
EVAL
R(0,1,8) CONFIRM S(y,x)

R(3,4,10) CONFIRM S(x,y)

R(0,2,9) CONFIRM T(x,w)

R(0,1,8) CONFIRM T(x,w)

R(0,1,8) CONFIRM S(y,x)

CONFIRM T(x,w)

Fill in Boolean Formula

(False AND True) OR True

Project R(x,y,z) on (x,y)

(0,1)

Output (0,1)

SEMI-JOINS
P

ARALLELISM GRO UPING

Parallel Evaluation of Multi-Semi-Joins
Jonny Daenen Frank Neven Tony Tan Stijn Vansummeren

Poster presentation VLDB 2016, New Delhi, India

Semi-Joins

R� S = πR.∗(R �� S)

Semi-Join Reducers

GYM (Afrati et al. 2014)
Yannakakis 1981

Reduce
Communication
Overhead

Bernstein et al. 1981
R1

R2

R4

R3

R5 R6

R �� S = (R� S) �� (S �R)

0 1

1
1

1
1 4
38

2
2

8

SGF Queries

GF ~ Semi-Join Algebra

Stricly = no top-level Boolean combinations

Nesting

Strictly Guarded Fragment

Z1 = SELECT aut FROM Amazon(title,aut,’bad’)
 WHERE BN(title,aut,’bad’) AND
 BD(title,aut,’bad’)

Z2 = SELECT newttl FROM Upcoming(newttl,aut)
 WHERE NOT Z1(aut)

MSJ
0,1 REQUEST R(0,1,8)S(x,y)

1,0 REQUEST R(0,1,8)S(y,x)

0 REQUEST R(0,1,8)T(x,w)

1,0 ASSERT S(x,y)

1,0 ASSERT S(y,x)

0 ASSERT T(x,w)

REQUEST R(0,1,8)S(x,y)

REQUEST R(0,1,8)S(y,x)

REQUEST R(0,1,8)T(x,w)

ASSERT S(x,y)

ASSERT S(y,x)

ASSERT T(x,w)

0,1

0

1,0

0 1 8
0
3

2 9
104

R

4 3
1
3

0
2

S

1 0
0
7

4
9

T

1 Guard Atom

Conditional Atoms

Parallel Evaluation of Multi-Semi-Joins

Jonny Daenen
Hasselt University

jonny.daenen@uhasselt.be

Frank Neven
Hasselt University

frank.neven@uhasselt.be

Tony Tan
National Taiwan University

tonytan@csie.ntu.edu.tw

Stijn Vansummeren
Université Libre de Bruxelles

stijn.vansummeren@ulb.ac.be

ABSTRACT

While services such as Amazon AWS make computing power
abundantly available, adding more computing nodes can in-
cur high costs in, for instance, pay-as-you-go plans while
not always significantly improving the net running time (aka
wall-clock time) of queries. In this work, we provide algo-
rithms for parallel evaluation of SGF queries in MapReduce
that optimize total time, while retaining low net time. Not
only can SGF queries specify all semi-join reducers, but also
more expressive queries involving disjunction and negation.
Since SGF queries can be seen as Boolean combinations of
(potentially nested) semi-joins, we introduce a novel multi-
semi-join (MSJ) MapReduce operator that enables the eval-
uation of a set of semi-joins in one job. We use this op-
erator to obtain parallel query plans for SGF queries that
outvalue sequential plans w.r.t. net time and provide addi-
tional optimizations aimed at minimizing total time without
severely affecting net time. Even though the latter optimiza-
tions are NP-hard, we present effective greedy algorithms.
Our experiments, conducted using our own implementation
Gumbo on top of Hadoop, confirm the usefulness of parallel
query plans, and the effectiveness and scalability of our op-
timizations, all with a significant improvement over Pig and
Hive.

1. INTRODUCTION
The problem of evaluating joins efficiently in massively

parallel systems is an active area of research (e.g., [2–5, 7,
8, 14, 19, 25, 28]). Here, efficiency can be measured in terms
of different criteria, including net time, total time, amount
of communication, resource requirements and the number
of synchronization steps. As parallel systems aim to bring
down the net time, i.e., the difference between query end
and start time, it is often considered the most important
criterium. The amount of computing power is no longer
an issue through the readily availability of services such as
Amazon AWS. However, in pay-as-you-go plans, the cost is

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 10
Copyright 2016 VLDB Endowment 2150-8097/16/06.

determined by the total time, that is, the aggregate sum of
time spent by all computing nodes. In this paper, we focus
on parallel evaluation of queries that minimize total time
while retaining low net time. We consider parallel query
plans that exhibit low net times and exploit commonalities
between queries to bring down the total time.

Semi-joins have played a fundamental role in minimiz-
ing communication costs in traditional database systems
through their role in semi-join reducers [9, 10], facilitating
the reduction of communication in multi-way join computa-
tions. In more recent work, Afrati et al. [2] provide an al-
gorithm for computing n-ary joins in MapReduce-style sys-
tems in which semi-join reducers play a central role. Moti-
vated by the general importance of semi-joins, we study the
system aspects of implementing semi-joins in a MapReduce
context. In particular, we introduce a multi-semi-join oper-
ator MSJ that enables the evaluation of a set of semi-joins
in one Mapreduce job while reducing resource usage like to-
tal time and requirements on cluster size without sacrificing
net time. We then use this operator to efficiently evalu-
ate Strictly Guarded Fragment (SGF) queries [6, 20]. Not
only can this query language specify all semi-join reducers,
but also more expressive queries involving disjunction and
negation.

We illustrate our approach by means of a simple example.
Consider the following SGF query Q:

SELECT (x, y) FROM R(x, y)
WHERE

(
S(x, y) OR S(y, x)

)
AND T (x, z)

Intuitively, this query asks for all pairs (x, y) in R for which
there exists some z such that (1) (x, y) or (y, x) occurs in
S and (2) (x, z) occurs in T . To evaluate Q it suffices to
compute the following semi-joins

X1 := R(x, y)� S(x, y);
X2 := R(x, y)� S(y, x);
X3 := R(x, y)� T (x, z);

store the results in the binary relations X1, X2, or X3, and
subsequently compute ϕ := (X1∪X2)∩X3. Our multi-semi-
join operatorMSJ(S) (defined in Section 4.2) takes a number
of semi-join-equations as input and exploits commonalities
between them to optimize evaluation. In our framework, a
possible query plan for query Q is of the form:

EVAL(R,ϕ)

MSJ(X1, X2) MSJ(X3)

SELECT x,y
FROM R(x,y,z)
WHERE
 S(x,y) AND S(y,x) OR NOT T(x,w)

