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Rich tomography

I Increasingly we need to image quantities with more degrees of
freedom than a simple scalar

I Vector fields such as the magnetic field in a magnetic domain

I Tensor field such strain. To do this tomographically we need richer
data then one scalar per line.

I We call such problems Rich tomography

,



New modalities

I In many cases the relevant transport equation involves matrix
multiplication and this gives rise to non-Abelian tomography
problems.

I In other cases what is measured is a projection of the vector or
tensor field in the transverse or longitudinal directions.

I As new tomographic measurement modalities arise we need to
understand what data is needed for a stable reconstruction and how
to do that reconstruction numerically.



Transport/Beer Lambert

Transport equation, linear attenuation −f photon flux u

ξ · ∇u(x , ξ) =
∂

∂s
u(x + sξ, ξ) = f (x)u(x , ξ)

Data measured along a line (infinite but f only non-zero in some finite
radius ball) input u− = u(x −∞ξ, ξ) and output u+ = u(x +∞ξ, ξ)
results in solution to differential equation

ln(u+/u−) =

∞∫
−∞

f (x + sξ) ds



Transverse and Longitudinal ray transform

For a scalar f the x-ray transform

Xf (x , ξ) =

∞∫
−∞

f (x + sξ) ds (1)

For a tensor (matrix) f the longtitudinal ray transform

If (x , ξ) =

∞∫
−∞

ξ · f (x + sξ)ξ ds (2)

...and transverse ray transform

Jf (x , ξ) =

∞∫
−∞

Πξf (x + sξ)Πξ ds (3)

Where Πξ = I− ξξT is the projection matrix perpendicular to ξ



Inversion

I X can be inverted plane-by-plane (Radon transform inversion) [5]

I I cannot be inverted – it takes linear strains (symmetric derivatives
of vector fields) to zero. fij = ∂gi/∂xj + ∂gj/∂xi =⇒ If = 0

I J can be inverted plane-by-plane easily with six rotation axes using
Radon transform inversion [6]

I J can inverted from data from three rotation axes by a more
complicated method [4].



A tale of two strain tomographies

I Both x-rays and neutrons are diffracted by crystals, this is widely
used for crystallography

I Metals are polycrystalline, that is they consist of small randomly
oriented crystals.

I For polycrystalline materials the diffraction pattern is averaged over
the group of rotations in three space.

I If the metal is subjected to linear elastic strain the crystals are
deformed changing their diffraction pattern.

I Using a narrow collimated beam of x-rays or neutrons we might
hope to get some kind of average strain along the beam.

I While this has not yet been done experimentally there has been
some feasibility studies for two possible methods.



Bragg edge tomography
From Santiseban et al, ‘Strain imaging by Bragg edge neutron transmission’,
Nuclear Instruments and Methods in Physics Research A, 481,765768,2002.

The transmission spectrum of thermal neutrons through a polycrystalline
sample displays sudden, well-defined increases in intensity as a function of

neutron wavelength (Fig. 1). These Bragg edges occur because for a given
{h,l,k} reflection, the Bragg angle increases as the wavelength increases until

2θ is equal to 180◦. At wavelengths greater than this critical value, no
scattering by this particular {h,l,k} lattice spacing can occur, and there is a

sharp increase in the transmitted intensity.



Bragg edge tomography

I A later paper Abbey et al, Feasibility study of neutron strain tomography,
Procedia Engineering 1 (2009) 185188, states that “ Analysis of the
shape, position and relative magnitude of these Bragg edges can yield
two-dimensional information about the component of the average elastic
strain within the sample that is collinear with the incident beam.”

I Although the mathematical details are sketchy they use a curve fitting
technique to find the magnitude of the average strain projected in the
direction of the beam. Their test object has rotational symmetry making
the measurement and reconstruction simpler.

I Using this approach we believe what they have estimated is the
Longitudinal ray transform I ε of the strain.

I As linear strain is the symmetric derivative of the deformation vector this
technique measures just.... the change in thickness!



A different approach

A different approach is suggested by Korsunsky et al in Strain tomography of
polycrystalline zirconia dental prostheses by synchrotron x-ray diffraction, Acta
Materialia, 59, 2501 2513, 2011. They notice that the diffraction pattern for a
narrow beam of monochromatic x-rays through a polycrystalline material on a
distant screen forms concentric circular Debye-Scherrer rings.

Korsunsky et al Fig 3
If the material in the beam was subjected to a uniform linear elastic strain the
rings would become concentric ellipses, and the matrix defining each ellipse is
proportional to the strain tensor projected in the direction normal to the beam.
They presume without proof that for a non-uniform strain fitting an ellipse to
the diffraction pattern results in an average of this transverse strain.



What can you get from one projection?
I In general ‘Rich Tomography’ is still line integrals of a parameterized

function of the unknowns. We might hope to get the distribution of
values on the line, i.e. the histogram without knowing what order
they are in.

I Let us consider a line parallel to the x3 axis each value of the
transverse strain εij , 1 ≤ i , j ≤ 2 results in a contribution to the
intensity on the screen equally distributed on the ellipse

ε11q2
1 + 2ε12q1q2 + ε22q2

2 = 1

in normalized screen coordinates q = (q1, q2).

