Rich and Nonabelian Tomography: strain and magnetic fields

Bill Lionheart Naeem Desai Søren Schmidt Philip Withers

Tomography for Scientific Advancement, Bath 2016

Rich tomography

- Increasingly we need to image quantities with more degrees of freedom than a simple scalar
- Vector fields such as the magnetic field in a magnetic domain
- Tensor field such strain. To do this tomographically we need richer data then one scalar per line.
- We call such problems Rich tomography

New modalities

- In many cases the relevant transport equation involves matrix multiplication and this gives rise to non-Abelian tomography problems.
- In other cases what is measured is a projection of the vector or tensor field in the transverse or longitudinal directions.
- As new tomographic measurement modalities arise we need to understand what data is needed for a stable reconstruction and how to do that reconstruction numerically.

Transport/Beer Lambert

Transport equation, linear attenuation -f photon flux u

$$
\xi \cdot \nabla u(x, \xi)=\frac{\partial}{\partial s} u(x+s \xi, \xi)=f(x) u(x, \xi)
$$

Data measured along a line (infinite but f only non-zero in some finite radius ball) input $u_{-}=u(x-\infty \xi, \xi)$ and output $u_{+}=u(x+\infty \xi, \xi)$ results in solution to differential equation

$$
\ln \left(u_{+} / u_{-}\right)=\int_{-\infty}^{\infty} f(x+s \xi) d s
$$

Transverse and Longitudinal ray transform

For a scalar f the x-ray transform

$$
\begin{equation*}
X f(x, \xi)=\int_{-\infty}^{\infty} f(x+s \xi) d s \tag{1}
\end{equation*}
$$

For a tensor (matrix) f the longtitudinal ray transform

$$
\begin{equation*}
I f(x, \xi)=\int_{-\infty}^{\infty} \xi \cdot f(x+s \xi) \xi d s \tag{2}
\end{equation*}
$$

...and transverse ray transform

$$
\begin{equation*}
J f(x, \xi)=\int_{-\infty}^{\infty} \Pi_{\xi} f(x+s \xi) \Pi_{\xi} d s \tag{3}
\end{equation*}
$$

Where $\Pi_{\xi}=\mathrm{I}-\xi \xi^{T}$ is the projection matrix perpendicular to ξ

Inversion

- X can be inverted plane-by-plane (Radon transform inversion) [5]
- I cannot be inverted - it takes linear strains (symmetric derivatives of vector fields) to zero. $f_{i j}=\partial g_{i} / \partial x_{j}+\partial g_{j} / \partial x_{i} \Longrightarrow I f=0$
- J can be inverted plane-by-plane easily with six rotation axes using Radon transform inversion [6]
- J can inverted from data from three rotation axes by a more complicated method [4].

A tale of two strain tomographies

- Both x-rays and neutrons are diffracted by crystals, this is widely used for crystallography
- Metals are polycrystalline, that is they consist of small randomly oriented crystals.
- For polycrystalline materials the diffraction pattern is averaged over the group of rotations in three space.
- If the metal is subjected to linear elastic strain the crystals are deformed changing their diffraction pattern.
- Using a narrow collimated beam of x-rays or neutrons we might hope to get some kind of average strain along the beam.
- While this has not yet been done experimentally there has been some feasibility studies for two possible methods.

Bragg edge tomography

From Santiseban et al, 'Strain imaging by Bragg edge neutron transmission', Nuclear Instruments and Methods in Physics Research A, 481,765768,2002.

The transmission spectrum of thermal neutrons through a polycrystalline sample displays sudden, well-defined increases in intensity as a function of neutron wavelength (Fig. 1). These Bragg edges occur because for a given $\{h, l, k\}$ reflection, the Bragg angle increases as the wavelength increases until 2θ is equal to 180°. At wavelengths greater than this critical value, no scattering by this particular $\{h, l, k\}$ lattice spacing can occur, and there is a sharp increase in the transmitted intensity.

Bragg edge tomography

- A later paper Abbey et al, Feasibility study of neutron strain tomography, Procedia Engineering 1 (2009) 185188, states that " Analysis of the shape, position and relative magnitude of these Bragg edges can yield two-dimensional information about the component of the average elastic strain within the sample that is collinear with the incident beam."
- Although the mathematical details are sketchy they use a curve fitting technique to find the magnitude of the average strain projected in the direction of the beam. Their test object has rotational symmetry making the measurement and reconstruction simpler.
- Using this approach we believe what they have estimated is the Longitudinal ray transform $I \epsilon$ of the strain.
- As linear strain is the symmetric derivative of the deformation vector this technique measures just.... the change in thickness!