BSGF Queries

Boolean Combination

X1 = SELECT x,y,z FROM R(x,y,z) WHERE S(x,y)
X2 = SELECT x,y,z FROM R(x,y,z) WHERE S(y,x)
X3 = SELECT x,y,z FROM R(x,y,z) WHERE T(x,w)

2 Rounds

 100%
 200%
 300%
 400%
 500%
 600%

N
et

 T
im

e

SEQ

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

PAR

 5
9%

 5
4%

 6
8%

 6
3%

 6
3%

GREEDY

 6
0% 9

8%

 5
6%

 6
0%

 7
4%

HIVE1

 2
41

%

 2
43

%

 1
29

%

 2
08

%

 4
65

%HIVE2

 1
39

%

 1
34

%

 1
38

%

 1
15

%

 4
76

%

PIG

 2
17

%

 2
45

%

 2
01

%

 1
89

%

 2
37

%

1-ROUND

 4
3%

 200%

 400%

 600%

 800%

To
ta

l T
im

e

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

% 2
53

%

 2
42

%

 2
45

%

 1
91

%

 2
65

%

 2
38

%

 1
70

%

 1
49

%

 1
68

%

 1
86

%

 2
25

%

 2
18

%

 1
42

%

 7
8% 2

11
% 3
24

%

 3
17

%

 3
19

%

 1
17

%

 6
40

%

 5
40

%

 6
14

%

 4
90

%

 3
73

% 5
76

%

 1
20

%

 200%

 400%

 600%

In
pu

t

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

% 2
40

%

 2
40

%

 2
40

%

 2
40

%

 2
91

%

 1
71

%

 1
10

%

 1
20

%

 1
32

%

 1
39

% 2
46

%

 2
46

%

 1
24

%

 1
40

% 2
98

%

 3
61

%

 3
61

%

 3
61

%

 1
81

%

 4
37

%

 3
44

% 4
33

%

 3
44

%

 3
44

%

 5
35

%

 7
0%

 100%
 200%
 300%
 400%
 500%

A1 A2 A3 A4 A5

C
om

m
un

ic
at

io
n

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
33

%

 1
33

%

 1
33

%

 1
33

%

 1
61

%

 1
33

%

 1
08

%

 9
0% 1
20

%

 1
24

% 2
02

%

 2
02

%

 1
22

%

 1
01

%

 2
44

% 3
22

%

 3
22

%

 3
22

%

 1
61

%

 3
89

%

 3
04

%

 3
04

%

 3
04

%

 3
04

%

 3
67

%

 7
0%

 50%

100%

150%

 1

00
%

 1

00
%

 2

2%
 4

4%

 1

7%
 3

6%

 8

3%

 6

9%

 5

9%
 9

2%

 4

4%

 1

31
%

 1

8%

100%

400%

700%

1000%

To
ta

l T
im

e

 1

00
%

 1

00
%
 3

61
%

 4

3%

 1

06
%

 2

7%

 8

44
%

 6

1%

 4

79
%

 5

8%

 5

60
%

 8

7%

 1
8%

100%
300%
500%
700%
900%

In
pu

t

 1

00
%

 1

00
%

 4
11

%

 5

1%

 8

0%

 2

5%

 7

49
%

 8

0%

 5

70
%

 7

7%

 6

53
%

 7

3%

 1
8%

100%

300%

500%

700%

B1 B2

Co
m

m
un

ica
tio

n

Values relative to SEQ

 1

00
%

 1

00
%

 2

06
%

 2

8%

 7

6%

 1

8%

 6

20
%

 6

7%

 5

05
%

 6

6%

 3

23
%

 6

3%

 1
8%

 25%
 50%
 75%

 100%
 125%
 150%
 175%

N
et

 T
im

e

SEQ-UNIT

 1
00

%

 1
00

%

 1
00

%

 1
00

%

PAR-UNIT

 3
1% 5

1% 7
3%

 3
2%

GREEDY-SGF

 5
6% 7

1%

 7
8%

 4
2%

 25%
 50%
 75%

 100%
 125%
 150%

To
ta

l T
im

e

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
07

%

 1
21

%

 1
08

%

 6
7%

 5
8% 7

4% 9
2%

 5
7%

 25%
 50%
 75%

 100%
 125%
 150%

In
pu

t 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
04

%

 1
08

%

 1
00

%

 7
9%

 5
2% 6
1%

 6
4%

 5
0%

 25%
 50%
 75%

 100%
 125%

C1 C2 C3 C4

C
om

m
un

ic
at

io
n

 1
00

%

 1
00

%

 1
00

%

 1
00

%

 1
05

%

 1
05

%

 9
5%

 7
6%

 6
9% 7

9%

 8
5%

 7
2%

Icons from “Business People Icons 11” via vectorpage.com, Creative Commons Attribution 3.0 License

Hasselt University National Taiwan University Université Libre de Bruxelles

Problem
Cloud (AWS, GCP, etc.)
Pay-as-you-go

Minimize resource usage
Keep low time

SGF Queries

Minimize total time
Parallel queries ∩

R� S R� T R� U

�

�

�

R S

T

U

BSGF-OPT
NP-hard
(Nykiel et al. 2010)

Greedy:

0

0

0

+200 +300

-100

X1 X2 X3

X1

X2

X3

136 Parallel Evaluation of Multi-Semi-Joins

EVAL
Z := X

1

∧ (X
2

∨ ¬X
3

)

MSJ
X

1

:= R(x, y)� S(x, z)
MSJ

X
2

:= R(x, y)� T (y)
MSJ

X
3

:= R(x, y)� U(x)

(a)

EVAL
Z

:

= X1 ∧ (X2 ∨ ¬X3)

MSJ
X

1

:= R(x, y)� S(x, z)
X

3

:= R(x, y)� U(x)

MSJ
X

2

:= R(x, y)� T (y)

(b)

EVAL
Z := X

1

∧ (X
2

∨ ¬X
3

)

MSJ
X

1

:= R(x, y)� S(x, z)
X

2

:= R(x, y)� T (y)
X

3

:= R(x, y)� U(x)

(c)

Figure 4.5: Some MapReduce query plan alternatives for the query given in
Example 4.13.

such that its total cost as computed in Equation (4.12) is minimal. The Scan-
Shared Optimal Grouping, which is known to be np-hard, is reducible to
this problem (see Nykiel et al. [139]). Stating it formally, we have:

Theorem 4.14. The decision variant of BSGF-Opt is np-complete.

Greedy heuristic. While for small queries the optimal solution can be found
using a brute-force search, for larger queries we adopt the fast greedy heuristic
introduced by Wang et al. [163]. For two disjoint subsets S

i

,S
j

⊆ S, define:

gain(S
i

,S
j

) = C(S
i

) + C(S
j

)− C(S
i

∪ S
j

).

