train will be slowed down if
it is too fast and accelerated if it is slower than the maximal speed allowed.

Fig. 7. Train controller behaviour – sub-machine of state WAIT FOR MA.

Fig. 8. Train controller behaviour – safe driving with maximal speed.
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If the predicted stopping location comes as close as δ to EoA (change condition
EoA−xStop ∈ (0, δ]), the train is not allowed to accelerate further. It will be kept
at a constant velocity vconst ≤ vMax in state NO ACCEL (see sub-machine in
Fig. 9).

Fig. 9. Train controller behaviour – sub-machine of state NO ACCEL.

Fig. 10. Train controller behaviour – braking to target destination.



30 Haxthausen, Lecomte, and Peleska

When it is time to brake (EoA − xStop ≤ 0), state BRAKE TO TARGET is
entered (Fig. 10), where the train is slowed down to a positive speed value vMin.

This positive speed value is maintained until the train is very close to its
destination (EoA− x ≤ α). Then state STOP TRAIN is entered, where the train
is slowed down to a halt.

The train automatically loses its movement authority when coming close to
its destination (EoA − x ≤ α). Therefore, after having come to a standstill, the
control will transit from STOP TRAIN to WAIT FOR MA where it stays until a
new movement authority arrives.

The detection of signals via LT or TSC is always transformed into a change
of the current vCeil value and the EoA value, respectively. This is performed by
a sub-task of the main controller which is not detailed here.

ADO Controller. The disruption handler ADOController is activated when the
controller starts and the guard condition of transition t2 applies. Otherwise, it
is triggered by transition t6 in Fig. 5 for various reasons. Depending on these
reasons, the disruption handler branches into a library of sub-machines.

For example, on detection of an obstacle, the train is stopped using the
service brakes if the obstacle is sufficiently far away (xobs > xStop); otherwise,
the emergency brakes are used. If the obstacle is removed while still braking, the
controller can return into sub-domain ANO which ends the braking procedure,
if the train still has movement authority and has not yet reached its EoA.

As a second example, the disruption handler is activated when the posi-
tion confidence is low. In this case, the train is slowed down to a safe velocity,
where the train can easily brake for obstacles occurring “unexpectedly”, since
the train’s position is not quite clear. A return to the ANOController is performed
as soon as the position confidence values are sufficiently high again.
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