A different approach

A different approach is suggested by Korsunsky et al in Strain tomography of polycrystalline zirconia dental prostheses by synchrotron x-ray diffraction, Acta Materialia, 59, 2501 2513, 2011. They notice that the diffraction pattern for a narrow beam of monochromatic x-rays through a polycrystalline material on a distant screen forms concentric circular Debye-Scherrer rings.

Korsunsky et al Fig 3
If the material in the beam was subjected to a uniform linear elastic strain the rings would become concentric ellipses, and the matrix defining each ellipse is proportional to the strain tensor projected in the direction normal to the beam. They presume without proof that for a non-uniform strain fitting an ellipse to the diffraction pattern results in an average of this transverse strain.

What can you get from one projection?

- In general 'Rich Tomography' is still line integrals of a parameterized function of the unknowns. We might hope to get the distribution of values on the line, i.e. the histogram without knowing what order they are in.
- Let us consider a line parallel to the x_{3} axis each value of the transverse strain $\epsilon_{i j}, 1 \leq i, j \leq 2$ results in a contribution to the intensity on the screen equally distributed on the ellipse

$$
\epsilon_{11} q_{1}^{2}+2 \epsilon_{12} q_{1} q_{2}+\epsilon_{22} q_{2}^{2}=1
$$

in normalized screen coordinates $q=\left(q_{1}, q_{2}\right)$.

- let $\phi(\epsilon)$ be the density of strain values on along the line. The intensity at q is then

$$
\mathcal{I}(q)=\int_{\epsilon: \epsilon_{11} q_{1}^{2}+2 \epsilon_{12} q_{1} q_{2}+\epsilon_{22} q_{2}^{2}=1} \phi(\epsilon) d \epsilon_{11} d \epsilon_{12} d \epsilon_{22}
$$

- This is an integral over a two parameter family of planes in three dimensional ϵ space. A restricted Radon plane transform.
- No unique solution ϕ with out a priori information.

Diffraction Strain Tomography works

We can reduce the data from each ray (which also makes it practically manageable) and then reconstruct as a tensor ray transform.

- A careful analysis shows that by taking appropriate moments of the diffraction pattern we recover the transverse ray transform of the strain.
- Specifically let $\mathcal{I}(q)$ be the intensity of the light in the diffraction pattern where $q \in \mathbb{R}^{2}$ is a vector in the coordinates of the screen, the moment

$$
\int r \mathcal{I}\left(r^{-1 / 2} q\right) d r=q \cdot J \epsilon(x, \xi) \cdot q
$$

for any unit vector q normal to the ray ξ where ϵ is the infinitesimal strain (and x a point on the ray).

- From the polarization identity we can now find $J \epsilon(x, \xi)$

We hope to test this at the Diamond Light Source

Photo: Google Earth
This synchrotron at Harwell provides a monochromatic collimated x-ray source. Manchester has its own beam and lab at Harwell as part of Manchester X-ray Imaging Facility.

Inverting the transverse ray transform

Consider a fixed unit vector η then for all ξ normal to η

$$
\eta \cdot J F(x, \xi) \eta=\int \eta \cdot \Pi_{\xi} \cdot F(x+s \xi) \Pi_{\xi} \eta d s=X(\eta \cdot F \eta)(x, \xi)
$$

So we can invert to get $\eta \cdot F \eta$ as a Radon transform in each plane. This means we need to rotate the sample half a turn about six axes η and measure the η moment the diffraction pattern for each ray. Of course this is very time consuming and better to get more data for each ray, Desai and Lionheart[4] show how to do it with three rotations for a general tensor... but for a strain only two orthogonal rotation axes are sufficient.

Neutron spin tomography

In Neutron spin tomography $[1,7,8,3]$ slow neutrons are fired with a known spin direction through a material that has a spatially varying magnetic field and measure the spin state when it emerges.

Figure: A schematic diagram of the experimental setup used for polarized neutron imaging on the cold neutron radiography and tomography station (CONRAD) at the Helmholtz Centre Berlin, from Dawson et al [1]

For simplicity take the initial spin states to be each unit basis vector then assemble the resulting spin states along a ray as a 3×3 matrix u. The transport law is

$$
\xi \cdot \nabla u(x, \xi)=M(B(x)) u
$$

where $B(x)$ is the magnetic field and $M(B)$ is proportional to skew symmetric matrix of the linear map $v \mapsto v \times B$, the vector product. Eskin's theorem[2] then gives us $M(B(x))$ for B smooth and from this we can deduce B uniquely, as there is phase wrapping ambiguity.
Note that neutron spin tomography can be done a plane at a time so the planar result is enough.
But not constructive and requires C^{∞} smoothness.