That is, gain(S
i

,S
j

) denotes the reduction in cost obtained by evaluating
S
i

∪ S
j

in one MR job rather than evaluating each of them separately. For
a partition S

1

∪ · · · ∪ S
p

, our heuristic algorithm greedily finds a pair i, j ∈
[1, p] × [1, p] such that i �= j and gain(S

i

,S
j

) > 0 is the greatest. If there is
such a pair i, j, we merge S

i

and S
j

into one set. We start with the trivial
partition S

1

∪ · · ·∪S
n

, where each S
i

= {X
i

:= π
w̄

(
R(t̄)�κ

i

)
} and repeat this

procedure until there is no pair i, j for which gain(S
i

,S
j

) > 0. We refer to this
algorithm as Greedy-BSGF. For a BSGF query Q, we denote by OPT(Q)
the optimal (least cost) basic MR program for Q, and by GOPT(Q) we denote
the program computed by Greedy-BSGF.

SGF-OPT

NP-hard
Greedy:
for each leaf
 find group with highest overlap +dependencies
if no overlap, add one query to new group
else add a max. overlap query to group
remove leaf

Z � I

H �Q

R� S ∧ T

G� S ∧ T

Z � I

H �Q

R� S ∧ T G� S ∧ T

Multi-BSGF

Cost Model
the query, while the atoms occurring in C are called the
conditional atoms. We interpret Z as the output relation of
the query.
On a database DB, the BSGF query (1) defines a new

relation Z containing all tuples ā for which there is a substi-
tution σ for the variables occurring in t̄ such that σ(x̄) = ā,
R(σ(t̄)) ∈ DB, and C evaluates to true in DB under substi-
tution σ. Here, the evaluation of C in DB under σ is de-
fined by recursion on the structure of C. If C is C1 OR C2,
C1 AND C2, or NOT C1, the semantics is the usual boolean
interpretation. If C is an atom T (v̄) then C evaluates to
true if σ(t̄) ∈ R(t̄) � T (v̄), i.e., if there exists a T -atom in
DB that equals R(σ(t̄)) on those positions where R(t̄) and
T (v̄) share variables.

Example 1. The intersection Z1 := R ∩ S and the dif-
ference Z2 := R − S between two relations R and S are
expressed as follows:

Z1 := SELECT x̄ FROM R(x̄) WHERE S(x̄);

Z2 := SELECT x̄ FROM R(x̄) WHERE NOT S(x̄);

The semijoin Z3 = R(x̄, ȳ) � S(ȳ, z̄) and the antijoin Z4 =
R(x̄, ȳ)� S(ȳ, z̄) are expressed as follows:

Z3 := SELECT x̄, ȳ FROM R(x̄, ȳ) WHERE S(ȳ, z̄);

Z4 := SELECT x̄, ȳ FROM R(x̄, ȳ) WHERE NOT S(ȳ, z̄);

The following BSGF query selects all the pairs (x, y) for
which (x, y, 4) occurs in R and either (1, x) or (y, 10) is in
S, but not both:

Z5 := SELECT (x, y) FROM R(x, y, 4)

WHERE (S(1, x) AND NOT S(y, 10))

OR (NOT S(1, x) AND S(y, 10));

Finally, the traditional star semi-join between R(x1, . . . , xn)
and relations Si(xi, yi), for i ∈ [1, n], is expressed as follows:

Z6 := SELECT (x1, . . . , xn) FROM R(x1, . . . , xn)

WHERE S(x1, y1) AND . . . AND S(xn, yn); �

A strictly guarded fragment (SGF) query is a collection of
BSGFs of the form Z1 := ξ1; . . . ;Zn := ξn; where each ξi
is a BSGF that can mention any of the predicates Zj with
j < i. On a database DB, the SGF query then defines a
new relation Zn where every occurrence of Zi is defined by
evaluating ξi.

Example 2. Let Amaz, BN, and BD be relations con-
taining tuples (title, author, rating) corresponding to the
books found at Amazon, Barnes and Noble, and Book De-
pository, respectively. Let Upcoming contain tuples (new-
title, author) of upcoming books. The following query se-
lects all the upcoming books (newtitle, author) of authors
that have not yet received a “bad” rating for the same title
at all three book retailers; Z2 is the output relation:

Z1 := SELECT aut FROM Amaz(ttl, aut, ”bad”)

WHERE BN(ttl, aut, ”bad”) AND BD(ttl, aut, ”bad”);

Z2 := SELECT (new, aut) FROM Upcoming(new, aut)

WHERE NOT Z1(aut);

Note that this query cannot be written as a basic SGF query,
since the atoms in the query computing Z1 must share the
ttl variable, which is not present in the guard of the query
computing Z2. �

︸ ︷︷ ︸
Input

︸ ︷︷ ︸
Intermediate Data

︸ ︷︷ ︸
Output

Map Phase
︷ ︸︸ ︷
read → map → sort → merge →

Reduce Phase
︷ ︸︸ ︷
trans. → merge → reduce → write

Figure 1: A depiction of the inner workings of Hadoop MR.

Remark 1. The syntax we use here differs from the tra-
ditional syntax of the Guarded Fragment [20], and is ac-
tually closer in spirit to join trees for acyclic conjunctive
queries [9, 11], although we do allow disjunction and nega-
tion in the where clause. In the traditional syntax, a pro-
jection in the guarded fragment is only allowed in the form
∃w̄R(x̄)∧ϕ(z̄) where all variables in z̄ must occur in x̄. One
can obtain a query in the traditional syntax of the guarded
fragment from our syntax by adding extra projections for
the atoms in C. For example,

SELECT x FROM R(x, y) WHERE S(x, z1) AND NOT S(y, z2)

becomes ∃y(R(x, y) ∧ (∃z1)S(x, z1) ∧ ¬(∃z2)S(y, z2)). We
note that this transformation increases the nesting depth of
the query. �

3.2 MapReduce
We briefly recall the Map/Reduce model of computation

(MR for short), and its execution in the open-source Hadoop
framework [18, 37]. An MR job is a pair (µ, ρ) of functions,
where µ is called the map and ρ the reduce function. The
execution of an MR job on an input dataset I proceeds in
two stages. In the first stage, called the map stage, each
fact f ∈ I is processed by µ, generating a collection µ(f)
of key-value pairs of the form 〈k : v〉. The total collec-
tion

⋃
f∈I

µ(f) of key-value pairs generated during the map
phase is then grouped on the key, resulting in a number of
groups, say 〈k1 : V1〉 , . . . , 〈kn : Vn〉 where each Vi is a set of
values. Each group 〈ki : Vi〉 is then processed by the reduce
function ρ resulting again in a collection of key-value pairs
per group. The total collection

⋃
i
ρ(〈ki : Vi〉) is the output

of the MR job.
An MR program is a directed acyclic graph of MR jobs,

where an edge from job (µ, ρ) → (µ′, ρ′) indicates that
(µ′, ρ′) operates on the output of (µ, ρ). We refer to the
length of the longest path in an MR program as the number
of rounds of the program.