I let φ(ε) be the density of strain values on along the line. The
intensity at q is then

I(q) =

∫
ε:ε11q2

1 +2ε12q1q2+ε22q2
2 =1

φ(ε)dε11dε12dε22

I This is an integral over a two parameter family of planes in three
dimensional ε space. A restricted Radon plane transform.

I No unique solution φ with out a priori information.



Diffraction Strain Tomography works

We can reduce the data from each ray (which also makes it practically
manageable) and then reconstruct as a tensor ray transform.

I A careful analysis shows that by taking appropriate moments of the
diffraction pattern we recover the transverse ray transform of the
strain.

I Specifically let I(q) be the intensity of the light in the diffraction
pattern where q ∈ R2 is a vector in the coordinates of the screen,
the moment ∫

rI(r−1/2q) dr = q · Jε(x , ξ) · q

for any unit vector q normal to the ray ξ where ε is the infinitesimal
strain (and x a point on the ray).

I From the polarization identity we can now find Jε(x , ξ)



We hope to test this at the Diamond Light Source

Photo: Google Earth

This synchrotron at Harwell provides a monochromatic collimated x-ray
source. Manchester has its own beam and lab at Harwell as part of
Manchester X-ray Imaging Facility.



Inverting the transverse ray transform

Consider a fixed unit vector η then for all ξ normal to η

η · JF (x , ξ)η =

∫
η · Πξ · F (x + sξ)Πξη ds = X (η · Fη)(x , ξ)

So we can invert to get η · Fη as a Radon transform in each plane.
This means we need to rotate the sample half a turn about six axes η
and measure the η moment the diffraction pattern for each ray. Of
course this is very time consuming and better to get more data for each
ray, Desai and Lionheart[4] show how to do it with three rotations for a
general tensor... but for a strain only two orthogonal rotation axes
are sufficient.



Neutron spin tomography

In Neutron spin tomography [1, 7, 8, 3] slow neutrons are fired with a
known spin direction through a material that has a spatially varying
magnetic field and measure the spin state when it emerges.

Figure : A schematic diagram of the experimental setup used for polarized
neutron imaging on the cold neutron radiography and tomography station
(CONRAD) at the Helmholtz Centre Berlin, from Dawson et al [1]

.



For simplicity take the initial spin states to be each unit basis vector then
assemble the resulting spin states along a ray as a 3× 3 matrix u. The
transport law is

ξ · ∇u(x , ξ) = M(B(x))u

where B(x) is the magnetic field and M(B) is proportional to skew
symmetric matrix of the linear map v 7→ v × B, the vector product.
Eskin’s theorem[2] then gives us M(B(x)) for B smooth and from this we
can deduce B uniquely, as there is phase wrapping ambiguity.
Note that neutron spin tomography can be done a plane at a time so the
planar result is enough.
But not constructive and requires C∞ smoothness.



Linearization I

Let D be the unit disk centred on the origin in R2. Suppose the line x + sξ
intersects D first at s = s−(x , ξ) and leaves for s = s+(x , ξ) and let B be
continuous. We want to compute the linearization of
S(M(B))(x , ξ) = u(x +∞ξ, ξ) = u(x + s−ξ, ξ) with respect to B. For B = 0
we have u = I so for some B let u = I + v then v satisfies

dv

ds
−M(B)v = M(B)

Now define M by

M(w)(s) =

s∫
s−

M(B(x(s ′))w(s ′) ds ′

and notice this is bounded, and also is a bounded linear operator in B. We have

(I −M)(v)(s) =M(s)



Linearization II

and hence for sup |B| small enough the operator series

v(s) =

( ∞∑
k=1

(M)k I

)
(s)

converges and we see the Fréchet at 0 of S(M(B)) wrt B is M. .
Specifically for ξ in some plane we can solve the linear approximation for
small B simply by solving the two dimensional ray transform

e1 · S(M(B))(x , ξ)e2 = X (B3)(x , ξ)

and cyclic permutations. This can be done using any two-dimensional
Radon inversion method, and this is the approach taken by the
experimentalists, eg [3].



Numerical examples

I A magnetic field example is calculated analytically

I The reconstruction is on a 90× 90 pixel grid.

I Data consists of 117 rays of neutrons parallel beam at 1 degree
increments.

I The forward problem is solved by intersecting rays with pixels (using
our ray tracing code jacobs rays), and assuming B is pw analytic
on pixels the ODE is solved analytically on each pixel.

I The inverse Radon transform is calculated using a Ram-Lak filter
computed using FFT, and the backprojection operator is matched,
that is it implements the transpose of the forward projector

I Noise was added to simulated data using a Gaussian pseudo random
number generator.

I These results are for small B and one iteration. Preliminary
indications are that when the spin rotates more than a few degrees
several iterations are needed.



Figure : Original (top) and reconstructed magnetic field – x1x3 plane. No noise
left and 10% noise right



Figure : Original (top) and reconstructed magnetic field – x1x3 plane. No noise
left and 10% noise right(surface plots).
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Figure : Original and reconstructed magnetic field – x1x3 plane (quiver).



Original Bx
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Figure : Original and reconstructed B1 component - x1x3 plane.



Original Bz
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Figure : Original and reconstructed B3 component - x1x3 plane.
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