Linearization I

Let D be the unit disk centred on the origin in \mathbb{R}^{2}. Suppose the line $x+s \xi$ intersects D first at $s=s_{-}(x, \xi)$ and leaves for $s=s_{+}(x, \xi)$ and let B be continuous. We want to compute the linearization of $S(M(B))(x, \xi)=u(x+\infty \xi, \xi)=u\left(x+s_{-} \xi, \xi\right)$ with respect to B. For $B=0$ we have $u=I$ so for some B let $u=I+v$ then v satisfies

$$
\frac{\mathrm{d} v}{\mathrm{~d} s}-M(B) v=M(B)
$$

Now define \mathcal{M} by

$$
\mathcal{M}(w)(s)=\int_{s_{-}}^{s} M\left(B\left(x\left(s^{\prime}\right)\right) w\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right.
$$

and notice this is bounded, and also is a bounded linear operator in B. We have

$$
(I-\mathcal{M})(v)(s)=\mathcal{M}(s)
$$

Linearization II

and hence for sup $|B|$ small enough the operator series

$$
v(s)=\left(\sum_{k=1}^{\infty}(\mathcal{M})^{k} I\right)(s)
$$

converges and we see the Fréchet at 0 of $S(M(B))$ wrt B is \mathcal{M}. . Specifically for ξ in some plane we can solve the linear approximation for small B simply by solving the two dimensional ray transform

$$
e_{1} \cdot S(M(B))(x, \xi) e_{2}=X\left(B_{3}\right)(x, \xi)
$$

and cyclic permutations. This can be done using any two-dimensional Radon inversion method, and this is the approach taken by the experimentalists, eg [3].

Numerical examples

- A magnetic field example is calculated analytically
- The reconstruction is on a 90×90 pixel grid.
- Data consists of 117 rays of neutrons parallel beam at 1 degree increments.
- The forward problem is solved by intersecting rays with pixels (using our ray tracing code jacobs_rays), and assuming B is pw analytic on pixels the ODE is solved analytically on each pixel.
- The inverse Radon transform is calculated using a Ram-Lak filter computed using FFT, and the backprojection operator is matched, that is it implements the transpose of the forward projector
- Noise was added to simulated data using a Gaussian pseudo random number generator.
- These results are for small B and one iteration. Preliminary indications are that when the spin rotates more than a few degrees several iterations are needed.

Figure: Original (top) and reconstructed magnetic field $-x_{1} x_{3}$ plane. No noise left and 10% noise right

Figure: Original (top) and reconstructed magnetic field $-x_{1} x_{3}$ plane. No noise left and 10% noise right(surface plots).

Bx Reconstructed

50

Bx Reconstructed with 10% noise

Figure: Original and reconstructed B_{1} component - $x_{1} x_{3}$ plane.

Original Bz

Bz Reconstructed

Bz Reconstructed with 10% noise

References I

[1] Martin Dawson, Ingo Manke, Nikolay Kardjilov, Andre Hilger, Markus Strobl, and John Banhart. Imaging with polarized neutrons.
New Journal of Physics, 11(4):043013, 2009.
DOI 10.1088/1367-2630/11/4/043013.
[2] Gregory Eskin.
On non-abelian radon transform.
Russ. J. Math. Phys, 11(4):391-408, 2004.
ArXiV math/0403447.
[3] Nikolay Kardjilov, Ingo Manke, Markus Strobl, Andre Hilger, Wolfgang Treimer, Michael Meissner, Thomas Krist, and John Banhart. Three-dimensional imaging of magnetic fields with polarized neutrons.
Nat Phys, 4:339-403, 102008.
DOI 10.1038/nphys912.
[4] W R B Lionheart and N Desai.
Explicit reconstruction algorithm for the transverse ray transform with three axes.
Inverse Problems, 2016.
[5] F. Natterer.
The Mathematics of Computerized Tomography.
Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, 2001.
[6] V.A. Sharafutdinov.
Integral Geometry of Tensor Fields.
Inverse and ill-posed problems series. VSP, 1994.
Also online.
[7] Wolfgang Treimer.
Radiography and tomography with polarized neutrons.
Journal of Magnetism and Magnetic Materials, 350(0):188 - 198, 2014.
DOI 10.1016/j.jmmm.2013.09.032.
[8] Treimera W, Ebrahimib O, and Karakasa N.
Imaging of quantum mechanical effects in superconductors by means of polarized neutron radiography.
Physics Procedia, 43(0):243-253, 2013.
DOI 10.1016/j. phpro.2013.03.028.