3.3 Cost Model for MapReduce
As our aim is to reduce the total cost of parallel query

plans, we need a cost model that estimates this metric for
a given MR job. We briefly touch upon a cost model for
analyzing the I/O complexity of an MR job based on the
one introduced in [27, 36] but with a distinctive difference.
The adaptation we introduce, and that is elaborated upon
below, takes into account that the map function may have a
different input/output ratio for different parts of the input
data.

While conceptually an MR job consists of only the map
and reduce stage, its inner workings are more intricate. Fig-
ure 1 summarizes the steps in the execution of an MR job.
See [37, Figure 7-4, Chapter 7] for more details. The map
phase involves (i) applying the map function on the input;
(ii) sorting and merging the local key-value pairs produced
by the map function, and (iii) writing the result to local
disk.

Let I1 ∪ · · · ∪ Ik denote the partition of the input tuples
such that the mapper behaves uniformly1 on every data item
in Ii. Let Ni be the size (in MB) of Ii, and let Mi be the
size (in MB) of the intermediate data output by the mapper
on Ii. The cost of the map phase on Ii is:

costmap(Ni,Mi) = hrNi +mergemap(Mi) + lwMi,

where mergemap(Mi), denoting the cost of sort and merge in
the map stage, is expressed by

mergemap(Mi) = (lr + lw)Mi logD

⌈
(Mi+M̂i)/mi

buf map

⌉
.

See Table 1 for the meaning of the variables hr, lw, lr, lw,

D, M̂i, mi, and buf map.
2 The total cost incurred in the map

phase equals the sum

k∑

i=1

costmap(Ni,Mi). (2)

Note that the cost model in [27, 36] defines the total cost
incurred in the map phase as

costmap

(
k∑

i=1

Ni,
k∑

i=1

Mi

)

. (3)

The latter is not always accurate. Indeed, consider for in-
stance an MR job whose input consists of two relations R
and S where the map function outputs many key-value pairs
for each tuple in R and at most one key-value pair for each
tuple in S, e.g., because of filtering. This difference in map
output may lead to a non-proportional contribution of both
input relations to the total cost. Hence, as shown by Equa-
tion (2), we opt to consider different inputs separately. This
cannot be captured by map cost calculation of Equation (3),
as it considers the global average map output size in the cal-
culation of the merge cost. In Section 5, we illustrate this
problem by means of an experiment that confirms the effec-
tiveness of the proposed adjustment.
To analyze the cost in the reduce phase, letM =

∑k

i=1 Mi.
The reduce stage involves (i) transferring the intermediate
data (i.e., the output of the map function) to the correct
reducer, (ii) merging the key-value pairs locally for each re-
ducer, (iii) applying the reduce function, and (iv) writing
the output to hdfs. Its cost will be

costred(M,K) = tM +mergered(M) + hwK,

where K is the size of the output of the reduce function (in
MB). The cost of merging equals

mergered(M) = (lr + lw)M logD

⌈
M/r

buf red

⌉
.

The total cost of an MR job equals the sum

costh +

k∑

i=1

costmap(Ni,Mi) + costred(M,K),

where costh is the overhead cost of starting an MR job.

1 Uniform behaviour means that for every Ii, each input
tuple in Ii is subjected to the same map function and gen-
erates the same number of key-value pairs. In general, a
partition is a subset of an input relation.
2In Hadoop, each tuple output by the map function requires
16 bytes of metadata.

lr local disk read cost (per MB)
lw local disk write cost (per MB)
hr hdfs read cost (per MB)
hw hdfs write cost (per MB)
t transfer cost (per MB)

M̂i map output meta-data for Ii (in MB)
mi number of mappers for Ii

r number of reducers

D external sort merge factor
buf map map task buffer limit (in MB)
buf red reduce task buffer limit (in MB)

Table 1: Description of constants used in the cost model.

4. EVALUATING MULTI-SEMI-JOIN AND

SGF QUERIES
In this section, we describe how SGF queries can be eval-

uated. We start by introducing some necessary building
blocks in Sections 4.1 to 4.3, and describe the evaluation
of BSGF queries and multiple BSGF queries in Section 4.4
and 4.5, respectively. These are then generalized to the full
fragment of SGF queries in Section 4.6 and 4.7.
First, we introduce some additional notation. We say that

a tuple ā = (a1, . . . , an) ∈ Dn of n data values conforms to
a vector t̄ = (t1, . . . , tn) of terms, if

1. ∀i, j ∈ [1, n], ti = tj implies ai = aj ; and,
2. ∀i ∈ [1, n] if ti ∈ D, then ti = ai.

For instance, (1, 2, 1, 3) conforms to (x, 2, x, y). Likewise, a
fact T (ā) conforms to an atom U(t̄) if T = U and ā conforms
to t̄. We write T (ā) |= U(t̄) to denote that T (ā) conforms
to U(t̄). If f = R(ā) is a fact conforming to an atom α =
R(t̄) and x̄ is a sequence of variables that occur in t̄, then
the projection πα;x̄(f) of f onto x̄ is the tuple b̄ obtained
by projecting ā on the coordinates in x̄. For instance, let
f = R(1, 2, 1, 3) and α = R(x, y, x, z). Then, R(1, 2, 1, 3) |=
R(x, y, x, z) and hence πα;x,z(f) = (1, 3).

4.1 Evaluating One Semi-Join
As a warm-up, let us explain how single semi-joins can be

evaluated in MR. A single semi-join is a query of the form

Z := SELECT w̄ FROM α WHERE κ; (4)

where both α and κ are atoms. For notational convenience,
we will denote this query simply by πw̄(α� κ).
To evaluate (4), one can use the following one round repar-

tition join [12]. The mapper distinguishes between guard
facts (i.e., facts in DB conforming to α) and conditional facts
(i.e., facts in DB conforming to κ). Specifically, let z̄ be the
join key, i.e., those variables occurring in both α and κ. For
each guard fact f such that f |= α, the mapper emits the
key-value pair 〈πα;z̄(f) : [Reqκ;Outπα;w̄(f)]〉. Intuitively,
this pair is a “message” sent by guard fact f to request
whether a conditional fact g |= κ with πκ;z̄(g) = πα;z̄(f)
exists in the database, stating that if such a conditional fact
exists, the tuple πα;w̄(f) should be output. Conversely, for
each conditional fact g |= κ, the mapper emits a message of
the form 〈πκ;z̄(g) : [Assertκ]〉, asserting the existence of a
κ-conforming fact in the database with join key πκ;z̄(g). On
input

〈
b̄ : V

〉
, the reducer outputs all tuples ā to relation Z

for which [Reqκ;Out ā] ∈ V , provided that V contains at
least one assert message.

Let I1 ∪ · · · ∪ Ik denote the partition of the input tuples
such that the mapper behaves uniformly1 on every data item
in Ii. Let Ni be the size (in MB) of Ii, and let Mi be the
size (in MB) of the intermediate data output by the mapper
on Ii. The cost of the map phase on Ii is:

costmap(Ni,Mi) = hrNi +mergemap(Mi) + lwMi,

where mergemap(Mi), denoting the cost of sort and merge in
the map stage, is expressed by

mergemap(Mi) = (lr + lw)Mi logD

⌈
(Mi+M̂i)/mi

buf map

⌉
.

See Table 1 for the meaning of the variables hr, lw, lr, lw,

D, M̂i, mi, and buf map.
2 The total cost incurred in the map

phase equals the sum

k∑

i=1

costmap(Ni,Mi). (2)

Note that the cost model in [27, 36] defines the total cost
incurred in the map phase as

costmap

(
k∑

i=1

Ni,
k∑

i=1

Mi

)

. (3)

The latter is not always accurate. Indeed, consider for in-
stance an MR job whose input consists of two relations R
and S where the map function outputs many key-value pairs
for each tuple in R and at most one key-value pair for each
tuple in S, e.g., because of filtering. This difference in map
output may lead to a non-proportional contribution of both
input relations to the total cost. Hence, as shown by Equa-
tion (2), we opt to consider different inputs separately. This
cannot be captured by map cost calculation of Equation (3),
as it considers the global average map output size in the cal-
culation of the merge cost. In Section 5, we illustrate this
problem by means of an experiment that confirms the effec-
tiveness of the proposed adjustment.
To analyze the cost in the reduce phase, letM =

∑k

i=1 Mi.
The reduce stage involves (i) transferring the intermediate
data (i.e., the output of the map function) to the correct
reducer, (ii) merging the key-value pairs locally for each re-
ducer, (iii) applying the reduce function, and (iv) writing
the output to hdfs. Its cost will be

costred(M,K) = tM +mergered(M) + hwK,

where K is the size of the output of the reduce function (in
MB). The cost of merging equals

mergered(M) = (lr + lw)M logD

⌈
M/r

buf red

⌉
.

The total cost of an MR job equals the sum

costh +

k∑

i=1

costmap(Ni,Mi) + costred(M,K),

where costh is the overhead cost of starting an MR job.

1 Uniform behaviour means that for every Ii, each input
tuple in Ii is subjected to the same map function and gen-
erates the same number of key-value pairs. In general, a
partition is a subset of an input relation.
2In Hadoop, each tuple output by the map function requires
16 bytes of metadata.

lr local disk read cost (per MB)
lw local disk write cost (per MB)
hr hdfs read cost (per MB)
hw hdfs write cost (per MB)
t transfer cost (per MB)

M̂i map output meta-data for Ii (in MB)
mi number of mappers for Ii

r number of reducers

D external sort merge factor
buf map map task buffer limit (in MB)
buf red reduce task buffer limit (in MB)

Table 1: Description of constants used in the cost model.

4. EVALUATING MULTI-SEMI-JOIN AND

SGF QUERIES
In this section, we describe how SGF queries can be eval-

uated. We start by introducing some necessary building
blocks in Sections 4.1 to 4.3, and describe the evaluation
of BSGF queries and multiple BSGF queries in Section 4.4
and 4.5, respectively. These are then generalized to the full
fragment of SGF queries in Section 4.6 and 4.7.
First, we introduce some additional notation. We say that

a tuple ā = (a1, . . . , an) ∈ Dn of n data values conforms to
a vector t̄ = (t1, . . . , tn) of terms, if

1. ∀i, j ∈ [1, n], ti = tj implies ai = aj ; and,
2. ∀i ∈ [1, n] if ti ∈ D, then ti = ai.

For instance, (1, 2, 1, 3) conforms to (x, 2, x, y). Likewise, a
fact T (ā) conforms to an atom U(t̄) if T = U and ā conforms
to t̄. We write T (ā) |= U(t̄) to denote that T (ā) conforms
to U(t̄). If f = R(ā) is a fact conforming to an atom α =
R(t̄) and x̄ is a sequence of variables that occur in t̄, then
the projection πα;x̄(f) of f onto x̄ is the tuple b̄ obtained
by projecting ā on the coordinates in x̄. For instance, let
f = R(1, 2, 1, 3) and α = R(x, y, x, z). Then, R(1, 2, 1, 3) |=
R(x, y, x, z) and hence πα;x,z(f) = (1, 3).

4.1 Evaluating One Semi-Join
As a warm-up, let us explain how single semi-joins can be

evaluated in MR. A single semi-join is a query of the form

Z := SELECT w̄ FROM α WHERE κ; (4)

where both α and κ are atoms. For notational convenience,
we will denote this query simply by πw̄(α� κ).
To evaluate (4), one can use the following one round repar-

tition join [12]. The mapper distinguishes between guard
facts (i.e., facts in DB conforming to α) and conditional facts
(i.e., facts in DB conforming to κ). Specifically, let z̄ be the
join key, i.e., those variables occurring in both α and κ. For
each guard fact f such that f |= α, the mapper emits the
key-value pair 〈πα;z̄(f) : [Reqκ;Outπα;w̄(f)]〉. Intuitively,
this pair is a “message” sent by guard fact f to request
whether a conditional fact g |= κ with πκ;z̄(g) = πα;z̄(f)
exists in the database, stating that if such a conditional fact
exists, the tuple πα;w̄(f) should be output. Conversely, for
each conditional fact g |= κ, the mapper emits a message of
the form 〈πκ;z̄(g) : [Assertκ]〉, asserting the existence of a
κ-conforming fact in the database with join key πκ;z̄(g). On
input

〈
b̄ : V

〉
, the reducer outputs all tuples ā to relation Z

for which [Reqκ;Out ā] ∈ V , provided that V contains at
least one assert message.

Let I1 ∪ · · · ∪ Ik denote the partition of the input tuples
such that the mapper behaves uniformly1 on every data item
in Ii. Let Ni be the size (in MB) of Ii, and let Mi be the
size (in MB) of the intermediate data output by the mapper
on Ii. The cost of the map phase on Ii is:

costmap(Ni,Mi) = hrNi +mergemap(Mi) + lwMi,

where mergemap(Mi), denoting the cost of sort and merge in
the map stage, is expressed by

mergemap(Mi) = (lr + lw)Mi logD

⌈
(Mi+M̂i)/mi

buf map

⌉
.

See Table 1 for the meaning of the variables hr, lw, lr, lw,

D, M̂i, mi, and buf map.
2 The total cost incurred in the map

phase equals the sum

k∑

i=1

costmap(Ni,Mi). (2)

Note that the cost model in [27, 36] defines the total cost
incurred in the map phase as

costmap

(
k∑

i=1

Ni,
k∑

i=1

Mi

)

. (3)

The latter is not always accurate. Indeed, consider for in-
stance an MR job whose input consists of two relations R
and S where the map function outputs many key-value pairs
for each tuple in R and at most one key-value pair for each
tuple in S, e.g., because of filtering. This difference in map
output may lead to a non-proportional contribution of both
input relations to the total cost. Hence, as shown by Equa-
tion (2), we opt to consider different inputs separately. This
cannot be captured by map cost calculation of Equation (3),
as it considers the global average map output size in the cal-
culation of the merge cost. In Section 5, we illustrate this
problem by means of an experiment that confirms the effec-
tiveness of the proposed adjustment.
To analyze the cost in the reduce phase, letM =

∑k

i=1 Mi.
The reduce stage involves (i) transferring the intermediate
data (i.e., the output of the map function) to the correct
reducer, (ii) merging the key-value pairs locally for each re-
ducer, (iii) applying the reduce function, and (iv) writing
the output to hdfs. Its cost will be

costred(M,K) = tM +mergered(M) + hwK,

where K is the size of the output of the reduce function (in
MB). The cost of merging equals

mergered(M) = (lr + lw)M logD

⌈
M/r

buf red

⌉
.

The total cost of an MR job equals the sum

costh +

k∑

i=1

costmap(Ni,Mi) + costred(M,K),

where costh is the overhead cost of starting an MR job.

1 Uniform behaviour means that for every Ii, each input
tuple in Ii is subjected to the same map function and gen-
erates the same number of key-value pairs. In general, a
partition is a subset of an input relation.
2In Hadoop, each tuple output by the map function requires
16 bytes of metadata.

lr local disk read cost (per MB)
lw local disk write cost (per MB)
hr hdfs read cost (per MB)
hw hdfs write cost (per MB)
t transfer cost (per MB)

M̂i map output meta-data for Ii (in MB)
mi number of mappers for Ii

r number of reducers

D external sort merge factor
buf map map task buffer limit (in MB)
buf red reduce task buffer limit (in MB)

Table 1: Description of constants used in the cost model.

4. EVALUATING MULTI-SEMI-JOIN AND

SGF QUERIES
In this section, we describe how SGF queries can be eval-

uated. We start by introducing some necessary building
blocks in Sections 4.1 to 4.3, and describe the evaluation
of BSGF queries and multiple BSGF queries in Section 4.4
and 4.5, respectively. These are then generalized to the full
fragment of SGF queries in Section 4.6 and 4.7.
First, we introduce some additional notation. We say that

a tuple ā = (a1, . . . , an) ∈ Dn of n data values conforms to
a vector t̄ = (t1, . . . , tn) of terms, if

1. ∀i, j ∈ [1, n], ti = tj implies ai = aj ; and,
2. ∀i ∈ [1, n] if ti ∈ D, then ti = ai.

For instance, (1, 2, 1, 3) conforms to (x, 2, x, y). Likewise, a
fact T (ā) conforms to an atom U(t̄) if T = U and ā conforms
to t̄. We write T (ā) |= U(t̄) to denote that T (ā) conforms
to U(t̄). If f = R(ā) is a fact conforming to an atom α =
R(t̄) and x̄ is a sequence of variables that occur in t̄, then
the projection πα;x̄(f) of f onto x̄ is the tuple b̄ obtained
by projecting ā on the coordinates in x̄. For instance, let
f = R(1, 2, 1, 3) and α = R(x, y, x, z). Then, R(1, 2, 1, 3) |=
R(x, y, x, z) and hence πα;x,z(f) = (1, 3).

4.1 Evaluating One Semi-Join
As a warm-up, let us explain how single semi-joins can be

evaluated in MR. A single semi-join is a query of the form

Z := SELECT w̄ FROM α WHERE κ; (4)

where both α and κ are atoms. For notational convenience,
we will denote this query simply by πw̄(α� κ).
To evaluate (4), one can use the following one round repar-

tition join [12]. The mapper distinguishes between guard
facts (i.e., facts in DB conforming to α) and conditional facts
(i.e., facts in DB conforming to κ). Specifically, let z̄ be the
join key, i.e., those variables occurring in both α and κ. For
each guard fact f such that f |= α, the mapper emits the
key-value pair 〈πα;z̄(f) : [Reqκ;Outπα;w̄(f)]〉. Intuitively,
this pair is a “message” sent by guard fact f to request
whether a conditional fact g |= κ with πκ;z̄(g) = πα;z̄(f)
exists in the database, stating that if such a conditional fact
exists, the tuple πα;w̄(f) should be output. Conversely, for
each conditional fact g |= κ, the mapper emits a message of
the form 〈πκ;z̄(g) : [Assertκ]〉, asserting the existence of a
κ-conforming fact in the database with join key πκ;z̄(g). On
input

〈
b̄ : V

〉
, the reducer outputs all tuples ā to relation Z

for which [Reqκ;Out ā] ∈ V , provided that V contains at
least one assert message.

Non-uniform input contribution

300

600

900

1200

N
e

t
T

im
e

 (
s
)

SEQ

 9
8
7

 3
6
3

PAR

 2
1
7

 1
6
1

GREEDY

 1
7
3

 1
3
2

HPAR 8
2
4

 2
4
9

HPARS

 5
8
0

 3
3
2

PPAR

 4
3
2

 4
7
5

1-ROUND

 6
5

 20k

 40k

 60k

T
o

ta
l
T

im
e

 (
s
)

7
k 1

5
k2

6
k

7
k8
k

4
k

6
1
k

9
k

3
5
k

9
k

4
0
k

1
3
k

3
k

 50

100

150

200

In
p

u
t

(G
B

)

2
4

5
4

9
9

2
8

1
9

1
4

1
8
0

4
3

1
3
7

4
2

1
6
6

4
0

8

 50

100

150

200

250

B1 B2

C
o

m
m

u
n

ic
a

ti
o

n
 (

G
B

)

Absolute values

3
5

7
9

7
2

2
22
7

1
5

2
1
7

5
3

1
7
7

5
3

1
1
3

5
0

1
2

 50%

100%

150%

1
0
0
%

1
0
0
%

2
2
%

4
4
%

1
7
%

3
6
%

8
3
%

6
9
%

5
9
%

9
2
%

4
4
%

1
3
1
%

1
8
%

100%

400%

700%

1000%

1
0
0
%

1
0
0
%

3
6
1
%

4
3
%

1
0
6
%

2
7
%

8
4
4
%

6
1
%

4
7
9
%

5
8
%

5
6
0
%

8
7
%

1
8
%

100%

300%

500%

700%

900%

1
0
0
%

1
0
0
%

4
1
1
%

5
1
%

8
0
%

2
5
%

7
4
9
%

8
0
%

5
7
0
%

7
7
%

6
5
3
%

7
3
%

1
8
%

100%

300%

500%

700%

B1 B2

Values relative to SEQ

1
0
0
%

1
0
0
%

2
0
6
%

2
8
%

7
6
%

1
8
%

6
2
0
%

6
7
%

5
0
5
%

6
6
%

3
2
3
%

6
3
%

1
8
%

Figure 4: Results for large BSGF queries.

 25%
 50%
 75%

 100%
 125%
 150%
 175%

N
e

t
T

im
e

SEQ-UNIT

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

PAR-UNIT

3
1
%

5
1
%

7
3
%

3
2
%

GREEDY-SGF

5
6
%

7
1
%

7
8
%

4
2
%

 25%

 50%

 75%

 100%

 125%

 150%

T
o

ta
l
T

im
e

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
7
%

1
2
1
%

1
0
8
%

6
7
%

5
8
%

7
4
%

9
2
%

5
7
%

 25%

 50%

 75%

 100%

 125%

 150%

In
p

u
t

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
4
%

1
0
8
%

1
0
0
%

7
9
%

5
2
%

6
1
%

6
4
%

5
0
%

 25%

 50%

 75%

 100%

 125%

C1 C2 C3 C4

C
o

m
m

u
n

ic
a

ti
o

n

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
5
%

1
0
5
%

9
5
%

7
6
%

6
9
%

7
9
%

8
5
%

7
2
%

Figure 5: SGF results, values relative to SEQUNIT.

SEQ are obtained. Finally, Gumbo outperforms Pig and
Hive in all aspects when it comes to parallel evaluation of
BSGF queries.

5.3 SGF Queries
In this section, we show that the algorithm Greedy-SGF

succeeds in lowering total time while avoiding significant
increase in net time. Figure 6 gives an overview of the type of
queries that are used. Results are depicted in Figure 5. Note
that these queries all exhibit different properties. Queries C1
and C2 both contain a set of SGF queries where a number of
atoms overlap. Query C3 is a complex query that contains
a multitude of different atoms. Finally, Query C4 consists
of two levels and many overlapping atoms.

We consider the following evaluation strategies in Gumbo:
(i) sequentially, i.e., one at a time, evaluating all BSGF
queries in a bottom-up fashion (SEQUNIT); (ii) evaluat-
ing all BSGF queries in a bottom-up fashion level by level
where queries on the same level are executed in parallel
(PARUNIT); and, (iii) using the greedily computed topo-
logical sort combined with Greedy-BSGF (Greedy-SGF);

Z3(x) := G(x̄)� Z1(z) ∨ Z1(w)

Z1(x) := R(x̄)� S(x) ∧ S(y)

invis

Z2(x) := G(x̄)� T (x) ∧ T (y)

Z4(x) := H(x̄)� Z3(z) ∨ Z3(w)

Z3(x) := H(x̄)� U(x) ∧ U(y)

(a) Query Set C1

Z4(x̄) := G(x̄)� Z1(x) ∧ Z1(y)

Z1(x̄) := R(x̄)� S(x) ∧ S(y)

Z5(x̄) := H(x̄)� Z2(x) ∧ Z2(y)

Z2(x̄) := G(x̄)� T (x) ∧ T (y)

Z6(x̄) := R(x̄)� Z3(x) ∧ Z3(y)

Z3(x̄) := H(x̄)� U(x) ∧ U(y)

(b) Query Set C2

Z31(z) := I(x̄)� Z22(x) ∧ T (x) ∧ V (y)

Z21(z) := G(x̄)� Z11(x) ∧ U(y)

Z11(z) := R(x̄)� S(x) ∧ T (y)

Z22(z) := H(x̄)� U(y) ∨ V (y) ∧ Z12(x)

Z12(z) := R(x̄)� T (y)

Z23(z) := R(x̄)� U(x) ∧ T (y) ∧ V (z) ∧ Z13(w)

Z13(z) := I(x̄)� ¬S(w)

(c) Query C3

Z21(x̄) := H(x̄)� Z11(x) ∨ Z12(y) ∨ Z23(z) ∨ Z24(w)

Z11(y) := R(x̄)� S(x) ∨ T (y)

Z12(y) := R(x̄)� U(z) ∨ S(x)

Z13(y) := G(x̄)� U(x) ∨ V (y)

Z14(y) := G(x̄)� S(z) ∨ U(x)

(d) Query C4

Figure 6: The queries used in the SGF experiment. Each
node represents one BSGF subquery (x̄ = x, y, z, w).

Note that in SEQUNIT and PARUNIT all semi-joins are
evaluated in separate jobs. For all tests conducted here, we
found that Greedy-SGF yields multiway topological sorts
that are identical to the optimal topological sort (computed
trough brute-force methods); hence, we omit the results for
the optimal plans.

Similar to our observations for BSGF queries, we find that
full sequential evaluation (SEQUNIT) results in the largest
net times. Indeed, PARUNIT exhibits 55% lower net times
on average. We also observe that PARUNIT exhibits sig-
nificantly larger total times than SEQUNIT for queries C1
and C2, while this is not the case for C3 and C4. The rea-
son is that for C3 and C4, queries on the same level still
share common characteristics, leading to a lower number of
distinct semi-joins.

For Greedy-SGF, we find that it exhibits net times that
are, on average, 42% lower than SEQUNIT, while still being
29% higher than PARUNIT. The main reason for this is the
fact that Greedy-SGF aims to minimize total time, and
may introduce extra levels in the MR query plan to obtain
this goal. Indeed, we find that total times are down 27%
w.r.t. SEQUNIT, and 29% w.r.t. PARUNIT.

Finally, we note that the absolute savings in net time
range from 115s to 737s for these queries, far outweighing
the overhead cost of calculating the query plan itself, which
typically takes around 10s (sampling included). Hence, we
conclude that Greedy-SGF provides an evaluation strategy
for SGF queries that manages to bring down the total time
(and hence, the resource cost) of parallel query plans, while
still exhibiting low net times when compared to sequential
approaches.

5.4 System Characteristics
In this final experiment, we study the effect of growing

data size, cluster size, query size, and selectivity. We choose

QID Query Type of query

A1 R(x, y, z, w)�
S(x) ∧ T (y) ∧ U(z) ∧ V (w)

guard sharing

A2 R(x, y, z, w)�
S(x) ∧ S(y) ∧ S(z) ∧ S(w)

guard & con-
ditional name
sharing

A3 R(x, y, z, w)�
S(x) ∧ T (x) ∧ U(x) ∧ V (x)

guard & condi-
tional key shar-
ing

A4 R(x, y, z, w)�
S(x) ∧ T (y) ∧ U(z) ∧ V (w)

G(x, y, z, w)�
W (x)∧X(y)∧Y (z)∧Z(w)

no sharing

A5 R(x, y, z, w)�
S(x) ∧ T (y) ∧ U(z) ∧ V (w)

G(x, y, z, w)�
S(x) ∧ T (y) ∧ U(z) ∧ V (w)

conditional
name sharing

B1 R(x, y, z, w)�
S(x) ∧ T (x) ∧ U(x) ∧ V (x) ∧
S(y) ∧ T (y) ∧ U(y) ∧ V (y) ∧
S(z) ∧ T (z) ∧ U(z) ∧ V (z) ∧
S(w) ∧ T (w) ∧ U(w) ∧ V (w)

large conjunc-
tive query

B2 R(x, y, z, w)�
(S(x)∧¬T (x)∧¬U(x)∧¬V (x))∨
(¬S(x)∧T (x)∧¬U(x)∧¬V (x))∨
(S(x)∧¬T (x)∧U(x)∧¬V (x))∨
(¬S(x)∧¬T (x)∧¬U(x)∧V (x))

uniqueness
query

Table 2: Queries used in the BSGF-experiment

restricted to only disjunction and negation. The same
optimization also works for multiple BSGF queries. We
refer to these programs as 1-ROUND below.

All experiments are conducted on the HPC infrastruc-
ture of the Flemish Supercomputer Center (VSC). Each
experiment was run on a cluster consisting of 10 compute
nodes. Each node features two 10-core “Ivy Bridge” Xeon
E5-2680v2 CPUs (2.8 GHz, 25 MB level 3 cache) with 64 GB
of RAM and a single 250GB harddisk. The nodes are linked
to a IB-QDR Infiniband network. We used Hadoop 2.6.2,
Pig 0.15.0 and Hive 1.2.1; the specific Hadoop settings and
cost model constants can be found in [16]. All experiments
are run three times; average results are reported.
Queries typically contain a multitude of relations and the

input sizes of our experiments go up to 100GB depending
on the query and the evaluation strategy. The data that
is used for the guard relations consists of 100M tuples that
add up to 4GB per relation. For the conditional relations
we use the same number of tuples that add up to 1GB per
relation; 50% of the conditional tuples match those of the
guard relation.
We use the following performance metrics:
1. total time: the aggregate sum of time spent by all

mappers and reducers;
2. net time: elapsed time between query submission to

obtaining the final result;
3. input cost : the number of bytes read from hdfs over

the entire MR plan;
4. communication cost : the number of bytes that are

transferred from mappers to reducers.

5.2 BSGF Queries
Table 2 lists the type of BSGF queries used in this sec-

tion.4 Figures 3 & 4 show the results that are discussed next.

4 The results obtained here generalize to non-conjunctive
BSGF queries. Conjunctive BSGF queries were chosen here
to simplify the comparison with sequential query plans.

Sequential vs. Parallel. We first compare sequential and
parallel evaluation of queries A1–A5 to highlight the major
differences between sequential and parallel query plans and
to illustrate the effect of grouping. In particular, we con-
sider three evaluation strategies in Gumbo: (i) evaluating all
semi-joins sequentially by applying a semi-join to the output
of the previous stage (SEQ), where the number of rounds
depends on the number of semi-joins; (ii) using the 2-round
strategy with algorithm Greedy-BSGF (GREEDY); and,
(iii) a more naive version of GREEDY where no grouping
occurs, i.e., every semi-join is evaluated separately in paral-
lel (PAR). As semi-join algorithms in MR have not received
significant attention, we choose to compare with the two
extreme approaches: no parallelization (SEQ) and paral-
lelization without grouping (PAR). Relative improvements
of PAR and GREEDY w.r.t. SEQ are shown in Figure 3b.
We find that both PAR and GREEDY result in lower

net times. In particular, we see average improvements of
39% and 31% over SEQ, respectively. On the other hand,
the total times for PAR are much higher than for SEQ:
132% higher on average. This is explained by the increase
in both input and communication bytes, whereas the data
size can be reduced after each step in the sequential eval-
uation. For GREEDY, total times vary depending on the
structure of the query. Total times are significantly reduced
for queries where conditional atoms share join keys and/or
relation names. This effect is most obvious for queries A1,
A2 and A5 where we oberve reductions in net time of 30%,
29% and 30%, respectively, w.r.t. PAR.
For query A3, all conditional atoms have the same join

key, making 1-round (1-ROUND, see Section 5.1) evalua-
tion possible. This further reduces the total and net time to
only 49% and 63% of those of PAR, respectively.

Hive & Pig. We now examine parallel query evaluation in
Pig and Hive and show that Gumbo outperforms both sys-
tems for BSGF queries. For this test, we implement the
2-round query plans of Section 4.4 directly in Pig and Hive.
For Hive, we consider two evaluation strategies: one us-
ing Hive’s left-outer-join operations (HPAR) and one using
Hive’s semi-join operations (HPARS). For Pig, we consider
one strategy that is implemented using the COGROUP op-
eration (PPAR). We also studied sequential evaluation of
BSGF queries in both systems but choose to omit the re-
sults here as both performed drastically worse than their
Gumbo equivalent (SEQ) in terms of net and total time.
First, we find that HPAR lacks parallelization. This is

caused by Hive’s restriction that certain join operations are
executed sequentially, even when parallel execution is en-
abled. This leads to net times that are 238% higher on
average, compared to PAR. Note that query A3 shows a
better net time than the other queries. This is caused by
Hive allowing grouping on certain join queries, effectively
bringing the number of jobs (and rounds) down to 2.
Next, we find that HPARS performs better than HPAR

in terms of net time but is still 126% higher on average
than PAR. The lower net times w.r.t. HPAR are explained
by Hive allowing parallel execution of semi-join operations,
without allowing any form of grouping. This effectively
makes HPAR the Hive equivalent of PAR. The high net
times are caused by Hive’s higher average map and reduce
input sizes.
Finally, Pig shows an average net time increase of 254%.

Hasselt University

Gumbo

Tuple IDs

0,1 REQUEST R(0,1,8)S(x,y)

0,1 REQUEST R(0,1,8)T(x,y)

0,1 REQUEST R(0,1,8)S(x,y) T(x,y)

0,1 REQUEST R(0,1,8)S(x,y)

0,1 T1 #0003A1

Packing

1-Round

Map Shaping

Streaming Reducers

Reducer Shaping

MR Cost Model

Map Output Estimation

Multi-Query

Confirm Reductiongithub.com/JonnyDaenen/Gumbo

Conclusion

Plug into Pig/Hive/...?

Parallel MR Query Plan: low net time

Greedy Grouping: low total time

(multi-)BSGF NP-hard

Single Semi-Join: 1 round

General MR Optimizations

(multi-)SGF NP-hard

